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The perturbative variational formulation of the Vlasov-Maxwell equations is presented up to the third

order in the perturbation analysis. From the second and third-order Lagrangian densities, the first-order

and second-order Vlasov-Maxwell equations are expressed in gauge-invariant and gauge-independent

forms, respectively. Upon deriving the reduced second-order Vlasov-Maxwell Lagrangian for the lin-

ear nonadiabatic gyrokinetic Vlasov-Maxwell equations, the reduced Lagrangian densities for the lin-

ear drift-wave equation and the linear hybrid kinetic-magnetohydrodynamic (MHD) equations are

derived, with their associated wave-action conservation laws obtained by the Noether method. The

exact wave-action conservation law for the linear hybrid kinetic-MHD equations is written explicitly.

Finally, a new form of the third-order Vlasov-Maxwell Lagrangian is derived in which ponderomotive

effects play a crucial role. Published by AIP Publishing. https://doi.org/10.1063/1.5049570

I. INTRODUCTION

The dynamical reduction of the Vlasov-Maxwell equa-

tions provides a systematic pathway toward the formal deri-

vation of the nonlinear gyrokinetic Vlasov-Maxwell

equations, which are used extensively in the investigation of

the turbulent evolution of fusion magnetized plasmas.1–3 The

modern derivation of the gyrokinetic Vlasov-Maxwell equa-

tions1 is based on a series of phase-space transformations

generated by a canonical generating function S, which suc-

ceeds in decoupling the fast gyromotion from the intermedi-

ate bounce/transit motion along the field lines and the slow

drift motion across the field lines.

The purpose of the present paper is to explore the pertur-

bative variational formulation of the exact and reduced

Vlasov-Maxwell equations, from which exact conservation

laws for the linearized and nonlinear Vlasov-Maxwell equa-

tions are derived by the Noether method.4 In particular, we

derive the exact wave-action conservation laws for the linear

exact and reduced Vlasov-Maxwell equations without requir-

ing the eikonal approximation (as is assumed in the standard

derivation5) It is important to note, however, that these con-

servation laws are exact only within the limits in which they

are derived, i.e., they will not be valid whenever higher-

order effects (or additional physics not included in the

model) must be taken into account.

A. Geometric Lie-transform perturbation theory

It was previously shown6 that perturbed Hamiltonian

dynamics can be represented geometrically in terms of two

Hamiltonian functions, with the generating function S acting

as the Hamiltonian for the perturbation evolution

dza=d� � fza; Sg; (1)

where perturbations are now treated as a continuous process,

and the Hamiltonian H acts as the generating function for

infinitesimal canonical transformations described by the

standard canonical Hamilton equations

dza=dt � fza; Hg: (2)

Both Hamiltonian functions H and S (which have units of

action since � is dimensionless) depend on the canonical

phase-space coordinates z ¼ ðx; pÞ, the time t, and the per-

turbation variable � (with � ¼ 0 representing an arbitrary ref-

erence state).

The condition that the two Hamiltonian operators

d=dt � @=@tþ f ; Hg and d=d� � @=@�þ f ; Sg commute

(i.e., the order of temporal and perturbative evolutions is

immaterial) yields the relation

0 ¼ d

dt
;

d

d�

� �
f ¼ d

dt

df

d�

� �
� d

d�

df

dt

� �

¼ f ;
@S

@t
� @H

@�
þ S; Hf g

� �� �
; (3)

where the function f ðz; t; �Þ is arbitrary. Here, we used the

definitions

d

dt

df

d�

� �
¼ @2f

@t@�
þ @f

@t
;S

� �
þ f ;

@S

@t

� �
þ @f

@�
þ f ;Sf g;H

� �
;

d

d�

df

dt

� �
¼ @2f

@�@t
þ @f

@�
;H

� �
þ f ;

@H

@�

� �
þ @f

@t
þ f ;Hf g;S

� �
;

and after cancellations, we used the Jacobi property of the

Poisson bracket: ff ; Sg;Hf g þ fH; fg; Sf g ¼ � fS;Hg; ff g,
to obtain Eq. (3). Since this relation must hold for any func-

tion f, we obtain the constraint between the Hamiltonians S
and H

@S

@t
� @H

@�
þ S;Hf g � 0; (4)

which appears prominently in Lie-transform Hamiltonian

perturbation theory.7,8

For practical applications of the Hamiltonian constraint

(4) in Vlasov-Maxwell theory, we now consider the follow-

ing perturbation power expansions
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S �
X1
n¼1

n �n�1 Sn (5)

and

H ¼ 1

2m

����p� e

c
A

����
2

þ e U �
X1
n¼0

�n Hn; (6)

where the expansion (5) simply mirrors the expansion

@H=@� ¼
P

n¼1 n �n�1Hn. In addition, the electromagnetic

potentials and fields are expanded as

ðU;A; E;BÞ �
X1
n¼0

�n ðUn;An; En;BnÞ; (7)

where En � �rUn � c�1@An=@t and Bn � r�An are

derived from the electromagnetic potentials ðUn;AnÞ. By

substituting these expansions into Eq. (4), we recover the

first two Lie-transform perturbation equations8

d0S1

dt
¼ H1 ¼ e U1 �

v0

c
�A1

� �
; (8)

d0S2

dt
¼ H2 �

1

2
S1; H1f g;

¼ e U2 �
v0

c
�A2

� �
þ e2

2mc2
jA1j2 �

1

2
S1; H1f g; (9)

where d0=dt � @=@tþ f ; H0g is the unperturbed

Hamiltonian evolution operator, expressed in terms of the

unperturbed Hamiltonian H0 � mjv0j2=2þ e U0, where v0

� ½p� ðe=cÞA0�=m denotes the unperturbed particle veloc-

ity. Here, we note that the evolution of S2 explicitly involves

the second-order potentials ðU2;A2Þ and the quadratic pon-

deromotive Hamiltonian � 1
2

S1; H1f g, which involves the

solution of the first-order equation d0S1=dt ¼ H1. These pon-

deromotive effects will appear prominently in the third-order

action functional to be derived in Secs. II and V.

Before proceeding with our perturbation analysis of the

Vlasov-Maxwell equations, however, we need to specify

under what conditions this analysis may be valid. The use of

perturbation methods has an extensive history in plasma

physics7–11 and each application requires a specific ordering

(i.e., the identification of a small dimensionless parameter �)
based on the space-time-scale separation of the reference

and perturbed Vlasov-Maxwell states. It is, therefore, useful

to consider the first-order perturbed fields ðS1;U1;A1Þ to rep-

resent small-amplitude linear waves that perturb the Vlasov-

Maxwell reference state, which will be described in terms of

a second-order variational formulation. Hence, the stability

of the reference state can be investigated directly from the

second-order variational principle. We note that, in order to

derive a meaningful perturbation theory, we must exclude

parametric resonances12 at all perturbation orders, since these

resonances can easily lead to a breakdown in the perturbation

ordering. Nonlinear wave-particle and wave-wave interac-

tions (e.g., weak turbulence) will naturally enter at the second

order (and beyond) in the perturbation analysis,10 which will

require at least a third-order variational formulation. It is the

ultimate goal of this work to present a perturbative hierarchy

for the Vlasov-Maxwell equations. While it is readily under-

stood that the exact linear wave-action conservation laws

derived from the second-order variational formulation are not

to be taken literally, the wave-action density for each wave

involved in nonlinear wave-wave interactions (e.g., three-

wave interactions) is used as a field variable13 in order to

express the so-called wave kinetic equation.

B. Organization

The remainder of this paper is organized as follows: In

Sec. II, we construct a perturbative action functional for the

Vlasov-Maxwell equations by imposing the Lie-transform

constraint (4). The Lagrange multiplier used with this con-

straint is the Vlasov distribution function, which allows us to

express the perturbation expansion of the Vlasov distribution

in powers of the scalar fields ðS1; S2;…Þ. In Sec. III, the

second-order action functional is derived from the perturba-

tive Vlasov-Maxwell action functional. The second-order

action functional is quadratic in either the first-order fields

ðS1;U1;A1Þ, in the gauge-invariant form, or the first-order

fields ðn1 � @S1=@p;E1;B1Þ, in the gauge-independent

form. In the gauge-independent form (which can also be

derived from the Low-Lagrangian formulation14) the first-

order polarization and magnetization appear explicitly in the

first-order Maxwell equations as well as in the energy-

momentum and wave-action conservation laws (derived by

the Noether method).

In Sec. IV, we review the applications of the quadratic

Vlasov-Maxwell action functional that lead to the variational

formulations of the linear drift-wave equation and the

kinetic-magnetohydrodynamic (MHD) equations. In particu-

lar, we expand our previous work on the kinetic-MHD equa-

tions15 and derive the exact kinetic-MHD wave-action

conservation law for the general case of a time-dependent

nonuniform bulk plasma.

In Sec. V, we present the third-order Vlasov-Maxwell

action functional, which is given in gauge-invariant and

gauge-independent forms. The gauge-invariant third-order

action functional is the sum of terms that are cubic in the

first-order fields ðS1;U1;A1Þ as well as ponderomotive terms

involving the second-order fields ðS2;U2;A2Þ, which are tra-

ditionally absent from all previous third-order action func-

tionals (see, for example, Ref. 16). These ponderomotive

terms, however, play an integral part in the Lie-transform

formulation of perturbed Vlasov-Maxwell theory.17 In future

work, this third-order Vlasov-Maxwell action functional will

be explored for applications in nonlinear reduced gyrokinetic

theory. Finally, general expressions for the perturbed polari-

zation and magnetization associated with the perturbed parti-

cle phase-space dynamics (1) are presented in Sec. VI and

our work is summarized in Sec. VII.

II. PERTURBATIVE ACTION FUNCTIONAL

In the present section, we introduce the perturbative var-

iational formulation of the Vlasov-Maxwell equations. We

start with the perturbed Vlasov action functional
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AV� �
ð�

0

dr
ð

f
@S

@t
� @H

@r
þ S;Hf g

� �
d6zdt;

where the perturbation parameter r is integrated from the

reference state (r ¼ 0) to the physically perturbed state

(r ¼ �) and the Lagrange multiplier f ðz; t; rÞ will be inter-

preted below as the Vlasov distribution function [see Eq.

(10)]; here, summation over particle species is implicitly

assumed.

A. Perturbed Vlasov equation

The variation of AV� with respect to f yields the con-

straint (4), the variation of AV� with respect to S yields the

standard Vlasov equation

df

dt
¼ @f

@t
þ f ;Hf g ¼ 0; (10)

and the variation of AV� with respect to the Hamiltonian H
yields

df

dr
¼ @f

@r
þ f ; Sf g ¼ 0; (11)

which shows how the Vlasov perturbations

f � f0 �
X1
n¼1

rn fn (12)

are generated by S. More explicitly, the first two terms of the

Vlasov perturbation hierarchy (11) are

f1 ¼ fS1; f0g
f2 ¼ S2; f0f g þ 1

2
S1; f1f g

)
: (13)

We note that the first-order expression f1 ¼ fS1; f0g is also

used by Morrison and Pfirsch19 in applying the quadratic

free-energy method on the stability of Vlasov equilibria.

B. Perturbed Maxwell equations

Next, we turn our attention to the perturbed Maxwell

equations. For this purpose, we introduce the perturbed

Vlasov-Maxwell action functional

A� �
ð�

0

dr
ð

d6zdt f
@S

@t
� @H

@r
þ S;Hf g

� �" #

þ
ð�

0

dr
ð

d3rdt
E

4p
� @E

@r
� B

4p
� @B

@r

� �" #
; (14)

which is now a functional of the electromagnetic potentials

ðU;AÞ, through the Hamiltonian H, and the electromagnetic

potential perturbation derivatives ð@U=@r; @A=@rÞ. We note

that ðH;E;BÞ also depend on the reference potentials

ðU0;A0Þ, which are functionally independent from the pertur-

bation fields ð@U=@r; @A=@rÞ. A slightly different version of

the perturbative action functional (14) was presented by

Larsson,18 where the Maxwell part is expressed solely in terms

of unperturbed fields ðE0;B0Þ and first-order perturbation

fields ðE1;B1Þ. Hence, in Larsson’s theory, the Vlasov-

Maxwell fields ðf ;E;BÞ are not treated equally since

ð@E=@r; @B=@rÞ � ðE1;B1Þ are truncated at the lowest order,

while @f=@r is expanded to all orders.

In the Vlasov part of the action functional (14), the per-

turbation derivative @H=@r of Eq. (6) is

@H

@r
¼ e

@U
@r
� e

@A

@r
� v

c
; (15)

where v � ½p� ðe=cÞA�=m denotes the particle velocity,

while the Maxwell part in Eq. (14) can be written asð
d3r dt

4p
E � @E

@r
� B � @B

@r

� �

¼
ð

d3r dt

4p
@U
@r
r �Eð Þ þ @A

@r
� 1

c

@E

@t
�r�B

� �� �

after integration by parts is performed. By replacing Eq. (15)

into Eq. (14), variations of A� with respect to the perturbation

fields ð@U=@r; @A=@rÞ now yield the Maxwell equations

r �E ¼ 4p
ð

p

e f (16)

and

r�B� 1

c

@E

@t
¼ 4p

c

ð
p

e v f ; (17)

where the momentum integral
Ð

p
�
PÐ

d3p includes a sum

over particle species. The remaining source-free Maxwell

equations

r �B ¼ 0

@B=@t ¼ �cr�E

�
(18)

follow from the definitions of the electromagnetic fields in

terms of the potentials. Note that these equations include

contributions from the reference fields ðf0;E0;B0Þ.
The variations of A� with respect to the reference poten-

tials ðU0;A0Þ yield the perturbed Maxwell equations

r � @E

@r
¼ 4p

ð
p

e S; ff g � 4p
ð

p

e
@f

@r
; (19)

r� @B

@r
� 1

c

@2E

@t@r
¼ 4p

ð
p

e

c
v S; ff g � e f

mc

@A

@r

� �

� 4p
ð

p

e

c

@

@r
dx

dt
f

� �
; (20)

where dx=dt ¼ fx; Hg ¼ v and @v=@r ¼ �ðe=mcÞ@A=@r.

We will return to these perturbed Maxwell equations in Sec.

VI, where we will show that Eqs. (19) and (20) can be writ-

ten as

r� @E

@r
� �4pr�Pr; (21)

r� @B

@r
� 1

c

@2E

@t@r
� 4p

c

@Pr

@t
þ 4pr�Mr; (22)
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where expressions for the polarization Pr and the magneti-

zation Mr will be given in Sec. VI.

C. Expansion of the action functional

We now express the action functional (14) as a perturba-

tion power series

A� ¼
X1
n¼1

�nAn �
X1
n¼1

�n
Xn�1

k¼0

AðkÞn�k

 !
; (23)

where the nth-order action functional An describes the per-

turbed Vlasov-Maxwell dynamics, with the functional term

AðkÞn�k explicitly depending on Wn�k � ðSn�k; Un�k;An�kÞ.
The contributions from the nth-order fields Wn, therefore,

appear in the functional term

Að0Þn �
ð

d6z dtf0

d0Sn

dt
� e Un �

v0

c
�An

� �� �

þ
ð

d3r dt

4p
E0 �En � B0�Bnð Þ; (24)

where v0 ¼ ½p� ðe=cÞA0�=m denotes the particle’s reference

velocity. We now show that Að0Þn � 0 at all orders n � 1 if

the reference state ðf0;E0;B0Þ satisfies the reference Vlasov-

Maxwell equations. First, if we integrate by parts the first

term in Eq. (24), we obtainð
Sn d0f0=dtð Þ d6z dt � 0;

which follows from the unperturbed (reference) Vlasov equa-

tion for f0. Next, if we substitute En � �rUn � c�1@An=@t
and Bn � r�An into the second term in Eq. (24) and inte-

grate by parts, we obtain

ð
Un r �E0 � 4p

ð
p

ef0

 !
d3r dt � 0

and

ð
An�

1

c

@E0

@t
�r�B0 þ

4p
c

ð
p

ev0f0

 !
d3rdt � 0;

which follow from the unperturbed (reference) Maxwell

equations for E0 and B0. Hence, the functional term (24)

vanishes identically and the nth-order action functional

An ¼
Xn�1

k¼1

AðkÞn�k (25)

depends explicitly on the perturbation fields ðWn�1;…;W2;
W1Þ, with A1 � 0 appearing as a special case. The nth-order

action functional An, therefore, describes the ðn� 1Þth-order

perturbed Vlasov-Maxwell dynamics (i.e., A2 describes

linear Vlasov-Maxwell dynamics, while A3 can be used to

describe second-order ponderomotive-driven Vlasov-Maxwell

equations).

III. SECOND-ORDER LAGRANGIAN DENSITY

The simplest perturbative action functional in Eq. (23)

therefore appears at the second order, where the (quadratic)

action functional A2 �
Ð
L2 d3r dt describes the linear (first-

order) perturbed Vlasov-Maxwell dynamics. Here, the qua-

dratic Lagrangian density is defined as

L2 �
ð

p

f1
1

2

d0S1

dt
� H1

� �
� e2 f0

2 mc2
jA1j2

� �

þ 1

8p
jE1j2 � jB1j2
	 


; (26)

which depends on the perturbed Vlasov distribution

f1 ¼ fS1; f0g and the perturbed electromagnetic fields

ðE1;B1Þ. The Eulerian variation of the Lagrangian density

(26) is expressed as

dL2 ¼
ð

p

dS1; f0f g 1

2

d0S1

dt
� H1

� ��

þ f1
1

2

d0dS1

dt
� dH1

� �
� e2 f0

mc2
dA1 �A1

�

� 1

4p
E1 � rdU1 þ

1

c

@dA1

@t

� �
þ B1� r� dA1

� �

� @dJ 2

@t
þr� dC2 �

ð
p

dS1

d0S1

dt
� H1

� �
; f0

� �

þ dU1

4p
r�E1 � 4p

ð
p

e f1

 !
þ dA1

4p
� 1

c

@E1

@t

�

�r�B1 þ 4p
ð

p

e

c
f1v0 �

eA1

mc
f0

� ��
; (27)

where the second expression is obtained after rearranging

terms in order to isolate the variations ðdS1; dU1; dA1Þ. We

note that the space-time divergence terms (to be defined

below) do not contribute in the quadratic variational princi-

ple20
Ð

dL2 d3r dt ¼ 0.

A. First-order Vlasov-Maxwell equations

The variation of the quadratic Lagrangian density (27)

with respect to S1 yields the first-order Vlasov equation

0 ¼ d0f1

dt
þ f0; H1f g ¼ d0S1

dt
� H1

� �
; f0

� �
; (28)

which becomes

d0S1

dt
¼ H1 ¼ e U1 � A1 �

v0

c

� �
; (29)

when an arbitrary reference Vlasov distribution f0 is consid-

ered (which satisfies d0f0=dt ¼ 0). Variations of the qua-

dratic Lagrangian density (27) with respect to ðU1;A1Þ yield

the first-order Maxwell equations

r �E1 ¼ 4p
ð

p

e f1; (30)
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r�B1 �
1

c

@E1

@t
¼ 4p

c

ð
p

e f1v0 �
eA1

mc
f0

� �
; (31)

with f1 ¼ fS1; f0g. Equations (29)–(31) describe the standard

linearized Vlasov-Maxwell equations, from which linear

waves and instabilities in a general Vlasov-Maxwell equilib-

rium state can be analysed.

B. Quadratic conservation laws

The conservation laws of energy-momentum, angular-

momentum, and wave-action associated with the linear

Vlasov-Maxwell equations can be derived by the Noether

method4 from dL2 as follows. We note that, when the unper-

turbed Vlasov-Maxwell fields ðf0; E0;B0Þ are time-dependent

and spatially nonuniform,21 only the quadratic wave action is

conserved exactly, while the energy and momentum associated

with the perturbation fields ðS1;E1;B1Þ are no longer con-

served, since energy-momentum is exchanged with the refer-

ence Vlasov-Maxwell plasma.

To demonstrate the power of the Noether method,

we introduce the quadratic Noether equation obtained from

Eq. (27)

dL2 ¼
@dJ 2

@t
þr � dC2; (32)

which is left in Eq. (27) after Eqs. (29)–(31) are derived

from the variational principle. Here, the Noether fields

dJ 2 ¼
1

2

ð
p

f1 dS1 �
E1

4p c
� dA1; (33)

dC2 ¼
1

2

ð
p

dS1 f1

@H0

@p
� H1

@f0

@p

� �

� 1

4p
dU1 E1 þ dA1�B1ð Þ (34)

are expressed in terms of the field variations dW1 ¼ ðdS1;
dU1; dA1Þ. The Noether method involves relating symme-

tries of the Lagrangian density L2 with exact conservation

laws of the linear Vlasov-Maxwell equations, which are

obtained by expressing the field variations dW1 in terms of

space-time translations or rotations.

1. Quadratic energy conservation law

As an application of the Noether method, we consider

the energy conservation law associated with the symmetry of

the Lagrangian density L2 under infinitesimal time transla-

tion t! tþ dt. First, an infinitesimal time translation indu-

ces the Eulerian variations dW1 ¼ �dt @W1=@t, with dA1

� c dt ðE1 þrU1Þ and dL2 � �dt ð@=@t� @0=@tÞL2, where

@0L2=@t represents the explicit time dependence associated

with the unperturbed Vlasov-Maxwell fields ðf0; E0;B0Þ.
Next, by inserting these variations into the Noether fields

(33) and (34), we obtain

@E2

@t
þr � S2 ¼ �

@0L2

@t
; (35)

where the quadratic energy density is

E2 ¼
1

8p
jE1j2 þ jB1j2
	 


þ
ð

p

e2 f0
2mc2

 !
jA1j2

�
ð

p

f1

1

2
S1;H0f g þ e

c
A1 � v0

� �� �
; (36)

and the quadratic energy-density flux is

S2 ¼
cE1

4p
�B1 � U1

ð
p

e v0 f1 �
e2 f0

mc
A1

� �

þ 1

2

ð
p

@S1

@t
f1
@H0

@p
� H1

@f0
@p

� �
: (37)

Hence, according to the Noether theorem, the quadratic

energy (36) is conserved if the reference Vlasov-Maxwell

fields are time-independent (i.e., @0L2=@t � 0). We note that

when the quadratic energy density (36) is integrated over

space, we recover the quadratic free energy F 2 �
Ð
E2 d3x

derived by Morrison and Pfirsch.19

2. Quadratic wave-action conservation law

While the quadratic energy E2 is no longer conserved

when the reference Vlasov-Maxwell fields ðf0; E0;B0Þ are

time-dependent, however, it is possible to construct an exact

quadratic wave-action conservation law21 @ �J 2=@tþr � �C2

¼ 0. First, we consider complex-valued wave-fields21 with

W�1 ¼ ðS�1;U�1;A�1Þ 6¼ W1, and construct real-valued (eikonal-

averaged) expressions for the Noether densities (33)

and (34). Next, we introduce the eikonal-phase-like varia-

tions dW1 ¼ i dh W1 and dW�1 ¼ �i dh W�1, which yield

dJ 2 ¼ �dh �J 2 and dC2 ¼ �dh �C2, where the quadratic

wave-action density �J 2 and wave-action-density flux �C2 are

defined as

�J 2 � Im
A�1 �E1

4p c
þ 1

2

ð
p

S�1; f0
� �

S1

" #
; (38)

�C2 � Im
1

4p
U�1 E1 þ A�1�B1

	 
� �

þ 1

2
Im

ð
p

S�1; f0

� � @H0

@p
� H�1

@f0

@p

� �
S1

" #
: (39)

Wave-action conservation laws play a crucial role, for exam-

ple, in the linear mode conversion involving two coupled lin-

ear waves in a nonuniform background plasma.22

C. Gauge-independent formulation

We note that the quadratic Lagrangian density (26) is

not gauge independent since the electromagnetic potentials

ðU1;A1Þ appear explicitly in the first-order Hamiltonian (8).

However, under the gauge transformation generated by an

arbitrary gauge field v1ðx; tÞ

ðU1;A1; S1Þ ! U1 �
1

c

@v1

@t
;A1 þrv1; S1 �

e

c
v1

� �
; (40)

with the associated gauge transformations
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f1; H1ð Þ ! f1 �
e

c
v1; f0f g; H1 �

e

c

d0v1

dt

� �
; (41)

we can easily verify that Eq. (29) is gauge invariant, while

the quadratic Lagrangian density (26) becomes L2 ¼ L02
þ@K2=@tþr �K2, where ðK2;K2Þ are momentum integrals

involving ðv1; S1Þ. Since the quadratic variational principle

dA2 ¼ 0 is based on the action functional A2 ¼
Ð
L2 d3x dt,

where the Lagrangian density L2 is integrated over space

and time, then the action functional is invariant under the

gauge transformations (40) and (41) since @K2=@tþr�K2

is an exact space-time derivative. Similarly, the quadratic

energy conservation law (35) is gauge invariant because,

under a gauge transformation, the energy density E2 and

energy-density flux S2 transform as E2 ¼ E02 þr �Q2 and

S2 ¼ S02 � @Q2=@t, which leaves the quadratic energy con-

servation law (35) invariant.

We can eliminate all gauge dependence in what follows

by introducing the gauge-independent first-order phase-

space displacement

g1 � fx; S1g ¼ @S1=@p; (42)

from which we define the gauge-invariant first-order velocity

u1 �
d0g1

dt
� g1 � rv0 ¼ �

1

m
rS1 þ

e

c
A1

� �
; (43)

obtained from Eq. (29), which satisfies the gauge-

independent equation of motion14

d2
0g1

dt2
¼ e

m
E1 þ

v0

c
�B1

� �
þ d0g1

dt
� eB0

mc
; (44)

where we have assumed uniform Maxwell fields ðE0;B0Þ for

simplicity. We note, here, that the first-order displacement

(42) is still a function on the full particle phase space.

The first-order Maxwell equations (30) and (31), on the

other hand, become

r �E1 ¼ 4p
ð

p

e f1 � �4pr �P1; (45)

r�B1 �
1

c

@E1

@t
¼ 4p

c

ð
p

e f1 v0 �
eA1

mc
f0

� �

� 4p
c

@P1

@t
þ 4pr�M1; (46)

where the first-order polarization and magnetization

P1; M1ð Þ �
ð

p

e f0 g1; g1�
v0

c

� �
(47)

are defined in terms of moments of the first-order displace-

ment g1, and the first-order magnetization is solely due to the

moving electric-dipole contribution. Using the macroscopic

fields D1 � E1 þ 4p P1 and H1 � B1 � 4p M1, the first-

order Maxwell equations (45) and (46) become

r �D1 ¼ 0

cr�H1 � @D1=@t ¼ 0

�
: (48)

Hence, in general first-order Vlasov-Maxwell theory, the

perturbed first-order charge and current densities are entirely

expressed in terms of perturbed first-order polarization

charge and polarization/magnetization current densities,

respectively. See the case of the oscillation-center Vlasov-

Maxwell equations23 as an explicit example.

The first-order Vlasov-Maxwell equations (44)–(46) can

be obtained from the gauge-independent Lagrangian density

L02 ¼
1

2

ð
p

f0 m

���� d0g1

dt

����
2

þ e

c
g1�

d0g1

dt

� �
�B0

" #

þ
ð

p

f0 e g1 � E1 þ
v0

c
�B1

� �
þ 1

8p
jE1j2 � jB1j2
	 


:

(49)

The gauge-independent Noether equation associated

with this gauge-independent quadratic Lagrangian is

expressed as dL02 ¼ @dJ 02=@tþ r� dC02, where the Noether

fields are

dJ 02 ¼
ð

p

f0 dg1 � m
d0g1

dt
� e

2c
g1�B0

� �

�dA1 �
D1

4p c
; (50)

and

dC02 ¼
ð

p

v0 f0 dg1 � m
d0g1

dt
� e

2c
g1�B0

� �

� 1

4p
dU1 D1 þ dA1�H1ð Þ: (51)

The energy conservation law (35) is now expressed in terms

of the gauge-independent energy density

E02 ¼
ð

p

f0

m

2

���� d0g1

dt

����
2

� e

c
g1� v0�B1

 !

þ 1

8p
jE1j2 þ jB1j2
	 


; (52)

and the gauge-independent energy-density flux

S02 ¼
ð

p

v0 f0

d0g1

dt
� m

d0g1

dt
� e

2c
g1� v0

� �

þE1�H1

4p
: (53)

The wave-action conservation law @ �J 02=@tþr � �C02 ¼ 0, on

the other hand, is expressed in terms of the gauge-invariant

wave-action density

�J 02 ¼ �Im

ð
p

f0 g�1 � m
d0g1

dt
� e

2c
g1� v0

� �" #

þIm
A�1 �D1

4p c

� �
; (54)

and the gauge-invariant wave-action-density flux
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�C02 ¼ �Im

ð
p

v0 f0 g�1 � m
d0g1

dt
� e

2c
g1� v0

� �" #

þIm
1

4p
U�1 D1 þ A�1�H1

	 
� �
; (55)

which are identical to expressions derived from the standard

low Lagrangian.21 We note, here, that the gauge invariance

of Eqs. (54) and (55) follows directly from the gauge-

independent first-order Maxwell equations (48).

IV. QUADRATIC LAGRANGIANS FOR REDUCED
VLASOV-MAXWELL MODELS

In this section, we now look at some applications of the

quadratic Lagrangian density (26) when phase-space trans-

formations are used in the context of dynamical reduction.24

The guiding-center transformation plays a fundamental role

in our understanding of the magnetic confinement of charged

particles25,26 and serves as an important foundation for the

construction of most reduced plasma models. Here, we con-

sider the guiding-center transformation of the quadratic

action functional (26), from which the variational principles

for the linearized gyrokinetic Vlasov-Maxwell equations

(63), the linear drift-wave equation (64), and the linear

gyrokinetic-MHD equations (75) are derived.

We begin with the transformation of the quadratic action

function (26) to its guiding-center form

L2gc ¼
ð

P

S1gc;F0f ggc

1

2

dgc

dt
S1gc � H1gc

� ��

� e2 F0

2 mc2
jA1gcj2

�
þ 1

8p
jE1j2 � jB1j2
	 


; (56)

where F0 denotes the unperturbed guiding-center Vlasov dis-

tribution,
Ð

P
�
Ð

d3P includes the guiding-center Jacobian,

dgc=dt denotes the (unperturbed) guiding-center Hamiltonian

evolution operator, and f ; ggc denotes the non-canonical

guiding-center Poisson bracket.25,26

In Eq. (56), we also transformed the first-order

Hamiltonian H1 ! H1gc ¼ e U1gc � e A1gc � vgc=c � e w1gc,

where vgc � T�1
gc v denotes the guiding-center push-forward

of the particle velocity (which includes the guiding-center

drift velocity) and the electromagnetic potentials ðU1gc;
A1gcÞ are evaluated at the particle position x � Xþ qgc

expressed in terms of the guiding-center position X and the

local gyroradius qgc (which includes higher-order corrections

due to magnetic-field nonuniformity27).

In addition, we transformed the first-order generating

function S1 ! S1gc, where the guiding-center generating

function S1gc � hS1gci þ ~S1gc is decomposed into its

gyroangle-averaged (nonadiabatic) part hS1gci � S1gy, which

defines the first-order gyrocenter generating function S1gy,20

and its gyroangle-dependent (adiabatic) part ~S1gc, which sat-

isfies the first-order equation1,28

dgc

dt
~S1gc ¼ e ~w1gc ! ~S1gc ¼

e

X
~W1gc: (57)

We note that only the gyroangle-independent part S1gy will

appear in the reduced quadratic gyrokinetic Lagrangian den-

sity (58).

When we insert these decompositions into the guiding-

center quadratic action functional (56), we obtain the low-

frequency gyrocenter Lagrangian density

L2gy ¼
ð

�P

fS1gy; �F0ggc

1

2

dgc

dt
S1gy � hH1gci

� �
� �F0 H2gy

� �

þ 1

8p
jE1j2 � jB1j2
	 


; (58)

where the low-frequency perturbed electric field E1 ¼ �r?U1

is used in the Maxwell part, the operation of gyroangle-

averaging was performed in the gyrocenter Vlasov part, with

the unperturbed gyrocenter Vlasov distribution �F0ð�E ; �l; �XÞ
depending on the gyrocenter position �X, the gyrocenter

magnetic moment �l, and the guiding-center kinetic energy
�E � �H0gc, and the second-order gyrocenter Hamiltonian is28

H2gy ¼
e2hjA1gcj2i

2 mc2
� e2

2X
~W1gc; ~w1gc

n o
gc


 �
: (59)

We note that the last term in the second-order gyrocenter

Hamiltonian (59) represents the low-frequency ponderomo-

tive Hamiltonian from which the gyrocenter polarization and

magnetization effects arise.1 The gyrocenter quadratic action

functional (58) was used to construct the quadratic gyroki-

netic free-energy functional.29

We note that the relation between the particle Vlasov

distribution f and the gyrocenter Vlasov distribution �F is

expressed in terms of the guiding-center and gyrocenter pull-

back operators f � TgcðTgy
�FÞ, which yields20

f1 � Tgc
�F1þ

e

X
~W1gc; �F0

n o
gc
þ e

c
A1gc � �Xþ �qgc; �F0

n o
gc

� �
;

(60)

where the first-order gyrocenter Vlasov distribution �F1 is

generated by the first-order gyrocenter function S1gy

�F1 � fS1gy; �F0ggc

¼ fS1gy; �Eggc

@ �F0

@�E
þ cb̂

eB�jj
� �r �F0 � �rS1gy: (61)

We now introduce the nonadiabatic part of the first-order

gyrocenter Vlasov distribution20

�G1 � �F1 � hH1gci
@ �F0

@�E
¼ S1gy; �F0

� �
gc
� dgc

�S1gy

dt

@ �F0

@�E

¼ cb̂

eB�jj
� �r �F0 � �r � @

�F0

@�E
@

@t

 !
S1gy � Q̂S1gy; (62)

where the operator Q̂ commutes with dgc=dt. With this decompo-

sition, the gyrocenter quadratic Lagrangian density (58) becomes

L2gy ¼
ð

�P

Q̂S1gy

1

2

dgc

dt
S1gy � hH1gci

� ��

� �F0 H2gy �
1

2

@hH1gci2

@�E

 !#

þ 1

8p
jr?U1j2 � jr�A1j2
	 


: (63)
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The gyrocenter quadratic action functional (63) can be used

to derive the nonadiabatic gyrokinetic Vlasov-Maxwell

equations, which includes the guiding-center and gyrocenter

polarizations and magnetizations.

We will now show that it can also be used to derive the

variational formulations for the linear drift-wave equation as

well as the linear hybrid gyrokinetic-MHD equations, which

describe how the perturbed Vlasov distribution (generated

by S1) corresponding to an energetic-particle population can

be self-consistently linked to a macroscopic plasma mode

(described by the ideal MHD fluid displacement n1) in a bulk

magnetized plasma.

A. Linear drift-wave equations

As a first example of the modular property of the varia-

tional formulations of reduced plasma models, where differ-

ent physical effects can be added in a modular fashion to an

action functional, the nonadiabatic gyrocenter quadratic

Lagrangian density (63) was previously15 used to derive the

linear drift-wave equation for electrostatic fluctuations

U1 ¼ U (with A1 ¼ 0) in a cold-ion magnetized plasma (rep-

resented by the nonuniform plasma density n0 and the uni-

form magnetic field B ¼ B ẑ) with adiabatic electrons (at a

uniform temperature Te).

The quadratic drift-wave action functional Adw

�
Ð
Ldw d3rdt is expressed in terms of the drift-wave

Lagrangian density15

Ldw ¼
cẑ

eB
�rn0� rðe wÞ e

2

@w
@t
� e U

� �

þmic
2 n0

2 B2
jr?Uj2 þ

n0 e2

2 Te

U2

� c � r?w
1

2

@w
@t
� U

� �

þ 1

2
b jr?Uj2 þ a U2
	 


: (64)

Here, the first term represents the nonadiabatic cold-ion

contribution, where the gyrocenter phase-space function

S1gy ! ewðx; tÞ is replaced by a scalar field wðx; tÞ in physi-

cal space. We note that this additional scalar field contributes

to the first-order ion fluid displacement

n1 ¼ ðcẑ=BÞ�r?w� ðmic
2=eB2Þr?U; (65)

which is obtained in the cold drift-kinetic (dk) limit of the

ion gyrocenter displacement hfXþ qgc; S1gcggci. The second

term 1
2

b jr?Uj2 in Eq. (64), which arises from the term

� �F0 H2gy in Eq. (63), represents the contribution from the

cold-ion gyrocenter polarization (which is much greater than

the Maxwell contribution jr?Uj2=8p). The third term
1
2

a U2, which arises from the electron contribution

� 1
2

e2U2 ð@fe=@EÞ in Eq. (63), represents the contribution

from the adiabatic electrons. We note that all three

background-plasma functions ða; b; cÞ depend on the position

through the nonuniform plasma density n0 and the vector

function c is divergenceless in a uniform magnetic field (i.e.,

r � c ¼ 0).

The drift-wave variational principle dAdw ¼ 0, based on

Eq. (64), yields the coupled equations

@w=@t ¼ U
a U�r? � ðbr?UÞ ¼ c � r?w

�
; (66)

from which we recover the linear drift-wave equation

@

@t
aU�r? � br?Uð Þ½ � ¼ c � r?

@w
@t
¼ c � r?U: (67)

We note that the second equation in Eq. (66) can be rewritten

in the form of the quasineutrality condition e ne1 ¼ e ni1

a U ¼ �r � e n0n1ð Þ ¼ c � rwþr? � ðbr?UÞ;

where the first-order ion fluid displacement (65) was used.

The drift-wave Lagrangian density (64) can also be used

to derive the drift-wave Noether equation dLdw ¼ @tdJ dw

þr � dCdw, where

dJ dw ¼
1

2
dw c � rw

dCdw ¼ dU brU� 1

2
dw c @tw

9>=
>;; (68)

from which the energy-momentum conservation laws for the

linear drift-wave equation (67) are derived. For example, the

energy conservation law @tEdw þr � Sdw ¼ 0 is expressed in

terms of the drift-wave densities

Edw ¼ U c � rw� 1

2
ðb jr?Uj2 þ a U2Þ

Sdw ¼ br?U @tU�
1

2
c U2

9>=
>;: (69)

The drift-wave Noether equation was also used to derive the

linear drift-wave action conservation law15

@ �J dw

@t
þr � �Cdw ¼ 0; (70)

where the linear drift-wave action density �J dw and the linear

drift-wave-action-density flux �Cdw are

�J dw � Im
1

2
wc � rw�

� �
; (71)

�Cdw � Im b UrU� � 1

2
c w

@w�

@t

� �
: (72)

The linear drift-wave action conservation law was first

derived in an ad-hoc fashion by Mattor and Diamond30 to

investigate the role of the drift-wave-action conservation law

in drift-wave turbulence propagation. We note that, in the

eikonal limit ð@=@t;rÞ ! ð�i x; ikÞ, the drift-wave disper-

sion relation is

x ¼ �k? � c=ðaþ b k2
?Þ � xdwðk?Þ;

and the eikonal-averaged drift-wave energy density is
�Edw ¼ xdw

�J dw, where the drift-wave eikonal-averaged

action density is �J dw ¼ �k � c j~wj2 � @ �Ldw=@x, while

the eikonal-averaged drift-wave energy density is
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�Sdw ¼ vdw
�Edw ¼ xdw

�Cdw, where the drift-wave group

velocity is vdw � @xdw=@k and the drift-wave eikonal-aver-

aged action density flux is �Cdw ¼ vdw
�J dw � �@ �Ldw=@k.

Finally, we need to emphasize again that the drift-wave

action conservation law (70) is no longer valid once addi-

tional physics (e.g., the presence of a mean flow) or nonlinear

effects (e.g., drift-wave/zonal-flow interactions31,32) are taken

into account. On the one hand, additional physics (within the

same perturbation order) can always be introduced in the

appropriate Lagrangian density in order to derive a general-

ized form of the wave-action conservation law (see the next

modular example). On the other hand, the linear drift-wave

action density �J dw can still be used as a convenient field vari-

able in the ensuing nonlinear-wave discussion.

B. Linear hybrid gyrokinetic-MHD equations

Another modular application of the nonadiabatic gyro-

center quadratic action functional (63) involves the varia-

tional derivation of the standard hybrid gyrokinetic-MHD

equations.33 In the presence of an energetic-particle species,

the ideal MHD wave-action conservation law is no longer

satisfied since the interaction between the linear MHD

modes and the perturbations of the energetic-particle distri-

bution must be taken into account. We now show that the

introduction of the additional physics associated with the

energetic-particle species is done through a modification of

the ideal MHD Lagrangian density.35

First, we write the perturbed Hamiltonian for the

energetic-particles in the drift-kinetic (dk) limit

hH1gci ! e U1 � A1 � vgc=c
	 


þ �l B1jj; (73)

where vgc denotes the guiding-center magnetic-drift velocity.

In its simplest version, we use U1 � 0 � A1jj (i.e., E1jj � 0)

and A1? � n1�B0, where n1ðx; tÞ denotes the ideal MHD

fluid displacement and B0 ¼ B0 b̂0 denotes the nonuniform

background magnetic field, which yields the first-order

Hamiltonian

H1dk ¼ �l b̂0� r� ðn1�B0Þ þ n1 �
e

c
vgc�B0

¼ ��lB0 I� b̂0b̂0

	 

: rn1 � m�v2

jj b̂0b̂0 : rn1

� � �P0 : rn1; (74)

where �P0 � �lB0 ðI� b̂0b̂0Þ þ m�v2
jj b̂0b̂0 and the parallel

component b̂0� n1 is naturally absent from H1dk.

By combining the Lagrangian contribution from the

nonadiabatic drift-kinetic Lagrangian density (58) for the

energetic particles with the Lagrangian density for the ideal

MHD equations35 (associated with a time-dependent magne-

tized bulk plasma with mass density .0, fluid velocity u0,

plasma pressure p0, and magnetic field B0), we obtain the

quadratic kinetic-MHD Lagrangian density20

LkMHD ¼
1

2
.0

���� d0n1

dt

����
2

þ n1 �F1ðn1Þ

 !

þ
ð

�p

Q̂S1dk

1

2

dgcS1dk

dt
� H1dkðn1Þ

� �
; (75)

where the self-adjoint operator F1 � r �K1 includes a time-

dependent contribution from the background bulk plasma,34,35

with the first-order dyadic tensor K1 defined as

K1ðn1Þ ¼ n1 .0

d0u0

dt
� I p1 þ

1

4p
B1 �B0

� �

þ 1

4p
B0 B1 þ B1 B0ð Þ: (76)

Here, the total bulk-plasma time derivative d0=dt � @=@t
þu0 � r includes the convective derivative with respect to

the time-dependent bulk velocity u0, with the background

plasma equation of motion

.0

d0u0

dt
¼ �rp0 þ ðr�B0Þ�

B0

4p
;

and the perturbed fields ð.1; u1; p1;B1Þ are defined in terms

of the ideal-MHD fluid displacement n1 as

.1 � �r � ð.0 n1Þ
u1 � d0n1=dt� n1 � ru0

p1 � �c p0 ðr � n1Þ � n1 � rp0

B1 � r�ðn1�B0Þ

9>>>=
>>>;
: (77)

The self-adjointness of the operator F1ðn1Þ is implied by the

identity (see Appendix A)

n1 �F1ðdn1Þ � dn1�F1ðn1Þ � r � dR2; (78)

where the quadratic MHD vector field

dR2 � p1 dn1 � dp1 n1ð Þ þ B0

4p
ðdn1� n1Þ �r�B0½ �

þ ðn1�B0Þ�
dB1

4p
� ðdn1�B0Þ�

B1

4p

� �
(79)

involves the reference fields ðp0;B0Þ. The variation of the

kinetic-MHD action functional with respect to S1dk yields the

linearized drift-kinetic equation

dgcS1dk

dt
¼ H1dkðn1Þ ¼ � �P0 : rn1; (80)

where we used the fact that the operators Q̂ and dgc=dt
� @=@tþ vgc � r commute. Variation with respect to the

ideal-MHD displacement n1 yields the linearized ideal-MHD

equation of motion

.0

d2
0n1

dt2
¼ F1ðn1Þ � r �P1; (81)

which includes the energetic-particle Chew-Goldberger-

Low-like stress tensor

P1 ¼
ð

�p

�P0 Q̂S1dk � P1? I� b̂0b̂0

	 

þ P1jj b̂0b̂0: (82)

Once the kinetic-MHD equations (80) and (81) have been

derived from the variational principle
Ð

dLkMHD d3xdt ¼ 0,

we obtain the kinetic-MHD Noether equation dLkMHD

¼ @tdJ kMHD þr � dCkMHD, where the Noether fields are
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dJ kMHD ¼ .0

d0n1

dt
� dn1 þ

1

2

ð
�p

dS1dk S1dk; �F0

� �
gc; (83)

and

dCkMHD ¼ .0u0

d0n1

dt
� dn1 þ

ð
�p

Q̂S1dk
�P0 � dn1

þ 1

2
dR2 þ

1

2

ð
�p

vgc dS1dk S1dk; �F0

� �
gc

�
�dS1dk H1dkðn1Þ �X; �F0

� �
gc

�
; (84)

where dR2 is defined in Eq. (79).

1. Kinetic-MHD energy principle

Instead of deriving the energy conservation law for the

kinetic-MHD equations (80) and (81), it is customary to

derive the standard kinetic-MHD energy principle33,36 (for a

time-independent, stationary background plasma)

x2 IMHD ¼ WMHD þKdkðxÞ; (85)

which can be directly obtained from Eq. (81) as

0 ¼
ð

x

Re ~n
�
1 � ~F1 �r � ~P1ðxÞ þ .0x

2 ~n1

� �h i
;

with ðn1; S1dkÞ � ð~n1; ~S1dkÞ e�ixt. Here, the MHD integrals

are the inertia IMHD �
Ð

x
.0j~n1j2 and the potential energy

WMHD��
Ð

x
Reð~n�1 � ~F1Þ. The energetic-particle integral

KdkðxÞ�
Ð

x
Re½~n�1 �r� ~P1ðxÞ�, on the other hand, is defined as

KdkðxÞ ¼ �
ð

x

Re ~P1ðxÞ : r~n
�
1

h i

¼
ð
ðx;�pÞ

Re Q̂ðxÞ~S1dkðxÞ ~H
�
1dk

h i
; (86)

where we have used ~H
�
1dk ¼ � �P0 : r~n

�
1 and we have omit-

ted the surface-integral contribution (since �F0 is expected to

vanish at the plasma surface). We note that KdkðxÞ is an

intricate function of the mode frequency x, where

Q̂ðxÞ � i x
@ �F0

@�E
þ cb̂0

eB�jj
�r �F0 � r

and ~S1dkðxÞ is related to ~H1dk ¼ � �P0 : r~n1 through

�iðx� x̂gcÞ~S1dkðxÞ ¼ ~H1dk, which involves orbital wave-

particle resonances, where x̂gc � �i vgc � r.

In the absence of an energetic-particle population

ð �F0 ¼ 0Þ, ideal MHD stability (i.e., x2 > 0Þ requires that

WMHD > 0 for all allowable displacements ~n1. In the pres-

ence of an energetic-particle population, however, it is clear

that the solution of Eq. (85) may yield complex-valued fre-

quencies x, with ImðxÞ > 0 corresponding to an instability

(even if WMHD � 0). The reader is urged to consult the

recent review paper by Chen and Zonca36 for further details

on the linear stability of ideal MHD modes in the presence

of an energetic-particle population.

2. Wave-action conservation law

We note that, in general, the nonuniform bulk plasma

may also be time-dependent so that the total energy-

momentum of the kinetic-MHD modes is not conserved (i.e.,

the kinetic-MHD modes may exchange energy-momentum

with the bulk plasma). The kinetic-MHD wave-action, how-

ever, is exactly conserved

@ �J kMHD

@t
þr � �CkMHD ¼ 0; (87)

where the kinetic-MHD wave-action densities ð �J kMHD;
�CkMHDÞ can be derived directly from the Noether densities

(83) and (84). The conservation of the total wave-action

associated with the interaction of an energetic-particle spe-

cies with a background bulk plasmas has been investigated

in Refs. 37 and 38.

Instead of this Noether derivation, we again proceed

directly from the kinetic-MHD equations (80) and (81) to

prove that the wave-action conservation law (87) is indeed

exact. First, from Eq. (81), we evaluate

0 ¼ Im n�1 � F1 �r �P1 � .0

d2
0n1

dt2

� �� �
;

which yields

.0

d0
�JMHD

dt
� �Im .0 n�1 �

d2
0n1

dt2

� �

¼ �r � �CMHD þ Im

ð
�p

Q̂S1dk H�1dk

 !

þr � Im
ð

�p

Q̂S1dk P0 � n�1

 !
; (88)

where the MHD wave-action density is defined in terms of

the MHD wave-action

�JMHD ¼ Im n1 �
d0n

�
1

dt

� �
; (89)

and the MHD wave-action flux density

�CMHD ¼ Im p�1 n1 þ n�1�B0

	 

� B1

4p

� �

þB0

8p
Im n1� n�1
	 


� r�B0; (90)

which is derived in Appendix A as Imðn�1 �F1Þ ¼ r � �CMHD.

Next, we note that, using the definition for Q̂, we find

Q̂S1dk H�1dk ¼ fS1dk; �F0ggc

dgcS�1dk

dt
�
���� dgcS1dk

dt

����
2
@ �F0

@�E
;

and hence

Im Q̂S1dk H�1dk

� �
¼ Im fS1dk; �F0ggc

dgcS�1dk

dt

� �
:

By making use of the definition for dgc=dt, as well as the

Jacobi property for the guiding-center Poisson bracket

f ; ggc, we find
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Im Q̂S1dk H�1dk

� �
¼ � dgc

�Jdk

dt
� �Wdk; �F0

� �
gc; (91)

where we used the unperturbed guiding-center Vlasov equa-

tion dgc
�F0=dt ¼ 0 for the energetic-particle species, and we

defined

�Jdk �
1

2
ImðfS�1dk;

�F0ggc S1dkÞ

�Wdk �
1

2
ImðS1dkH�1dkÞ

9>=
>;: (92)

Finally, using the Poisson-bracket identity

ð
�p

ff ; gggc � r �
ð

�p

ffX; gggc

 !
;

which holds for arbitrary functions (f, g), we integrate Eq.

(91) to obtain

Im

ð
�p

Q̂S1dk H�1dk

 !
¼ � @

�J dk

@t
�r �

ð
�p

vgc
�Jdk

 !

�r �
ð

�p

�Wdk fX; �F0ggc

 !
;

where the kinetic wave-action density is defined as

�J dk �
ð

�p

�Jdk ¼
1

2

ð
�p

Im fS�1dk;
�F0ggcS1dk

� �
: (93)

By combining these expressions, we obtain the exact kinetic-

MHD wave-action conservation law (87), where the total

wave-action density

�J kMHD ¼ �J MHD þ �J dk (94)

is the direct sum of the MHD ( �J MHD � .0
�JMHD) and kinetic

components, while the total wave-action density flux

�CkMHD ¼ u0
�J MHD þ �CMHD

þ
ð

�p

vgc
�Jdk � �Wdk fX; �F0ggc

� �

þ
ð

�p

Im Q̂S�1dk P0 � n1

� �
; (95)

where ð�Jdk; �WdkÞ are defined in Eq. (92), is the sum of MHD,

kinetic, and kinetic-MHD coupling components. We note

that, while the ideal MHD wave action (89) is positive, the

sign of the kinetic wave action (93) is indefinite. Hence,

when an energetic-particle population supports a negative-

energy wave,37 the total ideal MHD and kinetic wave actionsÐ
x
JMHD and

Ð
x
J dk may grow separately while keeping their

sum
Ð

x
ðJMHD þ J dkÞ constant.

Finally, we note that the ideal MHD wave-action con-

servation law @ �J MHD=@tþr � ðu0
�J MHD þ �CMHDÞ 6¼ 0 is

no longer conserved in the presence of an energetic-particle

species. Through the proper Lagrangian description of the

additional physics associated with the perturbed energetic-

particle distribution, however, a generalized kinetic-MHD

wave-action conservation law (87) was derived (by the

Noether method) directly from the kinetic-MHD Lagrangian

density (75).

V. THIRD-ORDER LAGRANGIAN DENSITY

We now move on to include nonlinear effects into the

perturbed Vlasov-Maxwell equations by including third-

order nonlinearities in the perturbed Vlasov-Maxwell action

functional. The perturbative action functional (14) yields the

third-order Lagrangian density

L3 ¼
1

4p
E1 �E2 � B1 �B2ð Þ �

ð
p

e2f0

mc2
A1 �A2

þ 1

3

ð
p

f2

d0S1

dt
� H1

� �

þ 2

3

ð
p

f1

d0S2

dt
� H2 þ

1

2
S1; H1f g

� �

þ 1

3

ð
p

f0 fS1; H2g þ 2fS2; H1gð Þ; (96)

where f1 ¼ fS1; f0g and f2 ¼ S2; f0f g þ 1
2

S1; f1f g, and the

contributions from the third-order Hamiltonian associated

with S1 and S2 (as well as f1 and f2) appear explicitly. We

note, here, that the third-order Lagrangian (96) does not sim-

ply involve terms that are cubic in the first-order fields

ðS1;U1;A1Þ, but also include terms involving the second-

order ponderomotive fields ðS2;U2;A2Þ. This ponderomotive

dependence is in contrast to traditional third-order action

functionals, which are always cubic in first-order fields. For

example, see the early work of Boyd and Turner16 for the

Vlasov-Maxwell equations, the work of Brizard and

Kaufman39 for the Manley-Rowe relations describing stimu-

lated Raman scattering in an unmagnetized background

plasma, and the more recent works of Pfirsch and Sudan40

and Hirota41 for the ideal MHD equations.

A. Gauge-invariant formulation

Variations of the third-order Lagrangian (96) with

respect to ðS2;U2;A2Þ yield the first-order Vlasov-Maxwell

equations (29)–(31). The variation with respect to S1 yields

the second-order Vlasov equation

0 ¼ d0f2

dt
þ f1; H1f g þ f0; H2f g

¼ d0S2

dt
� H2 þ

1

2
S1; H1f g

� �
; f0

� �

þ 1

2

d0S1

dt
� H1

� �
; f1

� �
; (97)

which yields the second-order equation

d0S2

dt
¼ H2 �

1

2
S1; H1f g; (98)

provided that Eq. (29) holds. Variations with respect to

ðU1;A1Þ, on the other hand, yield the second-order Maxwell

equations
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r �E2 ¼ 4p
ð

p

e f2; (99)

r�B2 �
1

c

@E2

@t
¼ 4p

c

ð
p

e v0 f2�
e

mc
A2 f0 þ A1 f1ð Þ

� �
:

(100)

While the second-order Vlasov-Maxwell equations (98)–(100)

are gauge-dependent, they are invariant under the second-order

gauge transformation

S2 ! S2 � ðe=cÞ v2 þ
1

2
S1; ðe=cÞ v1

� �
U2 ! U2 � c�1 @v2=@t
A2 ! A2 þrv2

9>=
>;; (101)

as well as the first-order gauge transformations (40) and

(41), with

f2 ! f2 �
e

c
v2; f0f g � e

c
v1; f1 �

e

2c
v1; f0f g

� �
;

H2 ! H2 �
e

c

d0v2

dt
þ e2rv1

mc2
� A1 þ

1

2
rv1

� �
:

B. Gauge-independent formulation

A gauge-independent formulation can also be derived as

follows. First, we note that Eq. (9) can be written as

d0S02
dt
¼ e U2 �

v0

c
�A2

� �
þ K2; (102)

where the second-order (gauge-independent) ponderomotive

Hamiltonian is

K2 � �
e

2
g1 � E1 þ

v0

c
�B1

� �
; (103)

and we have defined the new scalar function

S02 � S2 þ
e

2c
A1 � g1 � S2 þ r2; (104)

which implies that Eq. (102) is invariant under the second-

order gauge transformation ðU2;A2Þ ! ðU2 � c�1@v2=@t;
A2 þrv2Þ, provided that S02 transforms as S02 ! S02
�ðe=cÞ v2, while it is independent of the first-order gauge

field v1.

Next, we now introduce the gauge-independent second-

order displacement g2 � @S02=@p, which yields the gauge-

invariant second-order velocity

u2 �
d0g2

dt
� g2 � rv0 ¼

@K2

@p
� 1

m
rS02 þ

e

c
A2

� �
; (105)

and the gauge-independent second-order equation of motion

d0

dt

d0g2

dt
� @K2

@p

� �
¼ e E2 þ

v0

c
�B2

� �
þ v0;K2f g

þ d0g2

dt
� @K2

@p

� �
� eB0

mc
: (106)

The gauge-independent second-order Maxwell equations

0 ¼ r � ðE2 þ 4p P2Þ � r �D2; (107)

0 ¼ r�ðB2 � 4p M2Þ �
1

c

@

@t
ðE2 þ 4p P2Þ

� r�H2 �
1

c

@D2

@t
(108)

are expressed in terms of the second-order polarization and

magnetization

P2 �
ð

p

e f0 g2 þ
e

2
f 01 g1

� �
; (109)

M2 �
ð

p

e f0 g2 þ
e

2
f 01 g1

� �
� v0

c
; (110)

where f 01 � �mu1 � @f0=@p� g1 � rf0 is the gauge-

independent first-order Vlasov distribution. Once again,

from Eqs. (107) and (108), we see that the second-order per-

turbed charge and current densities are expressed in terms of

second-order polarization and magnetization effects.

Finally, we note that these second-order equations can be

derived from the gauge-independent third-order Lagrangian

density

L03 ¼
1

4p
E1 � E2 � B1 � B2ð Þ

þ
ð

p

f0 g1 � F2 �rK2ð Þ þ mu1 � u2 �
@K2

@p

� ��

þ g2 � F1 � g1 � rrH0ð Þ
�

� 1

6

ð
p

f 01 g1 � m
d2

0g1

dt2
� d0g1

dt
� e

c
B0

� �
; (111)

where the gauge-independent nth-order perturbed fields

ðun;FnÞ are the velocities un � d0gn=dt� gn � rv0 and the

total forces Fn � e En þ ðe=cÞ v0�Bn. We note that, once

again, the gauge-independent third-order Lagrangian density

(111) involves terms that are cubic in the first-order fields

ðg1;E1;B1Þ as well as terms that involve the second-order

ponderomotive fields ðg2;E2;B2Þ. Applications of the third-

order Lagrangian density (96) [or Eq. (111)] will be explored

in future work.

VI. PERTURBED VLASOV-MAXWELL POLARIZATION
AND MAGNETIZATION

Before summarizing our work, we note that, by combin-

ing the second-order polarization and magnetization (109)

and (110) with the first-order expressions (47), we obtain

expressions for the perturbed Vlasov-Maxwell polarization

and magnetization that are exact to all orders. First, we find

the perturbed Vlasov-Maxwell polarization

P ¼
ð

p

e � g1 f0 þ �2 g2 f0 þ
1

2
g1 f 01

� �
þ � � �

� �

�
ð�

0

ð
p

e f
dx

dr

 !
dr �

ð�
0

Pr dr; (112)
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where dx=dr � fx; Sg, with f ¼ f0 þ rfS1; f0g þ � � � and

S ¼ S1 þ 2r S2 þ � � �. If we return to Eq. (19), we easily

recover

r � @E

@r
¼ 4p

ð
p

e
@f

@r
¼ 4p

ð
p

e S; ff g

¼ �r � 4p
ð

p

e f fx; Sg
 !

� �r � 4pPrð Þ; (113)

from which we obtain r � ðE� E0Þ ¼ �4pr �P, i.e.,

r �D ¼ r �E0 � 4p q0: (114)

Hence, we conclude that the perturbed charge density can be

expressed as a perturbed polarization charge density at all

orders in Vlasov-Maxwell perturbation theory.

The perturbed Vlasov-Maxwell magnetization, on the

other hand, is expressed as

M �
ð

p

� g1 f0 þ �2 g2 f0 þ
1

2
g1 f 01

� �
þ � � �

� �
� ev0

c

�
ð�

0

ð
p

f
e

c

dx

dr
� dx

dt

� �" #
dr �

ð�
0

Mr dr; (115)

where dx=dt � fx;Hg ¼ ðp� eA=cÞ=m ¼ v0 � r eA1=mc
þ � � �. If we return to Eq. (20), we find

r� @B

@r
� 1

c

@

@t

@E

@r

� �
¼ 4p

ð
p

e

c

@

@r
f

dx

dt

� �

¼ �r � 4p
ð

p

e

c
f

dx

dr
dx

dt

 !

þ4p
ð

p

f
e

c

d2x

dr dt
; (116)

where we have used @f=@r ¼ �ff ; Sg, and we have used

the identity

ð
p

g; Sf g ¼ r �
ð

p

dx

dr
g

 !

and

d2x

dr dt
� @

@r
dx

dt

� �
þ dx

dt
; S

� �
:

Next, using Eq. (112) and the same identities, we introduce

@Pr

@t
¼
ð

p

e
@

@t
f

dx

dr

� �

¼ �r �
ð

p

e f
dx

dt

dx

dr

 !
þ
ð

p

e f
d2x

dr dt
;

which is substituted into Eq. (116) to yield

r� @B

@r
� 1

c

@

@t

@E

@r

� �

¼ 4p
c

@Pr

@t
þr � 4p

ð
p

e

c
f

dx

dt

dx

dr
� dx

dr
dx

dt

� �" #

� 4p
c

@Pr

@t
þ 4pr�Mr; (117)

where Mr is defined in Eq. (115). We can, once again, con-

clude that the perturbed current density can be expressed as a

perturbed polarization and magnetization current densities,

i.e.,

r�H� 1

c

@D

@t
¼ r�B0 �

1

c

@E0

@t
� 4p

c
J0; (118)

at all orders in Vlasov-Maxwell perturbation theory.

VII. SUMMARY

The perturbative variational formulation (14) of the

Vlasov-Maxwell equations has been presented, based on a

geometric interpretation of the Lie-transform perturbation

analysis (4). From the second-order and third-order varia-

tional principles (26) and (96), we derived first-order and

second-order Vlasov-Maxwell equations in both gauge-

invariant and gauge-independent forms. In the gauge-

independent forms, we extracted explicit expressions for the

perturbed Vlasov-Maxwell polarization and magnetization

(112) and (115).

From the quadratic variational principle for the linear-

ized Vlasov-Maxwell equations, we derived variational prin-

ciples for the linear drift-wave equation and the linearized

kinetic-MHD equations, from which wave-action conserva-

tion laws were derived.
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APPENDIX A: SELF-ADJOINTNESS PROPERTY

In this appendix, we prove the identity (78), where

F1ðdn1Þ � dF1 ¼ r � dK1 is expressed in terms of Eq. (76) as

dK1 ¼ dn1 .0

d0u0

dt
� I dp1 þ

1

4p
dB1 �B0

� �

þ 1

4p
B0 dB1 þ dB1 B0ð Þ; (A1)

where dp1 � �cp0 ðr � dn1Þ � dn1 � rp0 and dB1 � r
�ðdn1�B0Þ. We begin with

n1 � dF1 ¼ r � dK1 � n1ð Þ � dK>1 : rn1; (A2)
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so that Eq. (78) becomes

n1 � dF1 � dn1 �F1 ¼ r � dK1 � n1 � K1� dn1ð Þ
þK>1 : rdn1 � dK>1 : rn1; (A3)

where we now have to show that K>1 : rdn1 � dK>1 : rn1

can be written as a divergence. Here, dK>1 denotes the trans-

pose of dK1 so that

dK>1 : rn1 ¼ .0

d0u0

dt
� dn1� rn1ð Þ

� dp1 þ
1

4p
dB1�B0

� �
r� n1

þ 1

4p
B0�rn1�dB1 þ dB1 �rn1�B0ð Þ:

After several manipulations, we find

dK>1 : rn1 ¼ cp0ðr � n1Þ ðr� dn1Þ þ dB1�
B1

4p
� n1dn1 : rr p0 þ

B2
0

8p

� �
þ n1� rp0 r� dn1ð Þ þ dn1 � rp0 r � n1ð Þ
� �

� 1

4p
n1 � rB0ð Þ� dn1� rB0ð Þ þ 1

4p
n1� rB0ð Þ� B0� rdn1ð Þ þ dn1� rB0ð Þ� B0� rn1ð Þ

� �
þr� dB1

4p
n1�B0ð Þ þ dn1 n1� .0

d0u0

dt

� �
� B0

4p
dn1� rB0� n1ð Þ

� �
;

where all the terms outside of the divergence terms are explicitly symmetric with respect to n1 and dn1. Hence, we easily find

that

K>1 : rdn1 � dK>1 : rn1 ¼ r�
B1

4p
dn1�B0ð Þ � dB1

4p
n1�B0ð Þ � n1� dn1ð Þ� .0

d0u0

dt
� B0

4p
n1� dn1ð Þ �r�B0

� �
:

If we now substitute this expression, with

dK1 � n1 � K1 � dn1 ¼ n1� dn1ð Þ� .0

d0u0

dt
þ p1 dn1 � dp1 n1ð Þ þ 1

4p
ðn1�B0Þ� dB1 � ðdn1�B0Þ�B1½ �

þ dB1

4p
n1 �B0ð Þ � B1

4p
dn1 �B0ð Þ;

into Eq. (A3), we obtain Eq. (78): n1 � dF1 � dn1 �F1 � r � dR2, where dR2 is given in Eq. (79). A useful application of the

identity (78) is the relation

Im n�1 �F1

	 

� 1

2i
n�1 �F1� n1 �F�1
	 


¼r� 1

2i
p�1 n1� p1 n�1
	 


þ 1

8pi
ðn�1�B0Þ�B1� ðn1�B0Þ�B�1
� �

þ B0

8pi
n1�n�1
	 


�r�B0

� �
;

¼r� Im p�1 n1þ
1

4p
ðn�1�B0Þ�B1þ

B0

8p
n1�n�1
	 


�r�B0

� �
� r� �CMHD; (A4)

which appears in the kinetic-MHD wave-action conservation

law (87).
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