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Abstract 

Laser powder bed fusion (LPBF) is an additive manufacturing (AM) process that promises 

to herald a new age in manufacturing by removing many of the design and material-related 

constraints of traditional subtractive and formative manufacturing processes. However, the 

level and severity of defects observed in parts produced by the current class of LPBF systems 

will not be tolerated in safety-critical applications. Hence, there is a need to introduce 

information rich process monitoring to assess part integrity simultaneously with fabrication so 

that opportune corrective action can be taken to minimize part defects. Spatially Resolved 

Acoustic Spectroscopy (SRAS) is a uniquely positioned nondestructive acoustic microscopy 

sensing approach which has been successfully used to probe the mechanical properties and 

assess the presence of defects in LPBF parts. However, the technique is sensitive to extraneous 

phenomena, such as surface reflectivity which occur within the LPBF system, and may occlude 

identification of surface breaking and sub-surface defects. With a view to applying the SRAS 

technique for in-process monitoring in a production-scale LPBF environment, and to overcome 

the foregoing challenge, this study proposes the use of a deep learning convolutional neural 

network termed as Densely-connected Convolutional Block Architecture for Multimodal 

Image Regression (DCB-MIR) that invokes SRAS-derived acoustic velocity maps of the part 
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as input data and translates them to an output resembling an optical micrograph. Through this 

approach, we demonstrate that defects, such as porosity and surface imperfections in titanium- 

and nickel-alloy samples made using LPBF, which were not clearly discernable in the as-

measured SRAS acoustic map and obscured by artifacts in the optical image, are accurately 

identified. To quantify the accuracy of the approach, the cosine similarity between the predicted 

output images and target optical images was used as the objective function of DCB-MIR. The 

cosine similarity between the acquired SRAS signatures and the corresponding as-measured 

optical micrographs of samples typically ranged between -0.15 to 0.15. In contrast, when the 

optical micrograph-like images derived from DCB-MIR proposed in this work were compared 

with the optical signatures, the cosine similarity improved in the range of 0.25 to 0.60. 
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Introduction 

The overarching goal of this work is to reliably detect defects in metal parts fabricated 

using additive manufacturing (AM) processes through data acquired from a novel sensing 

approach called Spatially Resolved Acoustic Spectroscopy (SRAS). This is an important 

research area, because, despite the enormous progress in AM technology, the wider use 

additively manufactured parts is hindered owing to the lack of process consistency and 

presence of defects [1]. For instance, case studies by the aerospace industry report that the buy-

to-fly ratio with AM technology is as low as 7:1 compared to 20:1 with traditional subtractive 

machining [2, 3]. However, given propensity for defect formation, and nascent quality 
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certification procedures, industries, such as the aerospace and defense sector, are hesitant to 

use AM parts in mission-critical assemblies due to component integrity concerns [4-6]. 

Figure 1 shows a schematic of form of AM process known as laser powder bed fusion 

(LPBF). A high-power laser, typically rated at 300 W to 500 W is used to selectively irradiate 

a bed of metallic powder feedstock, fusing the regions of powder together. Following a layer 

of deposition, a recoater system is used to spread a virgin layer of powder across the bed, the 

process then repeats building up a part layer-by-layer [7]. LPBF is well suited to creating parts 

with intricate features and internal geometry, however the low build rates seen in LPBF lead 

to high specific costs. This is exacerbated by the propensity for LPBF systems to produce parts 

with defects [1, 8].  

 

Figure 1: The schematic diagram of the laser-based powder bed fusion (LPBF) process [9]. 

Defects in LPBF are narrowed to four main causes [10]: (a) improper selection of process 

parameters, such as inordinately high or low laser power can both lead to porosity [11, 12]; (b) 

inherently poor part design [9]; (c) machine-related factors, such as the calibration of the laser, 

gap between the recoater and powder bed, optical aberrations from the focusing lens; and (d) 

feedstock powder material-related causes, such as presence of extraneous contaminants, 

characteristic distribution of the powder particle size, etc [13]. These factors can occur 
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concurrently, and lead to defects at multiple scales, ranging from the microstructure, 

macroscale (pinhole porosity and inclusions) to mesoscale (geometric distortion).  

To further compound these challenges, traditional statistical optimization is incompatible 

with LPBF due to the multitude of adjustable processing parameters [4, 5]. For instance, 

O’Reagan et al. demarcate over fifty adjustable parameters in LPBF; it is not practicable to 

investigate each of these parameters and their interference using statistical experiments [14]. 

Additionally, the sample sizes in the AM process are small owing to the time, expense, and 

inherent slow production rate of the process. Hence making a large number of samples for 

subsequent destructive testing is not viable in AM [4, 5].  

Everton et al. [15] investigated the development of in-situ monitoring technologies for 

LPBF and found that despite industry need for in-situ inspection, the majority of techniques 

implemented in practice have thus far focused on monitoring with the intention of 

understanding the process phenomena, rather than for in-situ identification of component 

defects. The authors concluded that development of new sensors that allow for inspection with 

a resolution consistent with commonly occurring material discontinuities is required. 

Additionally, variation in processing parameters has been shown to have a significant effect on 

the as-built microstructure and phase distribution within the component [16, 17]. Given the 

importance of microstructure for mechanical performance, a monitoring technique for LPBF 

should also have the capability to probe the microstructure [18].  

 The continuing objective of this work is to realize the integration of the Spatially Resolved 

Acoustic Spectroscopy (SRAS) instrumentation within a functional AM system to capture 

measurements during the build. The impetus for the use of SRAS in AM stems from the ability 

to detect and differentiate between surface and subsurface defects [19]; measurements of the 
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texture which can be correlated to build parameters; capability to measure rough surfaces; and 

inform targeted rework actions [20]. These prior results, uniquely position SRAS to tackle 

many of the monitoring and certification problems posed by LPBF.   

Currently identification of surface breaking defects from SRAS data-sets relies upon user 

interpretation of the optical map obtained concomitantly with the acoustic velocity map. With 

a view to improving the reliability of defect identification and automating the process to apply 

this technique in a real-world manufacturing environment, this work utilizes the two parallel 

datasets generated by a SRAS inspection to construct a third artificial dataset, free from the 

artefacts, such as variations in surface reflectivity, which is not available when working with 

real samples and without repeated calibration trials. This is particularly relevant when 

considering the typical as-deposited surface finish of LPBF components, and the likelihood of 

loose powder resting on the sample [21]. Additionally, direct interpretation of the acoustic map 

is challenging due to a signal sensitivity arising from a variety of features such as subsurface 

and microstructure, alongside defects.  

As a step towards realizing the objective of in-situ defect monitoring in LPBF with SRAS, 

we use the SRAS-acquired velocity map as an input and match it to the form of a binary defect 

map that is readily interpretable. This SRAS image to defect image transformation is done 

using a specially tailored deep learning convolutional neural network called Densely-connected 

Convolutional Block Architecture for Multimodal Image Regression (DCB-MIR). As a 

consequence of such mapping, the features that are not discernable in the original SRAS image 

are clearly discerned, whilst unintended variations in the optical dataset are disregarded. 
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Methodology 

INTRODUCTION TO SPATIALLY RESOLVED ACOUSTIC SPECTROSCOPY 

(SRAS) 

Both the technique and current instrumentation SRAS sensors have been reported in depth 

previously (c.f., Ref. [22]), thus, the following section provides only a brief overview. SRAS 

is a non-contact, non-destructive laser ultrasound technique, used for characterizing the 

physical properties, such as microstructure and grain orientation of a sample [22].  

The operating principle of the SRAS apparatus used in this work is as follows; a schematic 

diagram is produced in Figure 2. An optical mask (grating pattern) is imaged on to the sample 

using a pulsed laser of known wavelength. These laser pulses initiate acoustic waves through 

thermoelastic expansion, this is done without ablation or damage to the sample. SRAS does 

not depend on time-of-flight measurements, but rather monitors the frequency of the wave 

packet.  

Using a second probe laser, and a split-photodiode or knife edge detector, the perturbation 

caused by the surface acoustic wave can be measured and the characteristic frequency of the 

wave packet extracted using the Fourier transform. Thus, knowing the wavelength (𝜆) and 

measuring the frequency (𝑓) the characteristic velocity can be calculated, using the 

relationship 𝑣 = 𝑓𝜆. This SRAS-derived characteristic velocity can be further translated into 

image form, and is hence forth is referred as the SRAS velocity map. Additionally, the level 

out light returned to the photo-diode can be used to generate a second distinct dataset, 

analogous to an optical map.  
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Figure 2: (left) Schematic of the SRAS instrument showing the surface acoustic wave generation laser, 

the laser used to detect the surface acoustic wave, and optical (patch) mask generated on the sample. 

(right) Photograph of third-generation SRAS instrumentation at Nottingham University.  

The characteristic surface acoustic wave velocity is contingent on the orientation of the 

crystals and elastic properties of the sample. This information can then be used to obtain the 

grain size and orientation distribution. Indeed, as Li et al. have demonstrated that if multiple 

velocity images are taken with different acoustic wave propagation directions, then it is 

possible to recover the actual orientation of the grains [23]. 

The specifics of the SRAS sensor used in this work are as follows. The generation laser is 

a near-infrared (1064 nm) broadband Q-switched laser (AOT-YAG-10Q) which emits 1–2 ns 

pulses at a repetition frequency of 2 kHz. The detection laser is a 532 nm continuous wave 

laser (Laser Quantum Torus 532). The acoustic wavelength was ∼24 um and the generation 

patch size on the sample was ∼200 um. In this set-up the optical train is fixed and samples are 

raster scanned by linear stages (Physik Instrumente M-413 and M-414). 
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EXPERIMENTAL PROCEDURE 

A series of LPBF specimens were produced for inspection with the SRAS instrument 

system. The powder feedstock used was the common aerospace titanium (Ti-6Al-4V) and 

nickel alloys (CM247-LC) [24, 25]. The layer rotation was varied in the nickel sample set, 

whilst an additional titanium alloy sample set was manufactured with varying levels of tungsten 

by percentage weight, in order to study the effect of tungsten contamination on powder 

feedstock on LPBF builds. Specific build parameters for the three sample sets are given in 

Table 1. For reference purposes, the titanium alloy samples without contamination are labeled 

Ti(1); the titanium alloy samples with tungsten contaminants are labeled as Ti(2); and the 

nickel alloy samples are labeled Ni(1). Furthermore, both the sets of titanium samples are made 

using a rectilinear (meandering) laser scan hatch pattern, whilst the nickel samples are made 

using an island scan pattern, in which the hatches are made in small square sections. To further 

introduce heterogeneity in the processing conditions, the titanium samples are made in different 

LPBF systems. This purposely induced variation ensures that the approach presented is not 

specific to one type of alloy, process condition, and machine. 

Lastly, all samples were mechanically polished prior to offline measurement by the SRAS 

system to ensure the surface provides a specular reflection, as necessitated by the knife edge 

detector. The 190 W sample was polished further in order to remove small layers of material 

to generate a quasi-volumetric dataset. The SRAS scan set-up was varied dependent on sample 

type; the scanning parameters, resolution and size of the data are also reported in Table 1.  
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Table 1: Processing parameters for all sample sets and scanning parameters.  

Alloy Titanium Alloy  

Ti-6Al-4V 

Titanium Alloy  

Ti-6Al-4V  

contaminated with 

Tungsten 

Nickel Alloy  

CM247-LC 

Label Ti(1) Ti(2) Ni(1) 

Build System Renishaw AM250 ReaLizer SLM50 ReaLizer SLM50 

Size (xyz) 

[mm] 
10 × 10 × 10 10 × 10 × 10 8 × 8 × 10 

Number of 

samples 

1 3 4 

Laser Power 

[W] 

190 82.5 100 

Scan speed 

[mm s-1] 

600 500 400 

Hatch spacing 

[µm] 

75 90 50 

Layer 

thickness 

[µm] 

30 40 25 

Hatch 

Rotation (°) 

n/a n/a 0, 15, 30 and 45 

Tungsten 

Contamination 

(%) 

n/a 1, 5 and 10 n/a 

Scan 

Wavelength 

[µm] 

24 24 24 

Image Size 

(pixel 

2000 × 2000  1000 × 2000 1500 × 4000  

Pixel size 

[µm] 
5 × 5 10 × 10 2 × 5 

Hatch pattern Rectilinear  Rectilinear  Island 

Approx. total 

data points 

4,000,000 1,000,000 6,400,000 

DESIGN OF A CONVOLUTION NEURAL NETWORK FOR ANALYSIS OF SRAS 

SENSOR SIGNATURES. 

Primer to Neural Networks 

Artificial neural networks (ANNs) are a form of machine learning originally inspired from 

neurophysiology [26]. ANNs are composed of basic computational units called neurons, which 

sum input from multiple sources (frequently the input data or other neurons) and apply a non-
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linear transformation to generate an output. Neurons are connected to each other by scalar 

weights. These weights are generally learned through a process called backpropagation, in 

which the error at the end of the network (e.g. cross-entropy between the true and predicted 

values) is used to update the connections between neurons in all preceding layers. The simplest 

form of a neural network, called a multilayer perceptron (MLP), is composed of layers of 

neurons in which all neurons in one layer are connected to all neurons in the subsequent layer. 

Typical MLPs, however, require a large amount of data to train and are prone to 

overfitting. This is because the MLP treats each data point as independent. In other words, the 

MLP does not inherently account for spatiotemporal correlations within the data set. This 

shortcoming is especially exacerbated when the data sets involve images. As the correlation 

between neighboring image pixels is not considered in MLP, the prediction is generally poor. 

To overcome this lacuna with MLP, the proposed Densely-connected Convolutional Block 

Architecture for Multimodal Image Regression (DCB-MIR) uses a combination of 

convolutional layers and skip connections between layers, which will be clarified later. In the 

context of this work, the term multimodal image regression refers to mapping from one image 

input modality viz., SRAS velocity map, to another output image modality, namely the optical 

micrograph. 

Network Architecture 

A diagram of the full architecture of DCB-MIR is shown in Figure 3, and can be described 

as a fully-convolutional block-densely-connected network. It consists of 6 blocks, plus input 

and output layers. Each block is composed of two convolutional layers, a batch-normalization 

layer, and a concatenation layer. The concatenation layer of each block both feeds directly into 

the next block and the concatenation layer of all subsequent blocks, which we refer to as the 
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block-densely-connected property. Similarly, the initial input feeds into both the first block and 

the concatenation layer of all subsequent blocks through a skip connection. This allows 

multiple scales of image processing to exist throughout the network. Hence, DCB-MIR 

preserves both the local, as well as wider area information of the image.  

In the proposed network, the first block uses 12 2-dimensional convolutional filters. 

Each of these filters is composed of individual filters with convolutional kernels of size 7x7. 

The second block has 18 convolutional filters of size 5×5; and the remaining four blocks use 

24 convolutional filters each of size 3×3. This configuration of filter sizes and number of 

filters aligns with previous work in the field, such as ResNet, and provides superior visual 

results than configurations using the same number or size of filters throughout the network 

[27]. In total, the final architecture has 102,273 trainable parameters. The first two blocks in 

the network are explained in depth later in this section, wherein the underlying mathematical 

operations will be clarified. The number of blocks and layers within a block were determined 

with systematic experimentation in a parameter space that satisfied the following criteria:  

1) The receptive field must be large enough to account for the patterns of interest [28], and  

2) The network must fit into memory of the available hardware while maintaining a reasonable 

batch size.  

The limitations on data availability necessitated a smaller network size, thus limiting the 

impact of (2) on this study. As more data becomes available, the results may be improved with 

a deeper network trained on a multi-GPU set-up.  In this work, the input to the network is a 

SRAS surface velocity signatures of 150 pixel × 150 pixel (≈ 750 μm × 750 μm) in image form 

as shown in Figure 4(a), and its output is also image that resembles an optical micrograph 

(Figure 4 (c)); the output image is the same size as the input SRAS image. 
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 This neural network is trained using supervised learning. The SRAS velocity map images 

is the input (Figure 4 (a)), and the corresponding as-measured optical micrographs are the 

output  labels (Figure 4 (b)). This image-to-image mapping is the unique differentiating aspect 

of this work.  

 
Figure 3: The architecture of the convolutional neural network proposed in this work. The network has 

six blocks, each with four layers. The layers labeled Conv2D LReLU is shorthand for a 2D-

convolutional filter, whose output is passed through an activation function called the leaky rectified 

linear unit (LReLU). The number of convolutional filters in the layer are referenced in the next line, 

followed by the size of the filter. Lastly, the size of the output image is also specified. 
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DCB-MIR builds upon recent convolutional neural network architectures such as ResNet 

and DenseNet [27, 29]. This neural network architecture also takes inspiration from previous 

work in the areas of image super resolution [30, 31], the prediction of depth maps from RGB 

cameras [32], and approaches in image segmentation [27, 33].  

Similar work has also been performed in biomedical image segmentation, demonstrating 

that convolutional network architectures with skip connections can achieve state of the art 

results in domains with limited data availability [34]. All of these techniques represent state of 

the art results in their respective fields, unmatched to this point by either traditional image 

processing or traditional machine learning techniques. Between these successes and the 

relatively few parameters in our model due to its fully convolutional nature, this approach can 

accurately model image to image regression. This is particularly important, since this domain 

lacks the data availability often required by deep learning to be successful. 

Furthermore, to the best of our knowledge, traditional techniques in either machine 

learning or image processing have not been used in this type of image modality to image 

modality regression. The traditional techniques are ill suited to the complex, but strongly local, 

relationship exhibited by these modalities. 

 

Figure 4: : (a) SRAS signal velocity map for a titanium alloy sample, (b) the corresponding optical 

micrograph, and (c) the image predicted by the DCB-MIR neural network proposed in this work. 

Representative pores, that are clearly discernable in the optical micrograph are shown in (b), are largely 

occluded by noise in the SRAS signal (a). On processing the SRAS signal with a deep learning DCB-

MIR neural network designed in this work, the pores are clearly discerned in image (c). 
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Convolutional Layers 

A convolutional neural network can be described as that which features one or more layers 

that learn certain number of convolutional filters. The objective of the convolutional layers is 

to learn filters that extract pertinent features of the SRAS image. These features can then be 

combined by future layers of the network to create more complicated features, eventually 

resulting in an approximation of the optical micrograph. More formally, let I be a 2-

dimensional (2D) image of size m × n and F be a 2D convolutional kernel of size k × k. The 

result of a convolution of I with F at pixel i, j of image I is then defined as: 

(𝐼 ∗ 𝐹)(𝑖, 𝑗) = 𝑎(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑚, 𝑛)

𝑛

𝐹(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑚

 (1) 

The physical meaning of a convolutional filter is conveyed in Figure 5. The filter is akin 

to a mask or lens of certain size placed over the image. Here a 4×4 convolutional filter is placed 

on the (1,1) pixel position of image I. This convolution operation results in a scalar value. The 

mask (filter) is then moved to the pixel position (1,2) and another scalar value is obtained. This 

operation is repeated pixel-by-pixel throughout the image (in practice the edges of the image I 

are padded with zero values), and ultimately results in a m × n matrix, i.e., same size as that of 

the input image I.  

Furthermore, signals evaluated by convolutional networks may have multiple channels or 

dimensions of data. To accommodate multidimensionality, if h is the number of incoming 

channels of data to a convolutional layer, then, h individual filters akin to the one shown in 

Figure 5 will be learned, i.e., one individual filter per channel. The results of each of these 

filters is subsequently summed and passed through an activation function 𝑓(∙). Thus, the final 

result at pixel i,j can be defined as under (𝑏 is an additive bias term per convolutional filter, 

which we will omit including in further equations for simplicity of explanation): 
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𝐴(𝑖, 𝑗) = 𝑓 (∑(𝐼ℎ ∗ 𝐹ℎ)(𝑖, 𝑗

ℎ

)) + 𝑏 (2) 

The leaky rectified linear unit (LReLU) activation function was used for all convolutional 

layers [35]. The LReLU activation function is a modification of the standard rectified linear 

unit (ReLU) function and takes the following form, 

𝑓(𝑥) = {
𝑥           𝑖𝑓 𝑥 ≥ 0
𝑎𝑥         𝑖𝑓 𝑥 < 0

 (3) 

The LReLU activation function was chosen to avoid the so-called dying ReLU problem, 

wherein the standard linear activation functions in a neural network are liable to map to 0. 

Experimentally, the LReLU led to more reliable convergence than the standard ReLU 

activation function. In this work 𝑎 is set at the value of 0.3.  

The first two blocks of the proposed network are further detailed for clarity (Figure 6). 

Before we begin explaining the structure of the network we clarify the notation. The jth 

convolutional filter in Layer a, and Block b is represented as 𝐅𝑗
𝑎, 𝑏

. Each convolutional filter 

consists of a group of h individual filters, an individual filter 𝐹𝑖,𝑗
𝑎, 𝑏

, within the convolutional 

filter 𝐅𝑗
𝑎, 𝑏

is represented as 𝐹𝑖,𝑗
𝑎, 𝑏

. To reiterate, the individual filter 𝐹𝑖,𝑗
𝑎, 𝑏

 is a k × k matrix (kernel 

function) which acts on the input image per the convolution operation in Eqn. (1). 

In Block 1, Layer 1 there are 12 convolutional filters 𝐅𝑗
1, 1 𝑗 ∈ {1 ⋯ 12}𝐹  each with an 

individual filter (i.e., h = 1) of size 7×7. Hence, we have a total of 12 convolution operations 

performed, leading to 12 derived copies of the input image I labeled 𝐴𝑖,𝑗
1, 1, 𝑖 = 1, 𝑗 ∈ {1 ⋯ 12} . 

To reiterate, convolving an image I with an individual filter 𝐹1,𝑗
1, 1

 , and passing through an 

activation function results in the output 𝐴1,𝑗
1, 1

. The size of each matrix 𝐴1,𝑗
1, 1

 is identical to the 

input image I.  
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Figure 5: A pictorial explanation of a convolutional operation between an image I of size 

m × n, and a filter F of size 4×4 (consider each box as a single pixel for explanation purposes). 

Each pixel in the filter is progressively multiplied with the corresponding pixel in the image I 

over a 4×4 area. In this picture a pixel for the Image I  is expressed as Pi.  For instance, 

beginning with the (1,1) location in the image, we obtain a sum a(1,1). When the filter (or 

mask) is moved to the right by 1 pixel to be placed on the image position (1,2) the convolution 

operation results in the scalar output a(1,2), and so on.  In Block 1 ,  Layer 2, the 12 derived 

images 𝐴𝑖,𝑗
1, 1, 𝑖 = 1, 𝑗 ∈ {1 ⋯ 12}  from the first layer are again passed through twelve 

convolutional filters, 𝐅𝑘
2,1, 𝑘 ∈ {1 ⋯ 12} . The structure of the network predicates that the 

number of individual filters within a convolutional filter; the number of individual filters should 

be equal to the number of output images from layer 1. Since there are 12  𝐴𝑖,𝑗
1, 1′𝑠 from layer 1, 

the number of individual filters within each convolution filter in the second layer is also 12. 

Accordingly, the filters in the second layer are labeled 𝐹𝑖,𝑗
2, 1 𝑖, 𝑗 ∈ {1 ⋯ 12}. After the second 

convolution operation, there are a total of 144 derived copies of the image I, labeled 𝐴𝑖,𝑗
2,1 , 𝑖 ∈

{1 ⋯ 12}. , 𝑗 ∈ {1 ⋯ 12}.  
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The resulting outputs from a particular convolutional filter are summed together. This 

summing operation of outputs 𝐴𝑖,𝑗
2,1 𝑖 ∈ {1 ⋯ 12}.  The output from the jth convolutional filter at 

the end of the second convolutional layer is represented as 𝐀𝑗
1 = ∑ 𝐴𝑖,𝑗

2,1𝑖=12
𝑖=1 . Subsequently, 

following the summing operation in Block 1, each of the 𝐀𝑗
1’s is exactly the size of the input 

image I. These 𝐀𝑗
1’s are subjected to two more layers, namely, batch normalization and 

concatenation, the need for which is explained below. 

 

Figure 6: Schematic diagram of the first two blocks of the convolutional neural network. Each block 

has two convolutional layers, which contain a certain number of convolutional filters referenced as 

𝑭𝑗
𝑎, 𝑏

, where a is the block number, and b is the layer number. Each convolutional filter in turn has a 

fixed number of individual filters represented as 𝐹𝑖,𝑗
𝑎, 𝑏

 wherein the subscript i indexes an individual filter 

within convolutional filter 𝑭𝑗
𝑎, 𝑏

. 
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Batch Normalization Layers 

Batch normalization is a technique developed to account for the shift in the covariance 

of an incoming signal that occurs as the signal passes through multiple layers of a neural 

network [36]. Batch normalization layers reduce the effect of this shift by scaling the output to 

a normal distribution of zero mean and unity variance N(0,1), and subsequently, learning an 

additive and multiplicative values to shift the mean and variance of the distribution. Batch 

normalization layers are included at the end of each block both to ensure that the network has 

the ability to maintain a similar scales for the outputs from each block, similar to their use in 

DenseNet [29]. The network used in this work was found to have poor error convergence 

without the use of batch normalization layers in each block. 

Let B be a batch of m inputs, . A batch normalization layer calculates the 

mean, , and variance,  , of B and then applies the following normalization to each 𝑥𝑖, a 

small value 𝜀 is added to ensure that the denominator does not become zero. 

𝑥̂𝑖 =
𝑥𝑖 − 𝜇𝐵

√𝜎𝐵
2 + 𝜀

 (4) 

The result is then scaled by a factor and summed with an offset to achieve the output 

of the batch normalization layer, 

𝑦𝑖 ← 𝛾𝑥̂𝑖 +  𝛽 (5) 

During testing, however, 𝜇𝐵 and 𝜎𝐵
2
 are not available. Thus, running estimates of the population 

expected value, E[x], and population variance, V[x] are updated at each mini-batch as follows: 

E𝑖+1[𝑥] ← 𝛼E𝑖[𝑥] + (1 − 𝛼)𝜇𝐵 

V𝑖+1[𝑥] ← 𝛼V𝑖[𝑥] + (1 − 𝛼)𝜎𝐵
2 

(6) 

The final values of E[x] and V[x] are then used for normalization at test time, in place 

of 𝜇𝐵 and 𝜎𝐵
2. 

x1,..., xm{ }

mB s B

2

g b
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Concatenation and Output Layers 

 The final layer in each block is a concatenation layer which simply stores the output of 

the block in which it is contained with the output of all previous blocks and the original image. 

Accordingly, multiple scales of the filtered image are available at all layers of the network. 

Following concatenation layer in Block 1, we have the 12 𝐀𝑗
1’s and the original image I stored 

in memory.  

The concatenated images are then passed to Block 2 having with 18 convolutional filters 

each with 13 individual filters of size 5×5 in Layer 1, and 18 convolutional filters each with 18 

individual filters of size 5×5 in Layer 2. At the end of the concatenation layer in block 2, there 

are a total of 31 images (12 𝐀𝑗
1’s, 𝑗 ∈ {1 ⋯ 12} from block 1, 18 𝐀𝑗

2’s, 𝑗 ∈ {1 ⋯ 18} from block 

2, and the original image I).  

Continuing through the network results in 127 images of size 150 pixels × 150 pixels after 

the concatenation layer of Block 6. Layer 1 of the output block has 12 convolutional filters 

𝐅𝑗
1, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑗 ∈ {1 ⋯ 12}, each with 127 individual filters of size 1×1, 𝐹𝑖,𝑗

1, 𝑂𝑢𝑡𝑝𝑢𝑡 𝑖 ∈

{1 ⋯ 127}, 𝑗 ∈ {1 ⋯ 12} resulting in 12 images labeled 𝐴𝑗
1,𝑜𝑢𝑡𝑝𝑢𝑡, 𝑗 ∈ {1 ⋯ 12}. Finally, the 

twelve images (𝐴𝑗
1,𝑜𝑢𝑡𝑝𝑢𝑡

) are convolved through one last filter, 𝐅1
2, 𝑂𝑢𝑡𝑝𝑢𝑡

 of size 1×1 in Layer 

2 of the output block, which combines (sums) them into a single output image of size 150 pixel 

× 150 pixel. 
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Network Optimization 

Cosine Similarity: The weights of the individual filters are obtained through the 

backpropagation algorithm [26]. Instead of the customary mean square error minimization, 

given the spatial (image-based) nature of the prediction, the network was trained to maximize 

the cosine similarity of the predicted optical image and the actual optical image. Cosine 

similarity of two vectors x and y is calculated as: 

𝐶𝑆(𝑥, 𝑦) =  
𝑥T𝑦

‖𝑥‖‖𝑦‖
 

where T is the transpose operator and ||•|| indicates the magnitude of the vector. The cosine 

similarity varies in the range [-1, 1]. Previous works in face recognition have seen benefit in 

using the cosine similarity measure over Euclidean distance or mean squared error [37].  

While mean squared error is the standard measure in many similar applications, it was 

found to be less appropriate for this task. The tendency of mean squared error to over-

exaggerate the effects of outliers lead to convergence instabilities, given the inherent noise in 

the SRAS signal. Further, in isolating defects, and particularly porosity, we posit that the pixel 

scale, i.e., exact value of the pixels, is of lesser importance, rather, the spatial pattern over a 

group of pixels determines the location of a defect. Since, the denominator in cosine similarity 

is a normalization term, the network is not tuned to learn the scale or value of each pixel in the 

output image. We found that this further simplifies the learning process and leads to faster and 

more accurate convergence when compared with mean squared error. 

L2 Penalty Function: In addition to cosine similarity, a small L2 penalty with λ = 0.001 is 

applied, based on extensive trials, to all the individual filter weights in the network. This 

reduces the propensity of the network to overfit on training data by not allowing individual 
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connections to dominate the networks activity. Given a scale λ and weights wj, the accrued L2 

loss is calculated as follows: 

𝑙𝑜𝑠𝑠𝐿2
← 𝜆 ∑ 𝑤𝑗

2

𝑚

𝑗=1

 (7) 

Optimization Algorithm: The Adam optimization algorithm was used to find the weights 

and bias value of the network. Adam is first-order gradient-based algorithm for the 

optimization of stochastic functions, informed by estimates of lower-order moments [38]. The 

optimizer is parameterized by four values: 𝛽1, a decay value for the running average of the 

gradient; 𝛽2, a decay value for the running average of the square of the gradient; α, the learning 

rate; and 𝜀, a value used to prevent division by zero. The values chosen for optimizing our 

network are as follows: 𝛽1 = 0.9; 𝛽2 = 0.999; α = 0.1; and ε = 0.1. 𝛽2 were chosen as the 

default values presented in . A significantly larger was chosen in concordance with  and our 

empirical evaluation  

Preprocessing of the Data Set 

 A total of 10 pairs of SRAS and optical images were used in the training of this model. 

These images come from two different materials taken over three different samples. Three 

images (six total) were collected from each of two titanium alloy samples, referred to as Ti(1) 

and Ti(2), and four images were collected from a nickel sample labeled as Ni(1), as summarized 

previously in Table 1. The images used from the same samples were collected from different 

layers of printing with enough separation to prevent overlap in the optical images. Hence, the 

images from the same sample can be considered as heterogeneous. The samples are chosen 

such that they have distinctly different surface morphologies, therefore enabling the neural 

network to train over a more generalized space.   
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All optical and SRAS image pairs were first cropped to remove the background noise 

surrounding the sample. The final images used were approximately 1 cm × 1 cm . Next, an 

intensity scaling step was performed on each image to map the pixel intensity values to a range 

of [-1,1], where neural networks are found to be most numerical stable. For each image, the 

mean value was subtracted and the image was then divided by the resulting maximum value. 

Since the network optimization metric used in this work, viz., cosine similarity, relies on the 

relative values in the image, rather than the absolute values, this form of preprocessing can be 

applied individually to each image, rather than using collected population statistics. 

Training Procedure 

 Referring to Table 1, out of the 10 images in the dataset (3 samples for Ti(1), 3 for 

Ti(2), and 4 for Ni(1)) , 8 images were used for training, 1 for validation, and 1 for test in each 

run. The validation image was chosen out of the 9 non-test images with the stipulation that if 

an image from a type of material, such as Nickel (Ni(1)), was being tested, then the training set 

contained the rest of the 3 images for the Nickel. This exceedingly conservative testing 

procedure ensures that the training set contains images from different materials, thus imparting 

a degree of robustness to the network. In other words, the network trained in such a way is not 

constrained for mapping the SRAS output for only one type of material, but is generalizable 

across materials. We also note that, while validating on the same material would be ideal, given 

the limited number of images available, especially for the Nickel-alloy Ni(1) sample, training 

on more images from Ni(1) was found to produce visually superior results. The training 

procedure has the following steps. 



23 

 

Step 1 – Dividing the images into windows.  

The SRAS and optical images held out for testing and validation were each divided into 

150 pixel × 150 pixel regions (window size), and sampled with a stride (moving window shift) 

of 19 pixels, thus allowing for significant overlap between windows (131 pixels, window 

overlap). This sampling procedure generates approximately 10,000 sub-images for the SRAS-

optical micrograph pair; we annotate these set of sub-images as (𝒾). The window shift or stride 

was chosen to have a large least common multiple with the window size to reduce situations 

where the beginning of one image frame aligns with the end of another, which can lead to a 

discernable gridding pattern when the image is reconstructed through averaging.  

Step 2 – Batching Images for Training  

A batch size of 40 sub-images was used for the stochastic gradient descent algorithm to 

satisfy computing hardware constraints. Each batch of 40 sub-images was comprised of five 

150 pixel × 150 pixel sub-images sampled at random from each of the eight images held out 

for training. That is, a pair of pixel coordinates within the bounds of the original image were 

generated to serve as the upper left pixel of the sub-window used in training, for each of the 40 

sub-images. As these images were generated dynamically during training, no prior splitting 

into sub-images was necessary, as in the train and test sets. It is also worth noting that due to 

the dimensions of the original images (1000  pixel × 1000 pixel at a minimum), the exact same 

sub-image was rarely presented twice to the network during training. A single update was then 

performed on the batch before discarding it and generating a new batch. Figure 7 demonstrates 

the selection of a batch. 
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Step 3 – Stopping the Training Process 

After a cycle of 100 updates is performed as described in Step 2, the performance of the 

network on the validation set was evaluated. If the average cosine similarity over all sub-images 

improved, the weights of the network were stored and training was continued. If the cosine 

similarity failed to improve for 20 cycles, training was halted and the weights of the network 

were reverted to the values stored at the maximal performance on the validation data. 

Testing Procedure 

For each of the 150 pixel × 150 pixel sub-image regions (𝒾) of the SRAS signal from 

the test input-target set, the fully trained network was used to map to an optical micrograph 

image. Pixels in overlapping regions were averaged together to achieve the final predicted 

output image, with the following exception ‒ a 5-pixel band at the outside of each of the 150 

pixel ×150 pixel regions was discarded. This is reasonable, since, zero-padding was used in the 

convolutional layers to maintain image size throughout the network, the outermost pixels are 

found to be poor predictors of the original image.  

The inclusion of these pixels led to a gridding pattern in the image, much like the issue 

with stride described in Step 1 of the training procedure. This final predicted image was then 

available for quantitative and qualitative comparison the original optical micrograph, as 

reported in the following section. 
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Figure 7: One batch in the training procedure includes selecting eight SRAS (input) and corresponding 

optical images (target). Next five areas are selected randomly for each input-target pair. Thus there are 

a total of 40 images per batch. With these 40 images the weights of the convolutional filters are updated 

continuously for 100 instances (updates). After 100 update epochs, the  new set of 40 images is sampled 

(batch). The batch-and-update procedure is repeated 100 times.    

Results and Discussion   

The SRAS velocity map, corresponding optical micrograph and predicted images for each 

of the samples are shown in Figure 8 through Figure 10. The first uncontaminated titanium 

samples (Ti(1)) polished and imaged at three layers are shown in Figure 8. The surface 

morphology of this sample is characterized by large acicular pores of diameter in the range of 

100 μm, characteristic of lack-of-fusion porosity. The neural network predicted image aptly 

captures the location, as well as the size of the pores. 

 More pertinently, the neural network was robust to artifacts that are seen in the optical 

images, such as the large number of scratches, Figure 8(b), and the solvent stains that invariably 

occur from sample polishing and vary the light level returned to the detector system but are not 

due indicators of defects. Similarly a series of vertical lines can be discerned in the optical 

image of the final scan, Figure 8(c), this corresponds to unexpected variations in the power-
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output from the continuous wave-nature of the detection laser; as in previous cases, the 

predicted image successfully disregards these features to leave a map of only defects. 

Furthermore, it is known that the acoustic map is sensitive to subsurface features; in the 

acoustic datasets presented here there are several such indications of subsurface features [19]. 

These features are excluded from the predicted map, allowing segmentation of surface and 

subsurface defects.  

  

Figure 8: Results for the standard 190 W titanium sample polished to three different heights (a) nominal 

surface (b) ~ 100 µm below surface and (c) ~200 µm below surface. Representative areas of porosity 

are circled. Results predominantly show porosity in the offline optical micrograph, while not being 

demonstrably clear in the SRAS velocity map. The convolutional neural network maps these pores with 

clarity. Furthermore, the neural network is found to be robust to extraneous artifacts, such as polishing 

stains.    
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Figure 9 reports results for the three tungsten contaminated titanium samples (Ti(2)); these 

samples contain (a) 10%, (b) 5%, and (c) 1% tungsten contaminants by weight. Firstly, from 

the captured optical datasets it is discerned that the tungsten particles dispersed across the 

sample surface have a significantly different optical reflectance to the bulk material at 532 nm 

compared to the Ti(1) samples shown in Figure 8.  Furthermore, samples suffer from remnant 

polishing marks which vary the light returned to the detector; in particular in Figure 9(b) for 

the 5% tungsten contaminated sample, the polishing stain found in the lower left has an optical 

response similar to the tungsten contamination. The neural network captures the position and 

size of the pores appreciably for samples shown in Figure 9(b) and (c), however, the neural 

network is not able to capture some of the prominent pores in image Figure 9(a). This under-

prediction is likely caused by the nature of the training data: only ten samples were used, 

collected from two materials, under three different processing conditions. The combination of 

non-homogeneous data and limited sample size limits the ability of the network to generalize 

in some cases. Future work with a larger training dataset and more samples per material would 

likely increase sensitivity and alleviate under-prediction. 

Figure 10 depicts the results for the nickel alloy sample, which have distinctive surface 

morphology. Whilst there are less discernable pores compared to the titanium alloy samples, 

the nickel maps are dominated by surface cracking, this is due to the hard to weld nature of 

CM247-LC [39]. Again, similar variations to the previous two sample sets can be seen in the 

optical datasets. The large conglomeration of artefacts in Figure 10(a) and (b) are from colloidal 

silica used for fine polishing. From observation of the predicted images, it is clear that the 

presence of tungsten in the Ti(2) samples is captured and translated in the DCB-MIR predicted 

images.  The neural network captures a vast majority of the distinguishing characteristics for 

the nickel images. In Figure 10(b), as an example, samples have been manufactured in an island 
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scan pattern, with a 1 mm overlap. In both the acoustic and optical map this cross pattern is 

difficult to discern, but is clearly seen in the predicted image. This concurs with previous 

findings of higher cracking rates in border interfaces [40]. The shift in microstructural texture 

in these interface regions obfuscates the relevant features in the SRAS acoustic map.  

 

Figure 9: Results for the tungsten contaminated titanium alloy samples (Ti(2)) (a) 10%, (b) 5% and (c) 

1% Tungsten. Representative areas of porosity are circled. Results depict porosity and surface defects, 

such as scratches in the offline optical micrograph, while not being demonstrably clear in the SRAS 

velocity map. The convolutional neural network captures these defects.  
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Figure 10: Results for the Nickel alloy samples (a) 0°, (b) 15°, (c) 30° and (d) 45°, that depicts a 

distinctive surface texture comparted to the titanium-alloy samples. Representative areas of porosity are 

circled. The surface features are represented in the optical image recreated by DCB-MIR.  
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In all cases, the DCB-MIR predicted images have successfully captured the majority of 

defects accurately, in terms of size and location, whilst omitting features seen in the optical 

map from inconsequential variations in surface reflectance and scan artifacts.  The predictive 

power of the approach is quantified in Table 2, which demonstrates a large improvement in 

cosine similarity across all sample images. For instance, the cosine similarity measured 

between the image mapped from the SRAS velocity map (predicted optical image) and 

corresponding optical micrograph for the titanium samples were in the range of 0.45 to 0.55, 

while in the case of the nickel samples the cosine similarity was in the range of 0.30 to 0.45. 

As a quantitative comparison, the cosine similarity between the SRAS signal and optical 

micrograph was assessed to be in the range of -0.15 to 0.15. Accordingly, these results 

demonstrate that, using the convolutional neural network, the SRAS velocity maps are mapped 

to a form that captures the distinctive surface features, such as pores, which are hitherto 

occluded in the original SRAS velocity map signatures due to attendant noise. In essence, this 

approach has utilized the unique feature of SRAS where three distinct complementary datasets 

are generated under differing process conditions, and machines. 

Table 2: Cosine similarities between original SRAS velocity maps and as-measured optical image pairs; 

and cosine similarity between the DCB-MIR predicted optical image and as-measured optical image 

pairs.  

Image Label Cosine Similarity between SRAS 

Acoustic Measurements and 

Measured Optical Image 

Cosine Similarity between the 

optical image predicted by the 

DCB-MIR and  as-measured 

optical image 

Ti(1) Sample 1 -0.058 0.572 

Ti(1) Sample 2 -0.104 0.450 

Ti(1) Sample 3 0.153 0.241 

Ni 0° -0.126 0.526 

Ni 15° -0.071 0.391 

Ni 30° -0.059 0.278 

Ni 45° -0.099 0.471 

Ti(2) Sample 1 -0.120 0.441 

Ti(2) Sample 2 -0.133 0.542 

Ti(2) Sample 3 -0.136 0.549 
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Conclusions 

In this work we developed and applied a deep learning convolutional neural network to 

map spatially resolved acoustic spectroscopy (SRAS) signatures of AM parts into a form 

resembling an optical micrograph, where only the defects are mapped on a binary scale. This 

form of information valuable because it is easily interpretable by the operator, and more 

pertinently, paves the way for a machine-learning module coupled to the SRAS instrument and 

embedded into a LPBF machine to automate defect detection. 

Currently, detection of surface discontinuities by SRAS relies upon interpretation of the 

supplementary optical dataset. However, this dataset is affected by signal noise including, but 

not limited to, variations in surface reflection, surface artifacts, and variations in detection laser 

power. Looking ahead to the objective of using the SRAS instrument in-process during LPBF 

manufacture, the technique must be capable of reliably identifying defects, without repeated 

calibration studies and minimal user input.  

Unlike traditional laboratory prepared samples, surfaces scanned during deposition will be 

rougher and be prone to loose powder pick-up. From the machine learning standpoint, this 

work advances the status quo in the analysis of image data obtained through contemporary 

process monitoring sensors, such as thermal and high speed optical cameras in AM, through a 

novel convolutional deep learning neural network-based image analysis approach.  

Specific outcomes of this work are as follows: 

1. Titanium (Ti-6Al-4V) and nickel (CM247-LC) alloy test samples were made using a 

laser powder bed fusion (LPBF) process under different process conditions and 

machines. The samples were polished, and SRAS and optical micrograph 

measurements were both taken offline. A deep learning neural network called Densely-
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connected Convolutional Block Architecture for Multimodal Image Regression (DCB-

MIR) was devised to translate the SRAS velocity signatures into a form resembling the 

corresponding optical micrograph. The network was trained with a data set that includes 

measurements from both the titanium- and nickel-alloy samples produced under 

differing LPBF processing conditions, as well as different LPBF systems, thus 

imparting generalizability. In other words, the network is robust to the type of alloy, 

process conditions, and LPBF machine.   

2. The predicted defect map from the SRAS acoustic data were juxtaposed with the optical 

micrograph, and revealed a high degree of visual similarity. In particular, most of the 

large defects are predicted. The cosine similarity between the predicted micrograph 

images and as-measured optical micrograph averaged close to 50% (for titanium 

samples), which is a significant improvement over the cosine similarity between the as-

measured optical micrograph and predicted micrograph (-15% ~ 15%). 

3. Crucially, the predicted image reliably removed undesirable artifacts that obfuscate 

interpretation of the optical image. Furthermore, DCB-MIR is able to segment the 

acoustic map to reveal only surface breaking defects, ignoring other features such as 

variations in texture. Subsurface defects are not captured in the predicted map but in 

future these may be extracted by subtracting the predicted map from the original 

acoustic dataset.  
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Apart from ongoing efforts to incorporate the SRAS setup with a LPBF apparatus, the 

following avenues will be explored in the future work within the machine learning context: 

• Full image reconstruction currently relies on simple average of sub-images. Increased 

final image fidelity could be achieved through the use of more intelligent combination 

techniques. Alternatively, the need to stitch together some images could be avoided 

through the adaptation of auto-regressive neural network techniques, similar to those 

used in PixelCNN [41]. 

• The current models were trained under highly data-limited conditions. As more SRAS 

data becomes available, significant improvements in the model output should be 

possible. 

• The features of defects vary significantly between materials. In this research, a multi-

material model was necessary due to data constraints, but future models specific to 

individual materials should produce higher fidelity outputs. 
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