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Abstract

The goal of this work is to detect the onset of material cross-contamination in laser powder
bed fusion (L-PBF) additive manufacturing (AM) process using data from in sifu sensors. Material
cross-contamination refers to trace foreign materials that may be introduced in the powder
feedstock used in the process due to such reasons as, poor cleaning of the machine after previous
builds, or inadequate quality control during production and storage of the powder. Material cross-
contamination may lead to deleterious changes in the microstructure of the AM part and
consequently affect its functional properties. Accordingly, the objective of this work is to develop
and apply a spectral graph theoretic approach to detect the occurrence of material cross-
contamination in real-time as the part is being built using in-process sensors. The central
hypothesis is that transforming the process signals in the spectral graph domain leads to early and
more accurate detection of material cross-contamination in L-PBF compared to the traditional
delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive
(AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy
625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built
L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm
to 1100 nm optical wavelength). During the process two types of foreign contaminant materials,
namely, tungsten and aluminum particulates under varying degrees of severity were introduced.
To detect cross-contamination in the part, the photodetector sensor signatures were monitored
hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph
coefficients are subsequently tracked on a Hotelling 7? statistical control chart. Instances of Type
IT statistical error, i.e., probability of failing to detect the onset of material cross-contamination,
was verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the
case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling
approaches, e.g., ARMA had corresponding Type II error exceeding 15%. Furthermore, the
computation time for the spectral graph approach was found to be less than one millisecond,
compared to nearly 100 milliseconds for the traditional time series models tested.

Keywords: Additive Manufacturing, Laser Powder Bed Fusion, Material Cross-Contamination,
Real-time Monitoring.
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List of abbreviations

AM Additive Manufacturing

PBF Powder Bed Fusion

L-PBF Laser Powder Bed Fusion

EB-PBF Electron Beam Powder Bed Fusion

DED Directed Energy Deposition

XCT X-ray Computed Tomography

UCL Upper Control Limit

LCL Lower Control Limit

AR Autoregressive Time Series Model

ARMA Autoregressive Moving Average Time Series Model
ARIMA Autoregressive Integrative Moving Average Time Series Model

1. Introduction

1.1 Background and Motivation

Powder bed fusion (PBF) is an additive manufacturing (AM) process in which thermal energy
from a focused source, such as a laser or electron beam, is used to selectively fuse regions of a
powder bed [1]. Figure 1 shows a schematic of the PBF process. A layer of powder material is
spread across a build plate (powder bed), and subsequently, certain areas of this layer of powder
are melted (fused) with an energy source such as a laser or electron beam. The build plate is then
lowered and another layer of powder is spread over it and melted [2]. This cycle continues layer-
upon-layer until the part is built. The specific PBF process depicted in Figure 1 uses a laser power
source for melting the material, accordingly, the convention is to refer to this technology as Laser
Powder Bed Fusion (L-PBF). More than 50 input parameters including the feedstock material,
scan strategy, input energy, part design, and machine environmental settings are known to

influence the structure and physical properties of the part [3-5].

Please Insert Figure 1 Here.

Along with blown powder and wire-fed directed energy deposition (DED) technology, PBF

is the AM process of choice for making metal parts. Recent studies in the aerospace industry have
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demonstrated that the PBF process can drastically reduce the so-called buy-to-fly ratio, which is
the ratio of the material that is required to make a part to the final weight of the part. The buy-to-
fly ratio is typically 20:1 for traditional subtractive and formative processes, while in the case of
metal AM this ratio can be as small as 2:1. Simultaneously, the lead time for delivering a new part
design can be shortened from five months to less than a week [6-10]. This unprecedented flexibility
in design and manufacturing offered by the advent of metal AM has the potential to revolutionize

strategic industries, such as aerospace and biomedical.

Despite these possibilities, the poor consistency of AM parts hinders their wider adoption for
making mission-critical components. Particularly, the presence of defects in AM parts, such as
porosity and geometric distortion, deleteriously affect their functional properties, e.g., fatigue life
and strength [11-13]. Given the layered nature of AM, defects may form at any layer and become
permanently sealed in by subsequent layers if they are not detected and averted promptly. Hence,
there is a need to monitor the integrity of each layer as it is being built to ensure compliance [13-
15].

In the context of quality assurance in AM, the current practice is to examine the part after it is
built using X-ray computed tomography (XCT), which is exceedingly expensive and cumbersome.
In a recent review article, Seifi et al. [16] attest that given the small batch sizes and time required
for production, statistical qualification of AM parts based on destructive materials testing may be

prohibitively expensive and take over a decade to complete, and is therefore impractical.

However, if there exists a record to attest the integrity of every layer in terms of sensor data,
and if this data can be correlated back to the XCT for a few test parts, then this recorded sensor
data for each layer, instead of XCT scanning and destructive analysis, can be used to rapidly

qualify the part quality. Thus, leading to a so-called qualify-as-you-build paradigm in AM [17,
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18]. From the larger context of offline defect mitigation in L-PBF, current research in this area

can be stratified into four main thrusts:

(1) Avoiding defects such as porosity or distortion, resulting from factors related to poor choice
of process parameters, such as laser power and scan speed, through design of experiments-
based optimization studies [19].

(2) Preventing build failures, such as re-coater crashes by careful calibration of the machine and
avoiding malfunction of the optical train, e.g., cleaning and maintenance of the optical lens
used for focusing the laser — which is inclined to become coated with residue from spatter and
material vaporization, particularly, during long build cycles.

(3) Precluding build failures resulting from poor design of the part, e.g., steep overhang
geometries, thin walls, overly fine features, ill-suited placement of support structures, and
improper orientation of the part [5, 20-22].

(4) Maintaining the purity of the input feed stock, such as taking care to avoid material cross-
contamination, in the form of organic, e.g., oil, grease, lubricants, hair, plastics, and glue, or
inorganic wear debris or other powders ingredients in the feedstock powder. Such
contamination of the powder has been shown to cause variation in the microstructure and

functional properties of the part [23].

This work specifically focuses on point (4), viz., avoiding defects related to the contamination
of the feedstock powder. The initiation of contamination-related defects in L-PBF can be traced
to: (a) poor quality control of the material feedstock during its production and storage, and (b)
inadequacies and lapses in the procedures used to purge trace material from the AM machine or
powder recycling equipment after a build has been completed with a different material. Since,

there are numerous opportunities for contaminants to manifest in any stage of the powder
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production and powder handling aspects, it is important to detect the subtler process drifts due to
presence of contaminants, so that opportune corrective action, such as re-melting a layer, can be

instigated.

To put the challenge of cross-contamination in pictorial context, Figure 2 shows optical images
of an etched Inconel 625 AM sample from this work contaminated with varying severities of
tungsten and aluminum trace material. These images demonstrate that material cross-
contamination changes the basic microstructure of the build, and has the proclivity to spread
beyond the layer in which the contaminant particles are introduced. The following inferences can

be drawn from this experimental result, which will be described further in depth in Sec. 3.

e Figure2 (a): Contamination with tungsten manifests as unfused particles evident as light hued
inclusions in the darker Inconel 625 matrix. This is probably because: (1) the melting point of
tungsten is much higher (~ 3422 °C) than Inconel 625 (~1300 °C), and (2) tungsten is not an
alloying element in Inconel 625. Given these two reasons tungsten does not dissolve into the
Inconel 625 matrix. The contamination of Inconel with tungsten is a critical problem that may
lead to premature failure of AM parts. For instance, in a recent publication, Brandao et al.
hypothesize that given the hardness of tungsten, un-melted tungsten particles tend to become
preferred sites for crack initiation under tensile loading [23].

e Figure 2 (b): Contamination with aluminum does not manifest in clearly distinguishable
particle traces, however it tends to distort the meltpool. This because of two reasons:

(1) Unlike tungsten, aluminum has a much lower melting point (~ 660 °C) than the melting
point of Inconel 625 (~ 1300 °C). Further, aluminum is also an allowable alloying element
in Inconel 625 (maximum 0.4% by mass). Hence, aluminum particles may dissolve into

the Inconel 625 matrix.
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(2) Aluminum particles may vaporize given the higher energy applied to melt Inconel 625.
This vaporization of aluminum particles leads to uniform circular pores of diameter ~ 10

um, which is termed as gas porosity or pinhole porosity in the literature [5].

Please Insert Figure 2 Here.

1.2 Objective and Hypothesis

As a first-step to realize the long-term aim of qualify-as-you-build in AM, the goal of this
work is to detect the onset of material contamination-related anomalies in L-PBF. In pursuit of this
goal, the objective is to develop and apply a spectral graph theoretic approach for real-time
detection of material cross-contamination in-process signatures acquired by a photodetector

Sensor.

The central hypothesis is that tracking the signatures acquired from the photodetector in the
spectral graph domain leads to early and more accurate detection of material cross-contamination
in L-PBF, compared to the traditional Box-Jenkins stochastic delay-embedded time series analysis
of the signal, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling.
This work addresses the following open research question in the context of material cross-

contamination in L-PBF process —what process signatures can capture the onset of contamination?

The rest of this paper is organized is follows. The literature in the area of sensing and
monitoring in AM is discussed in Sec. 2, followed by description of the experimental methodology
to initiate controlled material cross-contamination in Sec. 3, the spectral graph theoretic approach
is explained in Sec. 4, and subsequently applied to the L-PBF process signals in Sec. 5, followed

by summary of the conclusions and avenues for future research in Sec. 6.
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2. Status of the Related Research — Gaps and Challenges.

Brandao et al. report the effect of high density tungsten inclusions on the tensile strength and
microstructure of L-PBF test parts [23]. Although, contaminants were found not to influence the
mean tensile strength of the specimen, the fracture cracks during testing were found to initiate at
the locations where contaminants were present. Furthermore, specimens with cross-contamination
tended to have large variability in the tensile strength readings compared to those without

contamination.

In the related context of purity and physical characteristics (diameter and shape) of the
powder, studies have been conducted to understand the effect of powder reuse on part functional
attributes in electron beam PBF (EB-PBF) [24]. This is because, unlike L-PBF, in EB-PBF the
powder is maintained at a higher temperature [25]. Hence, there is a practical concern that repeated
reuse of the powder in EB-PBF may lead to deviation in powder characteristics and hence the
functional performance of the part. These studies have concluded that although the repeated reuse
of the powder increases its oxygen content and changes it particle geometry, the impact of powder

reuse on mechanical strength was statistically insignificant [24, 25].

The effect of feedstock characteristics on the mechanical properties of LPBF parts was
investigated by Ardila et al. who found that the effect of reuse of Inconel 718 powder had
statistically insignificant effect on material strength, nor did the shape of the powder particles
deviate significantly over 14 iterations [26]. Recent studies by Clemon at University of California,
Berkeley characterize the effect of powder properties on the process performance [27]. Thus the
understanding of the effect of material cross-contamination on part microstructure in LPBF

remains to be thoroughly investigated.
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The second challenge that this work must tackle lies in the domain of data analytics and
modeling in AM. The in-process sensor data in AM processes is heterogeneous (several different
sensors are used), acquired at high velocity (the sampling rate of sensors is high), and the data is
high in volume (several gigabytes of data are acquired for a build). There is an active and ongoing
effort to develop data analytics and modeling approaches to track and monitor these sensor data in
real-time, and relate the sensor signatures to functional properties [28, 29]. The need for
approaches to synthesize the data gathered in AM processes has been explicitly designated as a

research priority area in recent roadmap reports [30, 31].

Comprehensive review articles for in-process sensing are available in Ref. [28, 29, 32-35].
Significant research in the area is being done in academe [36], national laboratories, and industry
[37-45]. Nassar and Reutzel, ef al. at Pennsylvania State University experimented with imaging
of the L-PBF powder bed under various illumination conditions [46]. Defects, such as large voids
caused by improper raking of the powder across the bed were identified from these images [42,
43, 47]. They have also used a multispectral photodetector setup that concentrates on observing
the line-to-continuum ratio of the laser plume in both the L-PBF and DED processes to detect the
onset of defects, such as porosity [48, 49]. Lane ef al. at NIST integrated an L-PBF machine (EOS
M270) with thermal and high-speed cameras, and a photodetector [37]. Researchers at NIST are
currently building a customized L-PBF testbeds instrumented with multiple sensors, based on
findings at Edison Welding Institute (EWI) [44, 45]. A large body of work in sensing and
monitoring in L-PBF is reported by the Kruth group [50-54] and Witt group [55-58] in Europe.
The sensing and monitoring approaches for PBF used in these pioneering works are categorized

into the following two broad areas:
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e Meltpool monitoring: Optical cameras, high-speed cameras, Infrared (IR) cameras,
photodetectors, and pyrometers are used to gage thermal, intensity, and morphological
aspects of the meltpool. The visual systems and sensors are either embedded coaxially with
the laser; or a system that is either external or internal to the chamber inclined at an angle
to the build platen [28, 29]. The challenge is that the temperature profiles captured by IR
systems is a trend and not the actual temperature. This is because the material emissivity
has to be factored into the readings, and furthermore, if the sensor is mounted at an angle
to the powder bed, the incident thermal radiation is therefore not perpendicular to the
sensing elements in the IR camera, and which in turn affects the accuracy of the
temperature reading.

e Powder bed monitoring: Acoustic (ultrasonic) sensors, vibration (accelerometers),
optical cameras, and IR thermal cameras have also been proposed to monitor the powder
bed conditions. For instance, Rieder ef al. built a system with ultrasonic sensors mounted
underneath the build platen to detect voids in the build [59]. Vibration sensors were used
by Craeghs et al. to identify faulty deposition of powder layers resulting from a damaged
recoater [54]. Instances of super elevations, poor surface finish, and defective features have
been detected using both visual and vibration sensors. In a similar vein, Nassar ef al. used
optical images taken layer-by-layer to detect improper raking of the material and distortion
during the process [42].

The work reported by Craeghs et al. in Ref. [54] serves as an archetypical example of both

meltpool and powder bed monitoring. Craeghs et al. [54] incorporated three sensors, namely, a
visual camera to ascertain the characteristics of the powder raked by the blade across the build

platen, i.e., a powder bed monitoring system; and a photodiode (photodetector) and a camera
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coaxially aligned with the laser, both of which are used to monitor the meltpool. In the context of
monitoring the powder bed raked across the platen, Craeghs ef al. made two observations. First,
the gradual wear of the recoater blade causes streaks to appear across the deposited powder bed.
In a similar vein, Abdelrahman ef al. showed that non-uniform raking of the powder bed may lead
to defects [43]. The effect of using a damaged recoater blade leads to discernable streaks on the
powder bed surface, which in turn manifest in poor part surface finish. The uneven deposition of
the material resulting from a damaged recoater blade was detected by Craeghs et al. using a
statistical control chart-type strategy. The gray scale values of the powder bed taken by the visual
camera are tracked and used as a feature to discriminate the onset of defects due to improper raking
of the powder across the bed. For instance, the grayscale image values for a layer deposited with

a damaged blade shows clear spikes compared to when the powder is raked uniformly.

Furthermore, the meltpool was monitored with the photodiode and optical camera system. The
optical systems were augmented with filters to constrain the wavelength of acquired light in the
region of 780 nm to 950 nm. The sampling rate of the photodiode is 10 kHz, this translates to a
sample every 100 um of the linear distance traversed by the laser, considering that the laser scan
velocity is set at 1000 mm/sec. Incidentally, the laser scan velocity and sampling rate of the
photodiode used by Craeghs ef al. [54] is nearly identical to those in this work (see Sec. 3). Further,
using image segmentation and pixel intensity estimation techniques from the area of image
processing the authors track the meltpool area and the length to width ratio of the meltpool. These
meltpool image features are the monitoring statistics which can be used in a statistical control
chart; they have also shown to be indicative of process phenomena such as balling by other

researchers [60, 61].
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Another example is tendered by Craeghs et al. [54] for detecting porosity in L-PBF due to
process drifts. In this case, abrupt machine errors led to increase in the part porosity. At certain
instances, due to faults in the build platform stage motor, the powder bed was lowered farther than
the set layer height. Hence, powder thickness equivalent to multiple layers was accidentally raked
across the bed. This unusually high layer thickness led to increase in porosity, because, the energy
applied per unit volume (volumetric energy density) was insufficient to melt the powder. The
authors report that the photodiode signal depicts an inordinate increase in mean and standard

deviation corresponding to layers with faulty deposition.

A lacuna of the analysis used in these prior works in sensing and modeling in AM, and as
exemplified in the pioneering work of Craeghs et al. [54], is that they are largely offline and use
approaches such as Fourier transforms or statistical-feature models, which as we will demonstrate
in Sec. 5, are not amenable to online monitoring. To take these pioneering works in process
monitoring in AM forward, it is necessary to develop approaches capable of detecting a wider
variety of defects in real-time and with greater accuracy. Recent works by Yang et al., [62] and
Rao et al. [63] have attempted to overcome these challenges by resorting to advanced analytics,

such as fractal signal analysis, and adaptive clustering and Bayesian modeling.

A drawback with these newer data analytics approaches is that they require well-defined
model structures, e.g., logistic fractal model, tuning of parameters, setting the number of layers
and nodes in a neural networks, and tuning the number of terms in traditional time series analysis
techniques, such as ARMA. Furthermore, the classical time series approaches assume that the
statistical moments of the signal do not change over time (stationarity assumption). These

assumptions are not tenable in L-PBF, wherein the signal may not confirm with well-known
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distributions, or may change from layer-to-layer and from a part design to the next. The spectral

graph theoretic approach proposed herein has two advantages over existing approaches:

(1) The approach is feature-free, in that it does rely on extracting statistical features, such as mean
or the frequency power spectrum to detect changes in the process; and
(2) It is model-free, i.e., it does not need an a priori defined model structure, such as number of

time delay parameters as in stochastic time series modeling.
3. Experimental Setup and Sensor Data Acquisition

This section is divided into two parts. Sec. 3.1 describes the experimental setup and the
procedure used to initiate contamination of different types and severity levels, and Sec. 3.2, which

describes the sensor instrumentation and data acquisition methodology.
3.1 Experimental Setup and Procedure Used for Controlled Initiation of Contamination.

In this research, a customized, Open Architecture L-PBF Platform was designed and
implemented at Edison Welding Institute (EWI) [45]. This platform, shown in Figure 3 (a and b)
allows complete control of the key process factors, such as laser power, scan speed, scan pattern;
commercial L-PBF systems typically do not allow users to customize the process settings. The
energy source is a Ytterbium fiber laser with wavelength of 1070 nm operating in continious mode
(manufacturer IPG). Furthermore, an array of heterogeneous sensors is integrated within the
apparatus, and are located on an optical table near the laser scanning mechanism. Further details
of this setup are available in Ref [45]. An Inconel 625 cuboid-shaped test part of size 10 mm x 10
mm X 15.20 mm (vertical build height) was made with the following parameters after extensive
offline studies studies: scan velocity (V) 960 mm/s, laser power (P) 270 W, layer thickness (T)
0.040 mm, and hatch spacing (H) 0.1 mm, i.e., an applied volumetric energy density Ey~ 70 J/mm’

= P/(HxVxT). All powders used in this work are sourced from Electro Optical Systems GmbH
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(EOS) and is commercially marketed as NickelAlloy IN625; in the material data sheet supplied by
the company this material is stated as corresponding to UNS N06625 [64]. We note that the layer
thickness of 0.040 mm is an input value to the system. It is controlled by accuracy of the motion
stages on the build platform and the dispenser platform (typically 0.001 mm resolution). It is not
an average of multiple layers or measured directly, but rather an input to the system and validated

during preventive maintenance and calibration routines performed semi-annually.

To precisely control the degree of material contamination, a material dispensing setup was
fabricated. The setup attaches to the recoater arm and powder material (contaminant) is dispensed
from a motorized hopper. Figure 3 shows the schematic illustration of the sensor test bed and the

equipment used for dispersion of the contaminants (tungsten and aluminum particles).

Please Insert Figure 3 Here.

The experimental procedure for dispersing contaminants, namely aluminum (Al) and tungsten
(W), is depicted in Figure 4. The contaminants are dispersed over the powder bed every 20™ layer.
This procedure for purposely introducing contamination was repeated 3 times over a total build
consisting of 380 layers. The severity of contamination is controlled at three levels for each type
of contaminant material, viz., aluminum and tungsten. Further, the contaminant particles are
distributed over the powder bed in two ways, called dynamic contamination and static
contamination. In the so-called static contamination, which occurs in levels labeled L1, L, and L3
(in ascending order of contaminant volume) the contaminant particles are dispensed entirely in one
area of the layer and then raked across the bed. In the dynamic contamination mode, which occurs
in layers labeled L4, Ls and L, the contaminant particles are dispensed continuously as the recoater

moves across the bed.

The mechanism to initiate contamination is as follows. When the rotary dispenser shaft in

Figure 3 (c) is started it opens the hopper and the contaminant material is dispensed through a
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small notch from the hopper side to an open column. The contaminant particles are then deposited
on the powder bed via a nozzle. There is a 0.5-mm gap between the nozzle that deposits the
contaminants and the powder bed surface. The degree of contamination for every layer is
controlled by varying the number of rotations of the dispenser shaft mechanism below the hopper.
A relationship between the number of shaft rotations and the volume of material deposited was

described in a patent application granted to EWI [65].

Please Insert Figure 4 Here.

In the static contamination mode, the recoater is stopped while it is raking the Inconel 625
powder and the shaft is rotated. This drops the contaminant onto one spot on the powder bed. The
recoater then begins to move and spreads the contaminants on the powder bed. In the dynamic
contamination mode, the contaminant powder is dispensed synchronous with the recoater
movement. That is, the hopper motor in the fixture shown in Figure 3 (c) is continually operational
as the recoater rakes the Inconel 625 powder across the bed. This sort of deposition of the
contaminant results in an elongated line or streak across the powder bed, and is labeled L4, Ls and
Ls in ascending order of severity (Figure 5). The consequence of the different types of
contamination modes, i.e., static and dynamic mode is captured using an in-process optical camera
in Figure 5 (al) and (a2); the severity of the contamination levels and their sequence within each

replicate of experiment are further detailed in Figure 5 (b1) and (b2), and Table 1.

The quantifier used for assessing severity of contamination (Figure 5) is the volume
contamination per unit area of the base material (Inconel 625), i.e., mm?*/mm?. This measure
accounts for the distribution profile of contaminant powder in each contamination level. As a
result, length, width, and compactness of contaminant powder were considered in the design of

the six levels of contamination (Li, L and L3 for static contamination; and L4, Ls and Le for
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dynamic contamination). There is the possibility of the contaminant powder accidentally leaking
from the hopper if there are gaps in the mechanism assembly. If leakage were to occur it would
lead to erroneous traceability — i.e., the in-process photodetector sensor signatures would
(correctly) show a spike, while the layer would be (incorrectly) recorded by the operator as not
been contaminated. To ensure that powder leakage does not occur during the experimental tests,
the whole test bed including dispenser, build plate, and collector was sealed, and the hopper system
is tested for 100 times. During these test runs, no leakage of powder is detected from the powder

container on the build platform and collector.

Please Insert Figure 5a Here.
Please Insert Figure 5b Here.
Please Insert Table 1 Here

3.2 Sensor Integration and Procedure used for In-process Data Acquisition

Photodetector signal data is acquired for total of 10 following initiation of contamination as
follows: (1) two layers prior to contamination, (2) the contaminated layer, and (3) seven layers
subsequent to the contamination. In all, data is available for 180 of the total 380 layers of the build.
The photodetector sensor is used in this study to detect occurrence of contamination. Specially, a
Thorlabs model PDA36A photodetector is used and is located coaxial and synchronized with the

switching of the laser, i.e., data is acquired only when the laser is active.

The analog photodetector signal is acquired via National Instruments NI 9215 analog input
module. The detection range of the photodetector is the 350 nm to 1100 nm range with the gain of
40 dB, and the sampling rate is set at 10 KHz. The photodetector module is a Silicon junction
photodiode (also called photoelectric pyrometer or photodiode) coupled with an amplifier, which
proportionally translates radiated light intensity into an electrical signal. The transducing

mechanism at play with this type of photodiode is the generation of a photocurrent upon light
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absorption in the depleted region of the semi-conduction detecting element (silicon). The optical
delivery to the photodetector aperture is integrated coaxially into the optical path of the laser, such
that the light being interrogated stemmed from the laser plume during the melting process. In other
words, the photodetector measures the radiation intensity of the laser plume (which in turn is
proportional to the temperature of the meltpool) in terms of an amplified electrical signal with

output in volts.

The sensor operates in a fast, highly linear manner, producing a current output proportional to
light intensity absorbed by the sensor. The data is acquired hatch-by-hatch; the laser traces hatch
pattern alternating manner as shown in Figure 6 — parallel (to the recoater direction) for odd
layers, and perpendicular for even layers. The hatch pattern information will be used later in Sec.
5.2 to relate the sensor signatures to the position at which the contamination occurs in XCT. Each
layer is comprised of 100 hatches, and each hatch takes ~ 0.01 sec. (10 milliseconds) to melt noting
that the laser scan velocity is 960 mm/sec. Hence there are 100 photodetector data points acquired
per hatch given that the sensor sampling rate is 10 KHz. In this build the laser stays on for ~ 1 sec.

per layer, and for a total of under 7 minutes counting the time to melt the contour.

| Please Insert Figure 6 Here.

4. The Spectral Graph Theoretic Approach

The aim of this section is to detect the onset of material cross-contamination in L-PBF process
using in-process data. To realize this aim, the key idea is to transform the raw data into a domain
that makes it tractable to extract signatures in real-time. In this work, the signal transformation
procedure adopted is from the area of spectral graph theory, and has been discussed in depth in our

previous research [66-71].
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4.1 Overview of the Approach

A similar form as the approach proposed in this work has been used previously by the authors
in the context of surface finish characterization in chemical mechanical planarization (CMP)
semiconductor manufacturing process; monitoring chatter in ultraprecision diamond turning; and
recently for assessment of post-process geometric integrity in polymer additive manufacturing [66-
71]. The main difference of this work from these previous forays lies in the application of spectral
graph eigenvectors for real-time classification of material cross-contamination in PBF. The
previous works are mainly restricted for offline characterization, and use spectral graph
eigenvalues which are not amenable for real-time adaptive monitoring of a fast-changing processes
such as PBF. The underlying mathematics described herewith bears close resemblance to our
previous works in spectral graph theory, but is nonetheless repeated here for the sake of

cohesiveness and continuity [66-71].

The procedure is summarized in Figure 7, and encapsulates the four key steps. Steps 1 through
3 can be considered as the training phase, wherein a library of sensor signatures representing non-
contaminated states is created. The last step, Step 4, classifies a hatch photodetector signal for each
hatch into one of the two states, namely, contaminated vs. non-contaminated in real-time within a
control chart framework. The underlying concept for each step is summarized herewith. The

mathematical convention is to denote matrices and vectors with bold typesets.

| Please Insert Figure 7 Here. |

The approach has the following four steps, each of these steps is described in detail in the

forthcoming section, Sec. 4.2.
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Step 1: The photodetector signal x} representing each hatch p € {1...h} at layer l € {1...L} of
the melting process is converted into a weighted and undirected network graph G = (V,E, W).
Where V, E and W are the graph vertices, edges and weight between the edges, respectively.

Step 2: The topological information in the graph G = (V,E,W) is extracted in terms of the

eigenvectors (vx’f) and eigenvalues (?\xzf) of the Laplacian matrix (fo). In other words, a spectral
. p . . p
graph transform G (-) on the signal ¥ is defined, i.e., G(x}) - in’ ()‘xf' vxf).

Step 3: A learning procedure is used to obtain a universal eigenvector basis V,,ormar corresponding

to the normal or non-contaminated process state. Through this universal basis a spectral graph
) A T ) .
Fourier transform G(x?) = [(xf) Vwormat )] is defined for non-contaminated layers. Such a

graph-based Fourier transform facilitates creating a library of spectral graph coefficients C
archetypical of the non-contaminated process state.

Step 4: The coefficients C representative of the normal or non-contaminated process state are used
to build a multivariate statistical control chart, called the Hotelling 7° control chart. Given a new
signal y an inner product with the basis vector V,,0rmar » G(¥) = [T Vormar )], leads to a set
of new spectral graph Fourier coefficients G (y) that are easily traced on the control chart. If G (y)
falls outside the control limits established based on the data from the non-contaminated layers,
then it is deemed as belonging to an out-of-control state, 1.e., the data indicates that the layer is
contaminated with trace materials.

4.2 Procedure for Applying Spectral Graph Theory to the L-PBF Photodetector data

Step 1: Converting the photodetector signal hatch-by-hatch into a network graph.

In this step, the aim is to represent each hatch related to the photodetector sensor data x as a

weighted, undirected network G(V,E,W). This graph G(V,E,W) is a lower dimensional
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representation of the signal x. Consider a m-data point long 1-dimensional signal x for a layer [ €

{1...L} per the matrix shown in Eqn. (1).
x=[x' .. xt ... ,m]T,l€ {1..L=180}. (1)

In this work L = 180 (data from ten layers for each of the six levels of contamination replicated
thrice, 10 x 6 x 3). Each layer is comprised of / hatches, in this work 2 =100, m = 10,000. Thus,
the signal x; is further divisible into the corresponding 4 hatches, each hatch has k data points,
with £ = 100. This information was obtained by tracking the on-off switching time of the laser in

each layer, i.e., the time between when the laser goes on and off relates to one hatch. Let each

hatch in a layer be defined as a matrix x? so that it can be written in matrix form as,

T
X =[x ox o x  xf]
2
k €{1..k=100},p€ {1..h =100}, L€ {1..L=180}.

To transform a signal of each hatch into a network graph, the following procedure is followed.

First, the pairwise comparisons 1, is computed using a kernel function Q [72] per Eqn. (3), where

2P and xI"P are two points of the photodetector signal for a specific hatch x?
l l p p g p 1
wé’rp = Q(xlq’p,xlr’p) Vqre@-k). 3)

While different types of kernel functions (), such as the radial basis or Mahalanobis can be
defined to obtain the graph G. For simplicity, in this work we use the standardized Euclidean kernel

shown in Eqn. (4), where V is the variance of the one-dimensional signal xf.

wif = (<P = P~ ]P). “@

Page 19 of 64



Revised Manuscript MANU-17-1706 (Research Paper)

The symmetric similarity matrix S¥** = [w;f | represents a weighted and undirected
network graph G; each row and column of § is the vertex V (or node) of the graph, the relationship
between two vertices is captured in terms of its connection status E and weight W. The graph is
then represented as G = (V,E, W) [73]. To be more specific, we make the following notational

additions to the similarity matrix § and graph G: S AP Gx?, where x’; relates to a specific hatch p

for the signal related to the layer /.

Notes for practical application: In practice, we found that the number of data points k£ in each
hatch # may not be exactly 100, but may vary about 10%. As explained earlier, immediately
following Eqn. (1), a hatch is readily demarcated in the data based on the laser activation time -
when the laser goes off, the photodetector signal immediately degrades to zero as illustrated in
Figure 12, Sec. 5.2. This method of demarcating a hatch is readily applicable in this work given
the simple cuboid geometry of the test part (10 mm X 10 mm x 15.2 mm) — the hatch length, as
shown in Figure 6, is constant across a layer. Such a regular and constant hatch length rarely occurs
in practice.

Nevertheless, the approach can be readily modified even if a layer does not have a uniform
hatch length. In case of an complex geometry a way to form the matrix xf is by tracking the data
over a fixed timeframe instead of a complete hatch. Moreover, the part geometry does not
intrinsically affect the approach because a pairwise comparison between data points is taken in
Eqn. (4) to track the change in the process.

Step 2: Extracting topological information for the graph surface
This phase aims to extract topological information from the graph G. Once the data xf ina

particular hatch is represented as a graph G P> the Laplacian Eigenvectors V,p are computed. This
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topological information is subsequently used to capture the process drifts from the nominal

condition. From § AP the degree dé‘p of anode q, g = {1 ...k} is computed, which is a count of

the number of edges that are incident upon the node. The node degree is the sum of each row in

the similarity matrix S. Subsequently, the diagonal degree matrix D**¥ is structured from dé’p as

follows,

k
dLP = qulf Vaq={1.k, )
r=1

di’p w00 (6)
Dkxk def . .

0 o0 d,lc’p
This leads to the normalized Laplacian £ of the graph G, for each hatch, which is defined as,

1 1
LEZD2z2x(D-S5)XD 2

1/ e () e 0
d;?
A )

where, D 2 =

Thereafter, the Eigen spectrum of £ is computed as,
Ly = \v. (®)

At the end of step 2, we have essentially defined a spectral graph transform on a signal xf,

G(xf) - fo (Ax?,vxf). ©)

In other words, we have transformed the signal x? for a specific hatch in terms of the eigenvectors

(v) and eigenvalues (Xx?) of its Laplacian matrix (‘fo)-
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Step 3: Building the signal basis and spectral transformation

This step aims to obtain the eigenvectors of £, » across all non-contaminated hatches and converge
1

it towards a universal eigenvector basis. In other words, we want to represent the signal during the

non-contaminated state in terms of a single or universal eigenvector represented as V,,ormat -

Step 3.1: A single universal basis V,,,rmar 1S obtained by applying a simple update schema. As

the eigenvectors vx?, for each hatch is calculated, we update the basis as follows,

Vx?ﬂ vaf +A (vx?ﬂ — vxf) ,p€E {1..h},l€e {1..L},
(10)

Vwormar = vx,’f

Initialized with V,1 = v,1 with A set the to a small value (in our case 0.001). To make the process

computationally simpler only a small set of the first 10 non-zero Eigenvectors of the Laplacian

L XP are updated.

Step 3.2: We define the spectral graph transform, which is analogous to the discrete Fourier
transform. A spectral graph Fourier transform G (-) on a signal hatch x7 can be defined as follows

[74-78],

G(xP) = [(x’{')T(vnormal )],l = {1..L},pe {1..h} (11)

Applying this inner product through all the non-contaminated layers and hatches by taking the

product (xf)T * V0wormat » 1€ads to the graph coefficient matrix C.

¢= [[(x%)T(vnormal ) = C1,1]; A [(xf )T(Vnormal )=cp ” (12)

l={1..Lype {1..h)
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Essentially, each term ¢;,, is a matrix that is 1 X 7 long, where 7 (= 10) is the number of
Eigenvectors in the universal basis V;,,-mq; selected for analysis. Each ¢, can be visualized as a

set of output variables which needs to be tracked across the process — they are termed as spectral
graph Fourier transform coefficients.
Step 4: Change point detection using spectral graph Hotelling T? control chart

This step aims to detect material cross-contamination by tracking the spectral graph transform
coefficients ¢;,. To realize this aim, we use a multivariate statistical control chart called the
Hotelling 72 [79]. The control limit of the chart is constructed based on the so-called in-control
state which in the context of this work is defined as the non-contaminated signal. For the Hotelling
T? control chart only the upper control limit (UCL) needs to be estimated as the lower control limit
(LCL) is zero. The application of the control chart proceeds in two phases, in the first phase (Phase
1) called the training phase, the upper control limit of the chart is constructed based on the spectral
graph Fourier coefficients from the non-contaminated state; and in the second phase (Phase 2),
called the monitoring phase, the coefficients for incoming signals for each new hatch is tracked on
the chart, and their status, i.e., whether they belong to contaminated or non-contaminated state is

determined.

Step 4.1: Phase 1 — Training the control chart

In this phase we ascertain the control limits of the chart. Data points below the UCL are said
to be in-control, which in the context of this work refers to non-contaminated state. The data points
falling above the UCL are termed out-of-control. In this research, an out-of-control point is

interpreted as the onset of cross-contamination.

For setting the control limits, we only use the photodetector signals from the two layers before

the contamination is introduced, and only those from the first iteration of the build. Such an
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exceedingly conservative strategy towards determining the control limits largely precludes the
possibility of introducing signals which might be vitiated, noting that metallurgical analysis
revealed that contamination tends to cascade over several subsequent layers (Figure 11).
Accordingly, only 24 of the total 60 layers for which data is available in iteration 1 are used in the
training phase, amounting to 2400 hatches. This translates to roughly 15% of the available data for

180 layers used for analysis.

The test statistic, or the point plotted on the control chart is called the 72 value, and is
delineated in Eqn. (13) where C is the mean vector of spectral graph theoretic coefficients, and

X1 is the inverse of the covariance matrix of C, and T is the transpose operator.
T _
T = (€p =€) Z7 (c1p = C) (13)

The upper control limit (UCL) of the chart is calculated using Eqn. (14) where

B an/2,(hi—n—-1)/2 18 the upper o tail of a Beta distribution with parameters 7 (the number of

eigenvectors = 10) and h = 100 and L = 24 are the number of hatches and number of layers,
respectively. In this work, we set & = 0.0013 for the Beta distribution as. The LCL of a Hotelling
T? is set at zero with these parameter values, the Type I error rate is found to be within 10%

irrespective of the type of contamination.

(hL — 1)?

UCL = h—Lﬁa,n/z,(hL—n—n/z (14)

Thereafter, the 72 values from Eqn. (13) are plotted on the control chart, and the UCL is
revised by removing any data points that fall erroneously above it. The re-estimation of the control
limit by removing erroneous out-of-control data is only done once, and is called the delete and

revise procedure.
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Step 4.2: Phase 2 — Using the control chart for monitoring the process

Once the UCL of a chart is determined, the new sensor signatures are plotted upon the chart
as follows. Suppose a photodetector signal y is obtained for a hatch, we estimate its graph Fourier

coefficients G (y) as,

G(y) = [(y)T(vnormal )] (15)

The Hotelling 7? statistic, labeled T, for this new sensor signature is calculated as follows,

~ —\T ~ —
T2=(Gy)—C) ST1(G(y)-C) (16)
The Tf value is plotted on the control chart, and if it falls above the UCL, we conclude that

contamination has occurred.

We now briefly describe the statistical error measurements that underscore the effectiveness
of detecting contamination in the context of a control chart. Control charts are culpable of two
types of statistical errors, namely, Type I (a or false alarm) and Type II (f or failing to detect). The
Type I error rate is the percentage of data points (each data point on the control chart used in this
work represents a hatch) that are falsely categorized as falling above the upper control limit when
the process is in-control. In other words, Type I error is a hatch that is falsely deemed to indicate
contamination, i.e., there is no actual contamination, but the control chart erroneously indicates

that contamination has occurred in that hatch.

The Type II (B) error rate is the percentage of data points that fall inside the UCL when they
should in reality lie outside, i.e., contamination has occurred, but the control chart fails to indicate
it because the data point falls inside the control limits. However, because it is not possible to

pinpoint exactly which hatch is contaminated, but it is known beforehand which layer is
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contaminated, accordingly, in this work we estimate the Type II error in terms of layers. The Type

I and Type II error rates are estimated as follows:

Number of hatches falsely indicated as belonging to contaminated layers

Typelerrorrate = a =
yp Number of hatches expected in non — contamined layers

Number of layers incorrectly indicated as in control

Type II te= =
ypellerrorrate = f Number of contamined layers

There are two experimentally derived instances to verify these statistical detection errors:

1) Information from the experimental design, in that, we know the exact layers at which the
contaminants are dispensed over the base powder.

2) The XCT scans of the part from which we can verify the presence of contamination on a layer
when it is introduced. However, noting that the contamination is liable to spread from the layer

in which it is introduced.to previous and subsequent layers.
5. Results and Discussion

5.1 Offline X-Ray Computed Tomography Analysis of the Build

build. Using XCT scans additionally allows verification of the online analysis. To realize this
aim, the specimen is examined using XCT along the various cutting planes demarcated Figure 8.
The XCT scanning was made at 225 kV with resulting voxel resolution of 16 um and pixel pitch
of 200 um on a Perkin Elmer detector. The vertical and horizontal cross sections of the 3D volume
captured for the tungsten contaminated specimen is shown in Figure 9, wherefrom the contaminant

powder is clearly discerned.

| Please Insert Figure 8 Here. |

Figure 9 (a) shows the XCT across the vertical cross-section (Y-Z plane, cutting plane A-A
as depicted in Figure 8) of the test artifact. Observed in Figure 9(a) are the contaminated layers

over three replicates. Closer examination of these vertical cross-sections reveals that for high
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tungsten contamination levels, such as L3, the tungsten particles disperse up to three layers
preceding the layer in which they are introduced, and as much as eight subsequent layers. In other
words, contamination tends to cascade across layers, and influences the structure of both the
preceding and subsequent deposition. This assertion is further corroborated through metallurgical
analysis in Figure 11. Similarly, Figure 9(b) shows the effect of contamination as viewed along
the X-Z direction (cutting plane B-B); Figure 9(c) is the cross-section taken along the X-Y
direction (cutting plane C-C). We note that in Figure 9(a) and (b), due to procedural lapses during
XCT scanning, the second level of tungsten contamination for the first iteration (L2-1) was not
captured. This missing data is demarcated by a star in Figure 9 (a) and (b). In the context of
aluminum contamination, Figure 10 shows the vertical cross sections of the specimen; aluminum
trace particles were not detected with XCT. To reiterate, aluminum contaminant particles are not
discernable in the XCT images, because, (a) aluminum is an alloying element in Inconel 625, and
(b) the melting point of aluminum (~ 660 °C) is much lower than the melting point of Inconel 625
(~ 1300 °C). Consequently, aluminum readily dissolves into the surrounding Inconel 625 matrix,
and is therefore undetected in the XCT. Additionally, aluminum may also vaporize due to the high

energy density (~ 70 J/mm?) applied in the process to melt Inconel 625.

The specimen with embedded tungsten contaminant was sectioned and primary etched with an
alcohol-based Kalling’s solution. The specimens were secondary etched using a 10% wt. chromic
acid solution at 2.4 volts. In the optical micrograph of the etched sample shown in Figure 11 (a)
the presence of tungsten contaminants in the Inconel 625 matrix is evident. More remarkably,
tungsten particle traces are observed not just in the layer they are introduced, but also over multiple
layers — both preceding and subsequent layers. The spread of contaminants to layers beyond which

they are introduced is hypothesized as the effect of the repeated remelting of the material.
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However, modeling of the meltpool dynamics is required for confirming this effect. Recent
computational modeling work at Lawrence Livermore National Laboratories by King et al.
towards simulating the meltpool dynamics shows that material reflow and remelting influences the
structure of the previous layers, and may even be used beneficially to control and mitigate defects,
such as porosity [80-82]. Further investigation in this direction to elucidate how and why material

contamination cascades across layers is beyond the scope of this work.

The cascading effect of contamination is further verified in the XCT observations in Figure
11(b). The XCT cross-section in Figure 11(b) is taken in the X-Y plane, the label n refers to the
layer in which contamination is introduced, -/ is the immediate preceding layer, n-2 is two layers
prior, and so on. Similarly, a plus sign is used to indicate layers subsequent to layer n. The ensuing
section, Sec. 5.2 applies a spectral graph theoretic approach to capture these instances of

contamination during the build using data from the photodetector.

Please Insert Figure 9 Here.
Please Insert Figure 10 Here.
Please Insert Figure 11 Here.

5.2 Online Spectral graph Theoretic Analysis of the Signal to Detect Contamination

The photodetector signal related to the six level of tungsten and aluminum contamination for
one iteration are shown in Figure 12(a) and (b), respectively. The layers contaminated with
tungsten portray significant peaks. However, such a clear change is not apparent in the
photodetector signal for the aluminum contamination case. We herewith provide a physical

explanation of the signal characteristics.

Because the photodetector signal essentially captures the optical intensity of the plume during
the melting process, it is reasoned that it is intimately related to the laser-material interaction. This

effect has been observed by the AM research group at Penn State Applied Research Laboratory in
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both LPBF and DED processes [48, 49]. In these pioneering works, researchers show that the
photodetector signal is connected to the intrinsic microstructure of the part. In a similar vein, in
this work, when the laser passes over the powder bed area having contaminant particles, the optical
intensity of the vapor plume changes, which is captured by the photodetector, and hence it is related

to the elemental material aspects. The justification for this reasoning is as follows.

A crucial difference between this work, and the research reported by the Penn State group is
that the latter uses two photodiodes that capture two different wavelength intensities, one at 520
nm (called line emission spectrum) and 530 nm (called continuum spectrum) [48, 49]. The ratio
of the two spectra (line to continuum ratio) has been shown in three successive works by this group
to be strongly correlated to pore severity in both LPBF and DED, and hence can be deemed to

capture the microstructure-level aspects.

In our present work, an unfiltered signal from a single photodiode is used. On juxtaposing the
photodiode signal resulting from contamination from tungsten (Figure 12 (a)) with aluminum
(Figure 12 (b)), it is evident that, when tungsten contamination occurs the amplitude of the signal
(Volts) increases sharply from 1V to over 3V. Whereas for the case of aluminum contamination,
barely any increase is evident. This observation that the photodiode voltage is dependent on the
contaminant material, leads to the inference that the photodiode signal in this work is inclined to

be element-specific.

| Please Insert Figure 12 Here. |

In this section, the proposed spectral graph theoretic algorithm is applied to the L-PBF process
with the aim of detecting the onset of aluminum and tungsten cross-contamination from the
photodetector signals. First, the photodetector signal for the non-contaminated state is apportioned

hatch-by-hatch for each layer. This is possible because the laser position is tracked and recorded
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throughout the build. The photodetector signal for each hatch p for layer / is denoted as xf in Eqn.
(2).

We note that there is no clear correlation evident in the amplitude of the signal and the severity
of the signal — the statistical features of the signal could not discriminate between different types
and levels of severity. Next, using Eqn. (3) and (4), the pairwise comparison between different
rows of photodetector hatch is performed to provide the similarity matrix § related to graph G =
(V,E,W). Going through the second step, the Laplacian matrix of graph £ is constructed using
Eqn. (7). Then the first 10 (= n) non-zero Laplacian Eigenvectors v;,i = {2 ... 11} are used to
build a spectral universal basis V,,,-ma nNecessary for spectral transformation (Eqn. (10)).

Subsequently, the spectral graph Fourier coefficients (C) are obtained by taking the inner product

()" Vnormat ) per Ean. (12).

Finally, the coefficients are C are traced on a Hotelling 77 control chart. Per the procedure for
building the Phase 1 control chart described in Step 4.1, the UCL is first estimated by only
considering the so-called in-control signal, viz., those layers not contaminated with tungsten or
aluminum particles. As mentioned previously, this was restricted to 24 of the 60 layers for the first
iteration of the build with approximately 100 hatches per layer. The T? statistic and UCL are
calculated based on Eqn. (13) and (14).

The Phase 1 spectral graph theoretic Hotelling 72 control chart along with the data for the six
levels of tungsten and aluminum contamination for the first iteration is shown in Figure 13. There
are a total of 6000 hatches (60 layers) for which the data is available in the first iteration. Each
point of the control chart is representative of the spectral graph coefficients for one hatch. It is

observed that the chart captures the occurrence of contamination almost instantaneously.
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The Type I error is = 1% for both tungsten and aluminum contamination in building the Phase
1 control chart. This Type 1 error is obtained after revising the control limit by removing the
outliers (so-called delete and revise procedure applied only once). This manner of constructing the
control limit is an extremely conservative strategy that prioritizes the Type I error rate over the
Type 11 error rate. In other words, the Type I error for the control chart is maintained close to 1%,
while the Type II error is estimated based on the results. Furthermore, the control limits for a type

of contaminant material (tungsten or aluminum) remains fixed.

‘ Please Insert Figure 13 Here. ‘

Next, following the procedure in Step 4.2, the Hotelling 7° chart is used to detect
contamination in the rest of the two experimental iterations of the build. The data is representative
of 120 layers, with each layer having 100 hatches for a total of 12,000 hatches. To plot the spectral
control chart for the other replicates, the UCL stays identical from Phase 1 in Figure 13. As new
data y arrives, it is multiplied with the universal basis V,,,,-ma: to extract the first ten spectral graph
Fourier coefficients G (y) as shown in from Eqn. (15). Subsequently, T; is obtained in Eqn. (16),
and plotted on the control chart. This simple inner product makes this approach suitable for online
monitoring.

Figure 14 shows the application of the Phase 2 control chart to each type of contamination
(tungsten and aluminum) over iteration 2 and 3, i.e., Li-2 through L¢-2; and L;-3 through Ls-3.
Every level of tungsten contamination, both static and dynamic, is detected promptly by the control
chart in Figure 14(a). Whereas, as evident in Figure 14(a), in the case of aluminum contamination,
the contamination level Ls-3 (dynamic contamination type) is missed (an example of Type II

error). This underscores some of the challenges with contamination detection.

| Please Insert Figure 14 Here. |
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Table 2 summarizes the Type I and Type II errors estimated from three replicates of the
experiment in detecting powder contamination. We note that because it is intractable to pinpoint a
priori the exact hatch where contamination has occurred, the Type II errors are reported in terms
of all the hatches for the entire layer where contaminants are added. In contrast, it is known for
certain whether a hatch belongs to a non-contaminated layer, hence the Type I error can be

localized with respect to every hatch.

Please Insert Table 2 Here.

5.3 Verification with Statistical Time Series Analysis

The results from the proposed approach are compared with traditional delay-embedded Box-
Jenkins stochastic time series models, such as autoregressive (AR), autoregressive moving average
(ARMA), and autoregressive integrative moving average (ARIMA) models [83]. Starting with the
simplest model with two autoregressive terms, the model search is stopped when the number of
terms in the model reaches 10. The stopping criteria is chosen so that the number of terms in the
most complicated model does not exceed the number of eigenvectors (7 =10) used in the spectral

graph theoretic approach.

For instance, Eqn. (17), (18), and (19) show the AR(10), ARMA(6.,4), and ARIMA(6, 4),
respectively [83]. Where L is the lag operator, such that L‘(x,) = x,_;, where x, is a photodetector
data point, i.e., amplitude of the photodetector signal at time ¢. The parameter «; is connected to
the AR part of the time series model, 8; are the parameters of the moving average (MA) part and
& are model error terms. The terms a and 8 are optimized using the time series modeling toolbox
in Matlab, such that the sum of squared errors, i.e., Yy &2 is minimized.

AR(10) model: (1 — X120, a; LY)x, = &, (17)
ARMA(6,4) model: (1 — Y%, a; LDx, = (1 + X1, 6, LH)e, (18)
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ARIMA (6,4) model: (1 — Y%, a; LY(1 — L)x, = (1+ X1, 0; L)e, (19)
In Phase 1, the model coefficients @ and 6 are trained to fit the data hatch-by-hatch (using

Matlab), and then these model coefficients are tracked on a Hotelling 7% control chart. The
procedure followed is identical to the one described for the spectral graph theoretic approach

previously in Sec. 5.2. The only difference is that @ and 8 are used to populate the library of

coefficients C per Eqn. (12) instead of the spectral graph Fourier coefficients G (xf).

For each model, the Hotelling 72 control chart is constructed and the Type I and Type II errors
are estimated using the same procedure used for the proposed spectral graph theoretic approach.
The Phase 2 results for the traditional stochastic time series methods are presented in Table 2, from
which it is evident that the onset of material cross-contamination is promptly detected in the case
of tungsten contamination; the Type II (B) error rate is negligible for tungsten contamination and
the Type I (o) error is less than 1% for a majority of cases. However, detection of aluminum
contamination is rather intractable with these existing traditional Box-Jenkins time series
approaches; the Type II error exceeds 10%. These results are further juxtaposed with a Hotelling
77 control chart built with statistical features extracted from each hatch, such as mean, standard
deviation, skewness, etc. The results depicted in Table 2 also provide the average computation
time for extracting the 72 values for one hatch in the Phase 2 part of the control chart. We note
that, the computation time for the proposed graph theoretic approach is less than a millisecond (~
0.8 millisecond), which is magnitude smaller in comparison to traditional approaches. Thus

attesting to the viability of the approach for real-time process monitoring in AM.
5.4 Consistency Between Spectral Graph Theory and XCT

Continuing with the analysis, since the position data for each hatch of the photodetector signal

is available, the spectral graph T” coefficients can be correlated with the layer-by-layer
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contamination pattern obtained from the XCT scan. Such an attempt is made in Figure 15 for the
tungsten contamination case. In Figure 15(a), the Hotelling 77 values for the spectral graph
coefficients are color coded, with red indicating out-of-control or contaminated hatches. These
color-coded 77 values are superimposed on the XCT of the specimen taken along the X-Z cross-
section in Figure 15(b); the XCT is along the cutting plane B-B in Figure 8. From the overlaid plot
in Figure 15(b) it is evident that there is a near one-to-one correlation between the sensor signatures

and the layer at which contamination occurs.

However, such an overlaid plot for the aluminum contamination case could not be produced,
because, the XCT of Inconel 625 specimens contaminated with the aluminum particles did not
show visually prominent inclusions (Figure 10). To reiterate, the XCT of parts with aluminum is
not informative, because, (a) aluminum particles may dissolve within the Inconel 625 matrix given
their low melting temperature relative to Inconel 625 (~ 660 °C vs. ~1300 °C), and (b) aluminum

vaporizes due to the high energy density (70 J/mm?) applied to process Inconel 625.

Please Insert Figure 15 Here.

This result corroborates that the spectral graph sensor signatures are indeed indicative of
material cross-contamination and can be traced back to physical locations where contamination is
present. This traceability of sensor signatures to XCT demonstrates the viability of the qualify-as-
you-build paradigm in AM, wherein in-process sensor data instead of cumbersome offline

measurement and testing can be used to rapidly qualify the part quality.

Furthermore, through this research, once the presence of contaminants is discovered at a layer,
measures to forestall further their spread over future layers can be taken. Such a preventive strategy
could be, for instance, rescanning an entire layer with higher energy density to ensure thorough

fusion of contaminant particles like tungsten, or removing a layer using a hybrid additive-
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subtractive strategy. This in-process correct-as-you-build strategy is possible with hybrid L-PBF
systems, e.g., Matsuura Lumex Avance and Sodick OPM250L, which have an in-built subtractive
machining attachment that can be used to remove a contamination-afflicted layer. In the worst-

case scenario, the build can be stopped to prevent poor part quality and waste of expensive powder.
6. Conclusions and Future Work

This work describes a spectral graph theoretic approach to detect occurrence of material cross-
contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process based on
in-process sensor data. The key idea is to convert a signal into its network graph equivalent, and
subsequently, extract so-called spectral graph Fourier coefficients as surrogate signatures to track
the process hatch-by-hatch. A photodetector signal is specifically used to demonstrate the efficacy
of the approach of an L-PBF of an Inconel 625 alloy part. During the build, two types of foreign
material contaminants are induced, namely, tungsten and aluminum varying in the severity and the
controlled manner in which they are introduced — static deposition, and dynamic/continuous

deposition over a layer.

The key advantages of the approach over existing time-delay stochastic time series modeling
techniques, such as ARMA is that: (a) it does not require fitting a model to the data, essentially it
1s model-free; and (b) eschews decomposition or extraction of features from each incoming signal,
a simple inner product with an eigenvector basis is required thus saving on computational time.
As aresult, the approach detects instances of material contamination with high accuracy; the worst
case Type I error was found to be < ~1%, and Type II error < 5%, which presents a magnitude
improvement over traditional time series modeling. The ability to detect contamination was

corroborated with offline metallurgical and XCT scanning.

Specific conclusions from this work are as follows:
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1. Metallurgical and XCT analysis of specimens revealed that contaminants are not confined to
the layer in which they are introduced. Indeed, it was observed that contaminant particles not
only enter previously deposited, but also tend to cascade to subsequent layers. The repeated
re-melting of the material is hypothesized as the root cause of the behavior that leads to
cascading of contamination to previous and subsequent layers. Physical modeling to explain
the transportation of contaminant particles across layers is beyond the scope of this work.

2. Tungsten contamination is readily discernable in both offline metallurgical and XCT images,
and online photodetector signals. This is probably because tungsten has a higher melting point
and is also not elemental to Inconel 625. In contrast, aluminum has a lower melting point than
Inconel 625 and may be present as an alloying in minor quantities (< 0.4%) in the same. There
is also the possibility that aluminum may be vaporized during the build (which causes pinhole
porosity). Therefore, contamination of Inconel 625 with aluminum is harder to discern in either
the XCT or photodetector signals than the tungsten contamination case.

3. The graph Fourier coefficients were extracted for each hatch of the material and traced in a
Hotelling 77 control chart. The occurrence of both tungsten and aluminum contamination are
detected with high fidelity using the spectral graph Fourier coefficients; the Type I and Type
IT errors are < ~1% and < 5%, respectively.

4. The Hotelling 77 values obtained from the spectral graph theoretic Fourier coefficients are
overlaid on the XCT scans of the specimen. A near one-to-one correlation is demonstrated
between the status of the Hotelling 77 values — whether they are in-control or out-of-control —

and the layer at which contamination is observed in the XCT of the specimen.

A drawback of this work is that we have only used only a single type of sensor — a photodetector

— to detect a specific type of defect, namely, material cross-contamination. The efficacy of the
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approach using multiple sensors, such as a spectrometer and infrared thermal imaging for different
types of defects remains to be ascertained. Furthermore, the material, i.e., whether the
contamination relates to tungsten or aluminum, and the type of severity of contamination (L;
through Le, and static or dynamic) could not be classified based on data from a single
photodetector. Lastly, the effect of contamination on the mechanical properties of the part needs
to be quantified through materials testing. This will allow completing the loop between process
phenomena, sensor signatures, and part properties. The authors will attempt to address these gaps

in their future work in the area.
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The build layout and contamination pattern. The contamination set of L;
Table 1 through Le was deposited three times, and in the end of 3 iterations was
followed by 20 cover layers.

The algorithm accuracy in comparison with traditional approaches for
Table 2 detecting the Tungsten and Aluminum contamination. The numbers in the
parenthesis are from three-fold experimental replications.
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Table 1: The build layout and contamination pattern. The contamination set of L through Ls was

deposited three times, and in the end of 3 iterations was followed by 20 cover layers.

Contamination | Base Line (BL) / Contamination Start | End | End Height

Set # Layer (L, n=1 to 6) Layer | Layer (mm)
Base line (non-contaminated layer) 1 19 0.76

(Static contamination) L; -1 20 20 0.80

Base line (non-contaminated layer) | 21 39 1.56

(Static contamination) [, -1 40 40 1.60

Base line (non-contaminated layer) | 41 59 2.36

Iteration 1 (Static contamination) L3 -1 60 60 2.40
Base line (non-contaminated layer) | 61 79 3.16

(Dynamic contamination) L4-1 80 80 3.20

Base line (non-contaminated layer) 81 99 3.96

(Dynamic contamination) Ls-1 100 100 4.00

Base line (non-contaminated layer) | 101 119 4.76

(Dynamic contamination) Le-1 120 120 4.80

x 2 iterations BL- L;-2 through Lg -2

of the build BL- L-3 through L -3 121 360 14.44
pattern
Cover Layers | Base line (non-contaminated layer) | 361 380 15.20
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Table 2: The algorithm accuracy in comparison with traditional approaches for detecting the Tungsten

and Aluminum contamination. The numbers in the parenthesis are from three-fold experimental

replications.
Aluminum .. .
Contamination Tungsten Contamination Computatlon
Type II fime
Model Model Type I Type 11 Type I error “rror per hatch (sec)
Structure | error (% ) | error (%) (%) %)
(2,2) 0.6 (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0912
24 0.6 (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0971
(2,6) 0.6 (0.1) 83.3 (0.0) 1.0 (0.0) 0.0 (0.0) 0.1021
ARMA (4,2) 0.7 (0.1) 83.3 (0.0) 1.2 (0.1) 0.0 (0.0) 0.0968
44 0.7 (0.1) 83.3 (0.0) 1.3(0.2) 0.0 (0.0) 0.0976
(4,6) 0.8(0.2) | 66.7(16.7) 1.2 (0.0) 0.0 (0.0) 0.1302
(6,2) 1.2 (0.1) 33317 1.0 (0.1) 0.0 (0.0) 0.1588
(6,4 1.7 (0.1) 16.7 (9.2) 1.0 (0.1) 0.0 (0.0) 0.2829
(2,2) 0.6 (0.2) 83.3 (0.0) 0.8 (0.1) 0.0 (0.0) 0.1128
24 0.5 (0.1) 83.3 (0.0) 0.9(0.1) 0.0 (0.0) 0.1216
(2,6) 0.7 (0.2) 83.3 (0.0) 0.9 (0.0) 0.0 (0.0) 0.1225
ARIMA (4,2) 1.1(0.1) | 66.7(16.7) 1.3 (0.0) 0.0 (0.0) 0.2164
44 1.2 (0.0) | 66.7(16.7) 1.3 (0.10 0.0 (0.0) 0.2576
(4,6) 1.1(0.0) | 66.7(16.7) 1.2 (0.1) 0.0 (0.0) 0.1560
(6,2) 1.5(0.1) 11.1 (9.6) 1.6 (0.2) 0.0 (0.0) 0.2011
(6,4 1.6 (0.1) 11.1 (9.6) 1.6 (0.1) 0.0 (0.0) 2.4152
2) 1.0 (0.0) | 22.2(19.2) 1.0 (0.20 0.0 (0.0) 0.0210
@) 1.1(0.1) 16.7 (9.2) 0.9 (0.3) 0.0 (0.0) 0.0089
AR (6) 0.8 (0.2) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0080
(8) 0.7 (0.10) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0085
(10) 0.5 (0.1) 33317 0.8 (0.2) 0.0 (0.0) 0.8641
Statistical

Control Chart 1.5 (0.0) 11.1 (9.6) 1.3 (0.7) 0.0 (0.0) 0.0427

Proposed Spectral
Graph Theoretic 0.5 (0.0) 5.009.2) 1.1(0.1) 0.0 (0.0) 0.0008

Approach
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List of Figures

Figure Number Figure Caption

Figure 1 The schematic diagram of the L-PBF process.

Optical image of an etched and polished Inconel 625 specimen. The black
arrow indicates the build direction.

(a) Contamination with tungsten, which due to its high melting point does not
fuse, and tends to cascade through several layers. The dashed-line (1) indicates
the shape of a melt pool, penetrated into the previously deposited layer. Also,
the overlaps between tracks could be recognized. The dashed line and circle (2)
Figure 2 shown at the bottom of the tungsten specimen are representative of the hatching
directions in the two consecutive layers.

(b) The contamination with aluminum is not readily evident as trace particles,
but closer examination of the hatch pattern reveals that aluminum tends to
distort the meltpool as indicated by the arrows (3), and (4) vaporization of the
aluminum particles causes uniform circular pinhole (gas-induced) porosity of
diameter ~10 pm.

(a) A schematic representation of the open architecture L-PBF platform at EWI
[45]. For scale purposes, the powder bed on the machine accommodates parts
as large as 10 inch x 10 inch (250 mm X 250 mm). (b) Photograph of the L-
PBF platform (c) Schematic of the fixture made to deliver metered amount of
contamination. (d) Photograph of the actual apparatus made for initiating
contamination [65].

Figure 3

The manner in which contamination is introduced during the build. The gray
Figure 4 layers show the ones where data is captured. The red layers indicate where the
contamination is introduced.

Post recoating optical images after contamination with (al) Tungsten and (a2)

Figure 5a Aluminum.

The unit volumes of deposited powders for each of six contamination levels in

Figure 5b (bl) tungsten and (b2) aluminum.

The horizontal and vertical hatch patterns related to odd and even layers
respectively. The symbols O and X demarcate the starting and ending points
Figure 6 for a hatch. There are 100 hatches per layer, each hatch takes close to 10
milliseconds to melt (laser velocity 960 mm/sec), the entire layer takes ~ 1 sec.
to fuse.

Graphical overview of the proposed spectral graph theoretic approach for

igure 7 detecting material contamination.

Three-dimensional (3D) reconstruction of the XCT scan for the specimen
Figure 8 contaminated with tungsten powder particles. The powder recoating moves
along the X-axis direction.
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The cross sectional XCT views of the Inconel 625 specimen contaminated by
the tungsten powder particles, (a) vertical cross section normal to the recoating
direction (cutting plane A-A, Y-Z direction),(b) vertical cross section along the
Figure 9 recoating direction (cutting plane B-B, X-Z direction) (c) horizontal cross
section (cutting plane C-C, X-Y direction). Due to procedural lapses in the
XCT process the second contamination level in the first iteration (L2-1) was
missed.

The cross sectional views of the Inconel 625 specimen contaminated by the
Aluminum powder particles, (a) vertical cross section normal to the recoating
Figure 10 direction (cutting plane A-A, Y-Z direction), (b) vertical cross section along
the recoating direction (cutting plane B-B, X-Z direction). The contaminant
particles are not evident within the aluminum matrix.

(a)The optical micrograph of the Inconel 625 specimen contaminated with
tungsten particles observed over 8 layers. (b)(c) XCT images in the horizontal
Figure 11 plane section (cutting plane C-C, X-Y direction) for the L3 severity level shows
that trace tungsten particles persist over eight subsequent layers and penetrate
through three preceding layers.

(top row) The photodetector signal associated with the six level of (a) Tungsten
contamination and (b) Aluminum contamination in Inconel 625. (bottom row)
The second contamination level (L) is magnified and the signal corresponding
to tungsten contamination has clear spikes compared to aluminum.

Figure 12

The Phase 1 spectral Hotelling 7> control chart related to six levels of
Figure 13 contamination for (a) Tungsten and (b) Aluminum contamination, wherein the
control limits are fixed.

The Phase 2 spectral Hotelling T? control chart applied to two replications of
the data for the related to the remaining two iterations, for each of the six levels
Figure 14 of contamination for (a) tungsten and (b) aluminum contamination. Note that
the dynamic contamination case Ls for aluminum is not detected, indicating a
Type 11 statistical error.

(a) The 72 values of the spectral graph Fourier coefficients are color coded, red
indicates out-of-control (contaminated) hatches, and black indicates in-control
hatches. These 7> values are plotted along the X-Z plane of the part, since the
position of each hatch is known. (b) The spectral graph T values are overlaid
upon the XCT scan to demarcate the near one-to-one correspondence between
the two.

Figure 15
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Figure 1: The schematic diagram of the L-PBF process.
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Figure 2: Optical image of an etched and polished Inconel 625 specimen. The black arrow indicates the

build direction.

(a) Contamination with tungsten, which due to its high melting point does not fuse, and tends to cascade
through several layers. The dashed-line (1) indicates the shape of a melt pool, penetrated into the previously
deposited layer. Also, the overlaps between tracks could be recognized. The dashed line and circle (2)
shown at the bottom of the tungsten specimen are representative of the hatching directions in the two

consecutive layers.

(b) The contamination with aluminum is not readily evident as trace particles, but closer examination of the
hatch pattern reveals that aluminum tends to distort the meltpool as indicated by the arrows (3), and (4)
vaporization of the aluminum particles causes uniform circular pinhole (gas-induced) porosity of diameter

~10 pum.
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Figure 3: (a) A schematic representation of the open architecture L-PBF platform at EWI [45]. For scale
purposes, the powder bed on the machine accommodates parts as large as 10 inch x 10 inch (250 mm x
250 mm). (b) Photograph of the L-PBF platform (c) Schematic of the fixture made to deliver metered

amount of contamination. (d) Photograph of the actual apparatus made for initiating contamination [65].
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Figure 4: The manner in which contamination is introduced during the build. The gray layers show the

ones where data is captured. The red layers indicate where the contamination is introduced.
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Figure 5a: Post recoating optical images after contamination with (al) Tungsten and (a2) Aluminum.
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Figure 5b: The unit volumes of deposited powders for each of six contamination levels in (b1)

tungsten and (b2) aluminum.
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Figure 6: The horizontal and vertical hatch patterns related to odd and even layers respectively. The

symbols O and X demarcate the starting and ending points for a hatch. There are 100 hatches per layer,
each hatch takes close to 10 milliseconds to melt (laser velocity 960 mm/sec), the entire layer takes ~ 1

sec. to fuse.
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Figure 7: Graphical overview of the proposed spectral graph theoretic approach for detecting material

contamination.
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Direction

Figure 8: Three-dimensional (3D) reconstruction of the XCT scan for the specimen contaminated with

tungsten powder particles. The powder recoating moves along the X-axis direction.
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Figure 9: The cross sectional XCT views of the Inconel 625 specimen contaminated by the tungsten
powder particles, a) vertical cross section normal to the recoating direction (cutting plane A-A, Y-Z
direction), b) vertical cross section along the recoating direction (cutting plane B-B, X-Z direction) ¢)
horizontal cross section (cutting plane C-C, X-Y direction). Due to procedural lapses in the XCT process

the second contamination level in the first iteration (L2-1) was missed.
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Figure 10: The cross sectional views of the Inconel 625 specimen contaminated by the Aluminum powder
particles, a) vertical cross section normal to the recoating direction (cutting plane A-A, Y-Z direction), b)
vertical cross section along the recoating direction (cutting plane B-B, X-Z direction). The contaminant

particles are not evident within the aluminum matrix.
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Figure 11: (a)The optical micrograph of the Inconel 625 specimen contaminated with tungsten particles
observed over 8 layers. (b)(c) XCT images in the horizontal plane section (cutting plane C-C, X-Y
direction) for the Lj severity level shows that trace tungsten particles persist over eight subsequent layers

and penetrate through three preceding layers.
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Figure 12: (top row) The photodetector signal associated with the six level of (a) Tungsten contamination
and (b) Aluminum contamination in Inconel 625. (bottom row) The second contamination level (L,) is
magnified and the signal corresponding to tungsten contamination has clear spikes compared to

aluminum.
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Figure 13: The Phase 1 spectral Hotelling 72 control chart related to six levels of contamination for (a)

Tungsten and (b) Aluminum contamination, wherein the control limits are fixed.
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Figure 14: The Phase 2 spectral Hotelling T2 control chart applied to two replications of the data for the
related to the remaining two iterations, for each of the six levels of contamination for (a) tungsten and (b)
aluminum contamination. Note that the dynamic contamination case Ls for aluminum is not detected,

indicating a Type II statistical error.
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3mm

Figure 15: (a) The 7% values of the spectral graph Fourier coefficients are color coded, red indicates out-
of-control (contaminated) hatches, and black indicates in-control hatches. These 7% values are plotted
along the X-Z plane of the part, since the position of each hatch is known. (b) The spectral graph T>.

values are overlaid upon the XCT scan to demarcate the near one-to-one correspondence between the two.
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