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The perturbative variational formulation of the Vlasov-Maxwell equations is presented up to the third
order in the perturbation analysis. From the second and third-order Lagrangian densities, the first-order
and second-order Vlasov-Maxwell equations are expressed in gauge-invariant and gauge-independent
forms, respectively. Upon deriving the reduced second-order Vlasov-Maxwell Lagrangian for the lin-
ear nonadiabatic gyrokinetic Vlasov-Maxwell equations, the reduced Lagrangian densities for the lin-
ear drift-wave equation and the linear hybrid kinetic-magnetohydrodynamic (MHD) equations are
derived, with their associated wave-action conservation laws obtained by the Noether method. The
exact wave-action conservation law for the linear hybrid kinetic-MHD equations is written explicitly.
Finally, a new form of the third-order Vlasov-Maxwell Lagrangian is derived in which ponderomotive
effects play a crucial role. Published by AIP Publishing. https://doi.org/10.1063/1.5049570

I. INTRODUCTION

The dynamical reduction of the Vlasov-Maxwell equa-
tions provides a systematic pathway toward the formal deri-
vation of the nonlinear gyrokinetic VIasov-Maxwell
equations, which are used extensively in the investigation of
the turbulent evolution of fusion magnetized plasmas.' ™ The
modern derivation of the gyrokinetic Vlasov-Maxwell equa-
tions' is based on a series of phase-space transformations
generated by a canonical generating function S, which suc-
ceeds in decoupling the fast gyromotion from the intermedi-
ate bounce/transit motion along the field lines and the slow
drift motion across the field lines.

The purpose of the present paper is to explore the pertur-
bative variational formulation of the exact and reduced
Vlasov-Maxwell equations, from which exact conservation
laws for the linearized and nonlinear Vlasov-Maxwell equa-
tions are derived by the Noether method.* In particular, we
derive the exact wave-action conservation laws for the linear
exact and reduced Vlasov-Maxwell equations without requir-
ing the eikonal approximation (as is assumed in the standard
derivations) It is important to note, however, that these con-
servation laws are exact only within the limits in which they
are derived, i.e., they will not be valid whenever higher-
order effects (or additional physics not included in the
model) must be taken into account.

A. Geometric Lie-transform perturbation theory

It was previously shown® that perturbed Hamiltonian
dynamics can be represented geometrically in terms of two
Hamiltonian functions, with the generating function S acting
as the Hamiltonian for the perturbation evolution

dz*/de = {z*, S}, (1)

where perturbations are now treated as a continuous process,
and the Hamiltonian H acts as the generating function for
infinitesimal canonical transformations described by the
standard canonical Hamilton equations
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dz*/dt = {z*, H}. 2)
Both Hamiltonian functions H and S (which have units of
action since € is dimensionless) depend on the canonical
phase-space coordinates z = (x, p), the time ¢, and the per-
turbation variable e (with € = O representing an arbitrary ref-
erence state).

The condition that the two Hamiltonian operators
d/dt=0/0t+{,H} and d/de =0/0e+ {, S} commute
(i.e., the order of temporal and perturbative evolutions is
immaterial) yields the relation

-G -5 -2)
A (BT sy}, G

where the function f(z,¢,¢€) is arbitrary. Here, we used the

definitions
s+ aua)

d(df)_ﬁzf {af
dai\de) “aoe  \or

&) =g Qoo G G s
de(dt) 868t+ O¢’ * f’E - +{fH}S

and after cancellations, we used the Jacobi property of the
Poisson bracket: {{f,S} . H} + {{H.f}.S} = —{{S,H}.f},
to obtain Eq. (3). Since this relation must hold for any func-
tion f, we obtain the constraint between the Hamiltonians S
and H

oS OH
5 5 TISHY =0, )
which appears prominently in Lie-transform Hamiltonian
perturbation theory.”®

For practical applications of the Hamiltonian constraint
(4) in Vlasov-Maxwell theory, we now consider the follow-
ing perturbation power expansions
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S=>"ne's, 5)
n=1
and
1 e 2 0
H%‘p—zA +e<l)znz:;e”H,,, (6)

where the expansion (5) simply mirrors the expansion
OH/de =%, _ ne"'H,. In addition, the electromagnetic
potentials and fields are expanded as

(P,AEB) = > ¢ (@, A ELB), ()
n=0

where E,=-V®, —c'0A,/0t and B, =V xA, are
derived from the electromagnetic potentials (®,,A,). By
substituting these expansions into Eq. (4), we recover the
first two Lie-transform perturbation equations®

dpS1 Yo
Ol = -2 A 8
0 1 6(1 " 1), ()
doS> 1
2022 My, — =[S, H
d[ 2 2{ 1, 1}7
2
- _Y, ¢ 2_1
_e((Dz ; A2)+2mc2 AP =3 {81 Hi} ©)
where  dy/dt =0/0t+{, Hy} is the unperturbed

Hamiltonian evolution operator, expressed in terms of the
unperturbed Hamiltonian Ho = m|vo|*/2 + ¢ @y, where v,
= [p — (e/c)Ag]/m denotes the unperturbed particle veloc-
ity. Here, we note that the evolution of S, explicitly involves
the second-order potentials (®,, A;) and the quadratic pon-
deromotive Hamiltonian —${S;, H;}, which involves the
solution of the first-order equation dyS; /dt = H;. These pon-
deromotive effects will appear prominently in the third-order
action functional to be derived in Secs. Il and V.

Before proceeding with our perturbation analysis of the
Vlasov-Maxwell equations, however, we need to specify
under what conditions this analysis may be valid. The use of
perturbation methods has an extensive history in plasma
physics”™'! and each application requires a specific ordering
(i.e., the identification of a small dimensionless parameter €)
based on the space-time-scale separation of the reference
and perturbed Vlasov-Maxwell states. It is, therefore, useful
to consider the first-order perturbed fields (S;, @, A;) to rep-
resent small-amplitude linear waves that perturb the Vlasov-
Maxwell reference state, which will be described in terms of
a second-order variational formulation. Hence, the stability
of the reference state can be investigated directly from the
second-order variational principle. We note that, in order to
derive a meaningful perturbation theory, we must exclude
parametric resonances' > at all perturbation orders, since these
resonances can easily lead to a breakdown in the perturbation
ordering. Nonlinear wave-particle and wave-wave interac-
tions (e.g., weak turbulence) will naturally enter at the second
order (and beyond) in the perturbation analysis,'® which will
require at least a third-order variational formulation. It is the
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ultimate goal of this work to present a perturbative hierarchy
for the Vlasov-Maxwell equations. While it is readily under-
stood that the exact linear wave-action conservation laws
derived from the second-order variational formulation are not
to be taken literally, the wave-action density for each wave
involved in nonlinear wave-wave interactions (e.g., three-
wave interactions) is used as a field variable'® in order to
express the so-called wave kinetic equation.

B. Organization

The remainder of this paper is organized as follows: In
Sec. II, we construct a perturbative action functional for the
Vlasov-Maxwell equations by imposing the Lie-transform
constraint (4). The Lagrange multiplier used with this con-
straint is the Vlasov distribution function, which allows us to
express the perturbation expansion of the Vlasov distribution
in powers of the scalar fields (S,S,...). In Sec. III, the
second-order action functional is derived from the perturba-
tive Vlasov-Maxwell action functional. The second-order
action functional is quadratic in either the first-order fields
(S1,®1,A,), in the gauge-invariant form, or the first-order
fields (& = 0S,/0p,E(,By), in the gauge-independent
form. In the gauge-independent form (which can also be
derived from the Low-Lagrangian formulation'*) the first-
order polarization and magnetization appear explicitly in the
first-order Maxwell equations as well as in the energy-
momentum and wave-action conservation laws (derived by
the Noether method).

In Sec. IV, we review the applications of the quadratic
Vlasov-Maxwell action functional that lead to the variational
formulations of the linear drift-wave equation and the
kinetic-magnetohydrodynamic (MHD) equations. In particu-
lar, we expand our previous work on the kinetic-MHD equa-
tions'”> and derive the exact kinetic-MHD wave-action
conservation law for the general case of a time-dependent
nonuniform bulk plasma.

In Sec. V, we present the third-order Vlasov-Maxwell
action functional, which is given in gauge-invariant and
gauge-independent forms. The gauge-invariant third-order
action functional is the sum of terms that are cubic in the
first-order fields (S;, @, A1) as well as ponderomotive terms
involving the second-order fields (S, @, A;), which are tra-
ditionally absent from all previous third-order action func-
tionals (see, for example, Ref. 16). These ponderomotive
terms, however, play an integral part in the Lie-transform
formulation of perturbed Vlasov-Maxwell theory.'” In future
work, this third-order Vlasov-Maxwell action functional will
be explored for applications in nonlinear reduced gyrokinetic
theory. Finally, general expressions for the perturbed polari-
zation and magnetization associated with the perturbed parti-
cle phase-space dynamics (1) are presented in Sec. VI and
our work is summarized in Sec. VII.

Il. PERTURBATIVE ACTION FUNCTIONAL

In the present section, we introduce the perturbative var-
iational formulation of the Vlasov-Maxwell equations. We
start with the perturbed Vlasov action functional
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Ay = J do J f @f o —+ 1S, H})d6zdt

where the perturbation parameter ¢ is integrated from the
reference state (¢ = 0) to the physically perturbed state
(0 = ¢) and the Lagrange multiplier f(z;¢, o) will be inter-
preted below as the Vlasov distribution function [see Eq.
(10)]; here, summation over particle species is implicitly
assumed.

A. Perturbed Vlasov equation

The variation of Ay, with respect to f yields the con-
straint (4), the variation of Ay, with respect to S yields the
standard Vlasov equation

a _of

7 +{f,H}—0 (10)

and the variation of Ay, with respect to the Hamiltonian H
yields

da af

o=, TS =0, (11)

which shows how the Vlasov perturbations
f-fh=> 0o (12)
n=1

are generated by S. More explicitly, the first two terms of the
Vlasov perturbation hierarchy (11) are

fi=1{S1, fo} }

1 13
f2:{S2af0}+§{Sl,f1} (1
We note that the first-order expression fi = {S1,fy} is also
used by Morrison and Pfirsch'® in applying the quadratic
free-energy method on the stability of Vlasov equilibria.

B. Perturbed Maxwell equations

Next, we turn our attention to the perturbed Maxwell
equations. For this purpose, we introduce the perturbed
Vlasov-Maxwell action functional

+{s,H })]

A zj da“dﬁ zdtf (asaﬂ
0 80'

¢ ., (E OE B 8B>
+Lda“d;dt<4 i D (14)

which is now a functional of the electromagnetic potentials
(@, A), through the Hamiltonian H, and the electromagnetic
potential perturbation derivatives (0®/da, 0A/Jc). We note
that (H,E,B) also depend on the reference potentials
(Do, Ayg), which are functionally independent from the pertur-
bation fields (0®/0a, 0A/Ja). A slightly different version of
the perturbative action functional (14) was presented by
Larsson,'® where the Maxwell part is expressed solely in terms
of unperturbed fields (Eg,By) and first-order perturbation
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fields (E;,By). Hence, in Larsson’s theory, the Vlasov-
Maxwell fields (f,E,B) are not treated equally since
(OE/0a,0B/0c) = (E, B;) are truncated at the lowest order,
while Jf /Jo is expanded to all orders.

In the Vlasov part of the action functional (14), the per-
turbation derivative OH /Ja of Eq. (6) is

OH _ 0©  0A v

9% ‘80 ‘o o (15

where v = [p — (¢/c) A]/m denotes the particle velocity,
while the Maxwell part in Eq. (14) can be written as

drdt OE OB
J 47 (E do -B 8(7)

_Jd*;dt[atb(v E)+8—A-<16—E—V B)]

4n | Oo do \c Ot

after integration by parts is performed. By replacing Eq. (15)
into Eq. (14), variations of A, with respect to the perturbation
fields (0®/da, 0A /Oc) now yield the Maxwell equations

v.E:4nj of (16)
P
and
VxBfla—E:“—nJ evf, (17)
c Ot cJp

where the momentum integral fp =5 fd3p includes a sum
over particle species. The remaining source-free Maxwell
equations

V-B=0

OB /01 = (18)

—CVXE}

follow from the definitions of the electromagnetic fields in
terms of the potentials. Note that these equations include
contributions from the reference fields (fo, Eo, Bo).

The variations of A, with respect to the reference poten-
tials (®g, Ao) yield the perturbed Maxwell equations

OE _ of
Y a47IJe{S,f}_4nLeaa, (19)
OB 10%E e ef 8A>
VX 9~ conda 4”L;<V{S’f}‘%%
e 0 (dx
where dx/dt = {x, H} =v and 0v/0c = —(e/mc)0A/0o.

We will return to these perturbed Maxwell equations in Sec.
VI, where we will show that Eqs. (19) and (20) can be writ-
ten as

v _ v P,, 1)
oo
OB 16°E 4n 0P,
9 coe ¢ o & (22)
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where expressions for the polarization P, and the magneti-
zation M, will be given in Sec. VL.

C. Expansion of the action functional

We now express the action functional (14) as a perturba-
tion power series

o0 00 n—1
A= ea,=>"¢ (Z Aff‘_)k>, (23)
n=1 n=1 k=0
where the nth-order action functional A, describes the per-
turbed Vlasov-Maxwell dynamics, with the functional term
.Aik_)k explicitly depending on ¥,y = (Sy—&; Pnt, Au—t)-
The contributions from the nth-order fields W, therefore,
appear in the functional term

A = Jdﬁzdtf {dOS"—e<(I),,—?.An)}

Jd3r dt
_|_

(EO : En - BO' Bn)a (24)
where vo = [p — (e/c)Aq]/m denotes the particle’s reference
velocity. We now show that A, 0 =0 at all orders n > 1 if
the reference state (fy, Eg, Bo) satlsﬁes the reference Vlasov-
Maxwell equations. First, if we integrate by parts the first
term in Eq. (24), we obtain

an (dofy/dt) d°zdt = 0,

which follows from the unperturbed (reference) Vlasov equa-
tion for fo. Next, if we substitute E, = —V®, — ¢"'0A, /0t
and B, = V x A, into the second term in Eq. (24) and inte-
grate by parts, we obtain

J(I)n <V~Eo—47tj ef0> drdt =0
P

and
10E 4
JA,, (—@ — VxBy+— J ev0f0> &drdt =0,
ot »

which follow from the unperturbed (reference) Maxwell
equations for Ey and B,. Hence, the functional term (24)
vanishes identically and the nth-order action functional

Ay =3 AW (25)

depends explicitly on the perturbation fields (¥,_y, ..., ¥a,
W¥,), with A; = 0 appearing as a special case. The nth-order
action functional A,, therefore, describes the (n — 1)th-order
perturbed Vlasov-Maxwell dynamics (i.e., A, describes
linear Vlasov-Maxwell dynamics, while 43 can be used to
describe second-order ponderomotive-driven Vlasov-Maxwell
equations).
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lll. SECOND-ORDER LAGRANGIAN DENSITY

The simplest perturbative action functional in Eq. (23)
therefore appears at the second order, where the (quadratic)
action functional A, = fﬁg d3r dt describes the linear (first-
order) perturbed Vlasov-Maxwell dynamics. Here, the qua-
dratic Lagrangian density is defined as

1 doS e’ fo 2}
—Hy ) — A
J [‘(2 dt 1) ame A1l

1
- (Eaf* = [Bi[?), (26)

which depends on the perturbed Vlasov distribution
fi={S1,fo} and the perturbed electromagnetic fields
(E{,B;). The Eulerian variation of the Lagrangian density
(26) is expressed as

oLy = J [{5S1,fo} (; dfsl - Hl)
2
iy (l dooS, B 5]_]1) fo 5A1 Al:|

L NE doSi
=~ + V- oI, — Jpésl{ <7—H1>7f0}

+5i: (v-El —4nJ eﬁ) L oA {1 oF,
p

4 |c Ot

_VxB + 44 ¢ (fm) - ﬂfo)] @7
P C mc

where the second expression is obtained after rearranging
terms in order to isolate the variations (S}, 0®;,0A). We
note that the space-time divergence terms (to be defined
below) do not contribute in the quadratic variational princi-
ple®” [ oLy dPrdt=0.

A. First-order Vlasov-Maxwell equations

The variation of the quadratic Lagrangian density (27)
with respect to S, yields the first-order Vlasov equation

0= “f‘ Wy h H) = {(%—Hl),fo}, 28)

which becomes

d
(c)ZSl — H, _e<c1>1—A1-ﬁ), (29)
t c

when an arbitrary reference Vlasov distribution f; is consid-
ered (which satisfies dqfp/dr = 0). Variations of the qua-

dratic Lagrangian density (27) with respect to (@, A;) yield
the first-order Maxwell equations
V-E1:4njef1, (30)
P
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10K 4 A
V x Bl——ﬁz—”J{flvO—e—‘fO) 31)
C p mc

with fi = {S1, fo}. Equations (29)—(31) describe the standard
linearized Vlasov-Maxwell equations, from which linear
waves and instabilities in a general Vlasov-Maxwell equilib-
rium state can be analysed.

B. Quadratic conservation laws

The conservation laws of energy-momentum, angular-
momentum, and wave-action associated with the linear
Vlasov-Maxwell equations can be derived by the Noether
method* from 0L, as follows. We note that, when the unper-
turbed Vlasov-Maxwell fields (fy; Eo, Bo) are time-dependent
and spatially nonuniform,”" only the quadratic wave action is
conserved exactly, while the energy and momentum associated
with the perturbation fields (S;,E;,B;) are no longer con-
served, since energy-momentum is exchanged with the refer-
ence Vlasov-Maxwell plasma.

To demonstrate the power of the Noether method,
we introduce the quadratic Noether equation obtained from
Eq. (27)

6L, = aw 2

+ V- 0Iy, (32)

which is left in Eq. (27) after Eqs. (29)—(31) are derived
from the variational principle. Here, the Noether fields

E
57 =1 Jfl 35— 1 oA, (33)
oH 9
oI, =5 J 081 <f1 =2 _H 6];()))
—_— (5(1)1 El + 5A1 X B]) (34)
Vs

are expressed in terms of the field variations 0¥, = (45,
0®;,0A). The Noether method involves relating symme-
tries of the Lagrangian density £, with exact conservation
laws of the linear Vlasov-Maxwell equations, which are
obtained by expressing the field variations 0¥, in terms of
space-time translations or rotations.

1. Quadratic energy conservation law

As an application of the Noether method, we consider
the energy conservation law associated with the symmetry of
the Lagrangian density £, under infinitesimal time transla-
tion t — t + Ot. First, an infinitesimal time translation indu-
ces the Eulerian variations 0¥, = —dt 0¥, /0t, with 0A,
= ¢ ot (Ey + VO;) and 6L, = —6t (0/0t — 0/ 0t) Lo, where
0oL,/ 0t represents the explicit time dependence associated
with the unperturbed Vlasov-Maxwell fields (fo; Eo,Bo).
Next, by inserting these variations into the Noether fields
(33) and (34), we obtain

0&, 0Ly

ot +V-S = ot '’

(35)

where the quadratic energy density is
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1 2 2 e*fo 2
& fg(\m + |Bi*) + (Jp2n102>|Al|
1
—L {fl (5 51, Ho} + <A, -vOﬂ, 36)

and the quadratic energy-density flux is

CE] 2

SQ = — XB1 —(DIJ (evofl —ﬂ A1>
4n P mc

J 951 <1 OHo _ 5f°). (37)
' op

Hence, according to the Noether theorem, the quadratic
energy (36) is conserved if the reference Vlasov-Maxwell
fields are time-independent (i.e., 9pL, /0t = 0). We note that
when the quadratic energy density (36) is integrated over
space, we recover the quadratic free energy > = [&; d*x
derived by Morrison and Pfirsch. 19

2. Quadratic wave-action conservation law

While the quadratic energy & is no longer conserved
when the reference Vlasov-Maxwell fields (fo; Eo,Bo) are
time-dependent, however, it is possible to construct an exact
quadratic wave-action conservation law?' 07, /Ot +V T
= 0. First, we consider complex-valued wave-fields®' with
¥, = (S, ®],A]) # ¥, and construct real-valued (eikonal-
averaged) expressions for the Noether densities (33)
and (34). Next, we introduce the eikonal-phase-like varia-
tions 0¥, =id0¥, and oW = —ido0¥], which yield
0J>»=—00T, and 6’ = —60T,, where the quadratic
wave-action density 7, and wave-action-density flux I'; are
defined as

A*

szIm

J {87 7f()}Sl‘|> (38)

1
rz _Il’l’l|:4 ((D*El —|—A XB]):|

L im Jp({s o} X a lgﬁ’)S ] (39)

Wave-action conservation laws play a crucial role, for exam-
ple, in the linear mode conversion involving two coupled lin-
ear waves in a nonuniform background plasma.*?

C. Gauge-independent formulation

We note that the quadratic Lagrangian density (26) is
not gauge independent since the electromagnetic potentials
(@1, A;) appear explicitly in the first-order Hamiltonian (8).
However, under the gauge transformation generated by an
arbitrary gauge field y; (x, )

10y e
(@1,A,81) — ((Dl _Eﬁtl’Al + V1,81 —611), (40)

with the associated gauge transformations
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d,
(h, Hy) — (ﬂ — = {1 fo} Hy —f‘;—fl) (41

we can easily verify that Eq. (29) is gauge invariant, while
the quadratic Lagrangian density (26) becomes L, = L)
+0A, /0t + V - Ay, where (A, Ay) are momentum integrals
involving (y;,S1). Since the quadratic variational principle
0A; = 0 is based on the action functional A, = [ £, d*x dt,
where the Lagrangian density £, is integrated over space
and time, then the action functional is invariant under the
gauge transformations (40) and (41) since A, /0t + V- A,
is an exact space-time derivative. Similarly, the quadratic
energy conservation law (35) is gauge invariant because,
under a gauge transformation, the energy density &, and
energy-density flux S, transform as & =&, +V-Q, and
S, =S, — 9Q,/0dt, which leaves the quadratic energy con-
servation law (35) invariant.

We can eliminate all gauge dependence in what follows
by introducing the gauge-independent first-order phase-
space displacement

n = {x, Si} = 95,/0p, (42)
from which we define the gauge-invariant first-order velocity

d 1
u; E—;’l"l Vv = —— (vs, +¢ A,), (43)
t m C

obtained from Eq. (29), which
independent equation of motion'*

2
B
dom _ e (El+mxBl>+Mxe_o
.

satisfies the gauge-

d?  m dt me’ 44

where we have assumed uniform Maxwell fields (Eg, By) for
simplicity. We note, here, that the first-order displacement
(42) is still a function on the full particle phase space.

The first-order Maxwell equations (30) and (31), on the
other hand, become

V'E1:4HJ€f15—4RV'P1, (45)
P
10E 4n eA
V x By *——1*—J €(f1Vo—lfo)
c Ot P
47T(9P1

where the first-order polarization and magnetization
Yo
(Py, My) = J efo <”17 % ?) (47)
P

are defined in terms of moments of the first-order displace-
ment 1, and the first-order magnetization is solely due to the
moving electric-dipole contribution. Using the macroscopic
fields D; = E; +4xP; and H; = B; — 4n M, the first-
order Maxwell equations (45) and (46) become

V'Dlzo}. (48)

cVxH; —9ID/0t=0
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Hence, in general first-order Vlasov-Maxwell theory, the
perturbed first-order charge and current densities are entirely
expressed in terms of perturbed first-order polarization
charge and polarization/magnetization current densities,
respectively. See the case of the oscillation-center Vlasov-
Maxwell equations> as an explicit example.

The first-order Vlasov-Maxwell equations (44)—(46) can
be obtained from the gauge-independent Lagrangian density

ﬁ’—ljf m 2+e( xdo"‘) B
27 c\Mm>= g )P
. Vo 1 2 2
- E —xB —(|E{]" — |B .
+pr0€'11 (1+C>< 1)+8n(| i = [By?)

(49)

don,

The gauge-independent Noether equation associated
with this gauge-independent quadratic Lagrangian is
expressed as 0L = 9075 /0t + V- oIy, where the Noether
fields are

/ . dO”l e )
57, = | foom - (m@Mm_< , «B
T, Lfo U (m a2 X By

—0A1 - (50)

and

d, e
5r/2:JV0f05'11'(m0—”1_2—'11 XBO)
P c

1
—E(&DlDl—&—éAl XH]). (51)

The energy conservation law (35) is now expressed in terms
of the gauge-independent energy density

2
m e
gé_pro<E —21]1 XVO'B])

1 2 2
—(|E B 2
5 (Eil* + [Bi[), (52)

don,

dt

and the gauge-independent energy-density flux

dO'Il < dO"l € )
S, = 2h on_~
: LVO 0 dt " dt 2¢ i X Vo

E] X H]
47

: (53)

The wave-action conservation law 0.7 ,2 JOt+V - f; =0, on
the other hand, is expressed in terms of the gauge-invariant
wave-action density

_ d e
jé:—lm“foq’{- <m(:l—'zl—%'h XVo)]
p

AT-D
+Im< éllnc 1), (54)

and the gauge-invariant wave-action-density flux
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= don, € )
=1 N (il R
2 m UpVofo i ( 20 M xVo

1
+Im [4 ((I) D, +A] x Hl)} (55)
which are identical to expressions derived from the standard
low Lagrangian.>' We note, here, that the gauge invariance
of Egs. (54) and (55) follows directly from the gauge-

independent first-order Maxwell equations (48).

IV. QUADRATIC LAGRANGIANS FOR REDUCED
VLASOV-MAXWELL MODELS

In this section, we now look at some applications of the
quadratic Lagrangian density (26) when phase-space trans-
formations are used in the context of dynamical reduction.*
The guiding-center transformation plays a fundamental role
in our understanding of the magnetic confinement of charged
particles”° and serves as an important foundation for the
construction of most reduced plasma models. Here, we con-
sider the guiding-center transformation of the quadratic
action functional (26), from which the variational principles
for the linearized gyrokinetic Vlasov-Maxwell equations
(63), the linear drift-wave equation (64), and the linear
gyrokinetic-MHD equations (75) are derived.

We begin with the transformation of the quadratic action
function (26) to its guiding-center form

1 dy
£2gc = J [{SlgCaFO}gc (2 dt Slgc ngc)

e’ F,

~ 5 Al ] +§ (B[ = Bi?),  (56)
where Fy denotes the unperturbed guiding-center Vlasov dis-
tribution, [, = [@*P includes the guiding-center Jacobian,
dy/dt denotes the (unperturbed) guiding-center Hamiltonian
evolution operator, and {, }gC denotes the non-canonical
guiding-center Poisson bracket.*>"*

In Eq. (56), we also transformed the first-order
Hamiltonian H1 — Hige = eDge — e Ajge - Voo /¢ = eWige
where vy = T£ v denotes the guiding-center push-forward
of the particle velocity (which includes the guiding-center
drift velocity) and the electromagnetic potentials (P,
Ajg) are evaluated at the particle position x =X + Poc
expressed in terms of the guiding-center position X and the
local gyroradius p,. (Which includes higher-order corrections
due to magnetic-field nonuniformity?”).

In addition, we transformed the first-order generating
function §; — Sie, where the guiding-center generating
function Sy = (S 1gc> +S lgc 18 decomposed into its
gyroangle-averaged (nonadiabatic) part (Si,c) = Sigy, Which
defines the first-order gyrocenter generating function S lgy’zo
and its gyroangle-dependent (adiabatic) part S 1g¢> Which sat-
isfies the first-order equation'~®

dee = ~ & e s
fslgc:ewlgc - Slgc:ﬁlplgc- 7
We note that only the gyroangle-independent part S,y will
appear in the reduced quadratic gyrokinetic Lagrangian den-
sity (58).
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When we insert these decompositions into the guiding-
center quadratic action functional (56), we obtain the low-
frequency gyrocenter Lagrangian density

_ ld _
Logy = Sigy, F S Hioe) | —FoH
2gy JP [{ lgys O}gc(z dt lgy — ( lg >> 0 Zgy}
1 2 2
—(|E1|" — |B 58
+g- (Eil” = [Bi[), (58)

where the low-frequency perturbed electric field E; = —V | @,
is used in the Maxwell part, the operation of gyroangle-
averaging was performed in the gyrocenter Vlasov part, with
the unperturbed gyrocenter Vlasov distribution Fo(&, jt,X)
depending on the gyrocenter position X, the gyrocenter
magnetic moment p, and the guiding-center kinetic energy
E=H 0gc» and the second-order gyrocenter Hamiltonian is*®

2 A 02 2
Hogy — < WA1sel) ;Q<{\Plgc,wlgc} C>. (59)

2 mc?

We note that the last term in the second-order gyrocenter
Hamiltonian (59) represents the low-frequency ponderomo-
tive Hamiltonian from which the gyrocenter polarization and
magnetization effects arise.! The gyrocenter quadratic action
functional (58) was used to construct the quadratic gyroki-
netic free-energy functional >’

We note that the relation between the particle Vlasov
distribution f and the gyrocenter Vlasov distribution F is
expressed in terms of the guiding-center and gyrocenter pull-
back operators f = Ty (T F), which yields™

f

_ e (.~ _ e _ _ _
ETgc (Fl +§ {TlgCaFO}gc+;Algc’{X+pgca FO}gC>7
(60)

where the first-order gyrocenter Vlasov distribution F; is
generated by the first-order gyrocenter function Sigy

Fy= {Slgyvl“:O}gc

6
- {Slg)ﬁg}gc I

H

We now introduce the nonadiabatic part of the first-order
gyrocenter Vlasov distribution®

XV Fo-VSigy.  (61)

~ 'l 6F_ = d c§ (91*:
Gr=F1 = (Hee) g = S Fol e == 5" 5
b . OF0
(eBI* X VFo-V ——2 8) Stey = QSgy, (62)

where the operator Q commutes with dyc /dt. With this decompo-
sition, the gyrocenter quadratic Lagrangian density (58) becomes

1 d
£2gy—J [Qslgy(z dt Slgy <H1g0>)

_ 1 O(H g
5, (H o %ﬂ

1
+—n(|VL(I>1|2— ‘VXA1|2>. (63)
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The gyrocenter quadratic action functional (63) can be used
to derive the nonadiabatic gyrokinetic Vlasov-Maxwell
equations, which includes the guiding-center and gyrocenter
polarizations and magnetizations.

We will now show that it can also be used to derive the
variational formulations for the linear drift-wave equation as
well as the linear hybrid gyrokinetic-MHD equations, which
describe how the perturbed Vlasov distribution (generated
by S;) corresponding to an energetic-particle population can
be self-consistently linked to a macroscopic plasma mode
(described by the ideal MHD fluid displacement &,) in a bulk
magnetized plasma.

A. Linear drift-wave equations

As a first example of the modular property of the varia-
tional formulations of reduced plasma models, where differ-
ent physical effects can be added in a modular fashion to an
action functional, the nonadiabatic gyrocenter quadratic
Lagrangian density (63) was previously'> used to derive the
linear drift-wave equation for electrostatic fluctuations
@, = ® (with A} = 0) in a cold-ion magnetized plasma (rep-
resented by the nonuniform plasma density 7, and the uni-
form magnetic field B = B Z) with adiabatic electrons (at a
uniform temperature 7).

The quadratic drift-wave action functional Agy
= fﬁdw d*rdt is expressed in terms of the drift-wave
Lagrangian density'”

2 0
mic no no (3
2B? 2T,

EC'leﬁ (%%—f—@)

LdW:—ano V(en/x)( N e(D)

+ V. ®)* + @?

+-(b|V_ D> + aD?). (64)

l\)l'—‘

Here, the first term represents the nonadiabatic cold-ion
contribution, where the gyrocenter phase-space function
Sigy — ey(x, 1) is replaced by a scalar field y(x, ) in physi-
cal space. We note that this additional scalar field contributes
to the first-order ion fluid displacement

& =(cz/B)xV y —

which is obtained in the cold drift-kinetic (dk) limit of the
ion gyrocenter dlsplacement ({X + Pycs Sigefoe)- The second
term 1 b |V L ®|* in Eq. (64), which arises from the term
—Fy Hzgy in Eq. (63), represents the contribution from the
cold-ion gyrocenter polarization (which is much greater than
the Maxwell contribution |V, ®|*/87). The third term
%aq)z, which arises from the electron contribution
—1 0% (9f./0€) in Eq. (63), represents the contribution
from the adiabatic electrons. We note that all three
background-plasma functions (a, b, ¢) depend on the position
through the nonuniform plasma density n, and the vector
function c is divergenceless in a uniform magnetic field (i.e.,
V-ec=0).

(mic?/eB*)V | @, (65)
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The drift-wave variational principle d. 44, = 0, based on
Eq. (64), yields the coupled equations

)
a(D—VL'(bVL(D):C'VLlﬁ}7 (66)

from which we recover the linear drift-wave equation

0 0
E[G(D_VL'(bVL(D)]:C'VLFd:

=c-V,®. (67)
We note that the second equation in Eq. (66) can be rewritten
in the form of the quasineutrality condition e n,; = e n;;

a®d = 7V~(en0€1) = c~V1ﬁ+VL . (vaq)),

where the first-order ion fluid displacement (65) was used.
The drift-wave Lagrangian density (64) can also be used

to derive the drift-wave Noether equation 0Lgw = 9,07 aw

+V - 64y, where

5Tu =5 eV

. , (68)

gy = 0OHVD — Eél,bca,zﬁ
from which the energy-momentum conservation laws for the
linear drift-wave equation (67) are derived. For example, the
energy conservation law 9,Eqy, + V - Sqw = 0 is expressed in
terms of the drift-wave densities

1
Eqw =0c- VY —=(b|V, O +ad?)
2 (69)
1
Sqw = bVﬂI)a,CD—E c @’

The drift-wave Noether equation was also used to derive the
linear drift-wave action conservation law'”

a:7dw
ot

+V - Tay =0, (70)

where the linear drift-wave action density 7 g and the linear
drift-wave-action-density flux I'y,, are

Faw =3 ve v0°), an
I — * 1 al//*

The linear drift-wave action conservation law was first
derived in an ad-hoc fashion by Mattor and Diamond® to
investigate the role of the drift-wave-action conservation law
in drift-wave turbulence propagation. We note that, in the
eikonal limit (0/01, V) — (—i w, k), the drift-wave disper-
sion relation is

w = —kL-c/(a—&—bki) = waw(ky),

and the eikonal-averaged drift-wave energy density is
Eaw = Waw Jaw, where the drift- wave eikonal-averaged
action density is Jaw = —k- c|lp| = 0Lay /0w, while
the eikonal-averaged drift-wave energy density is
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Siw = Vaw Edw = Waw Law, where the drift-wave group
velocity is vgyw = Jwgy /0K and the drift-wave eikonal-aver-
aged action density flux is L4y = Vaw Jaw = —O0Law /K.
Finally, we need to emphasize again that the drift-wave
action conservation law (70) is no longer valid once addi-
tional physics (e.g., the presence of a mean flow) or nonlinear
effects (e.g., drift-wave/zonal-flow interactions3l’32) are taken
into account. On the one hand, additional physics (within the
same perturbation order) can always be introduced in the
appropriate Lagrangian density in order to derive a general-
ized form of the wave-action conservation law (see the next
modular example). On the other hand, the linear drift-wave
action density J aw can still be used as a convenient field vari-
able in the ensuing nonlinear-wave discussion.

B. Linear hybrid gyrokinetic-MHD equations

Another modular application of the nonadiabatic gyro-
center quadratic action functional (63) involves the varia-
tional derivation of the standard hybrid gyrokinetic-MHD
equations.™ In the presence of an energetic-particle species,
the ideal MHD wave-action conservation law is no longer
satisfied since the interaction between the linear MHD
modes and the perturbations of the energetic-particle distri-
bution must be taken into account. We now show that the
introduction of the additional physics associated with the
energetic-particle species is done through a modification of
the ideal MHD Lagrangian density.*

First, we write the perturbed Hamiltonian for the
energetic-particles in the drift-kinetic (dk) limit

(Hige) — € (®1— Ay -vge/c) + LBy, (73)

where v, denotes the guiding-center magnetic-drift velocity.
In its simplest version, we use @ =0 = A, (i.e., £, =0)
and Ay = &, x By, where &,(x,7) denotes the ideal MHD
fluid displacement and By = By 60 denotes the nonuniform
background magnetic field, which yields the first-order
Hamiltonian

- e
H1dk=Hb0'VX(flXBo)—i—fl'EVchBo

= —ﬂBo(I — 6060) : Vél — mﬁﬁ 6060 : Vfl
= Iy : V&, (74)

where Il = uBo (I - 6060) + mﬁﬁ bobo and the parallel
component by- &, is naturally absent from H .

By combining the Lagrangian contribution from the
nonadiabatic drift-kinetic Lagrangian density (58) for the
energetic particles with the Lagrangian density for the ideal
MHD equations® (associated with a time-dependent magne-
tized bulk plasma with mass density g,, fluid velocity uo,
plasma pressure pj, and magnetic field By), we obtain the
quadratic kinetic-MHD Lagrangian density*’

do&,

! 2
Livup = = (Qo “ar +¢& 'F1(§1)>

2

A 1 doeS
—I—L QS 14k (E thldk - Hldk(§1)> , (75)
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where the self-adjoint operator F; = V - K| includes a time-
dependent contribution from the background bulk plasma,**>
with the first-order dyadic tensor K; defined as

dou 1
Ki(&) =¢& 0o —2[0_I<p1+EB1'BO)
1
—(BoB B, By). 76

Here, the total bulk-plasma time derivative dy/dr = 9/0t
+1up -V includes the convective derivative with respect to
the time-dependent bulk velocity ug, with the background
plasma equation of motion

doug

B
QOTZ—Vpoﬁ-(VXBO)X—O

4n’

and the perturbed fields (¢, uy,p;,By) are defined in terms
of the ideal-MHD fluid displacement &, as

01 =-V-(e&)

u =do&,/dt — & - Vg
p1=—=yp0(V-&) =& Vpo
B, =V x (& xBy)

(77)

The self-adjointness of the operator F;(&,) is implied by the
identity (see Appendix A)

& Fi(0&)) — 6&-Fi(&)) = V- 6Ry, (78)

where the quadratic MHD vector field

SRy = (p1 5, — 91 &) + 22 (5, x &)V x By

0B, B,

B —— (0 B — 7
+{ (& x 0)X4TC (08, x 0)X4n (79)
involves the reference fields (pg,By). The variation of the
kinetic-MHD action functional with respect to Syqx yields the
linearized drift-kinetic equation

dgcsldk

T Ha (&) =~y : V&, (80)

where we used the fact that the operators Q and dy. /dt
= 0/0t + vy -V commute. Variation with respect to the
ideal-MHD displacement &, yields the linearized ideal-MHD
equation of motion

dy&,
which includes the energetic-particle Chew-Goldberger-
Low-like stress tensor

=F(&)-V-Py, 81)

P = J Iy OSiax = P1i (1 —Dboby) + Py bobo. (82
p

Once the kinetic-MHD equations (80) and (81) have been
derived from the variational principle jéﬁkMHD d*xdt = 0,
we obtain the kinetic-MHD Noether equation JLvup
= 00T mup + V - 0T'xmup, where the Noether fields are
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ofl

0JwmHD = Qg —— - 0&; + JﬁSldk{Sldk,Fo}gc, (83)
P

and
g -
OlvHD = Qoo —— - 0&; + | Qsldk Iy - 6¢,
+15R +1J (Vee 0S1a{Sraws Fo
) 2 ) , ge U9 1dk P 1dks 170 S g¢
—0S1ak Hiak (&) {X,FO}gc), (84)
where JR; is defined in Eq. (79).

1. Kinetic-MHD energy principle

Instead of deriving the energy conservation law for the

kinetic-MHD equations (80) and (81), it is customary to
33.36

derive the standard kinetic-MHD energy principle™" (for a
time-independent, stationary background plasma)
o Inp = Wb + Kac(o), (85)

which can be directly obtained from Eq. (81) as
0= J RC[ET . (Fl — Vﬁ)l(w) + Qowzél)}v
X

with (&;,81a) = (&, S14x) e ™", Here, the MHD integrals
are the inertia Zyup = [, 00/&[°
WMHD: fRe ET Fl) The energetic-particle integral
Ka(w) = [ Re[ 51 V- Pl( )], on the other hand, is defined as

and the potential energy

Kac(w) = —LRe{ () : Véj
@Sia(@) Hly), 6

where we have used H Tdk =—Ilp: VET and we have omit-
ted the surface-integral contribution (since Fy is expected to
vanish at the plasma surface). We note that g (w) is an
intricate function of the mode frequency w, where

and §1dk(w) is related to Hig = —Ip: VEI through
—i(w — &)gc)gldk(a}) = H 4, which involves orbital wave-
particle resonances, where Wy = —i Vge - V.

In the absence of an energetic-particle population
(Fo = 0), ideal MHD stability (i.e., ®* > 0) requires that
Whwnp > 0 for all allowable displacements El. In the pres-
ence of an energetic-particle population, however, it is clear
that the solution of Eq. (85) may yield complex-valued fre-
quencies w, with Im(®) > 0 corresponding to an instability
(even if Wypup > 0). The reader is urged to consult the
recent review paper by Chen and Zonca™® for further details
on the linear stability of ideal MHD modes in the presence
of an energetic-particle population.
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2. Wave-action conservation law

We note that, in general, the nonuniform bulk plasma
may also be time-dependent so that the total energy-
momentum of the kinetic-MHD modes is not conserved (i.e.,
the kinetic-MHD modes may exchange energy-momentum
with the bulk plasma). The kinetic-MHD wave-action, how-
ever, is exactly conserved

8\7 kMHD

oo —
o + V- -T'vnp = 0, 87)

where the kinetic-MHD wave-action densities (:7 KMHD,
I'ovup) can be derived directly from the Noether densities
(83) and (84). The conservation of the total wave-action
associated with the interaction of an energetic-particle spe-
cies with a background bulk plasmas has been investigated
in Refs. 37 and 38.

Instead of this Noether derivation, we again proceed
directly from the kinetic-MHD equations (80) and (81) to
prove that the wave-action conservation law (87) is indeed
exact. First, from Eq. (81), we evaluate

* d2l
0=1Im fl’ F]*V P]*QO d2

which yields

dOJMHD__I ( £ 5)
0y e

= _v'fMHD —|—Im (J
p

QSldkHTdk>
+V -Im (J OS HofT)» (38)
p

where the MHD wave-action density is defined in terms of
the MHD wave-action

d *

°—§1> (89)

Jmup = Im(‘fl' ar

and the MHD wave-action flux density

_ y B
I'vip = Im {PT &+ (fl X BO)X 471J

B

+8—;Im(§1 x &) -V x By, (90)

which is derived in Appendix A as Im(&] - Fy) =V Tyvub.
Next, we note that, using the definition for Q, we find

? OF

dgeS g _ 9o
o0&’

dt

dchIdk
dt

Q51dkHTdk = {Sia, Fo}gc

and hence

. . dyeS
Im(QSIdkHldk> Im({Sldk, F()} g ldk).

By making use of the definition for dy/dt, as well as the
Jacobi property for the guiding-center Poisson bracket
{ }e we find
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dgcjdk

Im(QSldkHi‘dk) = — dr

—{Pa, Folyr O
where we used the unperturbed guiding-center Vlasov equa-

tion dgcl*: o/dt = 0 for the energetic-particle species, and we
defined

o _
Jax =5 Im({S1ac Folge Srax)

7 (92)
\dek = 5 Im(Sldkadk)

Finally, using the Poisson-bracket identity

L{f, Sl = V- (jpf{x, g}gc>,

which holds for arbitrary functions (f, g), we integrate Eq.
(91) to obtain

A 0.7 _
Im (J QS1ak HTdk) = - gtdk -V (JVgc Jdk)
p P
-V <J‘{’dk X, Fo}gc>,
p

where the kinetic wave-action density is defined as

_ _ 1 _
Jaxk = J;Idk =5 Jplm({STdk,Fo}gcsmk)« (93)

p

By combining these expressions, we obtain the exact kinetic-
MHD wave-action conservation law (87), where the total
wave-action density

Jivmp = Jwmup + J d 94)

is the direct sum of the MHD (J mup = ¢y J/mup) and Kinetic
components, while the total wave-action density flux

I'ivip = uo I mup + I'mip

P
+Jilm<QSTdk I - 61)7 ©3)
P

where (J g, Pax) are defined in Eq. (92), is the sum of MHD,
kinetic, and kinetic-MHD coupling components. We note
that, while the ideal MHD wave action (89) is positive, the
sign of the kinetic wave action (93) is indefinite. Hence,
when an energetic-particle population supports a negative-
energy wave,”" the total ideal MHD and kinetic wave actions
JoTmnp and [ Ja may grow separately while keeping their
sum [ (Jwmup + Jak) constant.

Finally, we note that the ideal MHD wave-action con-
servation law 0J mup /0t + V- (g I mup + Imup) # 0 is
no longer conserved in the presence of an energetic-particle
species. Through the proper Lagrangian description of the
additional physics associated with the perturbed energetic-
particle distribution, however, a generalized kinetic-MHD
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wave-action conservation law (87) was derived (by the
Noether method) directly from the kinetic-MHD Lagrangian
density (75).

V. THIRD-ORDER LAGRANGIAN DENSITY

We now move on to include nonlinear effects into the
perturbed Vlasov-Maxwell equations by including third-
order nonlinearities in the perturbed Vlasov-Maxwell action
functional. The perturbative action functional (14) yields the
third-order Lagrangian density

2
% A Ay

1
L3 = (EI'EZ_BI'BZ)_J

4n P
d()S] >
—— —H
pf2< dr 1

doS> 1
Q%2 g, oS, H
pf1< dt 2+2{Sla l})

+

+

+
W= W W=

fol{S1, Ha} +2{S>, H,}), (96)
p

where fi = {S1,/o} and f» = {S2.fo} +%{S1,f1}, and the
contributions from the third-order Hamiltonian associated
with S| and S, (as well as f; and f>) appear explicitly. We
note, here, that the third-order Lagrangian (96) does not sim-
ply involve terms that are cubic in the first-order fields
(S1,®@1,A,), but also include terms involving the second-
order ponderomotive fields (S,, ®;, A,). This ponderomotive
dependence is in contrast to traditional third-order action
functionals, which are always cubic in first-order fields. For
example, see the early work of Boyd and Turner'® for the
Vlasov-Maxwell equations, the work of Brizard and
Kaufman® for the Manley-Rowe relations describing stimu-
lated Raman scattering in an unmagnetized background
plasma, and the more recent works of Pfirsch and Sudan®
and Hirota*! for the ideal MHD equations.

A. Gauge-invariant formulation

Variations of the third-order Lagrangian (96) with
respect to (S, D5, A) yield the first-order Vlasov-Maxwell
equations (29)—(31). The variation with respect to S; yields
the second-order Vlasov equation

O:%+{fla Hl} +{f07 HZ}

doS 1
= {(%—HQ-FE{Sl,Hl})afO}

1 doS)
+§{<7_Hl)afl}7 (97)

which yields the second-order equation

doS> 1

— =H, — = {S, H}, 98
d 2 2{ 1, Hi} (98)
provided that Eq. (29) holds. Variations with respect to
(®4,A,), on the other hand, yield the second-order Maxwell
equations
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V-E2:4nJ efr, (99)
P
10E 4n e
VxBy———2 = —J E{Vof —— (Aafo FALfi)].
c Ot ¢ Jp mc
(100)

While the second-order Vlasov-Maxwell equations (98)—(100)
are gauge-dependent, they are invariant under the second-order
gauge transformation

1
Sy — Sy — (e/c) 1a t3 {S1,(e/c) 1 }
Dy — Dy — ' Dy, /Ot ’
Ar — Ay + Vy,

(101)

as well as the first-order gauge transformations (40) and
(41), with

Hh—fH —E {12, fo} —g {Xlafl _Zic{}flafO}}a
e doy,

2
e“V) 1
Hy = Hy =~ =2+ a -(A1+5vx1>.

dt mc?

B. Gauge-independent formulation

A gauge-independent formulation can also be derived as
follows. First, we note that Eq. (9) can be written as

dpS),
° 226((1)2—&'132) + Ky,
dt ¢

(102)

where the second-order (gauge-independent) ponderomotive
Hamiltonian is

e v
K, z——m-<E1+£xBl), (103)
2 c
and we have defined the new scalar function
e
Slz =35 —I-Z—CAl-}]l = S + o3, (104)

which implies that Eq. (102) is invariant under the second-
order gauge transformation (®;,A;) — (®; — ¢ 19y, /0t,
A, +Vy,), provided that S, transforms as S, — S,
—(e/c) 35, while it is independent of the first-order gauge
field y;.

Next, we now introduce the gauge-independent second-
order displacement 1, = 0S,/0p, which yields the gauge-
invariant second-order velocity

_ dom, o 0K, 1

e
= vy =22 (s, 1 faA 105
u Vv ap m( 2+C 2>,( )

and the gauge-independent second-order equation of motion

do (d K A
_0(0_”2__2> :e(Ez—f—?o XB2> —|—{V0,K2}

dt \ dt ap
d()t]z 8[(2 % @
me

T (106)

Phys. Plasmas 25, 112112 (2018)

The gauge-independent second-order Maxwell equations

0=V-(E;+4nP,) =V Dy, (107)
OZVX(B2—4RM2)—Eg(E2+4RP2)
B 1 9D,
:vaz__W (108)

are expressed in terms of the second-order polarization and
magnetization

P.= (efo m+ gf(n1>, (109)
P
\{
MzEJ <€f0'12+§f1/'l1)><?7 (110)
P c
where  f{ = —mu; -0fo/0p —n,-Vfy is the gauge-

independent first-order Vlasov distribution. Once again,
from Eqgs. (107) and (108), we see that the second-order per-
turbed charge and current densities are expressed in terms of
second-order polarization and magnetization effects.

Finally, we note that these second-order equations can be
derived from the gauge-independent third-order Lagrangian
density

1
Ly=—(E;-E,—B;-B))

4n
0K,

+ Lfo |:'ll : (F2 - VKZ) + muy - <u2 — 8—p)

+1y - (Fr—my - VVHO)]

1 d2 do e

) sim (-t m ).
where the gauge-independent nth-order perturbed fields
(u,,F,) are the velocities u, = don,,/dt — 1, - Vv and the
total forces F, = ¢eE, + (¢/c) vo x B,. We note that, once
again, the gauge-independent third-order Lagrangian density
(111) involves terms that are cubic in the first-order fields
(n,,E1,B) as well as terms that involve the second-order
ponderomotive fields (n,, Ey, By). Applications of the third-
order Lagrangian density (96) [or Eq. (111)] will be explored
in future work.

(111)

VI. PERTURBED VLASOV-MAXWELL POLARIZATION
AND MAGNETIZATION

Before summarizing our work, we note that, by combin-
ing the second-order polarization and magnetization (109)
and (110) with the first-order expressions (47), we obtain
expressions for the perturbed Vlasov-Maxwell polarization
and magnetization that are exact to all orders. First, we find
the perturbed Vlasov-Maxwell polarization

1
P= J e[emfo +é ('lzfo +5 mff) +}
P

J; (Jpef j;_) do = J:) P, da,

(112)
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where dx/do = {x,S}, with f=fy+a{Si,fo} + -+ and
S=81+20S,+--. If we return to Eq. (19), we easily
recover

OE B of B
\V& o= 471Jpe 50 = 4ane {S,f}

-V <4nLef {x, S})

= -V (4nP,),

(113)

from which we obtain V- (E — Eg) = -4V - P, i.e.,

V-D=V-Ey = 4np,. (114)

Hence, we conclude that the perturbed charge density can be

expressed as a perturbed polarization charge density at all
orders in Vlasov-Maxwell perturbation theory.

The perturbed Vlasov-Maxwell magnetization, on the

other hand, is expressed as

evy

-,
MEL[E'th‘FEZ ('sz0+2'11f1) +] X o

[l (%)

where dx/dt = {x,H} = (p — eA/c)/m = vy — g eA;/mc
+ - - -. If we return to Eq. (20), we find

OB 10 (0E e 0 dx
Wag‘cat(aa) 4”Lcaa<fdt>

dO‘EJ M, do, (115)
0

(116)

where we have used df/dg = —{f, S}, and we have used

the identity
dx
{8, 8} =V- J —g
Jp pda

d>x 0 (dx N dx
dodt ~— 0o \ dt /i
Next, using Eq. (112) and the same identities, we introduce
0P, J 0 ( dx)
= e — f _
ot p Ot do

dx dx d*x
=-V- <Jp€f5%> +Jp€f d—6d1‘7

which is substituted into Eq. (116) to yield

and
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v b 10 (0F)
do ¢ O0r\Odo

_4£8P(,
T Ot

:4_7T6P0-
T ¢ Ot

+V-

4 J ef <dx dx dx dx)
ol S (222 2R
pC dt do do dt

+4nV x My,

(117)

where M, is defined in Eq. (115). We can, once again, con-
clude that the perturbed current density can be expressed as a
perturbed polarization and magnetization current densities,
i.e.,

1 oD 1 0Ey 4rn

VXH-———=VxBy———= - Jo,

c Ot c Ot (118)

at all orders in Vlasov-Maxwell perturbation theory.

Vil. SUMMARY

The perturbative variational formulation (14) of the
Vlasov-Maxwell equations has been presented, based on a
geometric interpretation of the Lie-transform perturbation
analysis (4). From the second-order and third-order varia-
tional principles (26) and (96), we derived first-order and
second-order Vlasov-Maxwell equations in both gauge-
invariant and gauge-independent forms. In the gauge-
independent forms, we extracted explicit expressions for the
perturbed Vlasov-Maxwell polarization and magnetization
(112) and (115).

From the quadratic variational principle for the linear-
ized Vlasov-Maxwell equations, we derived variational prin-
ciples for the linear drift-wave equation and the linearized
kinetic-MHD equations, from which wave-action conserva-
tion laws were derived.
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APPENDIX A: SELF-ADJOINTNESS PROPERTY

In this appendix, we prove the identity (78), where
F,(6¢,) = 0F, = V- 6K is expressed in terms of Eq. (76) as

dou 1
5Ky = ¢, 0, %—1(5;91 + 0B -Bo)

1
+-—(By0B; + 0B By), (A1)
4r
where  Op; = —ypo (V- 0&,) — &, -Vpy and OB =V
x (0&, x By). We begin with
& -6F =V (0K, - &) — oK| : V¢, (A2)
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so that Eq. (78) becomes

& -0F; — o0& -F =V (0K, - & —K;-0¢))

+K[ Vg, — oK VE,  (A3)
where we now have to show that K| : V¢, — oK/ : V¢,
can be written as a divergence. Here, 5K1T denotes the trans-
pose of 0K so that

Phys. Plasmas 25, 112112 (2018)

dou
0K V& =00 = (061 V&)

1
- <5P1 +—5Bl'Bo)V-€1
47
1
+E(BO~V§1-5B1 + 0B -V¢&,-By).

After several manipulations, we find

2

B B
SK{ : V& =9po(V - &) (V- 6¢,) + By- 4*;* 108, : VV (PO +0) + [&-Vpo(V-6&) + 0&, - Vpo(V - &))]

4n
5B
+V- [ !

4n

8n

(& Bo) (0 VBy) + 1 [(& VBo)- (By Vo) + (35 VBy)- (By V)]

d, B
—— (& Bo) + & (51'90 2;;0> *4*2(551' VB f1>],

where all the terms outside of the divergence terms are explicitly symmetric with respect to &, and d&,. Hence, we easily find

that

OB,
T

B
K1T : Vg, _5K1T Vg =V {4_71[(561'30) —4—(€1'B0) — (& x 6&;) x 0o ar

If we now substitute this expression, with

doug B
o e (81X 08) -V x By .

d 1
0Ky - & — Ki 08 = (& 08) x 0 0 + (p1 08 — 0p1 &) + ;-[(& x Bo) x OBy — (98 Bo) x B}

0B,

B
+ 4 (& Bo) = 1 (08 - By),

4n

into Eq. (A3), we obtain Eq. (78): &, - 0F; — 0&, - F| = V- 0R;, where R, is given in Eq. (79). A useful application of the

identity (78) is the relation

| —

i 2i

[\

Lo B ) )
ZVIm[pT€1+M(§1 XBQ)XBl—l—fO(fl X€1)~VXB0 = V- -I'mup,

which appears in the kinetic-MHD wave-action conservation
law (87).
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