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On certain models in the PDE theory of fluid flows

Vladimir Sverak

Abstract

We discuss several model PDEs motivated by the incompressible Navier-Stokes equa-
tions. Some of the PDEs appear to be quite simpler, but basic questions about them are still
open. In the last section we discuss uniqueness of weak solutions of the 3d incompressible
Navier-Stokes in a natural energy class.

1. Introduction

A reasonable approach to dealing with the difficult problems in the PDE theory of the Navier-
Stokes equations seems to be a study of simpler model problems, in the hope that we can learn
enough from the models to make progress on the full equations. In these notes we will study
several such models, and this will take up most of our time. In the last section we will discuss the
uniqueness problem for the classical Cauchy problem for incompressible Navier-Stokes with initial
datum u0 ∈ L2.

One of the main points we wish to make is that the PDE problems one faces in connection with
the incompressible flows are not isolated examples in the PDE theory. There are quite a few model
equations which appear to be easier that the Navier-Stokes or Euler equations, but for which basic
PDE questions remain open.

2. 1d models

Although there are no non-trivial incompressible flows in 1d, there are interesting 1d models
relevant to incompressible fluid dynamics. The reason is that the restriction of a incompressible
flow to a lower-dimensional sub-manifold which is left invariant by the flow does not have to
preserve the (lower-dimensional) volume on the sub-manifold.

Example 1 (after [12, 24])
Consider the 2d Boussinesq system in the upper half-plane Ω = {(x, y) ∈ R2 , y > 0}, in the
vorticity form

ωt + uωx + vωy = θx ,
θt + uθx + vθy = 0

(2.1)

complemented by the boundary condition v|∂Ω = 0 and the usual Biot-Savart law expressing the
div-free velocity field (u, v) in terms of ω. At the boundary the functions ω, θ, u are just functions
of x (and time, of course), and we have

ωt + uωx = θx ,
θt + uθx = 0 .

(2.2)

The 1d flow on ∂Ω given by u(x, t) is typically not incompressible. System (2.2) is not closed, in
the sense that at ∂Ω we cannot express u in terms of ω|∂Ω. However, one can introduce a new 1d

The research of the author has been partially supported by grants DMS 1362467 and DMS 1664297 from the National Science

Foundation.

VIII–1



Biot-Savart law, which to some degree approximates the real situation (see [12]):

ux = Hω , limx→∞ u(x, t) = limx→−∞ u(x, t) = 0 (2.3)

where H is the Hilbert transform. The system (2.2) augmented by (2.3) is now closed. We will
prove a finite-time blow-up result for it in subsection 2.2 .

Instead of working the half-space Ω, one can also work in a half-cylinder S1 × (0, ∞) and obtain
the 1d system (2.2) on S1.

Example 2 (after [10, 11])
Consider the SQG equation in the plane

θt + uθx + vθy = 0 , (2.4)

where the velocity field (u, v) is given by

u = −ψy , v = ψx , Λ̃ψ = θ , (2.5)

where Λ̃ = −(−(∂2
x + ∂2

y))
1
2 . We will consider a special class of solutions, when ψ = −yu(x, t).

Using Fourier transform, it is not hard to see that we have Λ̃(−yu(x, t)) = −yΛu(x, t), where Λ =

−(−∂2
x)

1
2 , the operator on the real line with the Fourier multiplier −|ξ|. Taking the y−derivative

of (2.4) at the line y = 0, we obtain a 1d equation (on the real line)

ωt + uωx − uxω = 0 , (2.6)

where ω = ω(x, t) = −Λu(x, t). This is the De Gregorio model, which was originally derived by De
Gregorio [16] by different considerations, based on the Constantin-Lax-Majda model [13]. We will
discuss the De Gregorio model in some detail in the next subsection.

Example 3 (after [5])
Our final example will not come from an incompressible flow, but from considerations generalizing
a geometric interpretation of Euler’s equations due to V. I. Arnold [1, 2]. From the point of view
of the Lagrangian mechanics, one can think of the motion of an incompressible fluid in a domain
Ω ⊂ Rn as follows: the configuration space of the mechanical system given by the fluid is the
group of volume-preserving diffeomorphisms1 G = SDiff(Ω) of Ω, and the action for a curve φt in

G is given by
∫ t2

t1

∫

Ω
1
2 |φ̇t(x)|2 dx dt, the same as for the geodesics on G with respect to the natural

L2-metric.
One can now consider a 1d situation, take Ω = S1 (the one dimensional circle), and G = Diff(S1)

(the group of the diffeomorphisms of S1, or, if we like, its connected component containing the
identity) and consider it with the metric induced from the tangent space TidG by the Ḣs-scalar
product, and the requirement that the metric be right-invariant under the natural action of G on

itself. The action then will be
∫ t2

t1
||φ̇t ◦ (φt)−1||2

Ḣs dt. We note that u(x, t) = φ̇t((φt)−1(x)) is the
Eulerian velocity field. In the incompressible case it does not matter whether or not we compose
φ̇t with (φt)−1 in the action integral, as φt is volume-preserving. For the group Diff(S1) this, of
course, does matter.

An unexpected result of Michor and Mumford [39] is that for s ≤ 1
2 the geodesic distance induced

on the connected component of identity of Diff(S1) by the above action vanishes identically. The
equations for geodesics still make sense, except that no non-trivial solution can be a minimizer.
For s = 0 we obtain a variant of the Burgers equation

ut + 3uux = 0 , (2.7)

which can, of course, develop singularities in finite time from smooth data. For s = 1 the resulting
equation is the Hunter-Saxton equation, and is completely integrable, see [35]. It also can produce
finite-time singularities from smooth data. In the context of other models we will be studying here,
the most interesting case is perhaps s = 1

2 , which leads to

ωt + uωx + 2uxω = 0 , ux = −Hω , (2.8)

which is called the Wunch equation in [5]. (Note that if we change ω to −ω in the last equation,
we can change the Biot-Savart law to ux = Hω.)

1We can also take its connected component containing identity.
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2.1. The De Gregorio equation

We will now look in more detail at equation (2.6), which may be the most interesting one of the
models above. Originally it appeared in a different context than in Example 2 above. Its history
goes back to a model of Constantin-Lax-Majda from the 1980s [13], which we will refer to as the
CLM model in what follows. It is the following equation on the unit circle S1

ωt = ω Hω , (2.9)

where H is again the Hilbert transform. (The model can be defined of the real line, in the same
way.) A remarkable feature of the model, discovered in [13], is that it can be solved explicitly.
With a slight abuse of notation, let us denote use ω also for the harmonic extension of ω into the
unit disc, and Hω for the harmonic extension of Hω into the unit disc. The function f = ω + iHω
is then a holomorphic function in the unit disc, and one easily checks that the real part of the
equation

ft = − i

2
f2 (2.10)

is exactly (2.9). The solution of (2.10) is

f(t) =
f(0)

1 + i
2 f(0)t

, (2.11)

and the explicit formula makes the analysis of singularity formation from smooth initial data easy.
(We leave the details to the reader.)

The CLM model was motivated by a comparison with the vorticity form of the 3d Euler equation

ωt + u∇ω = ω∇u , curl u = ω , div u = 0 . (2.12)

We can write ω∇u as ω S(ω), where S is a suitable singular integral operator (given by a 0−homo-
geneous Fourier multiplier), and if we drop the term u∇ω, we obtain a 3d version of (2.9). For a
better comparison with the 3d Euler situation, we can write (2.9) as follows

ωt = ωux , ux = Hω . (2.13)

De Gregorio [16] suggested that changing (2.13) to

ωt + uωx = ωux , ux = Hω (2.14)

might be a closer analogy to the 3d Euler than (2.13).
The condition ux = ω only determines u up to a constant. Different choices of the constant

(which can possibly depend on t) can be thought of as different “gauges” for the equation -
the solutions corresponding to two different gauges can be transformed between themselves by a
suitable choice of coordinates. A natural gauge on the circle is

∫

S1 u(θ, t) dθ = 0, but it is not
always the most convenient one, see [29] for details.

We note that the De Gregorio equation (2.14) can also be written as

ωt + [u, ω] = 0 , (2.15)

where we consider both u and ω as vector fields, and [u, ω] denotes their Lie bracket uωx − ωux.
Geometrically, equation (2.15) describes the transport of the vector field ω by the flow generated
by the velocity field u. If φt is the one-parameter family of diffeomorphisms generated by the flow
u(x, t), than ω(t) = φt

#ω(0), where we use the usual notation φ#ξ for the push-forward of a vector

field ξ by the diffeomorphism φ. For the 3d Euler equation (2.12) the situation is similar and the
identity ω(t) = φt

#ω(0) is just the Helmholtz law.

2.1.1. Local well-posedness

When considered on the real line, both the De Gregorio equation and the CLM model are invariant
under the scaling

ω(x, t) → ω(λx, t) , λ > 0 (2.16)

and hence the homogeneous part of the norm borderline spaces for the local well-posedness should
be invariant under this scaling. For the Sobolev scale Hs (for ω0), it is natural to expect the local-
in-time well-posedness for compactly supported initial data when s > 1

2 , and this can indeed be
proved using, for example, methods in [3]. On the other hand, we see from the explicit solutions of
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the CLM model, that (2.13) is not locally-in-time well-posed for (compactly supported) ω0 ∈ Ḣ
1
2 ,

and it is natural to expect the same for (2.15). For the same reason we do not expect local-in-time
well-posedness for (compactly supported) ω0 ∈ L∞. On the other hand, it is likely that (2.15) is

locally-in-time well-posed for compactly supported ω0 ∈ B
1
2

2,1 (where we use the usual notation

for Besov spaces). The connection with the results in [3, 15] is probably best seen when one
re-writes (2.15) as

ut + uux = uux − Λ−1 (uΛux − uxΛu)
def
= B(u, u) . (2.17)

2.1.2. The BKM criterion for regularity

A well-known result of Beal, Kato and Majda [6] says that for the incompressible Euler equation the

regularity of solutions is controlled by the quantity
∫ T

0
||ω(t)||L∞ (where ω is the vorticity) in the

following sense: if T is a possible blow-up time for Hs solutions s > n
2 + 1, then

∫ T

0
||ω(t)||L∞ dt =

+∞. For the De Gregorio equation (2.15) one has the same type of results which can be proved
by techniques similar to those used in the proof of the BKM criterion for incompressible Euler.

For example, if s > 1
2 and an Hs−solution blows up at time T , then

∫ T

0
||ω(t)||L∞ dt = +∞. The

proof for s ≥ 1 can be found in [5]. The general case s > 1
2 can be proved using the techniques

in [3]. One can also replace the norm ||ω(t)||L∞ by ||ω(t)||
H

1
2

in the statement.

2.1.3. Conserved quantities

At the time of this writing, there are no known coercive conserved quantities for (2.15). One
conserved quantity is

∫

S1

ω(x, t) dx . (2.18)

We have
∂

∂t

∫

S1

ω(x, t) dx =

∫

S1

−[u, ω] dx =

∫

S1

2(Hω)ω dx = 0 . (2.19)

In these lectures we will be dealing with the case when the initial condition ω0 satisfies
∫

S1 ω0(x) dx = 0. The more general case with
∫

S1 ω0(x) dx 
= 0 may exhibit some additional
interesting effects.

From the geometric interpretation of (2.15) as transport of the vector field ω(x) ∂
∂x

, one sees that

the invariants of the adjoint orbit Oω0
= {φ#ω0 , φ ∈ Diff0(S1)} (where Diff0(S1) is the connected

component of the diffeomorphism group Diff(S1) and φ# is the push-forward of the vector field
ω0 by φ) are also invariant under the evolution. Under some non-degeneracy conditions, such
invariants have been characterized by Hitchin in [27]. In the special case when ω′

0(x) 
= 0 whenever
ω0(x) = 0, the invariants are exactly the number of zeroes, and the derivatives of ω0 at the zeroes
(ordered up to a cyclic permutation). The conservation of ωx(x(t), t) for ω(x(t), t) = 0 can also be
easily seen directly from the equation:

d

dt
ω(x(t), t) = ωx(x(t), t)ẋ + ωt(x(t), t) = ux(x(t), t)ω(x(t), t) = 0 . (2.20)

2.1.4. Numerical results concerning global well-posedness and long-time behavior

Numerical experiments performed on S1 for the case
∫

S1 ω(x, t) dx = 0 suggest (see, for example,

[41, 29]) that the equation (2.15) on the circle S1 is globally well-posed for smooth initial data.
(We also expect this to be the case when the equation is considered on R.) On the other hand,
based on recent results in [18], one expects that the equation will not be globally well-posed in Hs

for s < 3
2 , and one expects the same on S1 (although - as far as I know - the case of S1 has not

been worked out in the literature).
The long-time behavior of the global solutions on S1 observed numerically is, generically, an

approach to a manifold of stable equilibria. (These results are reported in [29]). One can easily check
that the eigenfunctions of the operator Λ on S1 are equilibria: ω = Λu = λu clearly implies that
[u, ω] = 0. The equilibria corresponding to the lowest non-zero eigenvalue are of the form ω(x) =
A sin(x − x0). These functions form a two-dimensional manifold M2 and numerical experiments
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suggest that generic solutions approach this manifold. The equilibria A sin m(x − x0) with m ≥ 2
appear to be unstable, with finite-dimensional unstable manifolds. We note that the equation is
reversible, and hence the behavior for t → ∞ is the same as the behavior for t → −∞.

The above long-time behavior observations concern the case
∫

S1 ω0(x) dx = 0. When the integral
does not vanish, the behavior may be more complicated.

2.1.5. A rigorous stability result

The numerical behavior described above can be confirmed rigorously for solutions on S1 in the case
when the initial condition ω0 is sufficiently close to the manifold of stable equilibria M2. In [29]
the following result is proved:

Theorem 2.1. Consider the De Gregorio equation (2.15) on the circle S1. Assume that ω0 is a
C2-function which is sufficiently close in the C2−norm to an equilibrium of the form A sin(x−x0).
Then the De Gregorio equation (2.15) has a global C2−solution ω(x, t). In addition, as t → ±∞,
for each s < 3

2 the solution approaches in Hs equilibria ΩA±,x±

0

= A± sin(x − x±

0 ). The constants

A± can be determined explicitly from the conservation laws discussed in subsection 2.1.3.

Remark: The convergence is typically not smooth, for s > 3
2 the norm ||ω(t) − ΩA±,x±

0

||Hs expo-

nentially diverges to ∞ in the generic case.

A detailed proof can be found in [29]. We outline the main ideas. For the outline of the proof,
let us switch notation, and write the point on S1 as

z = eiθ , (2.21)

so that our variable x above will now be called θ (in the case when the equation is considered on
S1). It is enough to prove the theorem for the equilibrium Ω = Ω(θ) = − sin θ. The corresponding
velocity field is then U = U(θ) = sin θ. We linearize the equation at Ω, obtaining

ηt + [U, η] + [v, Ω] = 0 , vθ = Hη , (2.22)

which is the same as
ηt + [U, η + v] = 0 , vθ = Hω . (2.23)

It turns out one has good estimates for this equation in two types of spaces:

(a) Energy estimate in a space closely related to H
3
2 (S1). We note that the exponent s = 3

2

is optimal, as the H
3
2

+ε norm of a typical solution is expected to blow-up for t → ∞, for
any ε > 0. The exponent s = 3

2 can also be seen from the fact that near the equilibria
of the field U , the evolution by the transport part of (2.23) is given essentially by scaling
η(θ − θ0) → λη(λ−1(θ − θ0)), with λ ∼ e−t for the stable equilibrium and λ = et for the
unstable equilibrium.

(b) Exponential convergence to the kernel of the linear operator in a suitable L2−based weighted
space.

We note that, in close similarity with linearizations of incompressible Euler equation about
non-trivial equilibria, the linearized equation (2.22) can be thought of in terms of a “leading part”,
which is the transport equation

ηt + [U, η] = 0 (2.24)

and a non-local perturbation term [v, Ω]. To avoid distractions by technicalities, we will explain
the main ideas on a simpler model problem. The leading part (2.24) describes the transport of
the vector field η by the flow generated by the vector field U , and can be solved more or less
explicitly. The main difficulty is to control the influence of the non-local term [v, Ω], which is not
as geometric, and its effects seem to be less transparent.

It is quite straightforward to establish good estimates for (2.24). The danger of the non-local
term is that it can potentially change the spectrum of the linear operator in a way which would rule
out the decay estimates we ultimately need for the non-linear perturbation theory, for example by
creating non-trivial eigenfunctions with purely imaginary eigenvalues, which would be consistent
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with the energy estimate (a), but not with the exponential decay (b), as they would generate to
periodic solutions of the linearized equation, ruling out (b).

The transport equation (2.24) can be “diagonalized” in many ways. For example, one can use a
simple change of coordinates dx = dθ

sin θ
to “straighten” the field U(θ) ∂

∂θ
= sin θ ∂

∂θ
in the interval

(0, π) to the field ∂
∂x

on R, and similarly on (−π, 0). After this change of variables equation (2.24)
becomes equivalent to two copies of ξt + ξx = 0 in R, which is, of course, diagonalized by the
Fourier transformation.

While this diagonalization works well for equation (2.24), it is not clear how to deal the “per-
turbative term” [v, Ω] in these coordinates. The term will remain non-local, with non-trivial inter-
actions between the two copies of the diagonalized equation ξt + ξx = 0.

It turns out there is a different diagonalization of the transport operator in (2.24), which makes
it much easier to handle the non-local term. Namely, one can split η into its holomorphic part
η+ and anti-holomorphic part η−. On the subspace of functions with zero average, this splitting
commutes with the evolution given by (2.24). Moreover, the nonlocal part [v, Ω] becomes much
easier to handle, as the Biot-Savart law vθ = Hη restricted to holomorphic fields becomes

η(z) = −zv′(z) , (2.25)

where v′ = dv
dz

.

A simplified model for equation (2.24).

Although equation (2.24) can be solved explicitly, it is instructive to consider a still simpler equation

ft + sin θ fθ = 0 . (2.26)

for functions on the circle S1. In spite of its simplicity, the equation has some interesting features
which illustrate well some of the issues coming up in the proof of Theorem 2.1.

The transport equation (2.24) can be brought to the form (2.26) by the change of variables

η = Uf . (2.27)

Recalling that U = sin θ, it is easy to check that the evolution for f given by (2.24) and (2.27) is
exactly (2.26).

We note that the vector field sin θ ∂
∂θ

considered on S1 has a holomorhphic extension to C, given
by

1

2
(z2 − 1)

∂

∂z
. (2.28)

The flow map generated by the field, i. e. the solution of ż = 1
2 (z2 − 1), is given by conformal

maps of the disc onto itself, of the form (z − α)/(1 − αz), with α = tanh 1
2 t. The evolution

by (2.26) clearly preserves the class of functions which have a holomorphic extension to the unit
disc D = {z , |z| < 1}, and also the class of functions which have a bounded holomorphic extension
to the complement of the unit disc. (The latter class coincides with the functions which have an
anti-holomorphic extension to the disc.)

Each function f : S1 → C can be decomposed into a sum of such functions, and the decompo-
sition is unique modulo constants (as the intersection of the two classes of functions consists of
constant functions).

Energy estimate and a spectral decomposition

Let Ḣ 1
2 (S1) be the functions in Ḣ

1
2 (S1) which have a holomorphic extension to the disc. We will

slightly abuse notation and for f ∈ Ḣ 1
2 (S1) we will also denote by f the holomorphic extension to

the disc. For f ∈ Ḣ 1
2 equation (2.26) is the same as

ft +
1

2
(z2 − 1)fz = 0. (2.29)

This represents the transport of f in the unit disc by the holomorphic vector field (2.28). As the
integral

∫

D
|f ′(z)|2 i

2 dz ∧ dz̄ is invariant under conformal transformations of D, and equal to the

square of the Ḣ
1
2 −norm of f , we see that the evolution given by (2.26) preserves the Ḣ

1
2 norm.
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Let us now consider the conformal mapping of the unit disc D onto the strip
O = {w , −π/2 < Im w < π/2} given by

z → w = log
1 − z

1 + z
, (2.30)

where we take log(reiθ) = log r + iθ for r ∈ (0, ∞) and θ ∈ (−π, π). In the w−coordinate the
equation becomes

ft + fw = 0 . (2.31)

The direct straightening of the field sin θ ∂
∂θ

to ∂
∂x

through the change of coordinates dθ/ sin θ = dx
leads to

x = log tan
θ

2
= log i

1 − z

1 + z
, z = eiθ , (2.32)

which only differs by shifting the strip O up by π/2. If we only work on the circle, with θ ∈ (−π, π),
the change of coordinates splits the circle into two independent pieces (the two lines at the boundary
of the shifted strip), which reflects that the spectrum of the operator − sin θ ∂

∂θ
has multiplicity

two, and one might be inclined to decompose the space into the two parts corresponding to the two
components. The decomposition into the holomorphic and anti-holomorphic parts gives another
way to do the splitting, which works much better for our purposes here.

The equation (2.31) is of course diagonalized by the Fourier transformation

f(w) =

∫ ∞

−∞

φ(s)eisw ds , (2.33)

and a simple calculation shows that
∫

O

|f ′(w)|2 i

2
dw ∧ dw̄ = 2π

∫ ∞

−∞

|ϕ(s)|2s sinh πs ds . (2.34)

Going back to the variable z ∈ D, we see that for holomorphic functions on D we can write

f(z) =

∫ ∞

−∞

ϕ(s)

(

1 − z

1 + z

)is

ds , (2.35)

and

||f ||2
Ḣ 1

2
(D)

∼
∫ ∞

−∞

|ϕ(s)|2s sinh πs ds . (2.36)

The functions

h(z, λ) =

(

1 − z

1 + z

)λ

(2.37)

satisfy
1

2
(z2 − 1)

∂

∂z
h(z, λ) = λ h(z, λ)

and can be thought of as generalized eigenfunctions of the operator 1
2 (z2 − 1) ∂

∂z
in Ḣ 1

2 , with
the decomposition (2.35) representing the spectral decomposition of the restriction of the operator

− sin θ ∂
∂θ

to Ḣ 1
2 . The restricted operator is skew-adjoint with respect to the Ḣ 1

2 scalar product, and
its spectrum coincides with the imaginary axis. In the “coordinate” ϕ given by (2.35) the operator

acts via ϕ(s) → isϕ(s). Recalling that functions in Ḣ 1
2 are considered only modulo constants, we

see that the spectrum is absolutely continuous. It is worth noting that for λ = is with s real the
generalized eigenfunctions just barely miss Ḣ 1

2 , in the sense that they belong to Ḣ 1
2

−ε for ε > 0.
(The function h(z, 0) is constant and is of course in the kernel of the operator, but this function is

equivalent to 0 in Ḣ 1
2 .)

In a slighly different language, the main point of the above consideration can be viewed as
follows. Let us denote M the operator on Ḣ

1
2 (S1) given by − sin θ ∂

∂θ
, and let H be the Hilbert

transform. Then the commutator [H, M ] is given by

[H, M ]f =
i

2
(f1 + f−1) · 1 , (2.38)

where f1 and f−1 are the Fourier coefficients of f corresponding to eiθ and e−iθ, respectively. In
particular,

[H, M ] = 0 in Ḣ
1
2 (S1) . (2.39)
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This means the eigenspaces of H are invariant under M , which gives our splitting of the space Ḣ
1
2

above.
From the spectral analysis above it can be easily seen that when the initial condition f |t=0 = f0

belongs to Ḣ
1
2 (S1), the solution f(t) of (2.26) converges weakly to 0 in Ḣ

1
2 (S1). This can, of

course, also be seen from an explicit calculation. However, the explicit calculation is not available
for (2.22), whereas the spectral analysis can be done along similar lines, although with more
complicated arguments concerning the generalized eigenfunctions. (We recall that the functions in

Ḣ
1
2 are considered modulo constants. This is essential, as for a general f0 ∈ Ḣ

1
2 the constant part

of the solution f(t) cannot be controlled, and can exhibit arbitrarily large oscillations.)

The estimate of solution f(t) of (2.26) in Ḣ
1
2 (S1) discussed above illustrates in a simpler situ-

ation the energy estimate for (2.22) in a space equivalent to Ḣ
3
2 , or more precisely, its suitable

factor space (which mods out the kernel of the linearized operator).

Estimate in a weighted L2−space

There is another natural space in which (2.26) can be considered. To motivate its definition, we
note that the value of the initial datum f0 at θ = 0 plays a decisive role for the evolution, as we
have

f(z, t) = f0

(

z + tanh t
2

1 + z tanh t
2

)

, z = eiθ . (2.40)

We now define an L2-based space of functions f : S1 → C which puts a special emphasis on the
value of f at θ = 0. Let us choose γ ∈ ( 1

2 , 1) and define

Y0 = {f ∈ L2(S1) ,

∫ π

−π

|f(θ)|2| sin(
θ

2
)|−2γ dθ} (2.41)

with the norm

||f ||Y0
= || f | sin

θ

2
|−γ ||L2(S1) . (2.42)

We also define

Y = Y0 ⊕ C · 1 (2.43)

with the norm of f = g + a ∈ Y , g ∈ Y0 , a ∈ C given by

||f ||Y = ||g||Y0
+ |a| . (2.44)

For f ∈ Y as above we can define f(0) = a. With this definition, the mapping f → f(0) is clearly
continuous on Y . It is easy to see that the Hölder space Cα(S1) is contained in Y when α > γ − 1

2 .
The suitability of the space Y for our problem is seen from the following: If f0 ∈ Y0 then

||f(t)||Y0
≤ Ce−βt||f0||Y0

, β = γ − 1

2
. (2.45)

It is not hard to obtain this estimate from (2.40) by a direct calculation, see Lemma 3.5 in [29] for
a similar calculation done for (2.24).

The analogous exponential decay obtained for the linearized equation (2.22) is crucial for the
proof of Theorem 2.1. While such as estimate can be obtained by a direct calculation in the case
of the transport equation 2.24, its proof for the full linearized equation (2.22) relies on additional
information one has to get about the spectrum and generalized eigenfunctions, which are more
difficult to obtain.

An important point in the proof is (a variant of) the fact that the space Y is preserved under
the Hilbert transform. In other words,

||Hf ||Y ≤ C||f ||Y , f ∈ Y . (2.46)

See [29] for details.

For a use of un-isotropic Sobolev spaces for the analysis of the spectral properties of Morse-
Smale flows and their action on differential forms (which is in some sense dual to the flow defined
by (2.24)) we refer the reader to [14].
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Generalized eigenfunctions of the full linearized equation

Here we outline the main points of the argument which is used in [29] to obtain information
about the spectrum of the linearized operator in (2.23). We will denote by L the linearized operator
in (2.22), i. e.

Lη = −[U, η + v] , vθ = Hη ,

∫

S1

v dθ = 0 . (2.47)

Lemma 2.1. On the space of functions η ∈ H1
0 (S1) with zero average, the operator L commutes

with the Hilbert transform, i. e. [H, L] = 0.

As in the simpler example discussed above, this means that we can restrict the study of L to
the case when η has a holomorphic extension to the unit disc D. (The anti-holomorphic part is
handled, mutatis mutandis, in the same way as the holomorphic one.)

Lemma 2.2. L is skew-adjoint with respect to the Hermitian product corresponding to the semi-
norm ||η||2∗ =

∑

k ckηkη̄k , where ηk are the Fourier coefficients of η and ck = (k2 − 1)(|k| + 1) for
k 
= 0 , and c0 = 0.

This means that etL preserves || · ||∗, which is the energy estimate mentioned in point (a)

following (2.23). The norm || · ||∗ is equivalent to the norm in the space H
3
2

0 /KerL (where the

subindex 0 again means the zero average
∫

S1 η dθ, and KerL is the kernel of L in H
3
2

0 , spanned by

the functions eiθ and e−iθ. This is the (complexified) tangent space at η = − sin θ to the manifold
of equilibria M2 discussed above.

Let us denote by X the space of holomophic functions in D which belong to H
3
2

0 /KerL, consid-
ered with the norm || · ||∗.

Theorem 2.2. The operator L is skew-adjoint on X and has an absolutely continuous spectrum,
which coicides with the imaginary axis.

We refer the reader to [29], but we outline the main idea behind the proof that L has no
eigenvalues in X. The main point is that on both the holomorphic and anti-holomorphic section
of the action of L the Biot-Savart law is given by a local operator. Let us take for example the
holomorphic part, and assume that η, v are holomorphic functions on the unit disc D. Then the
equation vθ = Hη ,

∫

S1 v dθ = 0 becomes

η(z) = −zv′(z) , v′ =
dv

dz
, v(0) = 0 . (2.48)

Assume
Lη = λη . (2.49)

Setting η = zf and v = zF , we obtain, after some calculation

F ′′ +

[−1 + λ

z − 1
+

−1 − λ

z + 1
+

3

z

]

F ′ +
2λ

z(z2 − 1)
F = 0 . (2.50)

The key point is that this is an ODE, rather than a non-local equation. This is the advantage which
the splitting into the holomorphic and anti-holomorphic parts gives. Equation (2.50) is known: it
is an ODE in the complex plane with four regular singular points (including the one at “infinity”
- the north pole of the Riemann sphere). The solutions can be analyzed by standard tools of
the theory of complex ODEs, and with the help of this analysis we can control the properties of
the generalized eigenfunctions of L. A more precise analysis (carried out in [29]) shows that the
potentially dangerous non-local term [v, Ω] in L will not create any new spectral effects, and the

situation will be similar to the model (2.26), with relevant changes replacing the natural space Ḣ 1
2

for (2.26) by Ḣ 3
2 for the full linearized problem.

At some level the relation between the generalized eigenfunctions of L and the simplified
model (2.26) can be seen from the substitution (2.27) taking (2.24) to (2.26). Locally, near the
points z = ±1, the generalized eigenfunctions for (2.24) should be of the form Uh, where h is a
generalized eigenfunction (2.37). This means that the leading order singular behavior (1 − z)is of
eigenfunctions h(z, is) in for the model problem (2.26) should correspond to leading order singu-
lar behavior (z − 1)(1 − z)is for the generalized eigenfunctions associated with (2.24). The full
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ODE (2.50) exhibits exactly the same behavior at the regular singular points ±1. It is also worth

noting that (1 − z)is “just misses” (locally) the space H
1
2 near z = 1, and (z − 1)(1 − z)is “just

misses” (locally) the space H
3
2 near z = 1.

The above discussion covers some of the main points of the linear theory, although there are
still a few more steps in the full analysis, for which we refer the reader to [29].

The proof of Theorem 2.1 is based on the above linear theory together with some product
estimates in the relevant function spaces, which are Hs and analogues of the spaces Y0, Y above.
One additional trick which has to be used is time renormalization, as the problem has certain
quasi-linear features, see [29].

We conjecture that the behavior proved in Theorem (2.1) extends to generic initial data, not
necessarily close to the manifold of the steady states given by A sin(θ − θ0). The convergence of
the solution to such steady states for t → ±∞ will not hold for all initial data, as the steady states
of the form A sin m(θ − θ0) with m = 2, 3, 4, . . . have non-trivial stable manifold. We conjecture
that any solution will converge to one of such steady states as t → ∞ or t → −∞. It is quite
conceivable that a proof of such result will be based on a completely different approach than the
perturbation methods discussed above.

2.1.6. Equation ωt + uωx − auxω = 0

It is instructive to look at the more general evolution equation

ωt + uωx − auxω = 0 , (2.51)

where a ∈ R is a parameter, see, for example, [41, 18, 49, 45], The case a = 1 corresponds to
the De Gregorio equation, the case a = −2 corresponds to equation (2.8) from Example 3 in the
introduction to Section 2. It can be shown that for a < 0 many solutions starting from smooth
data blow up in finite time, see [10, 45].

The Constantin-Lax-Majda model (2.9) corresponds, roughly speaking, to a = +∞ (and also
to a = −∞), and, of course, exhibits finite time blow-up from smooth data. A recent paper [18]
shows that this is also the case for large a > 0 (in addition to the case a < 0, mentioned above).

The case a = 0 corresponds to the “1d model for 2d Euler”

ωt + uωx = 0 , ux = Hω . (2.52)

for which one can show that there is no finite-time blopup from smooth data. A reasonable conjec-
ture might be that for (2.51) blowup from smooth data (with suitable decay when the domain is
R) is possible if and only if a ∈ R \ [0, 1], where R = R ∪ ∞, with a = ∞ formally corresponding
to the CLM model (2.9).

2.2. The 1d Boussinesq model

In this section we focus on the 1d model from Example 1, considered on the real line R:

ωt + uωx = θx ,
θt + uθx = 0 ,

(2.53)

complemented by the Biot-Savart law

ux = Hω , u(x) → 0 as x → ±∞ . (2.54)

Our goal is to outline a proof of a finite time blowup for a class of smooth, compactly supported
initial data ω0. We loosely follow [12], although some of the arguments are somewhat different in
our exposition here.

The system (2.53), (2.54) can be considered as a model for the boundary behavior of the standard
2d Boussinesq system in the upper half-plane, which is in turn similar to certain regimes of 3D
axi-symmetric flows with swirl. Both the 2d Boussinesq equations and the 3d axi-symmetric are
conjectured to blow-up at the boundary in a way which is similar to the blow-up of the 1d model
considered here, see [12] for a more detailed comments.
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The Biot-Savart law (2.54) (considered here on the real line) can be described by the kernel

k(x) =
1

π
log |x| , (2.55)

which corresponds to taking ω = δ (the Dirac mass) in (2.54). The velocity field u is obtained from
ω by

u = k ∗ ω , (2.56)

where ∗ denotes the convolution
∫

R
k(x − y)ω(y) dt .

We will consider a special class of solutions when ω is odd and compactly supported in R \{0} ,
and θ is even and compactlly supported in R.

Under these symmetry assumptions we can restrict our attention to x ∈ (0, ∞). Using that ω
is odd and writing

u(x) =

∫

R

k(x − y)ω(y) dy =

∫ ∞

0

[k(x − y) − k(x + y)]ω(y) dy , (2.57)

we see that, with the above symmetries, we have

u(x)

x
= − 1

π

∫ ∞

0

y

x
log

∣

∣

∣

∣

x + y

x − y

∣

∣

∣

∣

ω(y)
dy

y
. (2.58)

This integral is of the form
∫ ∞

0

M

(

x

y

)

ω(y)
dy

y
, (2.59)

which represents convolution in the multiplicative group R+ taken with respect to the natural

invariant measure dy
y

.

The kernel M is given by

M(s) =
1

s
log

∣

∣

∣

∣

s + 1

s − 1

∣

∣

∣

∣

, s > 0 . (2.60)

We will use the decomposition of M into the symmetric and ati-symmetric part with respect to
the inversion s → s−1.

M(s) =
1

2

(

1

s
+ s

)

log

∣

∣

∣

∣

s + 1

s − 1

∣

∣

∣

∣

+
1

2

(

1

s
− s

)

log

∣

∣

∣

∣

s + 1

s − 1

∣

∣

∣

∣

= Msym(s) + Ma(s) . (2.61)

We have

Msym

(

1

s

)

= Msym(s), Ma

(

1

s

)

= −Ma(s) . (2.62)

We collect some simple properties of the function M in the following lemma.

Lemma 2.3. The function M has the following properties:

(i) M is increasing on (0, 1) and decreasing on (1, ∞).

(ii) lims→0+
M(s) = 2 , lims→0+

M ′(s) = 0 .

(iii) Ma is continuous and decreasing in (0, ∞), with lims→0+
Ma(s) = 1.

(iv) M(s) = 2
s2 + O

(

1
s3

)

, s → ∞.

The proof is elementary.

In view of the above formulae, it seems natural to work with the variables ξ, U(ξ), Ω(ξ), Θ(ξ)
defined by

x = e−ξ , U(ξ) = −u(x)

x
, Ω(ξ) = ω(x) , Θ(ξ) = −θ(x) + θ(0) . (2.63)

In these coordinates, the system (2.53) becomes

Ωt + UΩξ = eξΘξ ,
Θt + UΘξ = 0 ,

(2.64)

with the Biot-Savart law
U = K ∗ Ω , (2.65)
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where

K(ξ) =
1

π
M(e−ξ) (2.66)

and ∗ denotes the standard convolution. The function K is increasing on (−∞, 0), decreasing on
(0, ∞) with
limξ→∞ K(ξ) = 2

π
, as one can easily see from Lemma 2.3.

2.2.1. Monotonicity

We set

I(Ω, ξ) =

∫ ξ

−∞

Uξ(η)Ω(η) dη . (2.67)

Lemma 2.4. For any smooth compactly supported Ω ≥ 0 we have I(Ω, ξ) ≥ 0 for all ξ.

Proof:

Let us write Ω = Ωl + Ωr, where

Ωl = Ω χ(−∞,ξ] , Ωr = Ω χ(ξ,∞) . (2.68)

We have

U = Ul + Ur, Ul = K ∗ Ωl, Ur = K ∗ Ωr , (2.69)

and

I = I(Ω, ξ) =

∫

R

Uξ(η)Ωl(η) dη =

∫

R

UlξΩl dη +

∫

R

UrξΩl dη . (2.70)

We claim that the in the last expression both integrals are non-negative. For the first integral we
have

∫

R

UlξΩl dη =

∫

R

∫

R

K ′(η − ζ)Ωl(ζ)Ωl(η) dη dζ =

∫

R

∫

R

K ′
a(η − ζ)Ωl(ζ)Ωl(η) dη dζ ≥ 0 , (2.71)

as Ka is increasing. The second integral is equal to
∫

R

∫

R

K ′(η − ζ)Ωr(ζ)Ωl(η) d ζ dη, (2.72)

and we note that the integration can be restricted to the domain {η < ζ}, as the integrand vanishes
elsewhere. As K ′(ξ) > 0 for ξ < 0, the result follows.

Remark: The positivity of
∫

R
UξΩ dξ can be also seen in the original coordinates, see also [24]. It

amounts to the positivity of
∫ ∞

0
− uωx

x
dx. Using Fourier transform, one can check that

∫

R

−uωx

x
∼

∣

∣

∣

∣

∣

∣

∣

∣

u(x)

x

∣

∣

∣

∣

∣

∣

∣

∣

2

Ḣ
1
2 (R)

. (2.73)

The equation (2.53) then gives

∂

∂t

(

u(x, t)

x

)

x=0

∼
∣

∣

∣

∣

∣

∣

∣

∣

u(x)

x

∣

∣

∣

∣

∣

∣

∣

∣

2

Ḣ
1
2 (R)

. (2.74)

Note that the Ḣ
1
2 norm just narrowly fails to control the sup-norm. If it controled the sup-

norm, (2.74) would immediately imply a finite time blow-up for the equation (2.53). In the ξ
coordinate we have the identity

d

dt

∫

R

Ω(x, t) dξ =

∫

R

∫

R

K ′
a(ξ − η)Ω(ξ, t)Ω(η, t) dηdξ . (2.75)

This equation shows that unless the support of Ω “spreads”, the solution will blow-up.
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2.2.2. Finite time blowup

Let us consider an initial condition θ(x, 0) = θ0(x) which is compactly supported in (−1, 1) even,
non-decreasing on [0, ∞], with θ0(0) = −1 . Then ρ(ξ) = Θξ(ξ) can be considered as a density of
total mass 1 supported in (0, ∞). It satisfies the continuity equation (obtained by differentiating
the second equation in (2.64))

ρt + (Uρ)ξ = 0 . (2.76)

Let us now look at the quantity

ξ̄ = ξ̄(t) =

∫

ξρ dξ , (2.77)

which can be thought of as an average coordinate ξ with respect to the probability density ρ. From
the continuity equation we have

d

dt
ξ̄ =

∫

Uρ dξ . (2.78)

For simplicity we will assume that Ω(ξ, 0) ≡ 0. Then, letting γ = 2
π

, we have

U(ξ, t) ≥ γ

∫ ξ

0

Ω(η, t) dη = γ

∫ t

0

ds
d

ds

∫ ζ(s)

0

dη Ω(η, s) , (2.79)

where ζ(s) “moves with the flow”, i. e.

d

ds
ζ(s) = U(ζ(s), s) , (2.80)

and ζ(t) = ξ. If we wish to indicate explicitly the dependence of ζ on ξ we will write ζ(s, ξ) rather
than ζ(s) . From the first equation of (2.64) and Lemma 2.4 we have

d

ds

∫ ζ(s)

0

dη Ω(η, s) =

∫ ζ(s)

0

[eηρ(η, s) + UξΩ] dη ≥
∫ ζ(s)

0

eηρ(η, s) dη . (2.81)

To estimate (2.78), we need to integrate the last expression with respect to the measure ρ(ξ, t) dξ.
Let us define ζ̃(s, η) as the solution ξ of the equation ζ(s, ξ) = η. We have

∫ ∞

0

dξρ(ξ, t)

∫ ζ(s,ξ)

0

dη eηρ(η, s) =

∫ ∞

0

dη eηρ(η, s)

∫ ∞

ζ̃(s,η)

dξ ρ(ξ, t) . (2.82)

Recalling that Θ(ξ, t) is assumed to be increasing, approaching 0 as ξ → ∞, we have
∫ ∞

ζ̃(s,η)

dξ ρ(ξ, t) = −Θ(ζ̃(s, η), t) = −Θ(η, s) , (2.83)

where the last equality follows from the fact that the function Θ “moves with the flow” and that
ζ̃(s, η) = ξ is by definition the same as ζ(s, ξ) = η and it means that the “fluid particle” with
coordinate ξ at time t had coordinate η at time s. Using (2.83) together with ρ(η, s) = Θη(η, s),
wee see that the double integrals in (2.82) are estimated from above by

∫ ∞

0

dη eη Θη(−Θ) dη =
1

2

∫ ∞

0

eηΘ2 dη +
1

2
. (2.84)

where the functions are taken at time s. We have

ξ̄(s) =

∫ ∞

0

ξρ dξ =

∫ ∞

0

−Θ dξ =

∫ ∞

0

−Θe
ξ

2 e
−ξ

2 dξ ≤
(

∫ ∞

0

eξΘ2 dξ

)
1
2

. (2.85)

We see that the integral on the right-hand side of (2.84) is bounded from below by ξ̄ 2(s) . We
conclude that

d

dt
ξ̄(t) ≥ γ

2

∫ t

0

[

ξ̄ 2(s) + 1
]

ds , (2.86)

which implies that the solution must blow up in finite time. We note that in the estimate (2.85)
we have not used that |Θ| ≤ 1. If we use this additional information, we can get a “faster” blow-up
rate.2

We see that we have proved

2The problem of finding an optimal estimate replacing the elementary estimate (2.85) seems to be interesting.
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Theorem 2.3. Under the assumptions on the initial date introduced above, the solutions of the
1d Boussinesq model (2.53), (2.54) develop a singularity in finite time.

2.3. Other 1d models

2.3.1. Scalar Burgers equations with fractional dissipartion

One of the oldest models in 1d is the Burgers equation

ut + uux = νuxx , (2.87)

where ν ≥ 0 represents viscosity. It has been studied in great detail, with well-known classical
results due to Hopf [28], Oleinik [42] and many others. More recently, the model with fractional
(and non-local) dissipation

ut + uux = −(−∂2
x)αu (2.88)

has been studied, see, for example [32]. (We could also put a viscosity coefficient ν in front of the
practional viscosity term, but, just as in the classical case α = 1, when ν > 0 we can always change
variables to get the situation with ν = 1.) A natural energy estimate for this equation is

u ∈ L∞
t L2

x ∩ L2
t Ḣα

x (2.89)

The scaling symmetry of the equation (when considered for x ∈ (−∞, ∞) is

u(x, t) → λ2α−1u(λx, λ2αt) . (2.90)

It is easy to check that the norm in the energy space (2.89) is invariant under the scaling iff α = 3
4 .

Based on this one expects that the critical exponent α for both local and global well-posedness
of the equation for the Cauchy problem with the initial data u0 ∈ L2 is α = 3

4 . In this case the
situation is similar to the 2d Navier-Stokes equations. This may perhaps be optimal if we wish to
deal with u0 ∈ L2, especially as far as uniqueness of the solution in the energy class is concerned.

When the initial datum is more regular (say, smooth, compactly supported), an interesting
question is for which α singularities can develop. If we had no other estimate than the energy
estimate, one might still expect α = 3

4 to be critical, but the inviscid part ut + uux = 0 satisfies
many other estimates, beyond the energy estimate. Based on this one can prove it is in fact
sufficient to have α ≥ 1

2 to prevent singularity formation from smooth compactly supported initial

datum u0, see [32]. On the other hand, for α < 1
2 finite time singularities can develop from smooth

compactly supported data, see [32].
What happens if we do not have all the special properties of the inviscid scalar equation ut +

uux = 0? One interesting class of equations where this question seems to be interesting is the
vector-valued analogues of (2.88), which we will not describe.

2.3.2. Vector Burgers equations with fractional dissipation

We consider vector-values function u(x, t) = (u1(x, t), . . . , ur(x, t)) , where (x, t) ∈ R × [0, ∞). A
natural generalization of the scalar equation (2.88) seems to be

ut + b(u, ux) = −(−∂2
x)αu , (2.91)

where b(u, ux) bi-linear in the sense that for some constants aklm

[b(u, ux)]k = aklmuluxm , (2.92)

with summation over repeated indices is understood. To we will also require that b(u, ux) satisfies
∫

R

b(v, vx)v dx = 0 for each smooth v : R → Rr with compact support . (2.93)

Letting I(v) =
∫

R
b(v, vx)v dx and using that the variational derivatives δI(v)/δvi have to vanish

for each v when (2.93) is satisfied, it is not not hard to see that (2.93) is equivalent to

aklm + alkm − almk − amlk = 0 , k, l, m = 1, . . . , r . (2.94)

Let us call tensors aklm satisfying aklm = alkm partially symmetric and the tensor satisfying
aklm = −alkm to be partially antisymmetric. Each tensor aklm can be uniquely decomposed into
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a sum of a partial symmetric and a partially anti-symmetric tensor. The forms b corresponding to
the partially anti-symmetric tensors are easy to understand:

b(u, ux) = A(ux)u , (2.95)

where A(ux) is an anti-symmetric r × r matrix depending linearly on the vector ux.
To understand the forms b corresponding to the partially symmetric tensors, we use the following

simple lemma.

Lemma 2.5. A partially symmetric tensor aklm satisfying (2.94) is symmetric.

Here we use the usual terminology that a tensor aklm is symmetric if the value aklm does not
change if we permute the indices k, l, m. The symmetric tensor aklm are of course in one-to-one
correspondence with the cubic homogeneous polynomials

P (u) = aklmukulum , (summation over repeated indices understood). (2.96)

Hence the forms b(u, ux) corresponding to partially symmetric tensors aklm are of the form

b(u, ux)k =
∂

∂x

∂P

∂uk

(u) , (2.97)

where P (u) is a cubic homogeneous polynomial in u.
In the symmetric case the inviscid part of (2.91) can be written as a system of conservation laws

ut + Qx = 0 , Qk(u) =
∂P

∂uk

(u) . (2.98)

We can call the above class of equations vector-valued Burgers equations with fractional dissi-
pation.

It is easy to see from the point of view of well-posedness and regularity, the exponent α = 3
4

is a critical exponent for this class of equations. In this case the situation is similar to the 2d
Navier-Stokes, and the regularity problem, as well as the well-posedness problem for u0 ∈ L2 are
“critical”, with perturbation techniques being sufficient to handle the problems.

In the inviscid case the solution will typically develop discontinuities (shocks), and one expects
that this will still be the case for α < 1

2 , when the dissupation is too weak to prevent this.

The interesting case is 1
2 ≤ α < 3

4 . Can one have singularities then? I do not know any examples,
and - as far as I can tell - the problem is open.

3. Models in higher dimensions

It is easy to generalize the class of equations considered in subsection 2.3.2 to higher dimension and
incompressible flows. Let us mention one simple ad-hoc modification of the Navier-Stokes equation
without any particular physical meaning. In R3 × (0, ∞) let us consider

u1t + u2u1,2 + u3u1,3 + p,1 − ∆u1 = 0 ,
u2t + u1u2,1 + u3u2,3 + p,2 − ∆u2 = 0 ,
u3t + u1u3,1 + u2u3,2 + p,3 − ∆u3 = 0 ,

div u = 0 .

(3.1)

One can expect that a large part of existing Navier-Stokes regularity theory will work also for this
equation, in spite of its artificiality. The regularity problem for this equation in R3 seems to be
open.

3.1. Local models

Here we will mention one local model, which a special case of the equations of the form

ut + b(u, ∇u) − ∇u = 0 , (x, t) ∈ Rn × [0, ∞) (3.2)

with bi-linear b and energy conservation. The classification of bilinear forms b(u, ∇u) with en-
ergy conservation in higher dimension is a simple generalization of the 1d calculations done in
subsection 2.3.2. Writing

[b(u, ∇u)]k = aj
klmulum,j (the summation convention understood)
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it is easy to see that energy conservation (in the sense of subsection 2.3.2) is equivalent to the
condition

aj
klm + aj

lkm − aj
lmk − aj

mlk = 0 , j = 1, . . . , n , k, l, m = 1, . . . , r . (3.3)

One reason often given for the difficulty of the Navier-Stokes regularity problem is the non-locality
of the incompressible Navier-Stokes equations. Equations of the form (3.2) are local, but there
regularity in space dimension three and four seems to be open. As we will see, in dimension five
and higher, finite time blowup from smooth compactly supported initial conditions can happen.

We will restrict our attention to an example of (2.3.2) with r = n, in divergence form (i. e. , of
the form div b̃(u, u)), and with the maximal symmetry. The example is

ut + div (u ⊗ u +
1

2
|u|2I) = ∆u , (x, t) ∈ Rn × (0, ∞) , (3.4)

where u = (u1, . . . , un) and I is the identity matrix. In coordinates,

uit + ∂j(uiuj +
1

2
|u|2δij) = ∆ui (3.5)

This equation has appeared independently in several works (see, e. g. , [25, 43]), and the term
template matching equation has been used for it in [25]. The inviscid part of the equation is
nothing but the higher-dimensional analogue of Example 3 from the introduction. It arises from
geodesics in the diffeomorphism group G = Diff(Rn) equipped with the right-invariant metric,
given the natural L2−scalar product on tangent space to G at identity. For n = 1 this gives the
form 2.7 of the Burgers equation.

Much of regularity theory for Navier-Stokes equation can be applied to (3.4). For example, one
can show that for n = 2 the Cauchy problem is globally well-posed for the initial data uo ∈ L2(R2).
For n = 3 one can construct weak solution, prove their partial regularity, etc. For n = 3, 4 it is not
known whether the equation can develop singularities from smooth initial data with fact decay. It
is expected that for n ≥ 5 or for n = 3 and slowly decaying initial data singularities can develop,
see for example [43].

Insights into (3.4) can be obtained from looking at solutions of the form

u(x) = −x v(r) , r = |x| . (3.6)

This gives

vt = vrr +
n + 1

r
vr + 3rvvr + (n + 2)v2 . (3.7)

A version of this equation also appears in connection with a chemotaxis model, see [23]. With a
suitable rescaling, the equation from the chemotaxis model is

qt = qrr +
n + 1

r
qr + 3rqqr + 3nq2 . (3.8)

For n = 1 the two equations coincide. In dimensions n = 2, 3, 4 the behavior of the two equations
is different: for compactly supported smooth data, equation (3.7) admits global smooth solutions,
whereas (3.8) may blow-up in finite time (if the initial datum is sufficiently large). For n ≥ 5 both
equation can produce singularities from smooth, compactly supported data.

Here we will outline the argument for regularity in the case of smooth, rapidly decaying data
for n = 3, 4.

3.1.1. Regularity and blowup for solutions of equation 3.7

Equation (3.7) is a scalar equation to which standard comparison principles can be applied. It
turns out that in dimensions n ≤ 4 steady states provide enough information to rule out singularity
formation from smooth, compactly supported data. The steady states have been studied in [43],
and we briefly recall the main points here. We note that the equation

vrr +
n + 1

r
vr + 3rvvr + (n + 2)v2 = 0 (3.9)

has a scaling symmetry

v(r) → λ2v(λr) . (3.10)
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Therefore it is natural to change variables as follows

v =
w

r2
, r = es . (3.11)

This gives

w′′ + (n − 4)w′ + 2(2 − n)w + 3ww′ + (n − 4)w2 = 0 , w′ =
dw

ds
. (3.12)

There is a restriction on the rate of decay of u(x) from the energy conservation, which is related to
Liouville theorem for the steady solutions of the (incompressible) Navier-Stokes, see [21]. Assuming
∂j(uiuj + 1

2 |u|2δij) = ∆ui, taking a scalar product with uiϕ with a compactly supported smooth
ϕ, integrating by parts, and optimizing over ϕ, it is not hard to see that, for n = 3, any solution
u ∈ L

9
2 (R3) has to vanish. If we think in terms of the fastest possible decay of |u(x)| for non-zero

solutions, we wee that, for the scale |x|−κ (for large |x|) the decay of |u(x)| cannot be faster than

O(|x|− 2
3 ). (A similar argument in dimension n = 4 shows that in that case any solution u ∈ L4(R4)

has to vanish and the decay of a non-trivial solution cannot be faster than O(|x|−1).) Focusing on
the case 1 < n < 4, we see w → ∞ for s → ∞, and hence we expect that the leading order term
behavior of the relevant solutions of (3.12) for large s will be determined by the non-linear term:

w(3w′ + (n − 4)w) ∼ 0. This means w ∼ e
4−n

3 s. Going back to the variable u, we obtain

|u| ∼ r−
n−1

3 , r → ∞ , 1 < n < 4 . (3.13)

In the case n = 4 the behavior of the solution at ∞ is ∼ 4
3 r−1 log r, whereas for n > 4 is is simply

∼ r−1.
All this can be proved rigorously in several ways. For example, one can use the change of

variables

w = tan φ , w′ =
tan ψ

cos2 φ
(3.14)

which maps the phase-space of (3.12) with coordinates (w, w′) into a torus with coordinates (φ, ψ),
in which the image of the vector field in w, w′ generating the flow is given by a smooth field on the
torus multiplied the function [cos φ cos ψ]−1 (which adjusts time along trajectories). See [43] for
details. In our context here, the most important conclusion from our analysis of the steady states
is the following:

Theorem 3.1. Let V (r) be the steady-state solution of (3.7) satisfying V (0) = 1 and V ′(0) = 0,
defined at first locally in [0, r0) for some r0 > 0, by ODE methods. Then V is global, and has the
following decay as r → ∞:

(i) V (r) ∼ r−
n+2

3 for 1 < n < 4 ,

(ii) V (r) ∼ r−2( 4
3 log r + C) for n = 4 ,

(iii) V (r) ∼ r−2 for n > 4 .

For the proof we refer the reader to [43] .

Corollary 3.1. Assume that v0 : [0, ∞) → R is a bounded function.

(i) If 1 < n < 4 and lim supr→∞ r
n+2

3 v0(r) < +∞, then the Cauchy problem for (3.7) with the
initial datum v(r, 0) = v0(r) has a unique global bounded solution.

(ii) If n = 4 and lim supr→∞
r2

4
3

log r
v0(r) < 1, then the Cauchy problem for (3.7) with the initial

datum v(r, 0) = v0(r) has a unique global bounded solution.

Proof: Under the assumptions of the Corollary, it is easy to see that one can find C > 0 and λ > 0
such that

− C ≤ v0(r) ≤ λ2V (λr) . (3.15)

As λ2V (λr) is a steady-state of (3.7) and the solution of (3.7) with v(r, 0) = −C (given by the
ODE v̇ = (n + 2)v2, v(0) = −C) is bounded, the result easily follows from standard parabolic
theory and the comparison principle.
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Remarks.

1. The solutions of (3.7) with v|t=0 = c > 0 are given by the ODE v̇ = (n + 2)v2 with the initial
datum v(0) = c, and obviously blow up in finite time. We conjecture that blow-up solutions with
initial datum rv0 ∈ Lp with p > 3n

n−1 can be constructed, which would mean that equation (3.4)

is not globally well-posed in Lp for p > 3n
n−1 .

2. In dimensions n > 4, singularity formation from suitable smooth, compactly supported data is
possible. Some strong evidence in that direction (which can be made rigorous) is in [43].

3. There appears to be some similarity in the regularity/blowup mechanisms of the radial solution
of (3.4) (described by the Ansatz (3.6)) and the dyadic models studied in [4]. For example, the
dimensions in which one expects singularity formation from localized smooth data come out similar.
A dyadic model which exhibits blowup in dimension three is constructed in [48]. It would be
interesting to know if one can have such an example in dimension three for equation 3.2.

3.2. Complexified equations

We recall the point of view of V. I. Arnold ([1, 2], in which the incompressible Euler equation
is derived from the structure of the Lie algebra of the div-free vector field (and the L2−scalar
product) as follows.

Let L be a real Lie algebra equipped with a scalar product. At this point the two structures
can be thought of being quite independent of each other (perhaps modulo some continuity require-
ments), there are no “compatibility conditions”. We will use the following notation

[a, b] ................ Lie bracket of a and b ,
(a, b) ................ scalar product of a and b .

(3.16)

The two structures can be used to define the Arnold form (c, a) → B(c, a) on L × L by

([a, b], c) = (B(c, a), b) . (3.17)

The Euler-Arnold equation for a trajectory a = a(t) in the Lie algebra L is then given by

ȧ = B(a, a) . (3.18)

Note that the equation automatically conserves the “energy” 1
2 (a, a):

d

dt

1

2
(a, a) = (ȧ, a) = (B(a, a), a) = 0 , (3.19)

because [a, a] = 0 for each a ∈ L. In fact, we see that

(B(c, a), a) = 0 , a, c ∈ L . (3.20)

We can now complexify the Lie algebra L, let us denote the complexification by LC. The Lie
bracket of a, b ∈ LC will still be denoted by [a, b]. Writing the elements of LC as a = a1 + ia2,
with a1, a2 ∈ L, we can define a Hermitian product in LC, still denoted (a, b), by

(a, b) = (a1 + ia2, b1 − ib2) = (a1, b1) + (a2, b2) + i[(a2, b1) − (a1, b2)] . (3.21)

Its real part

〈a, b〉 = Re (a, b) = (a1, b1) + (a2, b2) (3.22)

is then a natural real scalar product on LC.
Therefore the Euler-Arnold equation on L generates also an Euler-Arnold equation on LC. In

the coordinates a = a1 + ia2 the equation is given by

ȧ1 = B(a1, a1) + B(a2, a2) ,
ȧ2 = −B(a1, a2) + B(a2, a1) .

(3.23)

One can verify directly that the “energy”

1

2
〈a, a〉 =

1

2
(a1, a1) +

1

2
(a2, a2) (3.24)

is conserved by (3.23).
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3.2.1. Extension of the Navier-Stokes equation to complex-valued vector fields

Applying the above setting to the Lie algebra of the div-free vector fields in Rn, we obtain what
might be called the “complex Euler equation” for complex-valued div-free fields. The equation
reads as follows:

ukt + ūluk,l + ulūl,k + π,k = 0 , div u = 0 . (3.25)

Here we use the usual notation ū for complex conjugation, i. e. (u1 + iu2) = u1 − iu2 .

The corresponding Navier-Stokes equation then is

ukt + ūluk,l + ulūl,k + π,k − ∆uk = 0 , div uk = 0 , (3.26)

where the “pressure” π may not be the physical pressure even in the case when u is real.
One can also consider the usual Navier-Stokes equations and allow the velocity and pressure

fields to be complex, see [8]. However, in contract with (3.26), this direct complexification will
not have the energy inequality (or, in the inviscid case, energy conservation). This can be seen
already in 1d models related to the group Diff(S1) with the L2−induced right-invariant metric. In
the real-valued case we get a variant of the viscous Burgers equation, the inviscid case of which
already appeared in (2.7),

ut + 3uux = uxx . (3.27)

This can be considered for complex-valued function u, and in that case it is not hard to show that
singularities can develop from compactly supported smooth initial condition, see [44].

On the other hand, the geometric complexification above leads to

ut + ūux + 2uūx = uxx . (3.28)

There is no problem to prove full regularity for this equation, as it has an energy estimate. One
can also look at a modification of this model in the spirit of subsection 2.3 and consider

ut + ūux + 2uūx = −(−∂2
x)αu . (3.29)

One can again easily show regularity for α ≥ 3
4 , and one expects blow-up for α < 1

2 . The situation

for α ∈ [ 1
2 , 3

4 ) is less clear. The question is again closely related to L∞ estimates for the inviscid
part of the system, similarly to the situation in subsection 2.3

Equation (3.26) seems to be the natural extension of the Navier-Stokes equation to complex-
valued vector fields. I am not sure if the equation has any good physical interpretation, but math-
ematically it looks interesting. In dimension n = 2 the standard Navier-Stokes theory will pre-
sumably work without much problems also for this equation and one should be able to proof the
standard 2d results. This is no longer the case for the 2d complex Euler equation, where the stan-
dard proofs of existence depend on more detailed properties of vorticity, which may not be shared
by the complex equation.

Letting ω = curl u as usual, one can write

ūluk,l = ūl(uk,l − ul,k) + ūlul,k = (ω ∧ ū)k + ūlul,k (3.30)

and we see that an equivalent form of (3.25) is

ut + ω ∧ ū + ∇(|u|2 + π) = 0 . (3.31)

Taking curl, we obtain

ωt + [ū, ω] = 0 , (3.32)

where the Lie bracket [·, ·] is defined in the usual way:

[a, b]k = albk,l − blak,l . (3.33)

In dimension n = 2 the vorticity equation is

ωt + ū∇ω = 0 , (3.34)

with u obtained from ω by the usual Biot-Savart law (extended to complex-valued fields by linearity
over C). As already discussed, regularity of solutions of this equation (for n = 2) is not clear, except
in the case when ω is real, when classical results apply.
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We note that the procedure of complexification can be repeated: starting with L we construct
LC, consider it as the real algebra, complexify again, etc. This way we can obtain from (3.25) a
larger set of equations, which we will not write down here.

4. Leray-Hopf solutions and uniqueness

In this section we will discuss the classical incompressible Navier-Stokes equations in the whole
space R3. We consider the classical Cauchy problem

ut + u∇u + ∇p − ∆u = 0
div u = 0

}

in R3 × (0, ∞) , (4.1)

u|t=0 = u0 in R3 , (4.2)

We recall the energy inequality
∫

R3

1

2
|u(x, t2)|2 dx +

∫ t2

t1

∫

R3

|∇u(x, t)|2 dx dt =

∫

R3

1

2
|u(x, t1)|2 dx , (4.3)

for 0 ≤ t1 ≤ t2, and the scaling symmetry

u(x, t) uλ(x, t) λu(λx, λ2t) ,
p(x, t) −→ pλ(x, t) = λ2p(λx, λ2t) ,
u0(x) u0λ(x) λu0(λx) ,

(4.4)

where λ is any number in (0, ∞). These transformations are easily seen to preserve the solutions
of the equations. The fields u, p, u0 and other quantities which are invariant under this symmetry
will be called scale-invariant. We have

∫

R3

1

2
|u0λ(x)|2 dx = λ−1

∫

R3

1

2
|u0|2 dx . (4.5)

This means that the value of the kinetic energy is by itself not an important quantity for the
regularity theory of the equation - it can be scaled to any value by a symmetry. (Note that this is
completely different in dimension n = 2, where the energy is invariant under the scaling symmetry.)

In dimension n = 3, the scale-invariant Lp−norm of u0 is ||u0||L3 .

4.1. Weak solutions and the problem of their local-in time uniqueness

J. Leray [36] built a theory of weak solution of the Cauchy problem (4.1), (4.2) based on the
energy inequality (4.3). The natural function space for these solutions is L∞

t L2
x ∩ L2

t Ḣ1
x, and the

natural class of initial data is u0 ∈ L2. The main problem in the theory of weak solutions is that of
uniqueness. From the Newtonian point of view, this is a fundamental issue. In Newtonian mechanics
the evolution of the system should be uniquely determined by its current state. The full information
about the state of the fluid is given by the positions and velocities of the “fluid particles”, which
in our continuum model are represented by points, and changes in their positions are represented
by volume-preserving diffeomorphisms. In an incompressible fluid of constant density the fluid
particles are indistinguishable, and hence the state of the system is determined by u0, modulo re-
labeling of the particles.3 Therefore the uniqueness of the solutions of the Cauchy problem seems
to be one of the most important questions about the model. The issue was already investigated in
Leray’s paper [36], where the first weak-strong uniqueness theorem was proved. The theorem says
that for initial conditions u0 for which one can construct solutions which are sufficiently regular,
the weak solution will conicide with the regular solution. Leray’s uniqueness result has since been
generalized by many authors, see for example [46, 22, 33]. The technical details of the statements
are not important for our purposes here, except for the following:

(i) u0 ∈ L3 is sufficient for ensuring the existence of a sufficiently regular solution u on some
time interval (0, T ), with T = T (u0), and for u0 ∈ L3 ∩ L2 the weak solution coincides with
the regular solution.

3The relabeling of the particles by volume-preserving diffeomorphism can be thought of as a symmetry of the

system. In spite of being seemingly trivial, in the inviscid case this symmetry generates via Noether’s theorem the

Helholtz law that the vorticity moves with the fluid, one of the most important insight into the fluid flows.
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(ii) u0 ∈ L3,∞ (the weak L3 space) with a sufficiently small norm ||u0||L3,∞ is sufficient for
global existence of a sufficiently regular solution. In addition, when u0 ∈ L2 ∩ L3,∞ and the
norm ||u||L3,∞ is sufficiently small, any weak solution coincides with the regular solution.
(The space L3,∞ can be replaced by various other spaces in this statement.)

(iii) All existing proofs of (ii) do need a smallness condition.

The weak solutions discussed above are all in L∞
t L2

x, and hence their total energy is finite. An
important generalization to the case of locally finite energy has been established (under some natu-
ral assumptions) by Lemarié-Rieusset, see [33, 34], where one can also find an excellent presentation
of many other topics relevant to the themes discussed here.

One can also consider weak solutions in less regular functions spaces. The minimal regularity
needed for formulating the equations in the sense of distributions is L2

t L2
x.

Very recently, non-uniqueness for weak solutions in the class C0
t L2

c ∩ L2
t Hs

x for small s has been
established by Buckmaster and Vicol [7] via an adaptation of convex integration techniques.

4.2. Scale-invariant solutions

Recently a possible non-uniqueness scenario for the weak solutions of Leray appeared in connection
with the Cauchy problem for the scale-invariant solutions. Based on that scenario it appears
that the uniqueness results in (i)-(ii) above are close to optimal. In particular, it appears that in
the situation (ii) above the smallness of the norm is genuinely needed, and there are examples
u0 ∈ L2 ∩ L3,∞ for which the uniqueness of Leray’s week solution fails.

Perturbation theory arguments need some small quantity. For example, even when we have a
function u0 ∈ L3 which is not small, there is a “hidden” smallness quantity around: the integrals

∫

Br

|u|3 dx (4.6)

(where Br represents balls of radius r) are small when r is small. By rescaling u to ru0(rx) we will
have the same statement with r = 1 for the re-scaled function. This is essentially what makes it
possible to prove the short-time existence for large L3 data.

By contrast, the space (BMO)−1, the Morrey space M2,1 with the norm given by

sup
x,r

1

r

∫

Bx,r

|u0(y)|2 dy , (4.7)

or the Lorentz space L3,∞ (the weak L3-space), are examples of spaces where functions do not
behave in this way. The spaces (BMO)−1 , M1,2 and L3,∞ contain (−1)−homogeneous functions
u0 smooth away from the origin. The scaling u0 → u0λ leaves such functions invariant. We of
course have |u(x)| ≤ a|x|−1, but we do not seem to have any “hidden” smallness condition which
would be useful for the Navier-Stokes perturbation theory, unless the coefficient a is already small.
In that case one can indeed quite easily establish existence and uniqueness via the Picard iteration
(in suitable spaces).

We see that there are essentially two types of critical spaces. One type is represented by Ḣ
1
2 , L3

or certain Besov spaces. With any function in these spaces one can associate a small quantity (
related to a “uniform continuity condition”) useful for the Navier-Stokes theory, one can prove
local-in-time well-posedness results for any function in the space.

The other type are the space which contain (−1)−homogeneous functions, where the perturba-
tion method works only for functions with a small norm.

Very likely, this is not just a technical point, but it reflects the behavior of the actual solutions
of the Navier-Stokes equations.

4.3. Scale-invariant solutions for large data

Let us take a (−1)−homogeneous div-free vector field w0(x) which is smooth away from the origin,
and let us look at the Cauchy problem (4.1), (4.2) with

u0 = u
(κ)
0 = κw0(x) . (4.8)

VIII–21



One expects that the solutions u of the Cauchy problem should also be scale-invariant (in R3 ×
(0, ∞) This means that it is of the form

u(x, t) =
1√
t

U

(

x√
t

)

. (4.9)

The profile function U satisfies the following elliptic equations

−∆U − 1
2 x∇U − 1

2 U + U∇U + ∇P = 0 ,
div U = 0

(4.10)

in the space R3, and the “boundary condition”

U(x) = u0(x) + o(|x|−1) , |x| → ∞ . (4.11)

For small κ one can show existence and uniqueness of the solution of the Cauchy problem (in
space-time) by simple versions of perturbation theory. For example, standard perturbation theory
arguments can be appliead in the space X of div-free vector fields u(x, t) in R3 × (0, ∞) with the
norm

||u||X = sup
(x,t)∈R3×(0,∞)

|u(x, t)|
√

|x|2 + t .

For a proof using Besov spaces see [9].
For large κ the perturbation theory no longer works, of course. It turns out one can establish

the existence of the solutions of elliptic problem (4.10) with the boundary conditions (4.11) using
a topological argument, see [30]. However, unlike with the perturbative approach, the argument
no longer gives uniqueness.

A possible non-uniqueness of the solution of the elliptic problem would give non-uniqueness for
solutions of the Cauchy problems for scale-invariant initial data. The onset of the non-uniqueness
might related to a bifurcation in the solutions of the elliptic problem.

Let us look at this scenario in more detail. Let U (κ) , κ ∈ [0, κ1) be a curve of solutions

of (4.10), (4.11), with u0 = u
(κ)
0 . Let L(κ) be the linearized operator at U (κ), i. e.

L(κ)v = −∆v − 1

2
x∇v − 1

2
v + U (κ)∇v + v∇U (κ) + ∇q (4.12)

which is considered on a suitable space Y of div-free vector fields v. A bifurcation in the curve of
solutions U (κ) would correspond to a non-trivial solution of the problem

L(κ)v = 0
div v = 0
v(x) = o(|x|) , x → ∞ .

(4.13)

If one allows bifurcations to time-dependent solution, one can consider a broader class of solutions,
namely eigenfunctions of L(κ) with a purely imaginary eigenvalue:

L(κ)v = iβ
div v = 0
v(x) = o(|x|) , x → ∞ ,

(4.14)

where β ∈ R. One can think about the situation in the following way: For κ = 0 the operator
L(κ) is well-known and can be identified with the Stokes operator in self-similarity coordinates.
Its spectrum in a suitable space Y is in a half-plane {z , Re z ≤ −α} for some α > 0 (which may
depend of the choice of Y ). The operator L(0) may have a continuous spectrum, with relativelly
slowly decaying (generalized) eigenfunctions, together with an imbedded point spectrum, with
faster decaying eigenfunctions.

As we increase κ the spectrum can change, and some of the discrete eigenvalues may move to the
right, eventually crossing the imaginary axis. A transversal crossing of the axis by an eigenvalue
(or a pair of eigenvalues) would indicate a bifurcation, and this bifurcation would indicate non-
uniqueness of the solutions of the Cauchy problem in the for the scale-invariant datum given by

u
(κ)
0 (for the value of κ at which the bifurcation occurs).

The scenario is simple enough at a conceptual level, but at a technical level one has to deal with
several issues. Some of the difficulties are posed by the infinite domain R3 of the operators L(κ)

together with the term x∇v. These features lead to a large continuous spectrum of L(κ) in spaces Y
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which we found suitable for our purposes. However, it is possible to find a good functional-analytic
setup, where everything works, see [31].

4.4. Possible non-uniqueness of Leray-Hopf solutions

Once the bifurcation for L(κ) discussed above is found, it is possible to show (under some assump-
tions) non-uniqueness of solutions of the Cauchy problem for certain scale-invariant initial data.
All non-trivial initial data which are scale-invariant must necessarily have infinite energy, as the
only scale-invariant function in L2(R3) is the identical zero.

Can the situation with a non-unique solution of the Cauchy problem be used to produce non-
uniqueness for finite-energy solutions? This is not completely implausible, as from the point of
view of energy considerations, the singularity at x = 0 of the scale-invariant datum u0 which is
smooth away from the origin is quite mild. It turns out that one can indeed localize the situation,
and preserve the effect for initial data with compact support and the same singular behavior near
x = 0. The relevant initial data u0 will be compactly supported, smooth away from the origin, and
−1-homogeneous in a neighborhood of the origin. From the point of view of L2, these are not very
wild functions.

The following result can be established rigorously:

Theorem 4.1. Let Y = L2 ∩ L4. Assume that some points of the point spectrum of L(κ) (in the
space Y ) cross the imaginary axis as κ increases (with some transversality assumptions, see [31]
or [26] for details). Then the Leray solutions of the Cauchy problem are not unique, with examples
of the initial data for which non-uniqueness can occur having compact support and being smooth
away from the origin while being locally −1-homogeneous near the origin.

Such examples would be essentially optimal, at the borderline of the known weak-strong unique-
ness theorems.

4.5. Numerical evidence for the spectral condition

In a recent work [26], numerical investigation of the spectral condition in Theorem 4.1 have been
carried our in the axi-symmetric case. The results of the simulations identify a −1-homogeneous
initial condition u0 for which the numerics gives a convincing confiramtion that the spectral con-
dition in Theorem (4.1) is satisfied. In cylindtrical coordinates (r, θ, z) the field u0 is as follows:

u0(r, θ, z) =
e−4 z2

r2

√
r2 + z2

∂

r∂θ
. (4.15)

The field is invariant under the reflection (r, θ, z) → (r, θ, −z). The bifurcation in the solutions of
the problem (4.10), (4.11) is a classical pitchfork bifurcation which breaks this Z2-symmetry. A
physical interpretation of the bifurcation can be found in the introduction of [26].
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