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Abstract 

The goal of this work is to understand the effect of process conditions on part porosity in laser powder bed 

fusion (LPBF) Additive Manufacturing (AM) process, and subsequently, detect the onset of process 

conditions that lead to porosity from in-process sensor data. In pursuit of this goal, the objectives of this 

work are two-fold: (1) Quantify the count (number), size and location of pores as a function of three LPBF 

process parameters, namely, the hatch spacing (H), laser velocity (V), and laser power (P). (2) Monitor and 

identify process conditions that are liable to cause porosity through analysis of in-process layer-by-layer 

optical images of the build invoking multifractal and spectral graph theoretic features. This is important 

because porosity has a significant impact on the functional integrity of LPBF parts, such as fatigue life. 

Furthermore, linking process conditions to defects via sensor signatures is the first-step towards in-process 

quality assurance in LPBF. To achieve the first objective, titanium alloy (Ti-6Al-4V) test cylinders of 10 

mm diameter × 25 mm height were built under differing H, V, and P settings on a commercial LPBF 

machine (EOS M280). The effect of these process parameters on count, size and location of pores was 

quantified based on X-ray computed tomography (XCT) images. To achieve the second objective, layerwise 

optical images of the powder bed were acquired as the parts were being built. Spectral graph theoretic and 

multifractal features were extracted from the layer-by-layer images for each test part. Subsequently, these 

features were linked to the process parameters using machine learning approaches. Through these image-

based features, process conditions under which the parts were built was identified with the statistical fidelity 

over 80% (F-score). 

Keywords: Laser Powder Bed Fusion, Porosity, In-process Monitoring, Image Analysis, Spectral Graph 

Theory, Multifractal Analysis. 
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1 Introduction 

1.1 Background 

Powder bed fusion (PBF) refers to a family of Additive Manufacturing (AM) processes in which 

thermal energy selectively fuses regions of a powder bed [1]. Figure 1 shows the schematic of the 

PBF process. A layer of powder material is spread across a build plate. Certain areas of this layer 

of powder are then selectively melted (fused) with an energy source, such as a laser or electron 

beam. The bed is lowered and another layer of powder is spread over it and melted [2]. This cycle 

continues until the part is built. The PBF process embodied in Figure 1 depicts a laser power source 

for melting the material, accordingly, the convention is to refer to the process as Laser Powder 

Bed Fusion (LPBF).  

A galvanic mirror scans the laser across the powder bed. The laser is focused on the bed with a 

spot size on the order of 50 µm ‒ 100 µm in diameter, the laser power is typically maintained in 

the range of 200 W to 400 W, the linear scan velocity of the laser is varied in the 200 mm/s to 

2000 mm/s range, and the distance between each stripe of the laser, called the hatch spacing, is 

maintained in the range of 100 µm to 200 µm. The distance through which the bed is lowered is 

termed the layer height and is typically in the range of 30 to 50 µm. [2]. Close to 50 other 

parameters are involved in the melting and solidification process in LPBF [3].  

Please insert Figure 1 here. 

 

1.2 Motivation 

The ability of LPBF to produce intricate geometry parts from hard-to-process materials, such as 

cobalt-chrome and nickel-based super alloys has been conclusively demonstrated for a variety of 
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demanding applications ranging from biomedical to aerospace [4, 5]. Process repeatability and 

product quality, however, remain imposing barriers towards scaling LPBF to production 

environments [6]. Given the layer-by-layer nature of the process, a defect in a layer, if not averted, 

will be permanently sealed in by subsequent layers. These trapped defects adversely affect key 

functional properties of the part, such as its fatigue life and strength [7, 8].  

A major gap in the current research lies in the lack of quantitative models to correlate the effect of 

process conditions on specific defects, such as porosity via the data acquired from in-situ sensors. 

Addressing this gap is the first-step towards in-process quality assurance in LPBF. Therefore, there 

is an urgent need to: (1) understand and quantify the effect of LPBF process conditions on defects, 

and (2) institute in-process sensing and monitoring to capture the onset of defects.  

The following types of LPBF defects have attracted the most attention: porosity, surface finish, 

cracking, layer delamination, and geometric distortion. These defects are tracked to the following 

four root causes [9, 10]: 

• Poor part design, such as inadequately supported features [11].  

• Machine and environmental factors, such as poor calibration of the bed and optics. 

• Inconsistencies in the input powder material, such as contamination and deviations in particle 

distributions.  

• Improper process parameter settings, for example, inordinately high laser power causes 

vaporization of the material leading to keyhole porosity, while insufficient laser power 

prevents powder particles from fusing together leading to large acicular pores [12, 13]. This 

work specifically focuses on characterizing and detecting porosity in-situ due to the improper 

selection of process parameters. 
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1.3 Objectives  

The goal of this work is to quantify the effect of process conditions on part porosity in the LPBF 

process, and subsequently, detect the onset of porosity due to deviation in process conditions based 

on in-process sensor data. An example of such a possible deviation is the occlusion of the optics 

due to vaporization of the material during melting and its eventual condensation on the focusing 

lens. The gradual coating of residue on the laser will lead to loss of laser focus, and hence reduce 

the power delivered to the substrate without the knowledge of the operator. In extreme instances, 

because the residue deposited on the lens absorbs a significant portion of the incident energy, 

damage to the lens and optical train can occur [14].  

 In pursuit of this goal, the objectives of this work are two-fold: 

1. Quantify the effect of three LPBF process parameters, namely, laser power (P), hatch spacing 

(H), and velocity (V) on the size, count, and location of pores using X-ray computed 

tomography (XCT) scan data of the part. 

2. Monitor and discriminate process deviations that are liable to cause porosity using in-process 

optical images of the powder bed invoking multifractal and spectral graph theoretic analysis. 

The first objective is realized by simultaneously building nine titanium alloy cylinders on a 

commercial LPBF machine (EOS M280) at varying P, H, and V conditions, and quantifying their 

effect on the pore spatial distribution count, size and location are quantified using XCT images. 

The second objective is achieved by acquiring layer-by-layer optical images of the parts while they 

are being built, and then extracting statistical, multifractal and spectral graph theoretic features 

from these images. These features are subsequently used in various classification approaches such 

as neural networks to ascertain their ability to isolate process conditions that are liable to produce 

parts with severe pores. 
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The rest of this paper is structured as follows. A brief review of the literature focusing on porosity 

and in-process sensing in LPBF is presented in Sec. 2; Sec. 3 describes the experimental conditions 

and layer-by-layer acquisition of part images; Sec. 4 explains the spectral graph theory and 

multifractal analysis of in-process image data for feature extraction and process modeling; and 

conclusions and avenues for future work are presented in Sec. 5. 

2 Review of the Relevant Literature 

The literature concerning the reasons and mechanisms of porosity formation and in-process 

sensing are summarized in Sec. 2.1 and Sec. 2.2, respectively.  

2.1 Effect of LPBF process parameters on porosity  

Of the various multi-scale defects in LPBF, porosity and its attendant causes have garnered the 

most attention [10, 15-17]. According to Rao et al., voids or pores are empty spaces in a material 

and porosity is a measure of the volume occupied by these empty spaces over the total part volume 

[18]. Mechanical properties such as strength and fatigue performance LPBF-processed parts are 

severely affected by porosity; pores cause high-stress concentration, which in turn results in crack 

formation [19-22].   

The formation of porosity is closely tied to and governed by the thermal phenomena at the 

meltpool-level [23]. Gong et al. have identified four distinctive regimes of melting contingent on 

the laser power (P) and velocity (V) process parameter settings. These regimes are demarcated as 

Zone I (fully dense); Zone II (over melting); Zone III (incomplete melting); and Overheating Zone 

(OH) [20, 24]. Visualizing a process map of laser power plotted on the ordinate axis, and the 

velocity on the abscissa, the region along the 45° slope falls under Zone I, also termed as the 

conduction mode. In this region, parts with least porosity-related defects were obtained. Zone II is 

to the left of Zone I, herein the laser power is higher for a given velocity compared to Zone I. This 
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region is home to the so-called keyhole mode melting, where, as experimentally and theoretically 

elucidated by King et al. material vaporization occurs due to excessive energy input [25]. Zone III 

is to the right of Zone I, and is characterized by relatively higher velocity for a given power setting 

compared to Zone I. In this zone (Zone III), there is inadequate energy for the material to 

completely fuse.  

While Gong et al. found that parts can be made in either of Zones I, II, and III, however, parts 

could not be built in the OH Zone, which is mapped to the left of Zone II, because the layers tend 

to deform to such a high degree during the build that the deposition of subsequent layers is 

impeded. Gong et al. report that in their experiments the recoater jams occurred in the OH zone 

due to contact with the part [20, 24]. Similar process mapping results for other AM processes, such 

as powder and wire-fed directed energy deposition, and electron beam powder bed fusion are 

reported by Beuth et al. [26-28]. Within the three melting zones, Zone I-III, the mechanism, and 

nature of pores formed are distinctive.  

Lack of fusion porosity occurs in Zone III because the laser energy supplied is insufficient to fuse 

the adjacent tracks, and the current and previously deposited layers. Lack of fusion porosity results 

in the formation of large acicular pores of size in the range of 30 μm -100 μm [4]. From an 

experimental perspective for Titanium alloy Ti-6Al-4V, Gong et al.  correlate areal energy density 

(EA = 
P

H ×V
 J/mm2) with porosity and observed the onset of lack of fusion porosity typically occurs 

for EA < 1.1 (approximately).  Considering also the layer thickness T as a factor (maintained 

constant at 30 μm) the equivalent threshold for volumetric energy density EV = 
P

H ×V×T
 is ≈ 36 

J/mm3. 

Keyhole-collapse porosity in Zone II occurs due to vaporization of powder material [1-4]. King 

et. al. elucidate through theoretical simulations and experimental studies that when the energy 
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supplied by the laser is inordinately high, the laser melts through several layers of the powder 

vaporizing material in its path. The vapor cavity eventually collapses thus forming pores deep 

within the meltpool [25].  The pores resulting from operating in the keyhole melting mode are 

uniform and circular in shape and are typically on the scale of 10-20 μm [12]. Gong et al.’s studies 

indicate that as the energy density in the processing of Ti-6Al-4V increases beyond a threshold 

value (typically EA > 2,  EV > 66) the process enters the keyhole melting mode [20, 24].  

To avoid oxidation of the powder, the LPBF process is carried out in a chamber filled with inert 

gas (usually argon or nitrogen) depending upon the material to be processed. The argon or nitrogen 

gas may get trapped in the powder and lead to the formation of gas pores [29]. Additionally, gas 

pores are also formed when bubbles are trapped in the meltpool during the solidification process 

[18]. Gong et al. also explain the formation of voids and pits due to the ejection of powder material 

as spatter on account of the thermal energy [20, 24]. The ejected particles may settle within the 

boundary of the part, and on cooling may adhere to the surface of the powder bed. Further, as the 

next layer is being deposited, the adhered particles may subsequently be removed by the recoater 

leaving a pit or void in its place. Lastly, lower melting impurities and constituents may vaporize 

given a sufficiently high energy density (and not due to keyhole collapse) leaving voids in the part 

[30]. Such types of pores are not restricted to one type melting zone and are stochastic in nature.  

From the extensive experimental work of Gong et al. it is surmised that for Ti-6Al-4V material, 

the conduction melting mode typically occurs in the range of  1.1 <  EA < 2 J/mm2; or 

equivalently 36 <  EV < 66 J/mm3. Aboulkhair et al. [12, 31] and Stucker et al. [32-34] report 

extensive process optimization studies related to porosity in LPBF with conclusions in line with 

findings by Beuth et al [26-28].  While most of the existing process maps relate the effect of areal 

or volumetric energy density to porosity with the aid of X-ray computed tomography (XCT), a 
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conspicuous gap remains in relating pore size, density and location simultaneously with EA. This 

work addresses the foregoing gap through Objective 1.   

In closing this section, we note that the process zones and concomitant types of porosity reported 

in the literature are contingent on the presumptions of stable process operation and that the part 

geometry and its location on the build plate have negligible effect.  

2.2 Sensing and Monitoring in LPBF 

Comprehensive review articles for in-process sensing are available in Ref. [9, 35-38]. Significant 

research in process sensing and control for metal AM processes is being done in academe and 

national laboratories [39-44].   Nassar and Reutzel, et al. experimented with imaging of the LPBF 

powder bed under various illumination conditions [41, 44, 45]. The resulting layer data was 

analyzed, and defects, such as voids caused by improper raking of the powder across the bed were 

identified.  Lane et al. at NIST integrated an LPBF machine (EOS M270) with thermal and high-

speed cameras, and a photodetector [39]. NIST and Edison Welding Institute (EWI) are currently 

building a customized LPBF testbed instrumented with multiple sensors [43, 46]. A large body of 

work in sensing and monitoring in LPBF is reported by the Kruth group [47-49] and Witt group 

[50-53] in Europe. Recent breakthroughs with in-situ X-ray imaging of the LPBF process has been 

reported by scientists at Lawrence Livermore National Laboratories [54].   

To detect evolving process anomalies researchers have sought to incorporate sensing techniques 

such as vibration, CCD video imaging, infrared and ultraviolet imaging, pyrometers, photodiodes, 

ultrasonic wave generators in AM machines [50, 55-61]. An early example was presented by 

Melwin et al. [62], who used a video-micrography apparatus bearing band pass and polarizing 

filters for observing the meltpool in polymer LPBF.  
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In a series of related works, Craeghs et al. [47-49] describe optical-based approaches for 

monitoring build quality in PBF by imaging the thermal behavior at the meltpool. Craeghs et al. 

were able to detect process defects, such as deformation and overheating using their optical system 

[48]. Bartkowiak [63] describes a PBF apparatus integrated with a spectrometer for in situ 

measurements of the layer melt characteristics, such as emissivity. Other researchers, e.g., Chivel 

et al. [64], and Jacobsmuhlen et al. [50] have also developed optical imaging systems for process 

monitoring in AM [64]. In a recent work, Rieder et al. [58] used an ultrasonic sensing system for 

tracking build status in PBF. A broadband ultrasonic sensor mounted on the underside of the build 

plate is used to detect voids, akin to acoustic microscopy.  

Craeghs et al. [48, 65, 66] report that the amplitude of the photodiode signal is correlated with the 

melt-pool area and the melt-pool temperature. They subsequently use this information to identify 

process failures, such as detection of deformation due to thermal stresses and overheating at 

overhang structures, in each build layer. Further, they developed a feedback control sensor based 

on optical images. Chivel and Smurov [64] use two different wavelengths and selected temperature 

profiles to extract information of the bed temperature distribution, and the size of the meltpool for 

process monitoring.  

Regarding the fidelity of the different sensing approaches for detecting defects specific to PBF 

AM processes, the viability of thermal imaging and optical spectroscopy-based techniques has 

been demonstrated in the literature. Recent work done by researchers at NIST aims to 

comprehensively capture the effect of meltpool shape and thermal gradients to defects. From the 

meltpool monitoring vista, a fast response thermal camera with a high framerate (> 1000 

frames/second) and resolution in the micrometer range is typically used to circumvent blurring 

effects [67]. In recent work by EWI researchers the meltpool-level thermal camera is coupled with 
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another thermal camera that monitors the heat flux over the entire bed to detect large macro-scale 

defects, such as warping [46]. However, such high-fidelity thermal cameras are exceeding 

expensive, and moreover, they are appropriate for capturing thermal trends rather than the exact 

temperature of the target because the emissivity of the meltpool remains to be established. Dual 

color pyrometers can be used to circumvent the lack of emissivity information.  

A far less expensive alternative to thermal imaging for detection of micrometer-level defects is 

through the use of photodetectors and spectrometers. Nassar et al. in a series of articles 

demonstrate the use of such optical emission spectroscopy-based sensing [42, 68, 69]. The key 

idea is to measure the intensity (amplitude) of the line-to-continuum ratio emission spectra of the 

material being processed and relate the readings to part defects. For this purpose, two 

photodetectors are coupled through a 50:50 beam splitter, and focused upon the entire bed area. 

Each of the photodetectors is fitted with an optical bandpass filter that captures light corresponding 

to the emission spectra of a particular element in the alloy being processed. For instance, for 

detecting anomalies in LPBF of Inconel 718, Nassar et al. used a 520 nm ± 5 nm and 530 nm ± 5 

nm optical bandpass filters corresponding to the continuum and line spectra, respectively, of Cr I 

emissions [68].  

Instead of using two photodetectors to capture formation of porosity, Montazeri et al. in two 

articles published in this journal, have used a single photodetector to capture the onset of material 

contamination, and also to distinguish the process signatures emanating for different feature 

geometries, such as overhang-related features [30, 70]. While photodetectors and spectrometers 

present a cost advantage over thermal imaging, and are capable of sampling rates nearing 1 MHz, 

their main drawback is that the output is in terms of a time series or frequency spectrum which 

have far limited information compared to thermal imaging. 
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In this context, the use of optical imaging for detection of conditions liable to produce porosity is 

a novel contribution of this work. Optical imaging cameras are significantly less expensive than 

their thermal and high-speed counterparts. However, the challenge of capturing pores directly from 

the layerwise optical images, as opposed, to the anomalous process conditions has not yet been 

attempted. In closure, we note that Abdelrahman et al. [45] have used optical imaging data to 

capture the large-scale (> 100 µm) defects which were deliberately introduced during the build. 

The main drawback in most of these studies is that they do not connect practical process conditions 

to defects, but rather focus on artificially inducing flaws by way of catastrophic process anomalies. 

Furthermore, the analytical techniques rely on classical time-series signal processing techniques, 

which may not be effective in capturing subtle defects. Recent progress to overcome this limitation 

is reported by the Clare group at Nottingham University who have used spatially resolved acoustic 

spectroscopy (SRAS) to detect porosity ex-situ in LPBF, wherein the amplitude of a surface 

acoustic wave generated by laser is correlated with the location and severity of porosity at different 

laser power settings [71, 72]. The current work addresses this extant gap through Objective 2.  

3 Experimental Setup and Data Acquisition 

Experiments were conducted on an EOS M280 LPBF machine. The input material was a Titanium 

alloy, ASTM B348 Grade 23 Ti-6Al-4V powder material whose particle size ranges from 14 μm 

to 45 μm. The parts analyzed in this study are cylinders which were printed by varying the hatch 

spacing (H), scan velocity (V) and laser power (P). The cylinders are 25 mm in length and 10 mm 

in diameter.  shows the seven process parameter settings which were used to print these cylinders. 

The nominal settings are labeled as H0 = 0.12 mm, V0 = 1250 mm/s, and P0 = 340 W. The layer 

height is maintained is constant at T = 60 μm. Hatch spacing and laser print velocity are increased 

by 25% and 50%, and laser powder has been decreased by 25% and 50% from their nominal 
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settings. The three process settings are aggregated in terms of the areal energy density applied for 

melting called the Andrew number: EA = 
P

H ×V
 J/mm2 or the volumetric energy density EV = 

P

H ×V×T
 

. Comparing the EV values reported in Table 1 with the experimental results of Gong et al. [20, 

24], we note that barring the nominal settings, which is set in the conduction regime (Zone I),  all 

other experimental treatment  combinations fall within the lack of fusion (Zone III) regime where 

acicular pores are expected (EV  < 36).  

A digital single-lens reflex camera (DSLR, Nikon D800E) along with multiple flash-lamps placed 

inside the build chamber is used to capture the layer-by-layer powder bed images. Images are 

captured at two instances in every layer, namely, post laser scan and post re-coat. The camera 

shutter is controlled by a proximity sensor that registers the location of the re-coater blade. Five 

images of the powder bed images are captured under bright-field and dark-field flash settings. The 

layout of the camera and flash-lamp location are shown in Figure 2, and the representative images 

under the five light schemes are shown in Figure 3. In this work, images from the bright-field light 

scheme in Figure 3(a) are analyzed. Details of the experimental setup are available in Ref. [45]. 

Please insert Table 1 here. 

 

Please insert Figure 2 here. 

  

Please insert Figure 3 here. 
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4 Methodology and Results 

As shown in Figure 4, the LPBF process data is analyzed in two phases, namely, (1) offline analysis 

of X-ray computed tomography (XCT) data in Sec. 4.1; and (2) analysis of in-situ images of the 

powder bed in Sec. 4.2.  

Please insert Figure 4 here. 

 

4.1 Phase 1: Offline analysis of porosity. 

This section aims to analyze the effect of hatch spacing (H), laser velocity (V), and laser power 

(P) on the count, size, and location of pores. Representative XCT images of parts under different 

P, H and V conditions are shown in Figure 5. A visual inspection of the XCT scans shows that the 

size and number (count) of the pore is inversely proportional to the areal energy density (EA). 

As the areal energy density (Andrew’s number, EA) is reduced, we observed that the size and 

number of the pores become larger. However, we caution that, although, the critical process 

parameters, such as laser power (P, Watt), hatch spacing (H, mm), scan velocity (V, mm/sec), and 

layer height (mm) can be optimized for certain part geometries, and aggregated in terms of the 

global volumetric energy density (EA) pores can still occur. This is because, EA does not account 

for the thermal aspects in the part (heat flux), which is contingent on the part geometry, orientation, 

and its location on the build plate. For instance, parts in the far edge of the build platen (near the 

end of the recoater action) may suffer from insufficient powder feed (powder shorting), likewise, 

the laser spot size is liable to change as the laser tends to defocus on the outer edge of the build 

platen leading to lack-of-fusion related porosity. 
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Furthermore, there is the possibility of a complex, nonlinear interaction between P, V, and H which 

remains as yet undiscovered and therefore not captured in the relationship representing the areal 

energy density (EA). For instance, in the equation for EA, all terms are assumed to be equal in 

weight, i.e., the exponent P, V, and H is unity (=1) and therefore the relationship between EA and 

the process parameters is implicitly assumed to be a simple linear relationship. The following 

inference is made based on Figure 5. For instance, while the severity of pores is influenced by all 

three process parameters. However, laser power (P) seems to have an inordinately high effect.  

This observation is further quantified by extracting count, size and location attributes by analyzing 

the XCT scan images through the steps shown in Figure 6. 

• Figure 6 (a) - XCT scans for 30 randomly chosen cross-sectional areas are analyzed. 

• Figure 6 (b) and (c) - The XCT scan images are binarized based on a heuristically determined 

threshold. Some information is inevitably compromised during the binarization process. A 

complement of the binary image is taken to return a black background, which makes 

computation easier as the image matrix becomes sparse. 

• Figure 6 (d) - To reduce noise induced due to binarization the nearest neighborhood approach 

is used [73]. We note that while it is customary to refer to voxels in the context of XCT, because 

the images are converted to binary images (binarized), we revert to using the term pixel.  In 

this procedure, a binarized XCT pixel is labeled as a defect only if it is connected to the 8-

nearest pixels. In other words, if the 8 nearest neighboring pixels of a particular pixel are also 

bright (i.e., 1), then the pixel is deemed to represent part of a defect. 

Please insert Figure 5 here. 
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Please insert Figure 6 here. 

 

Next, the pore count, size and location are extracted as follows: 

• Pore count – The number of 8-connected binarized XCT pixel over a layer translates to the 

pore count. 

• Size of pores – The size of a pore is grouped into one of 5 classes contingent on its radius. 

Each pore is considered as an annular structure on the noise reduced image, and then, the 

number of pixels within each annulus is calculated. Depending on the number of pixels in the 

annulus, the pores are classified into various radii, namely 1-5 pixel radii. A radius of one-

pixel unit equates to a pore radius of 16 µm on the part.  

• Pore Location – The pore location is determined by segmenting the XCT scan image into 5 

concentric areas as shown in Figure 7. The number of pores in each 1-mm thick segment of 

the XCT scan image is then counted. This establishes the distance of the pores from the center 

of the cylinder. 

Please insert Figure 7 here. 

 

(a) Effect of process parameters on count and size of pores  

Analysis of the XCT scan images shows that decrease in the areal energy density (EA) leads to an 

increase in the count (number of pores) and size of pores. This effect of laser power (P), hatch 

spacing (H), and laser print velocity (V) on pore count and size are exemplified in Figure 8 from 

which the following inferences are drawn. In Figure 8, the x-axis is the pore size, and the y-axis is 
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the mean count (or number) of the pore observed on 30 randomly selected slices of the XCT scan. 

These results are also detailed in Table 2, which reports the mean number of pores, rounded to the 

nearest integer, along with the standard deviation for 30 randomly chosen layers. 

• Referring to Figure 8 (a), the pore distribution in terms of count vs. pore size is plotted for 

different levels of laser power (P). The decrease in laser power by 50% (170 W) leads to 

almost a 100-fold increase in the number of pores. Further, parts produced under P -50% (170 

W) have pores ranging from 1 pixel to 4 pixels in size, i.e., 28 μm to 112 μm, whereas parts 

produced under nominal power (P0= 340 W) and P -25% (270 W) have pores of radius 2 

pixels (~ 32 μm) at most. 

• Referring to Figure 8 (b), increasing the hatch spacing (H) leads to an increase in both the 

count and size of pores. The magnitude of the effect of laser hatch spacing is significantly 

smaller than that of laser power. In case of varying hatch spacing (Figure 8 (b)), the highest 

number of pores are seen in the cylinder which is printed with H +50 %, i.e., 0.18 mm hatch 

spacing. From Figure 8 (b), for all the three levels of hatch spacing, the largest pore radius 

observed is 2 pixels. 

• Referring to Figure 8 (c), akin to hatch spacing, increase in laser print velocity (V) leads to 

increase in count and size of pores. The largest pore size of radius 3 pixels (~48 μm) was 

recorded in the cylinder printed with V +50 % (1875 mm/s). The effect of velocity on porosity 

is least consequential of the three factors studied in this work. 

Please insert Figure 8 here. 
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Please insert Table 2 here. 

 

(b) Effect of process parameters on the location of pores 

The location of pores in the test cylinders is determined by segmenting the XCT scan image of a 

cylinder into 5 concentric parts as described previously in the context of Figure 7. This establishes 

the distance of the pores from the center of the cylinder. The mean and standard deviation of pores 

in each segment of the part for 30 randomly chosen layers are reported in Error! Reference source 

not found. and depicted in Figure 9, from which the following inferences are drawn:  

• Referring to Figure 9 (a), it is evident that as the laser power decreases, more number of 

pores are recorded in the L2 (4 mm – 8 mm) to L4 (8 mm – 12 mm) segment, of the cylinder. 

Figure 9 (a) further reveals that the cylinder printed with nominal laser power (340 W) has 

most number of pores in the first two annular segments of length L1 (0 mm – 4 mm) and 

L2 (4 mm – 8 mm), which indicates that the pores are located close to the center. This trend 

is also observed in the cylinder printed with P -25 % laser power (270 W). In contrast, the 

cylinder printed with -50 % laser power has most number of pores in the third segment 8-

12 mm. 

• Referring to Figure 9 (b) and (c), in cylinders printed with varying hatch spacing (H) and 

laser print velocity (V), respectively it is observed that parts produced at +50% hatch 

spacing (0.18 mm) and laser print velocity (1875 mm/s) have the highest number of pores 

at the radial distance with L3 (8-12 mm). Pores in the cylinders printed with +25% and 

nominal hatch spacing and laser print velocity are mainly located in the first two segments 

0 mm - 1 mm and 1 mm - 2 mm.  
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The sharp drop in porosity in L5 is likely due to the reason that the external boundary of the part 

is scanned with increased EA after the rest of the part (post-contour melting). The added heat at 

the periphery mitigates porosity in L5. Further, the concentration of heat in the core of the part 

may explain the reduced porosity towards the center (L1). Lastly, the effect of thresholding to 

convert may lead to a loss of information, this last reason can be largely discounted in the light of 

Figure 6 (a and d), wherein pores in the boundaries are captured appreciably. 

Please insert Figure 9 here. 

 

Please insert Table 3 here. 

 

4.2 Phase 2: Analysis of online data of laser powder bed fusion process (LPBF). 

This section aims to link the process conditions to the layer-by-layer images of the parts as they 

are melted. This will allow detection of process drifts in their early stages. For this purpose, two 

methods are proposed, the first based on spectral graph theory, and the second using multifractal 

and lacunarity analysis. 

(a) Application of spectral graph theory for part image analysis 

Spectral graph theoretic Laplacian eigenvalues extracted from online images are used to identify 

the process conditions under which a part is produced. The approach has the following two steps.  

Step 1: Representing the image of each part as a graph. 

A layer-wise image obtained from the DSLR camera for a laser sintered cylinder layer with M × 

N pixels can be represented by a matrix X M × N. As shown in Figure 10, each row of the matrix X 
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is considered as a row vector and it represents a node or vertex (V) of an undirected graph which 

is denoted as 𝐺 ≡ (𝑉, 𝐸), where E is the edges in the graph [74]. The M row vectors of the matrix 

𝑋 are represented as 𝒂𝐾 , 𝐾 =  {1,2, …M} .   

Please insert Figure 10 here. 

 

Further, a pairwise comparison is performed between each of the row vectors through a kernel 

function Ω [75]. A pairwise comparison along the columns has been shown to lead to similar 

results as long as the image is homogeneous [76]. 

   𝓌𝑝𝑞 = Ω(𝑎𝑝⃗⃗⃗⃗ , 𝑎𝑞⃗⃗⃗⃗ ) ∀ 𝑝, 𝑞 ∈ 𝐾 (1) 

The kernel function Ω used in this study to compute the pairwise comparison is the radial basis 

kernel function (Eqn. (2) and (3)) . 

 
𝓌𝑝𝑞 = 𝑒

−[
𝑬
𝜎𝑋

]
2

 
(2) 

 𝑬 = [‖𝒂𝑝⃗⃗ ⃗⃗  −  𝒂𝑞⃗⃗ ⃗⃗  ‖
2
] (3) 

where, 𝜎𝑋 is the overall standard deviation of 𝐸. Next, a binary similarity matrix 𝑺 = [𝓌𝑝𝑞] is 

created with help of a threshold function. This threshold function 𝜃 when applied to 𝓌𝑝𝑞 converts 

it into binary form[77]. 

                                                    Θ(𝓌𝑝𝑞) =  w𝑝𝑞 = (0,1) (4) 

This threshold function facilitates in determining whether there is a connection between two nodes 

[77]. 𝓌𝑝𝑞= 1 if there is a connection and otherwise it is zero.  

                        Θ(𝓌𝑝𝑞) =  w𝑝𝑞 = {
1,𝓌𝑝𝑞  ≤ 𝑟

0,𝓌𝑝𝑞  > 𝑟
  

 

(5) 

Here 𝑟 is given by, 
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                                                           𝑟 =  

∑ ∑ w𝑝𝑞
𝑞=M
𝑞=1

𝑝=M
𝑝=1

M2  
(6) 

Step 2: Extracting features from the graph. 

Once a graph is formulated from the image, topological features are extracted from the graph. 

These features are useful in classification of parts which are made with different process 

parameters. The first step towards feature extraction is computing the degree 𝑑𝑝 of a node 𝑝, i.e., 

the number of edges that pass through the node 𝑝. The degree of node 𝑝 is computed by summing 

each row in the similarity matrix 𝑺.  From the degree of node 𝑑𝑝, a diagonal degree matrix 𝓓 is 

formed as follows, 

   𝓓 ≝ diag(𝑑1,⋯ , 𝑑𝑀) (7) 

Now, with the help of the degree 𝓓 matrix and the similarity matrix 𝑺, the normalized Laplacian 

𝓛 of the graph is defined as follows, 

   
𝓛 ≝ 𝓓 −

1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2 

(8) 

where, 𝓓 −
1

2 = diag (1
√𝑑1

⁄ ,⋯ , 1
√𝑑𝑀

⁄ ).  

Finally, the Eigen spectra of the Laplacian is computed as follows [78]. 

   𝓛𝒗 = 𝜆∗𝒗 (9) 

The eigenvalues (λ) of the Laplacian are used in the classification of LPBF parts per their 

processing conditions. In this work, the first five smallest non-zero eigenvalues are used. Also, the 

Kirchhoff index for each graph is computed as follows, where 𝜆𝑖 are the non-zero eigen values of 

the Laplacian. 

   

𝐾𝑓 = 2 × 𝜀 × ∑𝜆𝑖
−1

M

𝑖=2

 

 

(10) 
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where 𝜀 =  
∑ ∑ 𝑺𝑖𝑗

𝑗=M
𝑗=1

𝑖=M
𝑖=1

2
. 

The non-irradiated part of the part image i.e. the un-sintered powder, is fairly homogenous, so 

when it the image undergoes a row-wise comparison, the distance kernel function becomes zero 

[79]. The nodes which are far apart from each other are connected on the graph. 

(b) Multifractal and lacunarity analysis of part images 

The fractal dimension has been extensively used to characterize the texture and patterns of 

manufactured surfaces [17, 80-83]. This work goes beyond the traditional methods that extract a 

single fractal dimension from the surface image, but rather assume the irregularity and non-

homogeneity of image data are due to the presence of several fractal dimensions [83]. As such, we 

extract a spectrum of multifractal features to characterize the layer-by-layer images obtained in 

LPBF. A fractal is defined as a shape that embodies geometric similarity across multiple scales 

[84-86]. Assuming that a fractal object occupies a limited area in the Euclidean space, then the 

object can be covered by N measure elements with size 𝜀 as follows, 

   𝑁(ε) = ε−𝐷 (11) 

where D is the fractal dimension. The box-counting method is widely used to estimate the fractal 

dimension of an irregular object. This method covers a fractal set with measure elements (e.g., 

box) at different sizes and observes how the number of boxes varies with its size [87]. This 

procedure is repeated using different boxes of size l. Once the l becomes sufficiently small, N(l) 

being the number of boxes that are needed to cover a fractal object with the size l, then the box-

counting dimension 𝐷0 is defined as, 
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𝐷0 = lim

𝑙→0

ln𝑁(𝑙)

ln (
1
𝑙
)

 (12) 

 

Please insert Figure 11 here. 

 

For example, Figure 11 shows three types of fractal objects called multifractal trees that are 

constructed with the iterated function systems (IFS) method.  These fractal trees are labeled T1, 

T2, and T3. The estimates of fractal dimension (𝐷0) using the box-counting method in Figure 11 

are 𝐷0 = 2.0449 for all three fractal trees. However, three trees show high levels of self-similarity, 

irrgularity and heterogeneity due to the presence of a spectrum of fractal dimensions.  This 

demonstrates that the traditional box-counting fractal dimension is limited in the ability to fully 

characterize the patterns of multifractal objects [88]. Multifractal analysis provides a means to 

overcome this limitation of traditional fractal dimensions. The procedure to estimate the 

multifractal spectrum from image data is as follows, 

Step 1: Estimating the local densities function (𝑃𝑖(𝐿)).  

   
𝑃𝑖(𝐿) =

𝑁𝑖(𝑙)

𝑁𝑇
 (13) 

where 𝑁𝑖(𝑙) is the number of mass or pixels in the ith box of size l, 𝑁𝑇 is the total mass of a set 

and 𝑃𝑖(𝑙) is the probability in the ith box.  

Step 2: Calculating singularity strength exponent (𝑙𝛼𝑖).  

   𝑃𝑖(𝑙)~𝑙𝛼𝑖 (14) 

where 𝛼𝑖 reflects the local behavior of Pi (l) in the ith box with size l and it can be derived as 
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𝛼𝑖 = lim

𝑙→0

ln 𝑃𝑖(𝑙)

ln 𝑙
 

(15) 

Step 3: Estimating multifractal spectrum (𝑓(𝛼)).  

The multifractal spectrum 𝑓(𝛼) is the fractal dimension of the set of locations that have same 

values for singularity strength exponents 𝛼𝑖. Given the number of boxes 𝑁(𝛼) where the 

probability 𝑃𝑖(𝑙) has exponent values between 𝛼 and 𝛼 + 𝑑𝛼 the multifractal spectrum 𝑓(𝛼) can 

be calculated as follows, 

   
𝑓(𝛼) = lim

𝑙→0

ln 𝑁(𝛼)

ln (1 𝑙⁄ )
 (16) 

Step 4: Characterizing multifractal measures (𝐷𝑞).  

Multifractal measures are characterized by the scaling of the qth moments of 𝑃𝑖(𝑙) distributions 

as, 

                                                    ∑ 𝑃𝑖
𝑞(𝑙)𝑁(𝑙)

𝑖=1 = 𝑙𝜏(𝑞) (17) 

where 𝜏(𝑞) is called the mass exponent of qth order moment. Then, the generalized fractal 

dimensions 𝐷𝑞 can be written as, 

                                                    𝐷𝑞 =
𝜏(𝑞)

𝑞−1
 (18) 

Then, the Legendre transformation is used to derive the multifractal spectrum as, 

 𝑓(𝛼(𝑞)) = 𝑞𝛼(𝑞) − 𝜏(𝑞) (19)  

 𝛼(𝑞) =
𝑑𝜏(𝑞)

𝑑𝑞
 (20) 

However, Legendre transformations are computationally demanding in the calculation of 𝑓(𝛼). 

Also, this approach requires smoothing the 𝐷𝑞 curvthe e which causes errors in the estimated 𝑓(𝛼) 

[89]. To overcome this limitation and bypass intermediate smoothing steps in estimating 𝑓(𝛼), a 
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family of normalized measures 𝜇𝑖(𝑞, 𝑙) as qth moments of mass probability Pi(l) are introduced in 

Eqn. (21). A constant l range is also used to avoid multifractal properties over a small interval of 

scales. 

                                                    𝜇𝑖(𝑞, 𝑙) =  
𝑃𝑖

𝑞(𝑙)

∑ 𝑃
𝑖
𝑞(𝑙)

𝑁(𝑙)
𝑖=1

 (21) 

As such, the multifractal spectrum 𝑓(𝛼) and the average singularity strength exponent 𝛼(𝑞) can 

be written as,  

 
𝑓(𝛼(𝑞)) =  lim

𝑙→0

∑ 𝜇𝑖(𝑞, 𝑙) ln[𝜇𝑖(𝑞, 𝑙)]𝑁(𝑙)
𝑖=1

ln 𝑙
 

(22) 

 
𝛼(𝑞) =  lim

𝑙→0

∑ 𝜇𝑖(𝑞, 𝑙) ln[𝑃𝑖
𝑞(𝑙)]𝑁(𝑙)

𝑖=1

ln 𝑙
 

(23) 

Figure 12 shows the multifractal spectra for three IFS trees in Figure 11. It is evident that 

multifractal features effectively distinguish the differences in the three IFS trees that were not 

captured using the traditional fractal dimension. Note that the tail of the third IFS tree T3 is longer 

than other two IFS trees. Because T3 has more pixels with lower values (value towards 0 or black 

pixels) in comparison to the other two trees and the 𝑓(𝛼(𝑞)) spectrum intensifies the effect of 

pixels with lower values. 

Please insert Figure 12 here. 

 

Furthermore, lacunarity complements multifractal analysis by characterizing the manner or 

distribution in which the fractal objects fill the space [90, 91]. Lacunarity and multifractal analysis 

jointly describe the irregularity and non-homogeneity in fractal objects as well as how they fill the 

space that cannot be otherwise achieved by traditional box-counting dimension or statistical 

features. To obtain the lacunarity measure, a unit box of size l is placed over the object and the 
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number of set points s (black pixels) in the image is counted – this is called the box mass. Next, 

the box is translated one space along the set, and the box mass is again determined. This process 

is repeated over the entire set, creating a frequency distribution of the box masses represented as 

N(s,l). This frequency distribution is converted into a probability distribution Q(s,l) by dividing by 

the total number of boxes N(l) of a given size l [92].  

   
𝑄(𝑠, 𝑙) =

𝑁(𝑠, 𝑙)

𝑁(𝑙)
 

(24) 

The first and second moments of this distribution can be written respectively as: 

 𝑍1 = ∑𝑠𝑄(𝑠, 𝑙) (25) 

 𝑍2 = ∑𝑠2𝑄(𝑠, 𝑙) (26) 

The lacunarity method with box size l can be computed as: 

   
Ʌ(𝑙) =

𝑍2

(𝑍1)2
 (27) 

In Eqn. (24), Ʌ(l) represents the lacunarity for the box size l. This procedure is repeated for 

different box sizes, and a log-log plot of the lacunarity versus the size of the box is traced. Figure 

13 shows T3 has higher lacunarity values in comparison to the two other trees. The distribution of 

gap sizes is termed as lacunarity.  

Figure 14 shows the singularity strength exponent α(q) and multifractal spectrum f(α(q)) estimated 

from 3132 layerwise images in the LPBF process. There are 1044 images in EA=2.27; 696 in 

EA=1.81; 348 in EA=1.70; 696 in EA=1.51; and 348 in EA=1.13. Note that multifractal spectra of 

these images show significant variations with respect to the different Andrew’s numbers.  

Please insert Figure 13 here. 
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Please insert Figure 14 here. 

 

4.3 Application of Multifractal and Spectral Graph Theory to Online Images 

Further, the parts built under the different EA conditions described in Table 1 were classified using 

different machine learning approaches with various types of input features. A 70%-15%-15% split 

for training, testing, and validation data were imposed.  The classification fidelity is reported in 

terms of the F-score, which is an aggregate of the Type I and Type II statistical errors. The results 

are summarized in Table 4.  

Please insert Table 4 here. 

Three types of input features are used: (1) statistical image features, namely, intensity (mean) of 

an image, and local standard deviation of an image in 3 × 3 neighborhood, (2) spectral graph 

theoretic features, namely, the first five non-zero Eigenvalues and the Kirchhoff index, and (3) the 

multifractal and lacunarity features.  It is observed that irrespective of the classification approaches 

used, the spectral graph and multifractal and lacunarity features outperform the conventional 

statistical features. Furthermore, combining the spectral graph and multifractal features results in 

F-score around 80%. The results reported in Table 4 show that the spectral graph theoretic and 

multifractal features discriminate the part quality with higher fidelity than traditional statistical 

analysis. This is valuable from the in-process quality monitoring viewpoint. In a practical scenario, 

images of the parts can be used to conclude whether the process within an optimal window. 
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5 Conclusions and Future Work 

This paper presents the modeling and analysis of in-process layerwise images in LPBF to 

investigate the effect of LPBF process conditions on the severity, size, and location of porosity, 

and further connects the process conditions to sensor signatures. This is an indirect way to monitor 

the LPBF process. The specific outcomes of the work are as follows: 

1. Three process parameters, namely, laser power (P), hatch spacing (H), and scan velocity (V) 

were varied during the LPBF of Ti-6Al-4V powder material. The effect of varying these 

parameters on porosity was characterized offline using X-ray computed tomography (XCT). 

Based on analysis of the XCT images the following inference is tendered. Decreasing the laser 

power by 50% from 340 W to 170 W leads to almost a three-fold increase in the average 

number of pores, compared to an equivalent percentage increase in hatch spacing, and ten-

fold increase compared to scan velocity. Hence, the control of laser power is most 

consequential for avoiding porosity.  

2. Online visible spectrum images of the part were acquired as they are built using a still camera. 

These images were analyzed using multifractal and graph theoretic approaches. The features 

extracted by applying these approaches were subsequently used within various machine 

learning techniques. The aim was to distinguish the process conditions under which the parts 

were built given an image of the part. It is observed that combining multifractal and graph 

theoretic analysis leads to as much as 30% increase in the accuracy of discriminating process 

conditions compared to using traditional statistical measurements. Using this approach, the 

process conditions can be isolated with F-score approaching 80%. From a practical 

perspective, although the P, H, and V settings are predetermined for each material in terms of 

the Andrew number (EA), the laser power, particularly, is liable to drift due to occlusion of 
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the focusing optics; the vaporized material tends to condense on the lens especially during 

long builds. 

One limitation of this work is that it does not relate the sensor signatures directly to the defects, 

but rather isolates the process condition that leads to porosity. This is mainly due to the fact that 

the resolution of the camera is not sufficient to identify pores, which are in the 16 μm – 65 μm, 

from the images directly. To overcome this drawback, data from multiple sensors will be combined 

(e.g., thermography and meltpool monitoring) to not only capture multiple types of defects 

simultaneously but also improve upon the detection fidelity. Furthermore, in the future work, the 

authors will endeavor to understand the effect of process parameters on other type of defects, such 

as distortion and geometric inaccuracy.  
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Table 1: The combination of power (P), hatch spacing (H), scan velocity (V), and layer height (T) 

process conditions used for making the titanium alloy parts. 
Process Condition 

(P, H, V, T = 0.060) [W, mm, mm/sec, mm] 
EA [J.mm-2] EV [J.mm-3] 

P0, H0, V0 (340, 0.12, 1250,0.06) 2.27 37.8 

P -25%, H0, V0 (255, 0.12, 1250,0.06) 1.70 28.3 

P-50%, H0, V0 (170, 0.12, 1250,0.06) 1.13 18.8 

P0, H +25%, V0 (170, 0.15, 1250,0.06) 1.81 30.1 

P0, H +50%, V0 (170, 0.18, 1250,0.06) 1.51 25.1 

P0, H0, V +25% (170, 0.12, 1562,0.06) 1.81 30.1 

P0, H0, V +50% (170, 0.12, 1875,0.06) 1.51 25.1 
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Table 2: Mean count of pores and its standard deviation (in brackets) of various sizes in the XCT 

scan image slice in various printing conditions obtained from 30 randomly sampled layers. 

 Mean count of pores 

Size 

H0, V0, P0 

(Nominal 

condition) 

(0.12 mm, 

1250 mm/s, 

340 W) 

H + 25% 

(0.15 

mm) 

H + 55% 

(0.18 mm) 

V + 25% 

(1562.5 

mm/s) 

V + 50% 

(1875 

mm/s) 

P -25% 

(255 W) 

P - 50% 

(170 W) 

R1 ~ 16 μm 1(1) 3(2) 42(22) 3(2) 10(5) 1(1) 132(31) 

R2 ~ 32 μm 1(1) 1(1) 6(4) 2(2) 4(3) 1(1) 30(12) 

R3 ~ 48 μm 0 0 0 1(1) 1(1) 0 3(2) 

R4 ~ 64 μm 0 0 0 0 1(1) 0 1(1) 
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Table 3: Mean counts of pores and its standard deviation (in brackets) at various locations of the 

XCT scan image in various printing conditions. 

 Mean count of pores 

Radial 

distance  

from center 

of  

image 

H0, V0, P0 

(Nominal 

condition) 

(0.12 mm, 

1250 mm/s, 

340 W) 

H + 25% 

(0.15 mm) 

H + 50% 

(0.18 

mm) 

V + 25% 

(1562.5 

mm/s) 

V + 

50% 

(1875 

mm/s) 

P + 25% 

(255 W) 

P + 50% 

(340 W) 

L1 = 0 – 1 mm 1(1) 1(1) 9(6) 1(2) 3(3) 1(1) 19(9) 

L2 = 1 – 2 mm 1(1) 1(1) 18(8) 2(2) 5(4) 1(1) 50(22) 

L3=  2 – 3 mm 1(1) 2(1) 19(10) 2(2) 7(5) 1(1) 56(22) 

L4=  3 – 4 mm 1(1) 1(1) 6(4) 1(1) 2(2) 1(1) 31(13) 

L5=  4 – 5 mm 1(1) 1(1) 0 1(1) 1(1) 1(1) 1(2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Revised MANU-17-1575 (Research Paper) 

40 

 

Table 4: Accuracy of classifiers used for classification of parts using statistical, spectral graph 

theoretic, multifractal and lacunarity features. The numbers in parenthesis are the standard 

deviations from a 5-fold replication study. 

Classifier 
Statistical 

features 
(A) Spectral graph  

theoretic features 

(B) Multifractal and 

lacunarity features 

Combined 

features  

A+B 

Support Vector 

Machine 

55.58% 

(0.58)  

71.94% 

(0.20) 

76.16% 

(0.30) 

89.36% 

(0.21) 

Complex Tree 
54.10% 

(0.14)  

68.02% 

(0.66) 

68.60% 

(0.50) 

79.98% 

(0.23) 

Linear Discriminant 

Analysis 

52.72% 

(0.34)  

63.22% 

(0.49) 

63.02% 

(0.08) 

82.16% 

(0.21) 

K-Nearest Neighbor 
 56.62% 

(0.50) 

67.66% 

(0.25) 

70.38% 

(0.27) 

78.60% 

(0.34) 

Ensemble  

(Bagged Trees) 

 51.06% 

(0.58) 

72.50% 

(0.10) 

72.64% 

(0.61) 

85.86% 

(0.30) 

Feed Forward 

Neural Network 

49.66% 

(1.99) 

64.62% 

(1.7) 

66.54% 

(1.76) 

84.40% 

(1.67) 
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pores are seen in the part printed at P -50 % (c3). 

Figure 6 

An overview of the image processing methodology used to analyze the computed 

tomography (XCT) scan images. (a) XCT scan image of part printed with P -50 %, (b) 

binarization of the XCT scan image of the part, (c) complemented binary image of the 

XCT scan image, and (d) noise reduced XCT scan image which is used for the spatial 

distribution analysis. 

Figure 7 

An example of the procedure followed to divide XCT scan image of a part into 

concentric segments. (a) First segment 0 mm –  1 mm of the XCT scan image (L1), 

i.e., the segment that encompasses the center of the XCT scan image, (b) second 

segment1 mm – 2 mm of the XCT scan image (L2), (c) third segment 2 mm – 3 mm 

of the XCT scan image (L3), (d) fourth segment 3 mm – 4 mm of the XCT scan image 

(L4), and (e) last segment 4 mm – 5 mm of the XCT scan image (L5), i.e., the segment 

which is farthest from the center of the XCT scan image. 

Figure 8 

Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing 

condition highest number of pores are seen of size R1 (16 μm), and in P0 and P -25 % 

printing condition, very few pores of size R1 (16 μm) are seen. (b) In parts printed 

with varying hatch spacing only pores of size R1 (16 μm) and R2 (32 μm) are seen, 

and the highest number of pores is seen in H +50 % printing condition. (c) In 

comparison with other printing conditions, the lowest number of pores is seen in parts 

printed with varying velocity. Pores of size R1 (16 μm) are highest in number in V0, 

V +25 %, and V +50 % printing conditions. 

Figure 9 

Mean pore count vs. radius from center of image at varying process conditions. (a) 

Parts printed with laser power of P -50 % have highest number of pores in the third 

segment (L3= 2-3mm) of the XCT scan image. Parts printed with P 0 (nominal 
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condition), and P -25 % have pores located in second segment (L2= 1-2 mm) of the 

XCT scan image. (b) In parts printed with varying hatch spacing highest number of 

pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all 

conditions. (c) In parts printed with varying velocity highest number of pores are seen 

in V +50 % in the third segment (L3= 2-3 mm), and in V0 and V +25 % conditions, 

highest number of pores are seen in the second segment (L2= 1-2 mm) of the XCT 

scan images. 

Figure 10 
An in-situ image of part depicting the row vectors which are used for pairwise 

comparison. 

Figure 11 

Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS 

tree T2, (c), IFS tree T3. All three IFS trees have the same box-counting fractal 

dimension of 2.0449, but different multifractal spectra as shown in Error! Reference 

source not found.. 

Figure 12 

Multifractal spectra of IFS trees shows the self-similarity, irregularity, and non-

homogeneity of fractal objects that cannot be adequately characterized using a single 

fractal dimension.  

Figure 13 
Lacunarity analysis of IFS trees describes how fractal objects fill the space that cannot 

be adequately captured using traditional fractal analysis. 

Figure 14 
The varaitions of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise 

images in the LPBF process. 
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Figure 1: The schematic diagram of the laser-based powder bed fusion (LPBF) process. 
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Figure 2: Schematic diagram of the location of flash-lamps and camera used to capture in-situ powder bed 

images [45]. 
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Figure 3: Cropped image of the powder bed in different light schemes. 
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Figure 4: An overview of the methodology for analysis of offline computed tomography data, and in-situ 

images of powder bed fusion process. 
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Figure 5: Effect of process conditions on the parts as seen in XCT scan images. Pore count increases as 

process conditions drift from nominal conditions. Highest number of pores are seen in the part printed at P 

-50 % (c3). 
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Figure 6: An overview of the image processing methodology used to analyze the computed tomography 

(XCT) scan images. (a) XCT scan image of part printed with P -50 %, (b) binarization of the XCT scan 

image of the part, (c) complemented binary image of the XCT scan image, and (d) noise reduced XCT scan 

image which is used for the spatial distribution analysis. 
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Figure 7: An example of the procedure followed to divide XCT scan image of a part into concentric 

segments. (a) First segment 0 mm –  1 mm of the XCT scan image (L1), i.e., the segment that encompasses 

the center of the XCT scan image, (b) second segment1 mm – 2 mm of the XCT scan image (L2), (c) third 

segment 2 mm – 3 mm of the XCT scan image (L3), (d) fourth segment 3 mm – 4 mm of the XCT scan 

image (L4), and (e) last segment 4 mm – 5 mm of the XCT scan image (L5), i.e., the segment which is 

farthest from the center of the XCT scan image. 
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Figure 8: Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing condition 

highest number of pores are seen of size R1 (16 μm), and in P0 and P -25 % printing condition, very few 

pores of size R1 (16 μm) are seen. (b) In parts printed with varying hatch spacing only pores of size R1 (16 

μm) and R2 (32 μm) are seen, and the highest number of pores is seen in H +50 % printing condition. (c) 

In comparison with other printing conditions, the lowest number of pores is seen in parts printed with 

varying velocity. Pores of size R1 (16 μm) are highest in number in V0, V +25 %, and V +50 % printing 

conditions. 
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Figure 9: Mean pore count vs. radius from center of image at varying process conditions. (a) Parts printed 

with laser power of P -50 % have highest number of pores in the third segment (L3= 2-3mm) of the XCT 

scan image. Parts printed with P 0 (nominal condition), and P -25 % have pores located in second segment 

(L2= 1-2 mm) of the XCT scan image. (b) In parts printed with varying hatch spacing highest number of 

pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all conditions. (c) In parts 

printed with varying velocity highest number of pores are seen in V +50 % in the third segment (L3= 2-3 

mm), and in V0 and V +25 % conditions, highest number of pores are seen in the second segment (L2= 1-

2 mm) of the XCT scan images. 
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Figure 10: An in-situ image of part depicting the row vectors which are used for pairwise comparison.  
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Figure 11. Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS tree T2, (c), 

IFS tree T3. All three IFS trees have the same box-counting fractal dimension of 2.0449, but different 

multifractal spectra as shown in Figure 12. 
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Figure 12. Multifractal spectra of IFS trees shows the self-similarity, irregularity, and non-homogeneity of 

fractal objects that cannot be adequately characterized using a single fractal dimension. 
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Figure 13. Lacunarity analysis of IFS trees describes how fractal objects fill the space that cannot be 

adequately captured using traditional fractal analysis. 
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Figure 14: The variations of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise images 

in the LPBF process. 

 

 


