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Abstract 

The objective of this work is to model and quantify the layer-wise spatial evolution of porosity in parts 

made using additive manufacturing (AM) processes. This is an important research area because porosity 

has a direct impact on the functional integrity of AM parts such as their fatigue life and strength. To 

realize this objective, an augmented layer-wise spatial log Gaussian Cox process (ALS-LGCP) model 

is proposed. The ALS-LGCP approach quantifies the spatial distribution of pores within each layer of 

the AM part and tracks their sequential evolution across layers. Capturing the layer-wise spatial 

behavior of porosity leads to a deeper understanding of where (at what location), when (at which layer), 

and to what severity (size and number) pores are formed. This work therefore provides a mathematical 

framework for identifying specific pore-prone areas in an AM part, and tracking the evolution of 

porosity in AM parts in a layer-wise manner. This knowledge is essential for initiating remedial 

corrective actions to avoid porosity in future parts, e.g., by changing the process parameters or part 

design. The ALS-LGCP approach proposed herein is a significant improvement over the current scalar 

metric used to quantify porosity, namely, the percentage porosity relative to the bulk part volume. In 

this paper, the ALS-LGCP approach is tested for metal parts made using a binder jetting AM process to 

model the layer-wise spatial behavior of porosity. Based on offline, non-destructive X-Ray computed 

tomography (XCT) scan data of the part the approach identifies those areas with high risk of porosity 

with statistical fidelity approaching 85% (F-score). While the proposed work uses offline XCT data, it 

takes the critical first-step from a data analytics perspective for taking advantage of the recently reported 

breakthroughs in online, in-situ X-Ray-based monitoring of AM processes. Further, the ALS-LGCP 

approach is readily extensible for porosity analysis in other AM processes; our future forays will focus 

on improving the computational tractability of the approach for online monitoring. 
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1. Introduction 

1.1 Motivation 

The potential of additive manufacturing (AM) to transcend design and material constraints of 

traditional subtractive and formative manufacturing processes has been conclusively demonstrated in 

the preceding decade [1]. For instance, functional metal AM parts made from Inconel and Titanium are 

entering service in aerospace and biomedical industries [1]. Despite its transformative potential, the 

wider use of AM is encumbered due to poor process repeatability and frequent occurrence of various 

types of build defects which curtail the functional integrity of the part, such as strength and fatigue life 

[2, 3]. In the context of defects, the following types of AM defects have attracted the most attention: 

porosity, surface finish, cracking, layer delamination, and geometric distortion [3, 4]. This work focuses 

on understanding the evolution of porosity in a specific type of AM process called binder jetting, which 

is also called 3D Printing (3DP), by spatial modeling of the pores across multiple layers [5].  

A salient aspect of AM is that the raw material is deposited and formed simultaneously layer-by-

layer. Hence, not only does the integrity of certain areas impacts that of adjacent areas within the same 

layer, but also the integrity of the previous layer influences subsequent layers [2, 4]. The within-layer 

and across-layer dependence of porosity in AM has not been quantified before. Currently, a common 

quantifier for porosity in AM parts is the percentage porosity relative to the bulk volume of the part. 

Percentage porosity does not reveal the underlying pattern by which pores form and propagate across 

layers [6]. This knowledge is the critical first-step towards initiating offline or online corrective actions 

to improve product quality by either changing the process parameters or the part design. 
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1.2 Objective  

The objective of this work is to quantify and model the layer-wise spatial evolution and distribution 

of porosity in AM parts by developing an augmented layer-wise spatial log Gaussian Cox process (ALS-

LGCP) model based on offline XCT scan data. This model comprehensively evaluates the porosity of 

AM parts in a layer-wise manner, and subsequently, predicts the expected porosity in parts under current 

process conditions. ALS-LGCP is an integration of the spatial analysis on each layer in two dimensions 

(2D) and the sequential analysis across the consecutive layers (i.e. the third dimension). The approach 

uses XCT data to isolate where (at what 2D location), when (at which layer), and to what extent or 

severity (size and number) pores are formed. The ALS-LGCP is used in this work to understand the 

layer-wise spatial behavior of pores for parts made using binder jetting AM process.  

The scientific rationale is that porosity attributes such as the number, location, size, form, and type 

of pores are intimately connected to distinctive process phenomena [4]. By tracking and quantifying 

these porosity attributes a deeper understanding of the causal process phenomena is obtained, and 

subsequently, from an offline monitoring perspective, the process parameters and design features can 

be optimized based on quantifying the layer-wise evolution of porosity formation [7, 8].  

Recent breakthroughs concerning in-situ X-Ray diffraction-based imaging of process dynamics in 

powder bed fusion additive manufacturing have been reported in Refs. [9, 10] . Despite these significant 

recent developments, quantitative methods for systematically analyzing the XCT scan images towards 

understanding the layer-wise evolution of porosity remain largely unexplored [11, 12]. Although the 

work proposed in this manuscript was focused on offline spatial modeling of porosity distribution, 

instead of online monitoring, the developed knowledge will serve as a critical foundation for closed-

loop process control as online X-Ray imaging techniques become more widely used in AM machines 
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in the near future. The work proposed in this paper lays the foundation from a data analytics perspective 

for taking advantage of these emerging in-situ X-ray imaging techniques for online analysis of porosity 

in AM.     

1.3 Hypothesis 

The central hypothesis is that the occurrence of pores is not independent, but, that there is a spatial 

correlation in the distribution of pores within each layer, and also a directional correlation in the 

distribution of pores from layer-to-layer. Hence, by modeling the correlation of porosity across 

sequential layers using the ALS-LGCP model, the occurrence of pores can be estimated within certain 

statistical confidence. This quantification is valuable for selecting the process parameter settings or 

making product design choices to reduce porosity in AM parts.  

This hypothesis is tested in Sec. 4 in the context of the copper part made using binder jetting shown 

in Figure 1. The part design and a sample part are shown in Figure 1(a) and Figure 1(b), respectively. 

The part is printed in a direction normal to the plane of the page. The XCT scanner used in the 

experiments has the resolution ~50µm. Each XCT scan roughly corresponds one actual layer (~100µm) 

by aligning the scanning direction to the printing direction. Excessive pores are observed on the XCT 

scans of the cylindrical stem, therefore, the region of interest is defined as a square area (~7mm×7mm) 

on each layer within the cylindrical stem region, as shown in Figure 1(c) and Figure 1(d), respectively. 

It is observed from Figure 1(d) that pores tend to cascade across layers and occur repeatedly in certain 

regions, which supports the hypothesis that the spatial location of pores is correlated across layers. 

The rest of the paper is structured as follows: a review of the pertinent literature is presented in Sec. 

2; the proposed ALS-LGCP is detailed in Sec. 3; further corroboration of ALS-LGCP with a numerical 

case study and application to a copper part fabricated using binder jetting is presented in Sec. 4; and 
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conclusions and avenues for further research are summarized in Sec. 5. 

 

Figure 1: (a) A schematic of the part design in millimeter units (not to scale). (b) A copper part with intricate 

features fabricated using binder jetting. (c) XCT scan image with pores on the stem of the product. (d) Sequential 

zoomed images of pores on the stem of the part in layer 16, 17, and 18. It is noticed that the pores on these 

sequential layers are dependent within and across layers.  

2. Review of the Related Research  

This review is divided into two parts: (1) background on porosity in powder-based AM processes; 

and (2) summary of the point process statistical analysis which is at the root of the ALS-LGCP approach 

used for modeling the layer-wise spatial behavior of porosity in AM.   

2.1 Background on porosity in powder-based AM processes 

Porority is a frequent and prominent defect in powder-based AM processes, namely, directed energy 

deposition (DED), laser and electron beam powder bed fusion (LPBF and EPBF), and binder jetting 

(BJ)[4]. It has a negative influence on the mechanical performance of AM parts, leading to premature 

failure, and remains an impediment to wider application of AM processes [13, 14].  

Porosity occurs typically due to: (a) the part design, (b) material properties, (c) machine-related 

errors, and (d) processing and environmental conditions [4]. For example, in powder bed fusion AM 

process, incomplete melting of particles from insufficient input energy leads to acicular pores at the 
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meso-scale (10 µm to 100 µm); while excessive energy leads to material vaporization and hence micro-

level gas pores (< 10 µm) [7, 8, 15]. In ceramic or metal parts fabricated with binder jetting, pores are 

mainly generated due to low dosing of the powder bed, i.e., insufficient amount of powder is raked 

across the powder bed [16-18]. Since the nature of porosity is contingent on its root cause, thorough 

quantification of its attributes (type, size, form, and location) is a prerequisite for process improvement.  

As a common practice, percentage porosity i.e., the percentage of pores relative to the bulk volume 

of the part, is used to quantify porosity in AM parts [13]. The porosity value is obtained by several well-

established methods, such as Archimedes’ method [19, 20], ultrasonic testing [13, 21], microscopic 

image analysis methods [22, 23], and X-ray computed tomography (XCT) [11, 24, 25]. While 

Archimedes’ method is the preferred technique for assessing porosity, it provides no spatial and 

morphological information of porosity. In contrast, microscopic analysis and XCT methods capture the 

layer cross-section information. These techniques, apart from providing a volume measurement of 

porosity, can be used to analyze the morphological features and occurrence of pores [11, 24, 25].  

The XCT method to assess porosity in AM parts provides non-destructive measurement of the 

internal morphology [11, 12, 26]. The application of XCT in AM can be traced back to the early nineties, 

when it was mainly used for reverse engineering purposes, and has gradually evolved since then as an 

established method for AM part qualification [27]. For instance, Taud et al. [28] measured overall 

percentage porosity in AM parts from XCT scans by calculating the ratio of the number of voxels 

representing pores to the number voxels representing the bulk material. Siddique et al. [11] applied 

dimensional measurements of individual pores from XCT scans in their characterization of fatigue 

performance. Likewise, Tammas-Williams et al. [12] identified areas of a part frequently afflicted with 

porosity from XCT scans by visualizing the pores in a reconstructed 3D space. However, investigation 
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of the distribution and propagation of pores within a layer and across different layers from XCT scan 

images, and the subsequent layer-wise identification of areas where pores are liable to occur, remain an 

open research problem.  

As mentioned previously, two recent breakthroughs [9, 10] have been reported in online X-Ray 

imaging of laser powder bed fusion AM process. These works are primarily concerned with imaging 

the material phase transformations and meltpool solidification dynamics. Nonetheless, offline analysis 

of porosity in AM parts using digital image analysis of XCT scans is an actively research areas spanning 

national labs and industry [29]. However, the modeling framework proposed in this work is not merely 

restricted for analyzing the degree of porosity, but predicting their evolution. This knoweldge will serve 

as a critical foundation for closed-loop process control as online X-Ray imaging techniques become 

more widely used in AM machines in the near future. 

2.2 Summary of point process analysis  

This paper proposes a novel approach based on point process analysis to quantify porosity in AM 

parts from XCT scan images. As a component of spatial statistics, point process analysis aims to 

investigate the distribution-related characteristics and mutual dependence of events occurring within a 

defined region of interest [30, 31]. More specifically, point processes use dimensionless points to 

capture the number and the locations of events within a region of interest through a stochastic intensity 

function [30, 31].  

Examples of point processes are common in the natural sciences, such as ecology and 

epidemiology [32, 33]. For instance, the spread of certain tree species (as events) in a forest (as the 

region of interest) [32]. The use of point process analysis has recently gained traction in manufacturing. 

For instance, Zhou et al. [34] used point process analysis to explain the clustering phenomena of 
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particles in the manufacture of nanocomposites. Likewise, Dong et al. [35] invoked point process 

modeling to quantify the mixing of nanoparticles within composite materials. However, the application 

of point process analysis for modeling porosity in AM remains unexplored. 

Among point processes, spatiotemporal log Gaussian Cox process (ST-LGCP) is a hierarchical 

modeling approach [36, 37] which incorporates an additional dimension (i.e. time) to the spatial analysis 

in the 2D space. ST-LGCP models capture complex spatial heterogeneity and temporal correlation 

among events through a nonparametric intensity function that encapsulates a random process in space-

time. It is the latest embodiment in spatiotemporal point process analysis and has been widely applied 

into different applications with historical data of event occurrence. For instance, in healthcare, research 

of spatiotemporal analysis with LGCP progresses for disease surveillance and control by modeling the 

spreading of different diseases along space and time [38-40]; in crime oversight, ST-LGCP 

methodology quantifies the risks with the correlation of contagion and history from the crime data and 

security data [41]; in natural disaster prevention, e.g. wild fires [42], earthquakes [43], the risk areas are 

located from the spatiotemporal pattern of the nature disasters learned from historical data. 

If applied in modeling layer-wise porosity for AM parts with the time dimension representing the 

layer-wise direction, a prominent aspect of ST-LGCP is that it reduces events within the region of 

interest to dimensionless points by disregarding the morphological aspects (form and size) of the events. 

Accordingly, ST-LGCP introduces a bias which is magnified in the modeling of porosity in AM, because, 

pores in AM parts have different sizes and shapes contingent on the causal process phenomena. For 

example, in powder bed fusion, gas pores which are largely spherical occur at the micro-scale (< 10 

µm), while elongated acicular pores occur at the meso-scale (10 µm to 100 µm) [3]. Disregarding the 

effect of pore morphology (size and form) is therefore not physically tenable and will inevitably lead to 
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inaccurate quantification of porosity [35].  

In this paper, the framework of ST-LGCP is further improved to incorporate the pore morphology 

in the modeling from the selected XCT scans, consequently, an augmented layer-wise spatial log 

Gaussian Cox process (ALS-LGCP) is developed to investigate the layer-wise evolution of pores and 

predict the porosity-prone areas on the different layers in AM parts. The LS-LGC framework proposed 

in this work overcomes this inherent morphology-related limitation of ST-LGCP by formulating the 

sequential spatial distribution of pores on different layers through an augmented point pattern that 

considers the morphological features (size and form) of pores.  

3. Proposed Research Methodology 

The framework of the overall research methodology is summarized in Figure 2. The proposed ALS-

LGCP methodology for layer-wise porosity modeling includes four basic steps:  

Step 1 (Sec. 3.2): Pores on each XCT scan image (i.e., a layer) are represented by augmented point 

patterns.   

Step 2 (Sec. 3.3 and Sec. 3.4): ALS-LGCP is formulated for sequential spatial analysis on layer-wise 

porosity.  

Step 3 (Sec. 3.5): Parameters for ALS-LGCP are estimated using the Metropolis-Adjusted Langevin 

algorithm (MALA). 

Step 4 (Sec. 3.6) Validation of ALS-LGCP is implemented by extrapolating porosity-prone areas on 

next layer.  



10 

 

 

Figure 2: Overall methodology of ALS-LGCP for layer-wise porosity modeling and prediction. 

 Key notations that appear in the following sections are summarized in Table 1.  

Table 1: Nomenclature and notations used in this work. 

𝑾 The region of interest, 𝑾 ⊆ ℝ𝑑  

𝒖 Spatial location of a pore, 𝒖 ∈ 𝑾 

𝒓 Morphology of a pore, defined as a matrix representing the circumscribed rectangle of 

a pore, with element equal to 1 if the corresponding pixel belongs to the pore.  

𝑡 Layer number of the sequential images of an AM part, 𝑡 ∈ [1, T], T is the total layer 

number 

𝑛𝑡 Number of the pores in an augmented point pattern on layer 𝑡 

𝒁𝑡 Augmented point pattern in the region of interest 𝑾  on layer 𝑡  with 𝑛𝑡  pores at 

locations 𝒖1, 𝒖2, … , 𝒖𝑛𝑡
 

𝒀𝑡 A realization from the Gaussian process in ALS-LGCP on layer 𝑡 

𝐗 Covariate of the realization in the Gaussian process 

𝜷 Parameters for the covariates in the Gaussian process 

𝐶𝒀 Covariance function in the Gaussian process 

𝜎2 Variance parameter in the covariance matrix for the Gaussian process 

𝜙 Spatial scale parameter in the covariance matrix for the Gaussian process 

𝜃 Layer-wise directional scale parameter in the covariance matrix for the Gaussian 

process 

𝜦𝑡 Intensity function for the augmented point patterns in ALS-LGCP on layer 𝑡 

f�̅� Average severity parameter representing the average size of the points within the region 

of interest 𝑾 on layer 𝑡 

D𝑖,𝑗 The (i, j) cell in the discretization over the region of interest 𝑾 

M The number of rows (or columns) in the discretized region of interest  
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�̃�𝑡 Discretized point pattern on layer 𝑡, restructured as a M × M vector, with elements 

�̃�(𝑖,𝑗),𝑡 in cell D𝑖,𝑗 

�̃�𝑡 Discretized random realization from the Gaussian process in ALS-LGCP on layer 𝑡, 

restructured as a M × M vector, with elements �̃�(𝑖,𝑗),𝑡 in cell D𝑖,𝑗 

3.1 Introduction to spatiotemporal log Gaussian Cox process (ST-LGCP) modeling 

ST-LGCP is defined as a hierarchical model, the first-level of which is a Gaussian process (GP) that 

accommodates a nonparametric intensity function 𝜦𝑡 , where 𝑡  is an AM part layer and 𝒀𝑡   is a 

realization from the GP [36, 37].  

𝜦𝑡 = exp(𝒀𝑡) (1) 

𝒀𝑡~GP(𝐗′𝜷, 𝐶𝒀) (2) 

where mean E(𝒀𝑡) = 𝐗′𝜷, 𝐗 is the covariate of the realization 𝒀𝑡  (𝑡 = 1, … , T), T is the number of 

layers, 𝜷 is the parameter for the covariates. The covariance function 𝐶𝒀 is typically represented as a 

distance-based kernel function with an assumption that shorter distances result in higher correlations. 

The radial basis function is a popular choice due to its compact form, involving only three parameters, 

namely, variance (𝜎2), spatial scale parameter (𝜙) and temporal scale parameter (𝜃). Accordingly, a 

separable spatiotemporal covariance function can be written as follows [30], 

𝐶𝒀((𝒖, 𝑡), (𝒔, 𝑣)) = cov[𝑌𝑡(𝒖), 𝑌𝑣(𝒔)] = 𝜎2 exp (−
‖𝒖 − 𝒔‖

𝜙
) exp (−

|𝑡 − 𝑣|

𝜃
) (3) 

where 𝒖 and 𝒔 are two locations within the region of interest 𝑾 on the layers 𝑡 and 𝑣 of XCT scan 

images, respectively, (𝒖, 𝑡) ∈ 𝑾 × [1, T], (𝒔, 𝑣) ∈ 𝑾 × [1, T]. 

In the second-level of ST-LGCP, a spatiotemporal point process 𝒁𝑡 is used to model the point 

pattern data on layer 𝑡. Conditional on the intensity function 𝜦𝑡 from the first level formulated by Eq. 

(1), the spatiotemporal point process 𝒁𝑡 for the layer-wise porosity modeling is an inhomogeneous 

Poisson process on the layer 𝑡,    

𝒁𝑡 ~ Possion[𝜦𝑡] (4) 
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with the expected number of pores on the layer 𝑡 image as, 

E[𝑛𝑡|𝜦𝑡] = ∫ 𝛬𝑡(𝒖)𝑑𝒖
𝒖∈𝑾

, (5) 

3.2 Data representation by augmented point pattern 

Before proceeding to the details of the proposed ALS-LGCP, augmented point pattern and average 

severity parameter are defined.  

Definition 1 (Augmented point pattern): An augmented point pattern is a set of spatial pairs 

{(𝒖𝑖, 𝒓𝑖) ∶ 𝑖 = 1, ⋯ , 𝑛} depicting the pore 𝑖 in a region of interest 𝑾 with its centroid coordinate 𝒖𝑖 

and its morphology 𝒓𝑖. 𝑛 is the number of pores in the region of interest 𝑾. 

The morphology 𝒓𝑖 could take different formats to describe the morphological features of the pore, 

such as the size and the form. In this work, 𝒓𝑖 is defined as a matrix representing the circumscribed 

rectangle of a pore, with element equal to 1 if the corresponding pixel belongs to the pore.   

Figure 3 illustrates the use of augmented point pattern for a XCT scan from an AM part. While the 

XCT scan is a RGB image (Figure 3(a)), the augmented point pattern in Figure 3(b) represents a set of 

spatial pairs. To illustrate, a pore demarcated in Figure 3(b) is represented by a spatial pair (𝒖, 𝒓) in the 

augmented point pattern, where location 𝒖 is the centroid coordinate of the pore 𝒖 = (29, 36), and 

morphology of the pore is translated as a matrix 𝒓.  Since the augmented point pattern has the 

morphological features (e.g., size and form) of pores, an average severity parameter is defined to 

quantify the detrimental impact of pores. 
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Figure 3: (a) An XCT scan image from a metal part manufactured by binder jetting. Pores are shown as dark spots 

in this RGB image (150×150 pixels). (b) The visualization of augmented point pattern for this XCT scan. Pores 

are represented by a set of spatial pairs with location and morphology. The pore in the circle occupies five pixels, 

and hence the information of its size and form is captured.   

Definition 2 (Average severity parameter): An average severity parameter f ̅ is defined as the 

average size (number of pixels) of all the pores within a region of interest 𝑾 ⊂ ℝ𝑑 on a layer. It is 

calculated from an augmented point pattern {(𝒖𝑖, 𝒓𝑖) ∶ 𝑖 = 1, ⋯ , 𝑛} as, 

f̅ =
1

𝑛
∑ 𝒆R

T

𝑛

𝑖=1

𝒓𝑖𝒆C 
(6) 

where 𝒆C and 𝒆R are all-ones column vectors with lengths equal to the column number (𝑛C) and row 

number (𝑛R) of morphology 𝒓𝑖, respectively. According to this definition, larger pores on a layer lead 

to higher average severity parameter, which is in alignment with practical observations [44].  

It is noted that the calculation of average severity parameter transforms the morphology matrix 𝒓 

into the severity number. The severity numbers preserve the important size information of different 

pores, but it loses the information about the form of pores. In current applications with XCT scans of a 

binder jetted part as shown in Figure 1, the form of pores is not a differentiating factor due to their small 

size. Therefore, representing pore morphology with severity number in ALS-LGCP simplifies the 

computation and works sufficiently under current conditions. How to factor the form of pores in ALS-

LGCP modeling will be investigated in future work for AM parts with larger pores.  

  When representing pores on the XCT scans as the augmented point patterns, they are generated 

from an inhomogeneous Poisson process conditional on a varying intensity function across the region 

of interest. For instance, the empirical estimate of the intensity function for the XCT scan of a binder 

jetted part (in Figure 4 (a)), calculated by using kernel method [31], is shown in in Figure 4 (b). The 

continuity of the estimated intensity function implies that the adjacent areas would have highly-

correlated intensities. By using variogram [31], calculated empirical spatial correlation for the intensity 
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function in Figure 4 (c) further verifies the correlation depends on the distance. Therefore, in ALS-

LGCP, a Gaussian process with a distance-based covariance is used to represent the intensity function 

of the augmented point patterns.  

 

Figure 4: (a) An XCT scan image from a metal part manufactured by binder jetting as in Figure 3. Pores are 

shown as dark spots in this RGB image (150×150 pixels). (b) The empirical estimate of the intensity function 

obtained for the point pattern in (a) is continuous in the region of interest. (c) Empirical spatial correlation 

estimated from variogram shows the correlation decrease with the increase of distance. 

3.3 Augmented Layer-wise spatial log Gaussian Cox process (ALS-LGCP) 

The ALS-LGCP is defined as a hierarchical model; the first-level is to model the intensity function, 

which depicts the distribution-related characteristics in the augmented point pattern; the second-level is 

to model the augmented point pattern of pores.  

In the first-level of ALS-LGCP, a Gaussian process (GP) is used to accommodate the complex form 

of a intensity function 𝜦𝑡 for the augmented point pattern on the layer 𝑡 in a nonparametric manner 

with its realization 𝒀𝑡  [36, 37]. The intensity function 𝜦𝑡 can be calculated via a realization 𝒀𝑡 on 

the layer 𝑡 as,  

𝜦𝑡 =
exp(𝒀𝑡)

f�̅�

 (7) 

where f�̅�  is the average severity parameter for the layer 𝑡  (see Definition 2), which denotes the 

average size of the pores on this layer. 

In the second-level of ALS-LGCP, a layer-wise spatial point process 𝒁𝑡 on the layer 𝑡 is used to 

model the augmented point pattern data. Conditional on the intensity function 𝜦𝑡 from the first-level 
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formulated by Eq. (7), the spatial point process 𝒁𝑡  for the layer-wise porosity modeling is an 

inhomogeneous Poison process on the layer 𝑡,    

𝒁𝑡 ~ Possion[𝜦𝑡] (8) 

with the expected number of pores on the layer 𝑡 image as, 

E[𝑛𝑡|𝜦𝑡] = ∫ 𝛬𝑡(𝒖)𝑑𝒖
𝒖∈𝑾

=
∫ exp(𝑌𝑡(𝒖))𝑑𝒖

𝒖∈𝑾

f�̅�

 (9) 

3.4 Discretization of augmented layer-wise spatial log Gaussian Cox process (ALS-LGCP) 

The proposed ALS-LGCP approach uses a Gaussian process to model the complex intensity 

function of augmented point patterns in a nonparametric manner. Despite its flexibility, the Gaussian 

process poses a computational challenge in spatial analysis for layer-wise porosity. Since the dimension 

of its realization 𝒀𝑡 as shown in Eq. (2) for layer 𝑡 (𝑡 = 1, ⋯ , T) depends on the number of pores on 

the particular layer, the computational complexity in tracking the pores across layers becomes untenable. 

To overcome this difficulty, the XCT scan images are discretized into cells [45, 46].   

Discretizing a region of interest (e.g. a unit square) with M × M cells as shown in Figure 5. The 

cell on the row 𝑖  and column 𝑗  is represented as D𝑖,𝑗 = [
𝑖−1

M
,

𝑖

M
] × [

𝑗−1

M
,

𝑗

M
] , (𝑖 = 1,2, … , M, 𝑗 =

1,2, … , M), with the centroid �̃�𝑖,𝑗 = (
2𝑖−1

M
,

2𝑗−1

M
). With discretization, the observed point pattern 𝒁𝑡 

within the region of interest on layer 𝑡 is translated into an M × M matrix, in which each element 

�̃�(𝑖,𝑗),𝑡 (𝑖 = 1,2, … , M, 𝑗 = 1,2, … M) represents the number of non-zero pixels from a certain pore in 

cell D𝑖,𝑗 . The M × M  matrix can be reshaped as a vector �̃�𝑡 . In the same vein, the realization of 

Gaussian process 𝒀𝑡  is discretized to a M × M  matrix with elements �̃�(𝑖,𝑗),𝑡  (𝑖 = 1,2, … , M, 𝑗 =

1,2, … , M) , and then reshaped into a vector of a multivariate Gaussian random variable  �̃�𝑡 . The 

discretization facilitates the subsequent computation by making both �̃�𝑡  and �̃�𝑡  on all the layers 

(𝑡 = 1, ⋯ , T)  have the same dimension (M × M ). The choice of discretization is contingent on the 
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smoothness of the realizations of the Gaussian process. 

 

Figure 5: (a) An XCT scan image from a metal part manufactured by binder jetting. (b) The visualization of 

augmented point pattern for this XCT scan. A pore in the circle has five pixels, and hence the information of its 

size and form is captured by such a form of data representation. (c) After the discretization, the pore enclosed by 

the circle occupies two cells (D12,9 and D12,10), therefore, is represented by the discrete format of augmented 

point pattern (𝑍(12,9) = 1 and 𝑍(12,10) = 4). 

Due to discretization, a pore can occupy more than one cell depending on its size and form, in such 

a case it will be represented by the numbers of pixels in these cells together. That is, if a pore occupies 

two neighboring cells D𝑖,𝑗  and D𝑖,𝑗+1  on layer 𝑡 , then �̃�(𝑖,𝑗),𝑡  and �̃�(𝑖,𝑗+1),𝑡  are used together to 

represent this pore. For instance, the augmented point pattern in Figure 5(b) is discretized with 38 × 38 

cells with each cell including 16 pixels (Figure 5(c)), the pore {𝒖 = (29, 36), 𝒓 = [
1 1 1
0 1 1

]} occupies 

two cells D12,9 and D12,10, and is represented by the number of pixels of the pore in these two cells 

together (one pixel and four pixels in these two cells, respectively, in this example), thus, assigning 

�̃�(12,9) = 1 and �̃�(12,10) = 4.  

In the discretized ALS-LGCP for pore modeling, an exponential kernel is used to depicting 

correlation among random variables (e.g., �̃�(𝑖,𝑗),𝑡 and �̃�(𝑖,𝑗+1),𝑡, (𝑡 = 1, … , T)) in the latent Gaussian 

distribution representing cells D𝑖,𝑗 and D𝑖,𝑗+1from XCT scans of AM parts. This leads to the following 

discretized format of ALS-LGCP model. The Gaussian process at the first-level is approximated by 

multivariate Gaussian distribution ℕ(∙): 

�̃�𝑡~ℕ(�̃�′𝜷, 𝐶�̃�) (10) 



17 

 

where �̃�  is the covariates of �̃�𝑡  on layer 𝑡 (𝑡 = 1, … , T)  in the discretized format of ALS-LGCP 

model, and a separable layer-wise spatial covariance function is defined as 

𝐶�̃� ((�̃�𝑖,𝑗, 𝑡), (�̃�𝑖′,𝑗′ , 𝑡′)) = cov[�̃�(𝑖,𝑗),𝑡, �̃�(𝑖′,𝑗′),𝑡′]

= 𝜎2 exp (−
‖�̃�𝑖,𝑗 − �̃�𝑖′,𝑗′‖

𝜙
) exp (−

|𝑡 − 𝑡′|

𝜃
) 

(11) 

where (𝑖, 𝑗)  and (𝑖′, 𝑗′)  are the indices of cells occupied by pores (𝑖, 𝑖′ = 1,2, … , M, 𝑗, 𝑗′ =

1,2, … , M)  on the layer 𝑡  and the layer 𝑡′  respectively (𝑡, 𝑡′ ∈ [1, T]) . Denote 𝜂 = {𝜎2, 𝜙, 𝜃}  for 

notation simplicity in the MCMC algorithm in Sec. 3.5.  

A spatial point process �̃�𝑡 for layer 𝑡 is at the second-level with the intensity function  

�̃�𝑡 =
exp(�̃�𝑡)

f�̅�

 (12) 

where f�̅� is the average severity from Eq. (6) on layer 𝑡, which is estimated as the ratio between the 

number of pixels in pores and the number of pores (�̂�𝑡) on layer 𝑡: 

f�̅� ≈
1

�̂�𝑡
∑ ∑ �̃�(𝑖,𝑗),𝑡

𝑀

𝑗=1

𝑀

𝑖=1

 (13) 

Conditional on the intensity function �̃�𝑡, the spatial point process �̃�𝑡 on layer 𝑡 is expressed as 

an inhomogeneous Poisson point process as follows, 

�̃�𝑡  ~ Possion[�̃�𝑡] (14) 

and the expected number of pores in region 𝑾 is calculated as 

E[𝑛𝑡|�̃�𝑡] ≅ ∑ ∑ �̃�(𝑖,𝑗),𝑡

M

𝑗=1

M

𝑖=1

∗ CA (15) 

where �̃�(𝑖,𝑗),𝑡 is the Poisson rate in the cell D𝑖,𝑗at layer 𝑡, and CA is the cell area in terms of pixels. 

3.5 Parameter estimation in ALS-LGCP 

Bayesian estimation is used to obtain the posterior distribution of the parameters from the prior 

belief functions of parameters and the observed augmented point patterns. This leads to a way for 
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estimating parameters in ALS-LGCP, which includes the parameters (𝜂, 𝜷) of the Gaussian process and 

the random process �̃�𝑡 (used for predicting the intensity function �̃�𝑡 in the region of interest) in Eqs. 

(10) - (12) [45, 46].  

Through layer-wise spatial discretization, the likelihood function of the augmented point patterns 

(to layer 𝑡 ) π(�̃�1, … , �̃�𝑡|𝜂, 𝜷, �̃�𝑡)  and the priors π(𝜂, 𝜷, �̃�𝑡)  are obtained from finite dimensional 

distributions over the region of interest, enabling parameter estimation for the Gaussian process (𝜂, 𝜷) 

and prediction for the random process �̃�𝑡 in a Bayesian framework.  

π(𝜂, 𝜷, �̃�𝑡|�̃�1, … , �̃�𝑡) ∝ π(�̃�1, … , �̃�𝑡|𝜂, 𝜷, �̃�𝑡)π(𝜂, 𝜷, �̃�𝑡)

= π(�̃�1, … , �̃�𝑡|𝜂, 𝜷, �̃�𝑡)π(𝜂)π(𝜷)π(�̃�𝑡) 

(16) 

Accordingly, π(�̃�𝑡) is the corresponding finite dimensional Gaussian distribution on layer 𝑡, and 

the likelihood function π(�̃�1, … , �̃�𝑡|𝜂, 𝜷, �̃�𝑡) is a joint distribution of multiple Poisson distributions in 

the cells up to layer 𝑡. π(𝜂) and π(𝜷) are Gaussian distributions with mean and variance set as the 

estimated values from minimum contrast parameter estimation [46]. Consequently, the posterior 

distribution π(�̃�𝑡|�̃�1, … , �̃�𝑡) can be obtained by marginalizing 𝜂 amd 𝜷 in Eq. (16) [46].  

A Metropolis-adjusted Langevin algorithm (MALA), a Markov chain Monte Carlo approach, is 

used to obtain sample-based estimate for the posterior distributions where the target distribution 

π(𝜂, 𝜷, �̃�𝑡|�̃�1, … , �̃�𝑡)  is approximated by sequential samples  {𝜂(𝑗), 𝜷(𝑗), �̃�𝑡
(𝑗)

} 𝑗=1
𝑁  from a Markov 

chain whose stationary distribution is the target [47, 48]. The design of the proposed density q herein 

is a mix of random walk and Langevin kernels. It is used to exploit the gradient information on the 

target to help guide movements towards areas of higher posterior probability [49]. The samples are 

drawn from the proposal density q and are accepted in a probabilistic way. For instance, in the jth step 

of the algorithm, a candidate {𝜂∗, 𝜷∗, �̃�∗}  is drawn from the proposal density 
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q(𝜂∗, 𝛽∗, �̃�∗|𝜂(𝑗−1), 𝛽(𝑗−1), �̃�(𝑗−1))  and accepting it as the jth sample, i.e., setting 

{𝜂(𝑗), 𝛽(𝑗), �̃�(𝑗)}={𝜂∗, 𝛽∗, �̃�∗}, with probability 

min {1,
π(𝜂∗, 𝜷∗, �̃�𝑡

∗|�̃�1, … , �̃�𝑡)

π (𝜂(𝑗−1), 𝜷(𝑗−1), �̃�𝑡
(𝑗−1)

|�̃�1, … , �̃�𝑡)
 
q (𝜂(𝑗−1), 𝜷(𝑗−1), �̃�𝑡

(𝑗−1)
|𝜂∗, 𝜷∗, �̃�𝑡

∗)

q (𝜂∗, 𝜷∗, �̃�𝑡
∗|𝜂(𝑗−1), 𝜷(𝑗−1), �̃�𝑡

(𝑗−1)
)

} (17) 

3.6 Validation of spatial porosity modeling across layers in ALS-LGCP 

The validation of the layer-wise spatial porosity modeling with ALS-LGCP is implemented by 

choosing the next layer as the test dataset and predicting the pore-prone areas on the next layer. High 

prediction accuracy of porosity on the next layer would indicate the spatial dependence among 

consecutive layers are captured by the ALS-LGCP model. The one-layer prediction is also an illustration 

of the extrapolation capability of ALS-LGCP.  

Represented in cells, the motive of the validation procedure here is to predict the multivariate 

Gaussian distribution of �̃�T+1  given the observed data {�̃�1, … , �̃�T}  up to layer T  as in 

π(�̃�T+1|�̃�1, … , �̃�T) , and consequently estimate the intensity function of observed augmented point 

patterns �̃�T+1 with the mean of �̃�T+1  [45, 46]. A practical approach is to adopt recent observed data 

{�̃�T−L, … , �̃�T}, (L is a user-defined lag parameter), which have a bigger impact on the next observations, 

to predict the distribution π(�̃�T+1|�̃�T−L, … , �̃�T) [36]. The conditional independence properties of the 

model imply π(�̃�T+1|�̃�T−L, … , �̃�T) follows a multivariate normal distribution with mean 

E(�̃�T+1|�̃�T−L, … , �̃�T) = 𝜉E(�̃�T|�̃�T−L, … , �̃�T) + (1 − 𝜉)�̃�′𝜷 (18) 

and variance, 

var(�̃�T+1|�̃�T−L, … , �̃�T) = 𝜉2var(�̃�T|�̃�T−L, … , �̃�T) + (1 − 𝜉)2𝐶�̃� (19) 

where 𝜉 = exp(−𝜃) represents the sequential evolution of porosity across layers; π(�̃�T|�̃�T−L, … , �̃�T), 

viz., the distribution of �̃�T, can be estimated from Eq. (16) by MALA in Sec. 3.5.  

 The prediction of average severity on layer T + 1  ( fT̅+1
′ ) is obtained by exponential 
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smoothing[30], from (20) as follows with weight 𝛼, 

fT̅+1
′ = 𝛼fT̅

′ + (1 − 𝛼)fT̅ (20) 

Finally, the predicted intensity function in the region of interest is calculated from (18) as follows,  

�̃�T+1 =
exp (E(�̃�T+1|�̃�T−L, … , �̃�T))

fT̅+1
′

 (21) 

The predicted intensity function indicates the potential for pores to occur within the region of 

interest based on the information from previous layers. High intensity at certain locations suggests high 

probability of the occurrence of pores at those locations. It is utilized to characterize the spatial 

distribution of pores on the next layer and predict the high-risk areas prone to the occurrence of pores. 

By comparing the predicted porosity with the actual porosity on the next layer, the effectiveness of 

ALS-LGCP in characterizing the spatial correlation among pores on sequential layers and modeling the 

layer-wise spatial evolution of porosity is validated.  

4. Application of ALS-LGCP for Layer-wise Porosity Modeling  

In this section, the proposed ALS-LGCP is first illustrated with numerically generated sequences 

of pores, and subsequently, applied to a metal part fabricated using binder jetting AM process. The aim 

is to model the layer-wise spatial evolution of porosity and identify the high-risk areas in an AM part 

based on the estimated porosity distribution. In comparison, the spatiotemporal log Gaussian Cox 

process (ST-LGCP) [36] is also applied for this new application of layer-wise porosity modeling in AM 

part.   

 The validation results are compared with another benchmark method in terms of the statistical 

fidelity (F-score). The benchmark method employed is an empirical approach, applied by Tammas-

Williams et al. [12], which directly uses all the pores on previous layer images for prediction and defines 
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the areas with pores on existing layers as the high-risk areas on the next layer.  

4.1 Layer-wise spatial analysis for numerically simulated porosity data  

Five sets of data with layer-wise spatially correlated pores are numerically generated from the 

model using Eqs. (7) - (8), where the spatial scale parameter (𝜙)  and layer-wise directional scale 

parameter (𝜃) determine the correlations among the simulated pores, and the variance (𝜎2) regulates 

the dispersion of the pores within the region of interest and across different layers. These data are 

simulated with the approximated parameters obtained from XCT scans of the binder jetted copper part 

as shown in Figure 1. Specifically, method of minimum contrast [30] is used to estimate variance and 

spatial scale parameters for all the layers, the means of which are then chosen as the variance (𝜎2 = 4) 

and the spatial scale parameter (𝜙 = 10) for the simulated data. In addition, the layer-wise directional 

scale parameter (𝜃) is estimated by method of minimum contrast [30] too with value (𝜃 = 10). One 

such set of the sequential images generated numerically is shown in Figure 6.  

In the simulation, the ALS-LGCP model is trained with four layers to learn the layer-wise spatial 

evolution of porosity, and is validated by predicting the high-risk areas with occurrence of pores on the 

fifth layer based on the previous four layers. The reason for choosing the previous four layers is due to 

the gradual decrease in the layer-wise directional correlation between layers. The layer-wise directional 

correlation between layer 1 and the fifth layer in this study is decreased to ~ 0.6.   

 

Figure 6: Representative simulation data as sequential images. The aim is to predict the high-risk areas with 

occurrence of pores on the fifth layer based on the previous four layers. 

ALS-LGCP is used to model the obtained augmented point patterns from the simulated data in 
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Figure 6. Using Metropolis-adjusted Langevin algorithm (MALA), 5000 iterations of sampling are 

implemented for ALS-LGCP with the first 1000 iterations as burn-in period. The model converges 

swiftly after the burn-in period. The parameter estimates (variance 𝜎2 , spatial scale parameter 𝜙 , 

layer-wise directional scale parameter 𝜃) by using ALS-LGCP are summarized in  

Table 2, from which the parameters estimated by ALS-LGCP are within 8% of their true values.  

Table 2: Parameter estimates (variance 𝜎2, spatial scale parameter 𝜙, layer-wise directional scale parameter 𝜃 

in Eq. (11)) using the proposed ALS-LGCP. The numbers in parenthesis are the standard deviation of the estimates 

(4000 iterations in MALA).    

Parameter notations in the 

layer-wise spatial model 
 𝜎2  𝜙  𝜃 

True values of parameters 

for simulated data (Figure 6) 
 4  10  10 

Parameter estimates using 

LS- LGCP  
 

3.750 

(0.730) 
 

9.246  

(0.669) 
 

10.781  

(2.897) 

Relative error between the 

estimates and the true values  
 6.25%  7.54%  7.81% 

With a separable covariance structure in ALS-LGCP, the spatial covariance among the pores within 

a layer are shown in Figure 7(a), whereas the layer-wise directional correlation among the pores across 

layers are shown in Figure 7(b). It is noted that both spatial correlation and layer-wise directional 

correlation decreases with the increasing distance within a layer and with progressive layers. Moreover, 

the predicted intensity function in the region of interest for the fifth layer using ALS-LGCP is shown in 

Figure 7(c), which indicates areas prone to porosity and their corresponding severity.  

 

Figure 7: In the context of the simulated data in Figure 6, (a) spatial covariance of the pores along the distance, 
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(b) layer-wise directional correlation of the pores among sequential layers, and (c) the predicted intensity function 

in the region of interest for the fifth layer.  

The statistical accuracy of ALS-LGCP and ST-LGCP in predicting the porosity-prone areas in the 

next layers is compared with the empirical approach used by Tammas-Williams et al. [12]. The 

implementation of the empirical approach for identifying high-risk areas includes three major steps: (i) 

Represent each layer as a binary-value matrix with value 1 at pixels of pores and value 0 otherwise; (ii) 

Stack the previous layers (previous four layers in this case) to from the prediction layer, a corresponding 

matrix of which is calculated by the total counts of the overlapped pore pixels from previous layers; (iii) 

Normalize this prediction matrix to 0-1 scale values, indicating the probabilities of the occurrence of 

pores at all the pixels. As a result, the identified high-risk areas by the three approaches are juxtaposed 

in Figure 8. The empirical approach overestimates the occurrence of pores by identifying overly 

segmented high-risk areas (Figure 8(b)); ST-LGCP underestimates the high-risk areas (Figure 8(c)); and 

in contrast, ALS-LGCP marks several relatively large and contiguous areas (Figure 8(d)).  

 
Figure 8: (a) The porosity distribution of the fifth layer; (b) overly segmented high-risk areas identified by the 

empirical approach (benchmark method); (c) small high-risk areas identified by ST-LGCP; and (d) relatively large 

and continuous high-risk areas identified by the proposed ALS-LGCP.  

A statistical measure, F-score (a combination of precision and sensitivity), is used to quantify the 

accuracy of the three methods in predicting the porosity-prone areas on the next layer [50]. In this 

context, precision represents the percentage of real pores among the predicted ones, and sensitivity 

indicates the percentage of real pores correctly identified. Precision and sensitivity are analogous and 

inversely related to the Type I and Type II statistical errors, respectively. Active cell and inactive cell 
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are defined to calculate F-score in the discretization of ALS-LGCP. 

Definition 3 (Active cell and inactive cell): An active cell, is a cell in the discretized region of 

interest that is occupied by the predicted pores with high probability; On the contrary, an inactive cell 

is deemed as the cell not occupied by the predicted pores.  The following three steps are used to 

estimate the F-score:  

1) Normalize the predicted intensity in the region of interest �̃�T+1  in Eq. (21) into cell-wise 

probability of the occurrence of pores 

2) Threshold the cell-wise probability by setting the probability to zero if it is smaller than the 

threshold for an inactive cell or keeping the probability value if it is larger than the threshold for an 

active cell. 

3) Categorize the region within active cells as predicted pores, and the region within inactive cells as 

the prediction of normal condition.  

With these F-score can be calculated as,  

Precision =
areas of actual 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 within the predicted 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

total areas of predicted 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠
 

Sensitivity =
areas of actual 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 within the predicted 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

total areas of actual 𝑎𝑐𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠
 

F − score = 2 ×
Precision × Sensitivity

Precision + Sensitivity
. 

(22) 

It is noted that since the empirical approach does not generate an intensity function, probability of 

one is assigned to those cells with pores from previous layers, and probability of zero to the cells 

without pores from previous layers in the first step above. The F-score results for the total five sets of 

simulated sequential images are summarized in Table 3, from which it is evident that ALS-LGCP has 

the highest F-score in predicting high-risk areas on the next layer. The high precision and sensitivity of 
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ALS-LGCP substantiates the need for incorporating the pore size into modeling. In contrast, ST-LGCP, 

which ignores the pore size has low sensitivity, and in turn has a tendency to underestimate the porosity-

prone areas. The empirical approach has very low precision, because it ignores the layer-wise spatial 

correlation among pores and thereby overestimates the high-risk areas. Therefore, ALS-LGCP 

overcomes the challenges with both existing approaches. 

Table 3: F-score results for five sets of simulated data – Comparison of the empirical approach, ST-LGCP, and 

ALS-LGCP (The values in the parenthesis are the standard deviation for five replications). 

 Empirical approach  ST-LGCP   ALS-LGCP 

Precision 

 

0.68 (0.147)  0.79 (0.085)  0.81 (0.106) 

Sensitivity 0.96 (0.037)  0.77 (0.143)  0.98 (0.019) 

F-score 0.79 (0.084)  0.76 (0.042)   0.89 (0.046) 

A hypothesis test regarding whether the differences among the F-scores of the three 

aforementioned approaches are significant or not can be stated as:  

𝐻0: F-score(Empirical approach) = F-score(ST-LGCP) = F-score(ALS-LGCP) 

𝐻1: Not all the F-scores are the same 

Table 4 shows the output of the ANOVA analysis that there is a statistically significant difference 

in the F-scores of the three approaches for predicting the high-risk areas of pores on a layer with the 

significance value is 0.0058 (i.e., 𝑝 = 0.0058), which is below the predetermined significance level of 

the test (i.e., α = 0.05).  

Table 4: ANOVA for comparing the empirical approach, ST-LGCP, and ALS-LGCP in terms of F-scores on five 

sets of simulated data. The significance level of the test is preset as α = 0.05.  

 
Degree of 

freedom 

Sum of 

squares 

Mean 

Square 
F p-value 

Approaches 2 0.0554 0.0277 8.177 0.0058 

Errors 12 0.0407 0.0034   

Total 14      
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In order to explore the difference among the specific approaches, multiple comparison with Tukey’s 

pairwise comparison test is implemented here, and the outcomes from Table 5 show that ALS-LGCP 

significantly outperforms both the empirical approach (with 𝑝 = 0.0097) and ST-LGCP (with 𝑝 = 

0.0132) in terms of F-scores.  

Table 5: Multiple comparison with Tukey post hoc test for the empirical approach, ST-LGCP, and ALS-LGCP in 

terms of F-scores. The significance level of the test is preset as 𝛼 = 0.05.  

(I) Approach (J) Approach 
Mean Difference 

(I) - (J) 

95% confidence level 
p-value 

Lower bound Upper bound 

ST-LGCP Empirical approach 0.0063 -0.0912 0.1045 0.9842 

ALS-LGCP Empirical approach 0.1320 0.0337  0.2302 0.0097 

ALS-LGCP ST-LGCP 0.1257 0.0275 0.2240 0.0132 

4.2 Application of ALS-LGCP for prediction of porosity in binder jetted parts  

In this case study, the effectiveness of ALS-LGCP in modeling layer-wise spatial evolution of 

porosity is verified with a copper part (Figure 1) made on the authors’ binder jetting machine (ExOne 

R2). Binder jetting is an additive manufacturing process in which a liquid bonding agent is selectively 

deposited to join powder materials [51]. As shown in Figure 9, the jetted binder droplets interact with 

the powder particles to form primitives that stitch together to form a cross-sectional layer. Once a layer 

is deposited, a new layer of powder (~100µm thick) is recoated on top of the previous layer, which is 

then printed and stitched to the previous layer by the liquid binder. The layer-by-layer process is 

repeated to create the complete green part, which will be placed in a sintering furnace to vaporize the 

binder and bind the powder particles together to obtain the final product. The part may also be subjected 

to a secondary infiltration process with a lower melting alloy to minimize porosity. For example, copper 

parts are infiltrated with brass after sintering. In this work, the secondary infiltration process is not 

conducted.        
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Figure 9: (a) The print head of the ExOne R2 printer; (b) the sketch of binder jetting. 

The copper part with intricate features made using binder jetting was shown in Figure 1(b). XCT 

scanning, with resolution ~50µm, is used to visualize the internal morphology on the stem region of the 

part as in Figure 1(d). By aligning the scanning direction to the printing direction, the XCT scans can 

be related to the actual layer. XCT scans from layers 16 through 21 are shown in Figure 10. The denser 

material is rendered with brighter color, while hollow features and pores are darker. The layer-wise 

directional correlation is estimated to be at least six layers. Hence, ignoring the correlation by assuming 

that the pores between layers are independent is not physically tenable.  

 

Figure 10: Sequential XCT scan images on the stem region of the copper part made in binder jetting are selected 

for layer-wise porosity modeling and prediction. The size of the images is about 7mm×7mm, with ~ 150×150 

pixels.   

In this case study, ALS-LGCP is used to model the layer-wise spatial evolution of porosity and 

identify the pore-prone areas in the binder jetted part. The ALS-LGCP model is validated by predicting 

the porosity-prone areas on the thirty images (layer 11 - layer 40) based on information from the 

previous six layers. This choice of the optimal number of six previous layers could be attributed to the 

fact that: while using less than six previous layers could cause underfitting of the model, more than six 
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previous layers could cause overfitting of the model, consequently, compromise the model’s 

generalization ability in predicting the next layer. The effect of using different number of previous layers 

for predicting the porosity on the next layer by ALS-LGCP is shown in Figure 11, which indicates that 

the prediction accuracy reaches the peak average F-score value ~ 85% with six previous layers and 

steadily decreases thereafter. In ALS-LGCP, the images of stem region on the copper part is 150×150 

pixels, and they are discretized into cells with 3×3 pixels. The parameter estimates (variance 𝜎2, spatial 

scale parameter 𝜙, layer-wise directional scale parameter 𝜃) by using ALS-LGCP are summarized in 

Table 6. The large value of directional scale parameter 𝜃 implies strong correlation among pores on 

consecutive layers.  

 

Figure 11: The average F-score results for predicting total thirty layers (layer 11 - layer 40) while using different 

numbers of previous layers by ALS-LGCP.  

Table 6: Parameter estimates (variance 𝜎2, spatial scale parameter 𝜙, layer-wise directional scale parameter 𝜃 

in Eq. (11)) using the proposed ALS-LGCP. The numbers in parenthesis are the standard deviation of the estimates 

(4000 iterations in MALA).    

Parameter notations   𝜎2  𝜙  𝜃 

Parameter estimates using 

ALS-LGCP 
 

3.127 

(0.346) 
 

14.210 

(1.286) 
 

20.466 

(3.747) 

As a demonstration, ALS-LGCP is applied on the obtained augmented point patterns from the 

images (layer 16 - layer 21) in Figure 10 for layer-wise spatial analysis of porosity evolution. The 

predicted high-risk areas on layer 22 by ALS-LGCP, ST-LGCP and the empirical approach are shown 
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in Figure 12 for comparison. The empirical approach identifies the segmented porosity-prone areas 

(Figure 12(b)) by directly using all the pores from previous layers for prediction. ST-LGCP finds 

relatively large areas with low local intensity (Figure 12(c)) in that it reduces pores into dimensionless 

points; hence it tends to underestimate the severity of the pores. In contrast, ALS-LGCP marks relatively 

large and continuous areas with high local intensity (Figure 12(d)) by accounting for the size of the 

pores and also the decrease in layer-wise directional correlation among previous images (layers).  

 

Figure 12: (a) The pores on the layer 22; (b) overly segmented high-risk areas identified by the empirical approach 

(benchmark method); (c) high-risk areas with low local intensity identified by ST-LGCP; and (d) high-risk areas 

with high local intensity identified by the proposed ALS-LGCP. 

The F-score results for predicting the porosity for total thirty layers (layer 11 - layer 40) are 

summarized in Table 7. ALS-LGCP has ~ 5% higher F-score in predicting high-risk areas on the next 

layer than the two methods. It is also noted that the performance of ST-LGCP improves in this practical 

case study since small pores could cater for its assumption of dimensionless points.  

Table 7: F-score results for predicting total thirty layers (layer 11 - layer 40) – Comparison of the empirical 

approach, ST-LGCP, and ALS-LGCP (The values in the parenthesis are the standard deviation).  

 Empirical approach  ST-LGCP   ALS-LGCP 

Precision 

 

0.77 (0.144)  0.72 (0.123)  0.79 (0.105) 

Sensitivity 0.85 (0.119)  0.94 (0.058)  0.95 (0.056) 

F-score 

 

0.80 (0.109)  0.81 (0.090)   0.86 (0.064) 

The outputs of the ANOVA analysis in Table 8 indicate that there is a statistically significant 

difference in the F-scores of the three approaches for predicting the high-risk areas of pores on a layer 

with the significance value is 0.0292 (i.e., 𝑝 = 0.0058), which is below the predetermined significance 
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level of the test (i.e., α = 0.05). Furthermore, the results of the multiple comparison with Tukey post 

hoc test in Table 9 show that ALS-LGCP significantly surpasses the empirical approach in identifying 

the pore-prone areas in terms of F-score (with 𝑝 = 0.0442), and it also outperforms ST-LGCP but not 

to a statistical significant extent (with 𝑝 = 0.0579).  

Table 8: ANOVA for comparing the empirical approach, ST-LGCP, and ALS-LGCP in terms of F-scores on 

predicting total thirty layers (layer 11 - layer 40). The significance level of the test is preset as α = 0.05.  

 
Degree of 

freedom 

Sum of 

squares 

Mean 

Square 
F p-value 

Approaches 2 0.0616 0.0308 3.682 0.0292 

Errors 87 0.7282 0.0084   

Total 89      

Table 9: Multiple comparison with Tukey post hoc test for the empirical approach, ST-LGCP, and ALS-LGCP in 

terms of F-scores on predicting total thirty layers (layer 11 - layer 40). The significance level of the test is preset 

as 𝛼 = 0.05.  

(I) Approach (J) Approach 
Mean Difference 

(I) - (J) 

95% confidence level 
p-value 

Lower bound Upper bound 

ST-LGCP Empirical approach -0.0043 -0.0606 0.0520 0.9820 

ALS-LGCP Empirical approach 0.0575 0.0012 0.1138 0.0442 

ALS-LGCP ST-LGCP 0.0532 -0.0011 0.1096 0.0579 

From these results, it is evident the proposed ALS-LGCP achieves superior predictions about the 

location and severity of porosity in AM parts. These results are important from a practical perspective, 

since accurate prediction of where and which layer pores are liable to occur is the first-step towards a 

prescription for improving the part design and optimizing the building conditions [52, 53].  

 

Figure 13: The number of pores within the selected region on each layer is the range of layers (layer 10 - layer 

40) are used for layer-wise porosity prediction. 
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Continuing with the analysis by applying ALS-LGCP on layers (layer 1 – layer 50) of the binder 

jetted part, the expected number of pores on each layer is estimated through Eq. (9) and illustrated in 

Figure 13, together with a fitted trend. It is noticeable that porosity in the middle layers (shaded in 

Figure 13) tends to be worse. The proposed ALS-LGCP approach thus leads to an understanding of 

porosity within a layer, as well as across layers in AM. In other words, it provides accurate quantification 

for pore distribution in 3D space and leads to the insights of the layer’s effect on material properties. 

Consequently, the results from ALS-LGCP will be instrumental for porosity reduction in future printed 

parts by further process or design optimization. To extend this further,  

1) ALS-LGCP can distinguish common-cause porosity from those caused by unexpected process 

defects (special cause), such as nozzle clogs. By systematically quantifying the spatial and layer-

wise distribution of porosity from XCT data, compared to other porosity measurement techniques 

such as density measurement, it is possible to isolate the material and process phenomena that are 

at the root of porosity. The proposed ALS-LGCP model in this work indeed reveals the underlying 

trend in porosity occurrence due to faults in the manufacturing process as shown in Figure 13.  

2) ALS-LGCP can be used to study the porosity distribution of large artifacts made in AM. The 

attenuation of X-ray in high element number materials (e.g. copper) typically leads to a 

dimensional limitation of the sample when subjected to XCT scanning. As a result, the scanning 

of a large artifact can lead to a requirement of higher power, longer scanning time, and 

compromised resolution. When the overall porosity of a large artifact needs to be understood but 

is difficult to obtain, a small section or specific features of the part can be studied by XCT scanning. 

The obtained porosity data (e.g., the pore numbers and distributions in Figure 12 and Figure 13) 

can subsequently be used to estimate the porosity in the un-scanned sections of this large artifact 
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using the proposed ALS-LGCP model through extrapolation.  

5. Conclusions and Future Work 

This research advances an augmented layer-wise spatial log Gaussian Cox process (ALS-LGCP) to 

understand and model the layer-wise spatial behavior of pore formation in additive manufacturing. 

Specifically, the ALS-LGCP model first represents the pores observed from XCT scan images of an AM 

product with augmented point patterns, including the information about the number, location, and size 

of the pores. It further utilizes the spatial correlations among the pores for identifying areas susceptible 

to pores on different layers. In this work, the ALS-LGCP approach is applied to parts made using binder 

jetting where it locates the areas vulnerable to porosity with statistical fidelity approaching ~ 85% (F-

score).  

Accordingly, this work presents a consequential analytical direction to understand and quantify 

porosity in AM parts. From the methodological vista, the proposed augmented point pattern approach 

incorporates not only the locations, but also the morphological features of pores, such as their size and 

form, into the analysis. Therefore, ALS-LGCP is capable of accurately estimating the intensity function 

to describe the pore distribution. From the practical application point of view, to the best of our 

knowledge, the ALS-LGCP is perhaps the first work using layer-wise 3D spatial model to quantify the 

porosity of AM parts. It is therefore a significant improvement over the current scalar metric (percentage 

porosity by volume) used to quantify porosity, namely, the percentage porosity relative to the bulk part 

volume. 

By evaluating the quality of AM parts in a layer-wise manner, it has a promising potential for quality 

improvement and process optimization by adjusting process parameters and part design contingent on 

the porosity on different layers. The practical outcome is that porosity-prone areas of a part can be 
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ascertained based on a few test parts, and the appropriate design or process parameters can be modified 

for scale production or larger artifacts. Given its data-driven nature, it is posited that the proposed 

approach can be readily generalized to different powder-based AM processes.  

The authors’ forthcoming research will focus on addressing the following three unresolved aspects of 

this work:   

• Verifying the repeatability of ALS-LGCP for porosity modeling from different AM processes.  

• Diagnosing the physical reason for the distribution of porosity with particular forms in AM parts, 

and testing remedies to eliminate porosity either by optimizing the part design or process parameters.  

• Incorporating online quality assurance in AM with in-situ XCT scanner or high-resolution cameras. 
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