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Abstract
The goal of this work is to understand the effect of process conditions on part porosity in laser powder bed

fusion (LPBF) Additive Manufacturing (AM) process, and subsequently, detect the onset of process
conditions that lead to porosity from in-process sensor data. In pursuit of this goal, the objectives of this
work are two-fold: (1) Quantify the count (number), size and location of pores as a function of three LPBF
process parameters, namely, the hatch spacing (H), laser velocity (V), and laser power (P). (2) Monitor and
identify process conditions that are liable to cause porosity through analysis of in-process layer-by-layer
optical images of the build invoking multifractal and spectral graph theoretic features. This is important
because porosity has a significant impact on the functional integrity of LPBF parts, such as fatigue life.
Furthermore, linking process conditions to defects via sensor signatures is the first-step towards in-process
quality assurance in LPBF. To achieve the first objective, titanium alloy (Ti-6Al-4V) test cylinders of 10
mm diameter x 25 mm height were built under differing H, V, and P settings on a commercial LPBF
machine (EOS M280). The effect of these process parameters on count, size and location of pores was
quantified based on X-ray computed tomography (XCT) images. To achieve the second objective, layerwise
optical images of the powder bed were acquired as the parts were being built. Spectral graph theoretic and
multifractal features were extracted from the layer-by-layer images for each test part. Subsequently, these
features were linked to the process parameters using machine learning approaches. Through these image-
based features, process conditions under which the parts were built was identified with the statistical fidelity

over 80% (F-score).
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1 Introduction

1.1 Background

Powder bed fusion (PBF) refers to a family of Additive Manufacturing (AM) processes in which
thermal energy selectively fuses regions of a powder bed [1]. Figure 1 shows the schematic of the
PBF process. A layer of powder material is spread across a build plate. Certain areas of this layer
of powder are then selectively melted (fused) with an energy source, such as a laser or electron
beam. The bed is lowered and another layer of powder is spread over it and melted [2]. This cycle
continues until the part is built. The PBF process embodied in Figure 1 depicts a laser power source
for melting the material, accordingly, the convention is to refer to the process as Laser Powder
Bed Fusion (LPBF).

A galvanic mirror scans the laser across the powder bed. The laser is focused on the bed with a
spot size on the order of 50 um — 100 um in diameter, the laser power is typically maintained in
the range of 200 W to 400 W, the linear scan velocity of the laser is varied in the 200 mm/s to
2000 mm/s range, and the distance between each stripe of the laser, called the hatch spacing, is
maintained in the range of 100 pm to 200 um. The distance through which the bed is lowered is
termed the layer height and is typically in the range of 30 to 50 um. [2]. Close to 50 other

parameters are involved in the melting and solidification process in LPBF [3].

Please insert Figure 1 here.

1.2 Motivation

The ability of LPBF to produce intricate geometry parts from hard-to-process materials, such as

cobalt-chrome and nickel-based super alloys has been conclusively demonstrated for a variety of
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demanding applications ranging from biomedical to aerospace [4, 5]. Process repeatability and
product quality, however, remain imposing barriers towards scaling LPBF to production
environments [6]. Given the layer-by-layer nature of the process, a defect in a layer, if not averted,
will be permanently sealed in by subsequent layers. These trapped defects adversely affect key

functional properties of the part, such as its fatigue life and strength [7, 8].

A major gap in the current research lies in the lack of quantitative models to correlate the effect of
process conditions on specific defects, such as porosity via the data acquired from in-situ sensors.
Addressing this gap is the first-step towards in-process quality assurance in LPBF. Therefore, there
is an urgent need to: (1) understand and quantify the effect of LPBF process conditions on defects,

and (2) institute in-process sensing and monitoring to capture the onset of defects.

The following types of LPBF defects have attracted the most attention: porosity, surface finish,
cracking, layer delamination, and geometric distortion. These defects are tracked to the following

four root causes [9, 10]:
e Poor part design, such as inadequately supported features [11].
e Machine and environmental factors, such as poor calibration of the bed and optics.

e Inconsistencies in the input powder material, such as contamination and deviations in particle

distributions.

e Improper process parameter settings, for example, inordinately high laser power causes
vaporization of the material leading to keyhole porosity, while insufficient laser power
prevents powder particles from fusing together leading to large acicular pores [12, 13]. This
work specifically focuses on characterizing and detecting porosity in-situ due to the improper

selection of process parameters.
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1.3 Objectives

The goal of this work is to quantify the effect of process conditions on part porosity in the LPBF
process, and subsequently, detect the onset of porosity due to deviation in process conditions based
on in-process sensor data. An example of such a possible deviation is the occlusion of the optics
due to vaporization of the material during melting and its eventual condensation on the focusing
lens. The gradual coating of residue on the laser will lead to loss of laser focus, and hence reduce
the power delivered to the substrate without the knowledge of the operator. In extreme instances,
because the residue deposited on the lens absorbs a significant portion of the incident energy,

damage to the lens and optical train can occur [14].
In pursuit of this goal, the objectives of this work are two-fold:

1. Quantify the effect of three LPBF process parameters, namely, laser power (P), hatch spacing
(H), and velocity (V) on the size, count, and location of pores using X-ray computed
tomography (XCT) scan data of the part.

2. Monitor and discriminate process deviations that are liable to cause porosity using in-process

optical images of the powder bed invoking multifractal and spectral graph theoretic analysis.

The first objective is realized by simultaneously building nine titanium alloy cylinders on a
commercial LPBF machine (EOS M280) at varying P, H, and V conditions, and quantifying their

effect on the pore spatial distribution count, size and location are quantified using XCT images.

The second objective is achieved by acquiring layer-by-layer optical images of the parts while they
are being built, and then extracting statistical, multifractal and spectral graph theoretic features
from these images. These features are subsequently used in various classification approaches such
as neural networks to ascertain their ability to isolate process conditions that are liable to produce

parts with severe pores.
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The rest of this paper is structured as follows. A brief review of the literature focusing on porosity
and in-process sensing in LPBF is presented in Sec. 2; Sec. 3 describes the experimental conditions
and layer-by-layer acquisition of part images; Sec. 4 explains the spectral graph theory and
multifractal analysis of in-process image data for feature extraction and process modeling; and

conclusions and avenues for future work are presented in Sec. 5.
2 Review of the Relevant Literature

The literature concerning the reasons and mechanisms of porosity formation and in-process

sensing are summarized in Sec. 2.1 and Sec. 2.2, respectively.

2.1 Effect of LPBF process parameters on porosity

Of the various multi-scale defects in LPBF, porosity and its attendant causes have garnered the
most attention [10, 15-17]. According to Rao et al., voids or pores are empty spaces in a material
and porosity is a measure of the volume occupied by these empty spaces over the total part volume
[18]. Mechanical properties such as strength and fatigue performance LPBF-processed parts are
severely affected by porosity; pores cause high-stress concentration, which in turn results in crack

formation [19-22].

The formation of porosity is closely tied to and governed by the thermal phenomena at the
meltpool-level [23]. Gong et al. have identified four distinctive regimes of melting contingent on
the laser power (P) and velocity (V) process parameter settings. These regimes are demarcated as
Zone I (fully dense); Zone II (over melting); Zone III (incomplete melting); and Overheating Zone
(OH) [20, 24]. Visualizing a process map of laser power plotted on the ordinate axis, and the
velocity on the abscissa, the region along the 45° slope falls under Zone I, also termed as the
conduction mode. In this region, parts with least porosity-related defects were obtained. Zone II is

to the left of Zone I, herein the laser power is higher for a given velocity compared to Zone I. This
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region is home to the so-called keyhole mode melting, where, as experimentally and theoretically
elucidated by King et al. material vaporization occurs due to excessive energy input [25]. Zone III
is to the right of Zone I, and is characterized by relatively higher velocity for a given power setting
compared to Zone I. In this zone (Zone III), there is inadequate energy for the material to

completely fuse.

While Gong et al. found that parts can be made in either of Zones I, II, and III, however, parts
could not be built in the OH Zone, which is mapped to the left of Zone II, because the layers tend
to deform to such a high degree during the build that the deposition of subsequent layers is
impeded. Gong et al. report that in their experiments the recoater jams occurred in the OH zone
due to contact with the part [20, 24]. Similar process mapping results for other AM processes, such
as powder and wire-fed directed energy deposition, and electron beam powder bed fusion are
reported by Beuth et al. [26-28]. Within the three melting zones, Zone I-III, the mechanism, and

nature of pores formed are distinctive.

Lack of fusion porosity occurs in Zone III because the laser energy supplied is insufficient to fuse
the adjacent tracks, and the current and previously deposited layers. Lack of fusion porosity results
in the formation of large acicular pores of size in the range of 30 um -100 um [4]. From an

experimental perspective for Titanium alloy Ti-6Al-4V, Gong ef al. correlate areal energy density
(Ep = ﬁ J/mm?) with porosity and observed the onset of lack of fusion porosity typically occurs

for Ea < 1.1 (approximately). Considering also the layer thickness T as a factor (maintained

is = 36

constant at 30 um) the equivalent threshold for volumetric energy density Ey = VT

J/mm?.
Keyhole-collapse porosity in Zone II occurs due to vaporization of powder material [1-4]. King

et. al. elucidate through theoretical simulations and experimental studies that when the energy
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supplied by the laser is inordinately high, the laser melts through several layers of the powder
vaporizing material in its path. The vapor cavity eventually collapses thus forming pores deep
within the meltpool [25]. The pores resulting from operating in the keyhole melting mode are
uniform and circular in shape and are typically on the scale of 10-20 um [12]. Gong et al.’s studies
indicate that as the energy density in the processing of Ti-6Al-4V increases beyond a threshold

value (typically E5 >2, Ey > 66) the process enters the keyhole melting mode [20, 24].

To avoid oxidation of the powder, the LPBF process is carried out in a chamber filled with inert
gas (usually argon or nitrogen) depending upon the material to be processed. The argon or nitrogen
gas may get trapped in the powder and lead to the formation of gas pores [29]. Additionally, gas
pores are also formed when bubbles are trapped in the meltpool during the solidification process
[18]. Gong et al. also explain the formation of voids and pits due to the ejection of powder material
as spatter on account of the thermal energy [20, 24]. The ejected particles may settle within the
boundary of the part, and on cooling may adhere to the surface of the powder bed. Further, as the
next layer is being deposited, the adhered particles may subsequently be removed by the recoater
leaving a pit or void in its place. Lastly, lower melting impurities and constituents may vaporize
given a sufficiently high energy density (and not due to keyhole collapse) leaving voids in the part

[30]. Such types of pores are not restricted to one type melting zone and are stochastic in nature.

From the extensive experimental work of Gong et al. it is surmised that for Ti-6Al-4V material,
the conduction melting mode typically occurs in the range of 1.1 < E, <2 J/mm? or
equivalently 36 < Ey < 66 J/mm>. Aboulkhair et al. [12, 31] and Stucker et al. [32-34] report
extensive process optimization studies related to porosity in LPBF with conclusions in line with
findings by Beuth et a/ [26-28]. While most of the existing process maps relate the effect of areal

or volumetric energy density to porosity with the aid of X-ray computed tomography (XCT), a
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conspicuous gap remains in relating pore size, density and location simultaneously with Ea. This

work addresses the foregoing gap through Objective 1.

In closing this section, we note that the process zones and concomitant types of porosity reported
in the literature are contingent on the presumptions of stable process operation and that the part

geometry and its location on the build plate have negligible effect.

2.2 Sensing and Monitoring in LPBF

Comprehensive review articles for in-process sensing are available in Ref. [9, 35-38]. Significant
research in process sensing and control for metal AM processes is being done in academe and
national laboratories [39-44]. Nassar and Reutzel, ef al. experimented with imaging of the LPBF
powder bed under various illumination conditions [41, 44, 45]. The resulting layer data was
analyzed, and defects, such as voids caused by improper raking of the powder across the bed were
identified. Lane et al. at NIST integrated an LPBF machine (EOS M270) with thermal and high-
speed cameras, and a photodetector [39]. NIST and Edison Welding Institute (EWT) are currently
building a customized LPBF testbed instrumented with multiple sensors [43, 46]. A large body of
work in sensing and monitoring in LPBF is reported by the Kruth group [47-49] and Witt group
[50-53] in Europe. Recent breakthroughs with in-situ X-ray imaging of the LPBF process has been

reported by scientists at Lawrence Livermore National Laboratories [54].

To detect evolving process anomalies researchers have sought to incorporate sensing techniques
such as vibration, CCD video imaging, infrared and ultraviolet imaging, pyrometers, photodiodes,
ultrasonic wave generators in AM machines [50, 55-61]. An early example was presented by
Melwin et al. [62], who used a video-micrography apparatus bearing band pass and polarizing

filters for observing the meltpool in polymer LPBF.
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In a series of related works, Craeghs ef al. [47-49] describe optical-based approaches for
monitoring build quality in PBF by imaging the thermal behavior at the meltpool. Craeghs et al.
were able to detect process defects, such as deformation and overheating using their optical system
[48]. Bartkowiak [63] describes a PBF apparatus integrated with a spectrometer for in situ
measurements of the layer melt characteristics, such as emissivity. Other researchers, e.g., Chivel
et al. [64], and Jacobsmuhlen et al. [50] have also developed optical imaging systems for process
monitoring in AM [64]. In a recent work, Rieder et al. [58] used an ultrasonic sensing system for
tracking build status in PBF. A broadband ultrasonic sensor mounted on the underside of the build

plate is used to detect voids, akin to acoustic microscopy.

Craeghs et al. [48, 65, 66] report that the amplitude of the photodiode signal is correlated with the
melt-pool area and the melt-pool temperature. They subsequently use this information to identify
process failures, such as detection of deformation due to thermal stresses and overheating at
overhang structures, in each build layer. Further, they developed a feedback control sensor based
on optical images. Chivel and Smurov [64] use two different wavelengths and selected temperature
profiles to extract information of the bed temperature distribution, and the size of the meltpool for

process monitoring.

Regarding the fidelity of the different sensing approaches for detecting defects specific to PBF
AM processes, the viability of thermal imaging and optical spectroscopy-based techniques has
been demonstrated in the literature. Recent work done by researchers at NIST aims to
comprehensively capture the effect of meltpool shape and thermal gradients to defects. From the
meltpool monitoring vista, a fast response thermal camera with a high framerate (> 1000
frames/second) and resolution in the micrometer range is typically used to circumvent blurring

effects [67]. In recent work by EWI researchers the meltpool-level thermal camera is coupled with
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another thermal camera that monitors the heat flux over the entire bed to detect large macro-scale
defects, such as warping [46]. However, such high-fidelity thermal cameras are exceeding
expensive, and moreover, they are appropriate for capturing thermal trends rather than the exact
temperature of the target because the emissivity of the meltpool remains to be established. Dual

color pyrometers can be used to circumvent the lack of emissivity information.

A far less expensive alternative to thermal imaging for detection of micrometer-level defects is
through the use of photodetectors and spectrometers. Nassar ef al. in a series of articles
demonstrate the use of such optical emission spectroscopy-based sensing [42, 68, 69]. The key
idea is to measure the intensity (amplitude) of the line-to-continuum ratio emission spectra of the
material being processed and relate the readings to part defects. For this purpose, two
photodetectors are coupled through a 50:50 beam splitter, and focused upon the entire bed area.
Each of the photodetectors is fitted with an optical bandpass filter that captures light corresponding
to the emission spectra of a particular element in the alloy being processed. For instance, for
detecting anomalies in LPBF of Inconel 718, Nassar ef al. used a 520 nm &+ 5 nm and 530 nm £+ 5
nm optical bandpass filters corresponding to the continuum and line spectra, respectively, of Cr I
emissions [68].

Instead of using two photodetectors to capture formation of porosity, Montazeri et al. in two
articles published in this journal, have used a single photodetector to capture the onset of material
contamination, and also to distinguish the process signatures emanating for different feature
geometries, such as overhang-related features [30, 70]. While photodetectors and spectrometers
present a cost advantage over thermal imaging, and are capable of sampling rates nearing 1 MHz,
their main drawback is that the output is in terms of a time series or frequency spectrum which

have far limited information compared to thermal imaging.

10
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In this context, the use of optical imaging for detection of conditions liable to produce porosity is
a novel contribution of this work. Optical imaging cameras are significantly less expensive than
their thermal and high-speed counterparts. However, the challenge of capturing pores directly from
the layerwise optical images, as opposed, to the anomalous process conditions has not yet been
attempted. In closure, we note that Abdelrahman et al. [45] have used optical imaging data to

capture the large-scale (> 100 um) defects which were deliberately introduced during the build.

The main drawback in most of these studies is that they do not connect practical process conditions
to defects, but rather focus on artificially inducing flaws by way of catastrophic process anomalies.
Furthermore, the analytical techniques rely on classical time-series signal processing techniques,
which may not be effective in capturing subtle defects. Recent progress to overcome this limitation
is reported by the Clare group at Nottingham University who have used spatially resolved acoustic
spectroscopy (SRAS) to detect porosity ex-situ in LPBF, wherein the amplitude of a surface
acoustic wave generated by laser is correlated with the location and severity of porosity at different

laser power settings [71, 72]. The current work addresses this extant gap through Objective 2.
3 Experimental Setup and Data Acquisition

Experiments were conducted on an EOS M280 LPBF machine. The input material was a Titanium
alloy, ASTM B348 Grade 23 Ti-6Al-4V powder material whose particle size ranges from 14 pm
to 45 um. The parts analyzed in this study are cylinders which were printed by varying the hatch
spacing (H), scan velocity (V) and laser power (P). The cylinders are 25 mm in length and 10 mm
in diameter. shows the seven process parameter settings which were used to print these cylinders.
The nominal settings are labeled as HO = 0.12 mm, VO = 1250 mm/s, and PO = 340 W. The layer
height is maintained is constant at T = 60 um. Hatch spacing and laser print velocity are increased

by 25% and 50%, and laser powder has been decreased by 25% and 50% from their nominal

11
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settings. The three process settings are aggregated in terms of the areal energy density applied for

P
H XVXT

melting called the Andrew number: Ea = % J/mm? or the volumetric energy density Ey =

. Comparing the Ev values reported in Table 1 with the experimental results of Gong et al. [20,
24], we note that barring the nominal settings, which is set in the conduction regime (Zone I), all
other experimental treatment combinations fall within the lack of fusion (Zone III) regime where

acicular pores are expected (Ev < 36).

A digital single-lens reflex camera (DSLR, Nikon DS0OE) along with multiple flash-lamps placed
inside the build chamber is used to capture the layer-by-layer powder bed images. Images are
captured at two instances in every layer, namely, post laser scan and post re-coat. The camera
shutter is controlled by a proximity sensor that registers the location of the re-coater blade. Five
images of the powder bed images are captured under bright-field and dark-field flash settings. The
layout of the camera and flash-lamp location are shown in Figure 2, and the representative images
under the five light schemes are shown in Figure 3. In this work, images from the bright-field light

scheme in Figure 3(a) are analyzed. Details of the experimental setup are available in Ref. [45].

Please insert Table 1 here.

Please insert Figure 2 here.

Please insert Figure 3 here.

12
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4 Methodology and Results

As shown in Figure 4, the LPBF process data is analyzed in two phases, namely, (1) offline analysis
of X-ray computed tomography (XCT) data in Sec. 4.1; and (2) analysis of in-situ images of the

powder bed in Sec. 4.2.

Please insert Figure 4 here.

4.1 Phase 1: Offline analysis of porosity.

This section aims to analyze the effect of hatch spacing (H), laser velocity (V), and laser power
(P) on the count, size, and location of pores. Representative XCT images of parts under different
P, H and V conditions are shown in Figure 5. A visual inspection of the XCT scans shows that the

size and number (count) of the pore is inversely proportional to the areal energy density (EA).

As the areal energy density (Andrew’s number, Ea) is reduced, we observed that the size and
number of the pores become larger. However, we caution that, although, the critical process
parameters, such as laser power (P, Watt), hatch spacing (H, mm), scan velocity (V, mm/sec), and
layer height (mm) can be optimized for certain part geometries, and aggregated in terms of the
global volumetric energy density (Ea) pores can still occur. This is because, Ea does not account
for the thermal aspects in the part (heat flux), which is contingent on the part geometry, orientation,
and its location on the build plate. For instance, parts in the far edge of the build platen (near the
end of the recoater action) may suffer from insufficient powder feed (powder shorting), likewise,
the laser spot size is liable to change as the laser tends to defocus on the outer edge of the build

platen leading to lack-of-fusion related porosity.

13
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Furthermore, there is the possibility of a complex, nonlinear interaction between P, V, and H which
remains as yet undiscovered and therefore not captured in the relationship representing the areal
energy density (EA). For instance, in the equation for EA, all terms are assumed to be equal in
weight, i.e., the exponent P, V, and H is unity (=1) and therefore the relationship between EA and
the process parameters is implicitly assumed to be a simple linear relationship. The following
inference is made based on Figure 5. For instance, while the severity of pores is influenced by all
three process parameters. However, laser power (P) seems to have an inordinately high effect.
This observation is further quantified by extracting count, size and location attributes by analyzing

the XCT scan images through the steps shown in Figure 6.

e Figure 6 (a) - XCT scans for 30 randomly chosen cross-sectional areas are analyzed.

e Figure 6 (b) and (c) - The XCT scan images are binarized based on a heuristically determined
threshold. Some information is inevitably compromised during the binarization process. A
complement of the binary image is taken to return a black background, which makes
computation easier as the image matrix becomes sparse.

e Figure 6 (d) - To reduce noise induced due to binarization the nearest neighborhood approach
is used [73]. We note that while it is customary to refer to voxels in the context of XCT, because
the images are converted to binary images (binarized), we revert to using the term pixel. In
this procedure, a binarized XCT pixel is labeled as a defect only if it is connected to the 8-
nearest pixels. In other words, if the 8 nearest neighboring pixels of a particular pixel are also

bright (i.e., 1), then the pixel is deemed to represent part of a defect.

Please insert Figure 5 here.

14
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Please insert Figure 6 here.

Next, the pore count, size and location are extracted as follows:

e Pore count — The number of 8-connected binarized XCT pixel over a layer translates to the
pore count.

e Size of pores — The size of a pore is grouped into one of 5 classes contingent on its radius.
Each pore is considered as an annular structure on the noise reduced image, and then, the
number of pixels within each annulus is calculated. Depending on the number of pixels in the
annulus, the pores are classified into various radii, namely 1-5 pixel radii. A radius of one-
pixel unit equates to a pore radius of 16 um on the part.

e Pore Location — The pore location is determined by segmenting the XCT scan image into 5
concentric areas as shown in Figure 7. The number of pores in each 1-mm thick segment of
the XCT scan image is then counted. This establishes the distance of the pores from the center

of the cylinder.

Please insert Figure 7 here.

(@) Effect of process parameters on count and size of pores

Analysis of the XCT scan images shows that decrease in the areal energy density (EA) leads to an
increase in the count (number of pores) and size of pores. This effect of laser power (P), hatch
spacing (H), and laser print velocity (V) on pore count and size are exemplified in Figure 8 from

which the following inferences are drawn. In Figure 8, the x-axis is the pore size, and the y-axis is

15
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the mean count (or number) of the pore observed on 30 randomly selected slices of the XCT scan.
These results are also detailed in Table 2, which reports the mean number of pores, rounded to the

nearest integer, along with the standard deviation for 30 randomly chosen layers.

e Referring to Figure 8 (a), the pore distribution in terms of count vs. pore size is plotted for
different levels of laser power (P). The decrease in laser power by 50% (170 W) leads to
almost a 100-fold increase in the number of pores. Further, parts produced under P -50% (170
W) have pores ranging from 1 pixel to 4 pixels in size, i.e., 28 pm to 112 pm, whereas parts
produced under nominal power (PO= 340 W) and P -25% (270 W) have pores of radius 2
pixels (~ 32 pm) at most.

e Referring to Figure 8 (b), increasing the hatch spacing (H) leads to an increase in both the
count and size of pores. The magnitude of the effect of laser hatch spacing is significantly
smaller than that of laser power. In case of varying hatch spacing (Figure 8 (b)), the highest
number of pores are seen in the cylinder which is printed with H +50 %, i.e., 0.18 mm hatch
spacing. From Figure 8 (b), for all the three levels of hatch spacing, the largest pore radius
observed is 2 pixels.

e Referring to Figure 8 (¢), akin to hatch spacing, increase in laser print velocity (V) leads to
increase in count and size of pores. The largest pore size of radius 3 pixels (~48 pm) was
recorded in the cylinder printed with V +50 % (1875 mm/s). The effect of velocity on porosity

is least consequential of the three factors studied in this work.

Please insert Figure 8 here.
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Please insert Table 2 here.

Effect of process parameters on the location of pores

The location of pores in the test cylinders is determined by segmenting the XCT scan image of a

cylinder into 5 concentric parts as described previously in the context of Figure 7. This establishes

the distance of the pores from the center of the cylinder. The mean and standard deviation of pores

in each segment of the part for 30 randomly chosen layers are reported in Error! Reference source

not found. and depicted in Figure 9, from which the following inferences are drawn:

Referring to Figure 9 (a), it is evident that as the laser power decreases, more number of
pores are recorded in the L, (4 mm — 8 mm) to L4 (8 mm — 12 mm) segment, of the cylinder.
Figure 9 (a) further reveals that the cylinder printed with nominal laser power (340 W) has
most number of pores in the first two annular segments of length L (0 mm — 4 mm) and
L> (4 mm — 8 mm), which indicates that the pores are located close to the center. This trend
is also observed in the cylinder printed with P -25 % laser power (270 W). In contrast, the
cylinder printed with -50 % laser power has most number of pores in the third segment 8-
12 mm.

Referring to Figure 9 (b) and (c), in cylinders printed with varying hatch spacing (H) and
laser print velocity (V), respectively it is observed that parts produced at +50% hatch
spacing (0.18 mm) and laser print velocity (1875 mm/s) have the highest number of pores
at the radial distance with L3 (8-12 mm). Pores in the cylinders printed with +25% and
nominal hatch spacing and laser print velocity are mainly located in the first two segments

0 mm -1 mm and 1 mm - 2 mm.

17
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The sharp drop in porosity in L5 is likely due to the reason that the external boundary of the part
is scanned with increased EA after the rest of the part (post-contour melting). The added heat at
the periphery mitigates porosity in L5. Further, the concentration of heat in the core of the part
may explain the reduced porosity towards the center (L1). Lastly, the effect of thresholding to
convert may lead to a loss of information, this last reason can be largely discounted in the light of

Figure 6 (a and d), wherein pores in the boundaries are captured appreciably.

Please insert Figure 9 here.

Please insert Table 3 here.

4.2 Phase 2: Analysis of online data of laser powder bed fusion process (LPBF).

This section aims to link the process conditions to the layer-by-layer images of the parts as they
are melted. This will allow detection of process drifts in their early stages. For this purpose, two
methods are proposed, the first based on spectral graph theory, and the second using multifractal

and lacunarity analysis.

(a) Application of spectral graph theory for part image analysis

Spectral graph theoretic Laplacian eigenvalues extracted from online images are used to identify

the process conditions under which a part is produced. The approach has the following two steps.
Step 1: Representing the image of each part as a graph.

A layer-wise image obtained from the DSLR camera for a laser sintered cylinder layer with M X

N pixels can be represented by a matrix X ¥ *». As shown in Figure 10, each row of the matrix X
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is considered as a row vector and it represents a node or vertex (/) of an undirected graph which
is denoted as G = (V, E), where E is the edges in the graph [74]. The M row vectors of the matrix

X are represented as ag, K = {1,2,...M}.

Please insert Figure 10 here.

Further, a pairwise comparison is performed between each of the row vectors through a kernel
function Q [75]. A pairwise comparison along the columns has been shown to lead to similar
results as long as the image is homogeneous [76].

wpq = A(ay, @) Vp,q €K (1)
The kernel function Q used in this study to compute the pairwise comparison is the radial basis

kernel function (Eqn. (2) and (3)) .

_ & @)
Wpq = € 77X
E= |la; - ]| 3)

where, oy is the overall standard deviation of E. Next, a binary similarity matrix § = [wpq] is
created with help of a threshold function. This threshold function 6 when applied to w7, converts
it into binary form[77].

0(wpq) = wpq = (0,1) 4)
This threshold function facilitates in determining whether there is a connection between two nodes
[77]. wypq= 1 if there is a connection and otherwise it is zero.

1,wpq <r 5
O(1wpq) = Wpq = {O'qu > r ©)

Here r is given by,
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- M2
Step 2: Extracting features from the graph.

Once a graph is formulated from the image, topological features are extracted from the graph.
These features are useful in classification of parts which are made with different process
parameters. The first step towards feature extraction is computing the degree d,, of a node p, i.e.,
the number of edges that pass through the node p. The degree of node p is computed by summing
each row in the similarity matrix §. From the degree of node d,,, a diagonal degree matrix D is
formed as follows,
D & diag(dy, -, dy) (7

Now, with the help of the degree D matrix and the similarity matrix S, the normalized Laplacian

L of the graph is defined as follows,

1 1
LEYD2Zx(D—-S)xD 2 ®)

1
where, D "z = diag(l/ ,---,1/ )
Vdy Vdu

Finally, the Eigen spectra of the Laplacian is computed as follows [78].

Ly ='v 9)
The eigenvalues (A) of the Laplacian are used in the classification of LPBF parts per their
processing conditions. In this work, the first five smallest non-zero eigenvalues are used. Also, the
Kirchhoff index for each graph is computed as follows, where A; are the non-zero eigen values of

the Laplacian.

M
Kf=2><e><z/1i‘1 (10)
i=2

20



Revised MANU-17-1575 (Research Paper)

i=M yJj=M
Yiz1 Xj=q Sij

2

where € =

The non-irradiated part of the part image i.e. the un-sintered powder, is fairly homogenous, so
when it the image undergoes a row-wise comparison, the distance kernel function becomes zero

[79]. The nodes which are far apart from each other are connected on the graph.

(b) Multifractal and lacunarity analysis of part images

The fractal dimension has been extensively used to characterize the texture and patterns of
manufactured surfaces [17, 80-83]. This work goes beyond the traditional methods that extract a
single fractal dimension from the surface image, but rather assume the irregularity and non-
homogeneity of image data are due to the presence of several fractal dimensions [83]. As such, we
extract a spectrum of multifractal features to characterize the layer-by-layer images obtained in
LPBF. A fractal is defined as a shape that embodies geometric similarity across multiple scales
[84-86]. Assuming that a fractal object occupies a limited area in the Euclidean space, then the
object can be covered by N measure elements with size € as follows,

N(e) =¢7P (11)
where D is the fractal dimension. The box-counting method is widely used to estimate the fractal
dimension of an irregular object. This method covers a fractal set with measure elements (e.g.,
box) at different sizes and observes how the number of boxes varies with its size [87]. This
procedure is repeated using different boxes of size 1. Once the 1 becomes sufficiently small, N(1)
being the number of boxes that are needed to cover a fractal object with the size 1, then the box-

counting dimension Dy is defined as,
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(12)

Please insert Figure 11 here.

For example, Figure 11 shows three types of fractal objects called multifractal trees that are
constructed with the iterated function systems (IFS) method. These fractal trees are labeled T1,
T2, and T3. The estimates of fractal dimension (D) using the box-counting method in Figure 11
are Dy = 2.0449 for all three fractal trees. However, three trees show high levels of self-similarity,
irrgularity and heterogeneity due to the presence of a spectrum of fractal dimensions. This
demonstrates that the traditional box-counting fractal dimension is limited in the ability to fully
characterize the patterns of multifractal objects [88]. Multifractal analysis provides a means to
overcome this limitation of traditional fractal dimensions. The procedure to estimate the
multifractal spectrum from image data is as follows,

Step 1: Estimating the local densities function (P;(L)).

P(L) =

N; (D (13)
Ny

where N; (1) is the number of mass or pixels in the ith box of size 1, Ny is the total mass of a set
and P; (1) is the probability in the ith box.

Step 2: Calculating singularity strength exponent (1%).
P (D)~1% (14)

where a; reflects the local behavior of Pi (1) in the ith box with size | and it can be derived as
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In P; (1
¢ = lim PO (15)
1-0 Inl

Step 3: Estimating multifractal spectrum (f (a)).

The multifractal spectrum f(«) is the fractal dimension of the set of locations that have same
values for singularity strength exponents @;. Given the number of boxes N(a) where the
probability P;(l) has exponent values between a and a + da the multifractal spectrum f(a) can

be calculated as follows,

~ InN(a)
fle)= lll_r}(} ln(l/l)

Step 4. Characterizing multifractal measures (D).

(16)

Multifractal measures are characterized by the scaling of the qth moments of P;(l) distributions

as,
TP = 1@ (17)
where 7(q) is called the mass exponent of qth order moment. Then, the generalized fractal

dimensions D, can be written as,
D, =— (18)

Then, the Legendre transformation is used to derive the multifractal spectrum as,

f(a(@) = qa(q) - t(q) (19)
d
w(q) = Z(qq) (20)

However, Legendre transformations are computationally demanding in the calculation of f(«a).

Also, this approach requires smoothing the D, curvthe e which causes errors in the estimated f (a)

[89]. To overcome this limitation and bypass intermediate smoothing steps in estimating f(«), a
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family of normalized measures u;(q, ) as qth moments of mass probability Pi(l) are introduced in
Eqgn. (21). A constant / range is also used to avoid multifractal properties over a small interval of

scales.

720
ui(q, ) = m

€2y

As such, the multifractal spectrum f (@) and the average singularity strength exponent a(q) can

be written as,

M 0(q, D I (g, D]
f(a(q)) _ lll_r)rol 1M qlnln ui\g (22)
N® (g, D In[PIC
a(q) = 1115221_1 L (qln)l n[R (D] (23)

Figure 12 shows the multifractal spectra for three IFS trees in Figure 11. It is evident that
multifractal features effectively distinguish the differences in the three IFS trees that were not
captured using the traditional fractal dimension. Note that the tail of the third IFS tree T3 is longer
than other two IFS trees. Because T3 has more pixels with lower values (value towards 0 or black
pixels) in comparison to the other two trees and the f (a(q)) spectrum intensifies the effect of

pixels with lower values.

Please insert Figure 12 here.

Furthermore, lacunarity complements multifractal analysis by characterizing the manner or
distribution in which the fractal objects fill the space [90, 91]. Lacunarity and multifractal analysis
jointly describe the irregularity and non-homogeneity in fractal objects as well as how they fill the
space that cannot be otherwise achieved by traditional box-counting dimension or statistical

features. To obtain the lacunarity measure, a unit box of size 1 is placed over the object and the
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number of set points s (black pixels) in the image is counted — this is called the box mass. Next,
the box is translated one space along the set, and the box mass is again determined. This process
is repeated over the entire set, creating a frequency distribution of the box masses represented as
N(s,l). This frequency distribution is converted into a probability distribution Q(s,l) by dividing by

the total number of boxes N(I) of a given size 1 [92].

_NGD (24)

The first and second moments of this distribution can be written respectively as:
Z = 500D 25)
Zy = Z s2Q(s, 1) (26)

The lacunarity method with box size / can be computed as:

Z
_ % @7)
rD =z

In Eqn. (24), A(l) represents the lacunarity for the box size /. This procedure is repeated for

different box sizes, and a log-log plot of the lacunarity versus the size of the box is traced. Figure
13 shows T3 has higher lacunarity values in comparison to the two other trees. The distribution of
gap sizes is termed as lacunarity.

Figure 14 shows the singularity strength exponent a(g) and multifractal spectrum f{a(g)) estimated
from 3132 layerwise images in the LPBF process. There are 1044 images in Ea=2.27; 696 in
Ea=1.81; 348 in EA=1.70; 696 in Ea=1.51; and 348 in Ea=1.13. Note that multifractal spectra of

these images show significant variations with respect to the different Andrew’s numbers.

Please insert Figure 13 here.
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Please insert Figure 14 here.

4.3 Application of Multifractal and Spectral Graph Theory to Online Images

Further, the parts built under the different Ea conditions described in Table 1 were classified using
different machine learning approaches with various types of input features. A 70%-15%-15% split
for training, testing, and validation data were imposed. The classification fidelity is reported in
terms of the F-score, which is an aggregate of the Type I and Type II statistical errors. The results

are summarized in Table 4.

Please insert Table 4 here.

Three types of input features are used: (1) statistical image features, namely, intensity (mean) of
an image, and local standard deviation of an image in 3 % 3 neighborhood, (2) spectral graph
theoretic features, namely, the first five non-zero Eigenvalues and the Kirchhoff index, and (3) the
multifractal and lacunarity features. It is observed that irrespective of the classification approaches
used, the spectral graph and multifractal and lacunarity features outperform the conventional
statistical features. Furthermore, combining the spectral graph and multifractal features results in
F-score around 80%. The results reported in Table 4 show that the spectral graph theoretic and
multifractal features discriminate the part quality with higher fidelity than traditional statistical
analysis. This is valuable from the in-process quality monitoring viewpoint. In a practical scenario,

images of the parts can be used to conclude whether the process within an optimal window.
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Conclusions and Future Work

This paper presents the modeling and analysis of in-process layerwise images in LPBF to

investigate the effect of LPBF process conditions on the severity, size, and location of porosity,

and further connects the process conditions to sensor signatures. This is an indirect way to monitor

the LPBF process. The specific outcomes of the work are as follows:

1.

Three process parameters, namely, laser power (P), hatch spacing (H), and scan velocity (V)
were varied during the LPBF of Ti-6Al-4V powder material. The effect of varying these
parameters on porosity was characterized offline using X-ray computed tomography (XCT).
Based on analysis of the XCT images the following inference is tendered. Decreasing the laser
power by 50% from 340 W to 170 W leads to almost a three-fold increase in the average
number of pores, compared to an equivalent percentage increase in hatch spacing, and ten-
fold increase compared to scan velocity. Hence, the control of laser power is most
consequential for avoiding porosity.

Online visible spectrum images of the part were acquired as they are built using a still camera.
These images were analyzed using multifractal and graph theoretic approaches. The features
extracted by applying these approaches were subsequently used within various machine
learning techniques. The aim was to distinguish the process conditions under which the parts
were built given an image of the part. It is observed that combining multifractal and graph
theoretic analysis leads to as much as 30% increase in the accuracy of discriminating process
conditions compared to using traditional statistical measurements. Using this approach, the
process conditions can be isolated with F-score approaching 80%. From a practical
perspective, although the P, H, and V settings are predetermined for each material in terms of

the Andrew number (Ea), the laser power, particularly, is liable to drift due to occlusion of
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the focusing optics; the vaporized material tends to condense on the lens especially during

long builds.

One limitation of this work is that it does not relate the sensor signatures directly to the defects,
but rather isolates the process condition that leads to porosity. This is mainly due to the fact that
the resolution of the camera is not sufficient to identify pores, which are in the 16 um — 65 pm,
from the images directly. To overcome this drawback, data from multiple sensors will be combined
(e.g., thermography and meltpool monitoring) to not only capture multiple types of defects
simultaneously but also improve upon the detection fidelity. Furthermore, in the future work, the
authors will endeavor to understand the effect of process parameters on other type of defects, such

as distortion and geometric inaccuracy.
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Table 1: The combination of power (P), hatch spacing (H), scan velocity (V), and layer height (T)
process conditions used for making the titanium alloy parts.

Process Condition
(P, H, V. T = 0.060) [W, mm, mm/sec, mm] Ea[Jmm?] | Ev [J.mm]
PO, HO, VO (340, 0.12, 1250,0.06) | 2.27 37.8
P -25%, HO, VO (255,0.12, 1250,0.06) | 1.70 28.3
P-50%, HO, VO (170, 0.12, 1250,0.06) | 1.13 18.8
PO, H +25%, VO (170, 0.15, 1250,0.06) | 1.81 30.1
PO, H +50%, VO (170, 0.18, 1250,0.06) | 1.51 25.1
PO, HO, V +25% (170, 0.12, 1562,0.06) | 1.81 30.1
PO, HO, V +50% (170, 0.12, 1875,0.06) | 1.51 25.1
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Table 2: Mean count of pores and its standard deviation (in brackets) of various sizes in the XCT
scan image slice in various printing conditions obtained from 30 randomly sampled layers.

Mean count of pores

HO, V0, PO
(Nominal
Sive comdliton) | (f) ﬁ% H + 55% ‘(/1; 6225 (? V&85705% P-25% | P-50%
(0.12 mm, : (0.18 mm) : 255W) | (170 W)
1250 mms, mm) mm/s) mm/s)
340 W)
R, ~ 16 pm 100) 30) 2(22) 30) 1005) 1) | 132031
Ro~ 32 um 1(1) 1(1) 6(4) 22) 4(3) 1) | 30(12)
R;~ 48 pum 0 0 0 1(1) 1(1) 0 302)
Ri~ 64 um 0 0 0 0 1(1) 0 1(1)
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Table 3: Mean counts of pores and its standard deviation (in brackets) at various locations of the
XCT scan image in various printing conditions.

Mean count of pores

HO, V0, PO
Radial (Nominal V +
distance condition) | H+25% | O (f) 51?;% \(/1; 6225 (? 50% | P+25% | P+50%
from center (0.12 mm, (0.15 mm) ) ) (1875 (255W) | (340 W)
of 1250 mm/s, ) || )
image 340 W)
L—0_1mm 1(1) 1(1) 9(6) 12) 303) 1(1) 199)
L—1_2mm 1(1) 1(1) 18(8) 202) 5(4) 11) | 5022)
L~ 2-3mm 1(1) 2(1) 1910) | 2(2) 7(5) 1) | 56(22)
L~ 3—4mm 1(1) 1(1) 6(4) 1(1) 22) 1) | 31(13)
L~ 4—5mm 1(1) 1(1) 0 101) 1(1) 1(1) 12)
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Table 4: Accuracy of classifiers used for classification of parts using statistical, spectral graph
theoretic, multifractal and lacunarity features. The numbers in parenthesis are the standard
deviations from a 5-fold replication study.

Statistical Combined

Classifier features (A) Spectral graph | (B) Multifractal and features
theoretic features lacunarity features A+B

Support Vector 55.58% 71.94% 76.16% 89.36%
Machine (0.58) (0.20) (0.30) (0.21)

Complex Tree 54.10% 68.02% 68.60% 79.98%
(0.14) (0.66) (0.50) (0.23)

Linear Discriminant 52.72% 63.22% 63.02% 82.16%
Analysis (0.34) (0.49) (0.08) (0.21)

. 56.62% 67.66% 70.38% 78.60%
K-Nearest Neighbor (0.50) (0.25) 0.27) (0.34)

Ensemble 51.06% 72.50% 72.64% 85.86%
(Bagged Trees) (0.58) (0.10) (0.61) (0.30)

Feed Forward 49.66% 64.62% 66.54% 84.40%
Neural Network (1.99) (1.7) (1.76) (1.67)
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An example of the procedure followed to divide XCT scan image of a part into
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Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing
condition highest number of pores are seen of size R1 (16 pm), and in PO and P -25 %
printing condition, very few pores of size R1 (16 um) are seen. (b) In parts printed
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and the highest number of pores is seen in H +50 % printing condition. (c) In
comparison with other printing conditions, the lowest number of pores is seen in parts
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Figure 9

Mean pore count vs. radius from center of image at varying process conditions. (a)
Parts printed with laser power of P -50 % have highest number of pores in the third
segment (L3= 2-3mm) of the XCT scan image. Parts printed with P 0 (nominal

41




Revised MANU-17-1575 (Research Paper)

condition), and P -25 % have pores located in second segment (L2= 1-2 mm) of the
XCT scan image. (b) In parts printed with varying hatch spacing highest number of
pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all
conditions. (c) In parts printed with varying velocity highest number of pores are seen
in V +50 % in the third segment (L3= 2-3 mm), and in VO and V +25 % conditions,
highest number of pores are seen in the second segment (L2= 1-2 mm) of the XCT

scan images.

An in-situ image of part depicting the row vectors which are used for pairwise

Figure 10 )
comparison.
Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS
_ tree T2, (c), IFS tree T3. All three IFS trees have the same box-counting fractal
Figure 11 dimension of 2.0449, but different multifractal spectra as shown in Error! Reference
source not found..
Multifractal spectra of IFS trees shows the self-similarity, irregularity, and non-
Figure 12 | homogeneity of fractal objects that cannot be adequately characterized using a single
fractal dimension.
. Lacunarity analysis of IFS trees describes how fractal objects fill the space that cannot
Figure I3 be adequately captured using traditional fractal analysis.
Figure 14 The varaitions of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise

images in the LPBF process.
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Figure 1: The schematic diagram of the laser-based powder bed fusion (LPBF) process.

43



Revised MANU-17-1575 (Research Paper)

Chamb;rlights Darkfield

Flash
Ve DSLR
y camera

7 Buij
// d tabfe POWder

SServoir

housing

——
Obligue « Fr tview
&

Figure 2: Schematic diagram of the location of flash-lamps and camera used to capture in-situ powder bed
images [45].
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Light scheme #4 Light scheme #5
Figure 3: Cropped image of the powder bed in different light schemes.
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Figure 4: An overview of the methodology for analysis of offline computed tomography data, and in-situ
images of powder bed fusion process.
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P 0 (340 W), Ep=2.27 P -25% (255 .W), Er=1.70 P-50% (170 W), E,=1.13

Figure 5: Effect of process conditions on the parts as seen in XCT scan images. Pore count increases as
process conditions drift from nominal conditions. Highest number of pores are seen in the part printed at P
-50 % (c3).
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Figure 6: An overview of the image processing methodology used to analyze the computed tomography
(XCT) scan images. (a) XCT scan image of part printed with P -50 %, (b) binarization of the XCT scan
image of the part, (c) complemented binary image of the XCT scan image, and (d) noise reduced XCT scan
image which is used for the spatial distribution analysis.
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L, = 0 mm-1mm

L=1mm-2mm L=2mm-3mm L,=3mm-4mm

Figure 7: An example of the procedure followed to divide XCT scan image of a part into concentric
segments. (a) First segment 0 mm — 1 mm of the XCT scan image (L1), i.e., the segment that encompasses
the center of the XCT scan image, (b) second segment] mm — 2 mm of the XCT scan image (L2), (¢) third
segment 2 mm — 3 mm of the XCT scan image (L3), (d) fourth segment 3 mm — 4 mm of the XCT scan

image (L4), and (e) last segment 4 mm — 5 mm of the XCT scan image (L5), i.e., the segment which is
farthest from the center of the XCT scan image.
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Figure 8: Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing condition
highest number of pores are seen of size R1 (16 um), and in PO and P -25 % printing condition, very few
pores of size R1 (16 um) are seen. (b) In parts printed with varying hatch spacing only pores of size R1 (16
pum) and R2 (32 um) are seen, and the highest number of pores is seen in H +50 % printing condition. (c)
In comparison with other printing conditions, the lowest number of pores is seen in parts printed with
varying velocity. Pores of size R1 (16 um) are highest in number in VO, V +25 %, and V +50 % printing

conditions.
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Figure 9: Mean pore count vs. radius from center of image at varying process conditions. (a) Parts printed
with laser power of P -50 % have highest number of pores in the third segment (L3= 2-3mm) of the XCT
scan image. Parts printed with P 0 (nominal condition), and P -25 % have pores located in second segment
(L2= 1-2 mm) of the XCT scan image. (b) In parts printed with varying hatch spacing highest number of
pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all conditions. (c) In parts
printed with varying velocity highest number of pores are seen in V +50 % in the third segment (L3= 2-3
mm), and in VO and V +25 % conditions, highest number of pores are seen in the second segment (L2=1-
2 mm) of the XCT scan images.
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Figure 10: An in-situ image of part depicting the row vectors which are used for pairwise comparison
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(c) IFS Tree type 3 (T3)
B
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(a) IFS Tree type 1(T,) (b) IFS Tree type 2 (T,)

Figure 11. Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS tree T2, (c),
IFS tree T3. All three IFS trees have the same box-counting fractal dimension of 2.0449, but different
multifractal spectra as shown in Figure 12.
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Figure 12. Multifractal spectra of IFS trees shows the self-similarity, irregularity, and non-homogeneity of
fractal objects that cannot be adequately characterized using a single fractal dimension.
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Figure 13. Lacunarity analysis of IFS trees describes how fractal objects fill the space that cannot be
adequately captured using traditional fractal analysis.
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Figure 14: The variations of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise images
in the LPBF process.
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