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Abstract 

The goal of this work is to detect the onset of material cross-contamination in laser powder 

bed fusion (L-PBF) additive manufacturing (AM) process using data from in situ sensors. Material 

cross-contamination refers to trace foreign materials that may be introduced in the powder 

feedstock used in the process due to such reasons as, poor cleaning of the machine after previous 

builds, or inadequate quality control during production and storage of the powder. Material cross-

contamination may lead to deleterious changes in the microstructure of the AM part and 

consequently affect its functional properties. Accordingly, the objective of this work is to develop 

and apply a spectral graph theoretic approach to detect the occurrence of material cross-

contamination in real-time as the part is being built using in-process sensors. The central 

hypothesis is that transforming the process signals in the spectral graph domain leads to early and 

more accurate detection of material cross-contamination in L-PBF compared to the traditional 

delay-embedded Bon-Jenkins stochastic time series analysis techniques, such as autoregressive 

(AR) and autoregressive moving average (ARMA) modeling. To test this hypothesis, Inconel alloy 

625 (UNS alloy 06625) test parts were made at Edison Welding Institute (EWI) on a custom-built 

L-PBF apparatus integrated with multiple sensors, including a silicon photodetector (with 300 nm 

to 1100 nm optical wavelength). During the process two types of foreign contaminant materials, 

namely, tungsten and aluminum particulates under varying degrees of severity were introduced. 

To detect cross-contamination in the part, the photodetector sensor signatures were monitored 

hatch-by-hatch in the form of spectral graph transform coefficients. These spectral graph 

coefficients are subsequently tracked on a Hotelling T2 statistical control chart. Instances of Type 

II statistical error, i.e., probability of failing to detect the onset of material cross-contamination, 

was verified against X-ray computed tomography (XCT) scans of the part to be within 5% in the 

case of aluminum contaminant particles. In contrast, traditional stochastic time series modeling 

approaches, e.g., ARMA had corresponding Type II error exceeding 15%.  Furthermore, the 

computation time for the spectral graph approach was found to be less than one millisecond, 

compared to nearly 100 milliseconds for the traditional time series models tested.  

Keywords: Additive Manufacturing, Laser Powder Bed Fusion, Material Cross-Contamination, 

Real-time Monitoring.   
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List of abbreviations 

AM   Additive Manufacturing 

PBF   Powder Bed Fusion 

L-PBF   Laser Powder Bed Fusion 

EB-PBF   Electron Beam Powder Bed Fusion 

DED    Directed Energy Deposition 

XCT    X-ray Computed Tomography 

UCL    Upper Control Limit 

LCL    Lower Control Limit 

AR   Autoregressive Time Series Model 

ARMA Autoregressive Moving Average Time Series Model 

ARIMA Autoregressive Integrative Moving Average Time Series Model 

1. Introduction 

1.1 Background and Motivation 

Powder bed fusion (PBF) is an additive manufacturing (AM) process in which thermal energy 

from a focused source, such as a laser or electron beam, is used to selectively fuse regions of a 

powder bed [1]. Figure 1 shows a schematic of the PBF process. A layer of powder material is 

spread across a build plate (powder bed), and subsequently, certain areas of this layer of powder 

are melted (fused) with an energy source such as a laser or electron beam. The build plate is then 

lowered and another layer of powder is spread over it and melted [2]. This cycle continues layer-

upon-layer until the part is built. The specific PBF process depicted in Figure 1 uses a laser power 

source for melting the material, accordingly, the convention is to refer to this technology as Laser 

Powder Bed Fusion (L-PBF). More than 50 input parameters including the feedstock material, 

scan strategy, input energy, part design, and machine environmental settings are known to 

influence the structure and physical properties of the part [3-5].  

Please Insert Figure 1 Here. 

Along with blown powder and wire-fed directed energy deposition (DED) technology, PBF 

is the AM process of choice for making metal parts. Recent studies in the aerospace industry have 
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demonstrated that the PBF process can drastically reduce the so-called buy-to-fly ratio, which is 

the ratio of the material that is required to make a part to the final weight of the part. The buy-to-

fly ratio is typically 20:1 for traditional subtractive and formative processes, while in the case of 

metal AM this ratio can be as small as 2:1. Simultaneously, the lead time for delivering a new part 

design can be shortened from five months to less than a week [6-10]. This unprecedented flexibility 

in design and manufacturing offered by the advent of metal AM has the potential to revolutionize 

strategic industries, such as aerospace and biomedical. 

Despite these possibilities, the poor consistency of AM parts hinders their wider adoption for 

making mission-critical components. Particularly, the presence of defects in AM parts, such as 

porosity and geometric distortion, deleteriously affect their functional properties, e.g., fatigue life 

and strength [11-13]. Given the layered nature of AM, defects may form at any layer and become 

permanently sealed in by subsequent layers if they are not detected and averted promptly. Hence, 

there is a need to monitor the integrity of each layer as it is being built to ensure compliance [13-

15].  

In the context of quality assurance in AM, the current practice is to examine the part after it is 

built using X-ray computed tomography (XCT), which is exceedingly expensive and cumbersome. 

In a recent review article, Seifi et al. [16] attest that given the small batch sizes and time required 

for production, statistical qualification of AM parts based on destructive materials testing may be 

prohibitively expensive and take over a decade to complete, and is therefore impractical.  

However, if there exists a record to attest the integrity of every layer in terms of sensor data, 

and if this data can be correlated back to the XCT for a few test parts, then this recorded sensor 

data for each layer, instead of XCT scanning and destructive analysis, can be used to rapidly 

qualify the part quality. Thus, leading to a so-called qualify-as-you-build paradigm in AM [17, 
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18].  From the larger context of offline defect mitigation in L-PBF, current research in this area 

can be stratified into four main thrusts: 

(1) Avoiding defects such as porosity or distortion, resulting from factors related to poor choice 

of process parameters, such as laser power and scan speed, through design of experiments-

based optimization studies [19]. 

(2) Preventing build failures, such as re-coater crashes by careful calibration of the machine and 

avoiding malfunction of the optical train, e.g., cleaning and maintenance of the optical lens 

used for focusing the laser – which is inclined to become coated with residue from spatter and 

material vaporization, particularly, during long build cycles. 

(3) Precluding build failures resulting from poor design of the part, e.g., steep overhang 

geometries, thin walls, overly fine features, ill-suited placement of support structures, and 

improper orientation of the part [5, 20-22].  

(4) Maintaining the purity of the input feed stock, such as taking care to avoid material cross-

contamination, in the form of organic, e.g., oil, grease, lubricants, hair, plastics, and glue, or 

inorganic wear debris or other powders ingredients in the feedstock powder. Such 

contamination of the powder has been shown to cause variation in the microstructure and 

functional properties of the part [23].  

This work specifically focuses on point (4), viz., avoiding defects related to the contamination 

of the feedstock powder. The initiation of contamination-related defects in L-PBF can be traced 

to: (a) poor quality control of the material feedstock during its production and storage, and (b) 

inadequacies and lapses in the procedures used to purge trace material from the AM machine or 

powder recycling equipment after a build has been completed with a different material. Since, 

there are numerous opportunities for contaminants to manifest in any stage of the powder 
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production and powder handling aspects, it is important to detect the subtler process drifts due to 

presence of contaminants, so that opportune corrective action, such as re-melting a layer, can be 

instigated.  

To put the challenge of cross-contamination in pictorial context, Figure 2 shows optical images 

of an etched Inconel 625 AM sample from this work contaminated with varying severities of 

tungsten and aluminum trace material. These images demonstrate that material cross-

contamination changes the basic microstructure of the build, and has the proclivity to spread 

beyond the layer in which the contaminant particles are introduced. The following inferences can 

be drawn from this experimental result, which will be described further in depth in Sec. 3. 

• Figure 2  (a): Contamination with tungsten manifests as unfused particles evident as light hued 

inclusions in the darker Inconel 625 matrix. This is probably because: (1) the melting point of 

tungsten is much higher (~ 3422 °C) than Inconel 625 (~1300 °C), and (2) tungsten is not an 

alloying element in Inconel 625. Given these two reasons tungsten does not dissolve into the 

Inconel 625 matrix. The contamination of Inconel with tungsten is a critical problem that may 

lead to premature failure of AM parts. For instance, in a recent publication, Brandão et al. 

hypothesize that given the hardness of tungsten, un-melted tungsten particles tend to become 

preferred sites for crack initiation under tensile loading [23].  

• Figure 2 (b): Contamination with aluminum does not manifest in clearly distinguishable 

particle traces, however it tends to distort the meltpool. This because of two reasons:  

(1) Unlike tungsten, aluminum has a much lower melting point (~ 660 °C) than the melting 

point of Inconel 625 (~ 1300 °C). Further, aluminum is also an allowable alloying element 

in Inconel 625 (maximum 0.4% by mass). Hence, aluminum particles may dissolve into 

the Inconel 625 matrix.  
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(2) Aluminum particles may vaporize given the higher energy applied to melt Inconel 625. 

This vaporization of aluminum particles leads to uniform circular pores of diameter ~ 10 

μm, which is termed as gas porosity or pinhole porosity in the literature [5].  

Please Insert Figure 2 Here. 

 

1.2 Objective and Hypothesis 

As a first-step to realize the long-term aim of qualify-as-you-build in AM, the goal of this 

work is to detect the onset of material contamination-related anomalies in L-PBF. In pursuit of this 

goal, the objective is to develop and apply a spectral graph theoretic approach for real-time 

detection of material cross-contamination in-process signatures acquired by a photodetector 

sensor.  

The central hypothesis is that tracking the signatures acquired from the photodetector in the 

spectral graph domain leads to early and more accurate detection of material cross-contamination 

in L-PBF, compared to the traditional Box-Jenkins stochastic delay-embedded time series analysis 

of the signal, such as autoregressive (AR) and autoregressive moving average (ARMA) modeling. 

This work addresses the following open research question in the context of material cross-

contamination in L-PBF process  ̶  what process signatures can capture the onset of contamination?  

The rest of this paper is organized is follows. The literature in the area of sensing and 

monitoring in AM is discussed in Sec. 2, followed by description of the experimental methodology 

to initiate controlled material cross-contamination in Sec. 3, the spectral graph theoretic approach 

is explained in Sec. 4, and subsequently applied to the L-PBF process signals in Sec. 5, followed 

by summary of the conclusions and avenues for future research in Sec. 6.  
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2.  Status of the Related Research – Gaps and Challenges.  

Brandão et al. report the effect of high density tungsten inclusions on the tensile strength and 

microstructure of L-PBF test parts [23]. Although, contaminants were found not to influence the 

mean tensile strength of the specimen, the fracture cracks during testing were found to initiate at 

the locations where contaminants were present. Furthermore, specimens with cross-contamination 

tended to have large variability in the tensile strength readings compared to those without 

contamination.  

In the related context of purity and physical characteristics (diameter and shape) of the 

powder, studies have been conducted to understand the effect of powder reuse on part functional 

attributes in electron beam PBF (EB-PBF) [24]. This is because, unlike L-PBF, in EB-PBF the 

powder is maintained at a higher temperature [25]. Hence, there is a practical concern that repeated 

reuse of the powder in EB-PBF may lead to deviation in powder characteristics and hence the 

functional performance of the part. These studies have concluded that although the repeated reuse 

of the powder increases its oxygen content and changes it particle geometry, the impact of powder 

reuse on mechanical strength was statistically insignificant [24, 25].  

The effect of feedstock characteristics on the mechanical properties of LPBF parts was 

investigated by Ardila et al. who found that the effect of reuse of Inconel 718 powder had 

statistically insignificant effect on material strength, nor did the shape of the powder particles 

deviate significantly over 14 iterations [26]. Recent studies by Clemon at University of California, 

Berkeley characterize the effect of powder properties on the process performance [27]. Thus the 

understanding of the effect of material cross-contamination on part microstructure in LPBF 

remains to be thoroughly investigated. 
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The second challenge that this work must tackle lies in the domain of data analytics and 

modeling in AM. The in-process sensor data in AM processes is heterogeneous (several different 

sensors are used), acquired at high velocity (the sampling rate of sensors is high), and the data is 

high in volume (several gigabytes of data are acquired for a build). There is an active and ongoing 

effort to develop data analytics and modeling approaches to track and monitor these sensor data in 

real-time, and relate the sensor signatures to functional properties [28, 29]. The need for 

approaches to synthesize the data gathered in AM processes has been explicitly designated as a 

research priority area in recent roadmap reports [30, 31]. 

Comprehensive review articles for in-process sensing are available in Ref. [28, 29, 32-35]. 

Significant research in the area is being done in academe [36], national laboratories, and industry 

[37-45].   Nassar and Reutzel, et al. at Pennsylvania State University experimented with imaging 

of the L-PBF powder bed under various illumination conditions [46]. Defects, such as large voids 

caused by improper raking of the powder across the bed were identified from these images [42, 

43, 47].  They have also used a multispectral photodetector setup that concentrates on observing 

the line-to-continuum ratio of the laser plume in both the L-PBF and DED processes to detect the 

onset of defects, such as porosity [48, 49]. Lane et al. at NIST integrated an L-PBF machine (EOS 

M270) with thermal and high-speed cameras, and a photodetector [37]. Researchers at NIST are 

currently building a customized L-PBF testbeds instrumented with multiple sensors, based on 

findings at Edison Welding Institute (EWI)  [44, 45]. A large body of work in sensing and 

monitoring in L-PBF is reported by the Kruth group [50-54] and Witt group [55-58] in Europe.  

The sensing and monitoring approaches for PBF used in these pioneering works are categorized 

into the following two broad areas: 
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• Meltpool monitoring: Optical cameras, high-speed cameras, Infrared (IR) cameras, 

photodetectors, and pyrometers are used to gage thermal, intensity, and morphological 

aspects of the meltpool. The visual systems and sensors are either embedded coaxially with 

the laser; or a system that is either external or internal to the chamber inclined at an angle 

to the build platen [28, 29]. The challenge is that the temperature profiles captured by IR 

systems is a trend and not the actual temperature. This is because the material emissivity 

has to be factored into the readings, and furthermore, if the sensor is mounted at an angle 

to the powder bed, the incident thermal radiation is therefore not perpendicular to the 

sensing elements in the IR camera, and which in turn affects the accuracy of the 

temperature reading.  

• Powder bed monitoring: Acoustic (ultrasonic) sensors, vibration (accelerometers), 

optical cameras, and IR thermal cameras have also been proposed to monitor the powder 

bed conditions. For instance, Rieder et al. built a system with ultrasonic sensors mounted 

underneath the build platen to detect voids in the build [59]. Vibration sensors were used 

by Craeghs et al. to identify faulty deposition of powder layers resulting from a damaged 

recoater [54]. Instances of super elevations, poor surface finish, and defective features have 

been detected using both visual and vibration sensors. In a similar vein, Nassar et al. used 

optical images taken layer-by-layer to detect improper raking of the material and distortion 

during the process [42].    

The work reported by Craeghs et al. in Ref. [54] serves as an archetypical example of both 

meltpool and powder bed monitoring. Craeghs et al. [54] incorporated three sensors, namely, a 

visual camera to ascertain the characteristics of the powder raked by the blade across the build 

platen, i.e., a powder bed monitoring system; and a photodiode (photodetector) and a camera 



Revised Manuscript MANU-17-1706 (Research Paper) 

Page 10 of 64 

 

coaxially aligned with the laser, both of which are used to monitor the meltpool.  In the context of 

monitoring the powder bed raked across the platen, Craeghs et al. made two observations. First, 

the gradual wear of the recoater blade causes streaks to appear across the deposited powder bed. 

In a similar vein, Abdelrahman et al. showed that non-uniform raking of the powder bed may lead 

to defects [43]. The effect of using a damaged recoater blade leads to discernable streaks on the 

powder bed surface, which in turn manifest in poor part surface finish. The uneven deposition of 

the material resulting from a damaged recoater blade was detected by Craeghs et al. using a 

statistical control chart-type strategy. The gray scale values of the powder bed taken by the visual 

camera are tracked and used as a feature to discriminate the onset of defects due to improper raking 

of the powder across the bed. For instance, the grayscale image values for a layer deposited with 

a damaged blade shows clear spikes compared to when the powder is raked uniformly. 

Furthermore, the meltpool was monitored with the photodiode and optical camera system. The 

optical systems were augmented with filters to constrain the wavelength of acquired light in the 

region of 780 nm to 950 nm. The sampling rate of the photodiode is 10 kHz, this translates to a 

sample every 100 μm of the linear distance traversed by the laser, considering that the laser scan 

velocity is set at 1000 mm/sec. Incidentally, the laser scan velocity and sampling rate of the 

photodiode used by Craeghs et al. [54] is nearly identical to those in this work (see Sec. 3).  Further, 

using image segmentation and pixel intensity estimation techniques from the area of image 

processing the authors track the meltpool area and the length to width ratio of the meltpool. These 

meltpool image features are the monitoring statistics which can be used in a statistical control 

chart; they have also shown to be indicative of process phenomena such as balling by other 

researchers [60, 61].  
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Another example is tendered by Craeghs et al. [54] for detecting porosity in L-PBF due to 

process drifts. In this case, abrupt machine errors led to increase in the part porosity. At certain 

instances, due to faults in the build platform stage motor, the powder bed was lowered farther than 

the set layer height. Hence, powder thickness equivalent to multiple layers was accidentally raked 

across the bed. This unusually high layer thickness led to increase in porosity, because, the energy 

applied per unit volume (volumetric energy density) was insufficient to melt the powder. The 

authors report that the photodiode signal depicts an inordinate increase in mean and standard 

deviation corresponding to layers with faulty deposition.   

A lacuna of the analysis used in these prior works in sensing and modeling in AM, and as 

exemplified in the pioneering work of Craeghs et al. [54], is that they are largely offline and use 

approaches such as Fourier transforms or statistical-feature models, which as we will demonstrate 

in Sec. 5, are not amenable to online monitoring.  To take these pioneering works in process 

monitoring in AM forward, it is necessary to develop approaches capable of detecting a wider 

variety of defects in real-time and with greater accuracy. Recent works by Yang et al., [62] and 

Rao et al. [63] have attempted to overcome these challenges by resorting to advanced analytics, 

such as fractal signal analysis, and adaptive clustering and Bayesian modeling.  

A drawback with these newer data analytics approaches is that they require well-defined 

model structures, e.g., logistic fractal model, tuning of parameters, setting the number of layers 

and nodes in a neural networks, and tuning the number of terms in traditional time series analysis 

techniques, such as ARMA. Furthermore, the classical time series approaches assume that the 

statistical moments of the signal do not change over time (stationarity assumption). These 

assumptions are not tenable in L-PBF, wherein the signal may not confirm with well-known 
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distributions, or may change from layer-to-layer and from a part design to the next. The spectral 

graph theoretic approach proposed herein has two advantages over existing approaches:  

(1) The approach is feature-free, in that it does rely on extracting statistical features, such as mean 

or the frequency power spectrum to detect changes in the process; and 

(2) It is model-free, i.e., it does not need an a priori defined model structure, such as number of 

time delay parameters as in stochastic time series modeling. 

3. Experimental Setup and Sensor Data Acquisition 

This section is divided into two parts. Sec. 3.1 describes the experimental setup and the 

procedure used to initiate contamination of different types and severity levels, and Sec. 3.2, which 

describes the sensor instrumentation and data acquisition methodology. 

3.1 Experimental Setup and Procedure Used for Controlled Initiation of Contamination. 

In this research, a customized, Open Architecture L-PBF Platform was designed and 

implemented at Edison Welding Institute (EWI) [45]. This platform, shown in Figure 3 (a and b)  

allows complete control of the key process factors, such as laser power, scan speed, scan pattern; 

commercial L-PBF systems typically do not allow users to customize the process settings. The 

energy source is a Ytterbium fiber laser with wavelength of 1070 nm operating in continious mode 

(manufacturer IPG). Furthermore, an array of heterogeneous sensors is integrated within the 

apparatus, and are located on an optical table near the laser scanning mechanism. Further details 

of this setup are available in Ref [45]. An Inconel 625 cuboid-shaped test part of size 10 mm × 10 

mm × 15.20 mm (vertical build height) was made with the following parameters after extensive 

offline studies studies: scan velocity (V) 960 mm/s, laser power (P) 270 W, layer thickness (T) 

0.040 mm, and hatch spacing (H) 0.1 mm, i.e., an applied volumetric energy density EV ≈ 70 J/mm3
 

=  P/(H×V×T).  All powders used in this work are sourced from Electro Optical Systems GmbH 
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(EOS) and is commercially marketed as NickelAlloy IN625; in the material data sheet supplied by 

the company this material is stated as corresponding to UNS N06625 [64]. We note that the layer 

thickness of 0.040 mm is an input value to the system. It is controlled by accuracy of the motion 

stages on the build platform and the dispenser platform (typically 0.001 mm resolution). It is not 

an average of multiple layers or measured directly, but rather an input to the system and validated 

during preventive maintenance and calibration routines performed semi-annually.  

To precisely control the degree of material contamination, a material dispensing setup was 

fabricated. The setup attaches to the recoater arm and powder material (contaminant) is dispensed 

from a motorized hopper. Figure 3 shows the schematic illustration of the sensor test bed and the 

equipment used for dispersion of the contaminants (tungsten and aluminum particles).  

Please Insert Figure 3 Here. 

The experimental procedure for dispersing contaminants, namely aluminum (Al) and tungsten 

(W), is depicted in Figure 4. The contaminants are dispersed over the powder bed every 20th layer. 

This procedure for purposely introducing contamination was repeated 3 times over a total build 

consisting of 380 layers. The severity of contamination is controlled at three levels for each type 

of contaminant material, viz., aluminum and tungsten. Further, the contaminant particles are 

distributed over the powder bed in two ways, called dynamic contamination and static 

contamination. In the so-called static contamination, which occurs in levels labeled L1, L2, and L3 

(in ascending order of contaminant volume) the contaminant particles are dispensed entirely in one 

area of the layer and then raked across the bed. In the dynamic contamination mode, which occurs 

in layers labeled L4, L5 and L6, the contaminant particles are dispensed continuously as the recoater 

moves across the bed.  

The mechanism to initiate contamination is as follows. When the rotary dispenser shaft in 

Figure 3 (c) is started it opens the hopper and the contaminant material is dispensed through a 
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small notch from the hopper side to an open column. The contaminant particles are then deposited 

on the powder bed via a nozzle. There is a 0.5-mm gap between the nozzle that deposits the 

contaminants and the powder bed surface. The degree of contamination for every layer is 

controlled by varying the number of rotations of the dispenser shaft mechanism below the hopper. 

A relationship between the number of shaft rotations and the volume of material deposited was 

described in a patent application granted to EWI [65]. 

Please Insert Figure 4 Here. 

 

In the static contamination mode, the recoater is stopped while it is raking the Inconel 625 

powder and the shaft is rotated. This drops the contaminant onto one spot on the powder bed. The 

recoater then begins to move and spreads the contaminants on the powder bed. In the dynamic 

contamination mode, the contaminant powder is dispensed synchronous with the recoater 

movement. That is, the hopper motor in the fixture shown in Figure 3 (c) is continually operational 

as the recoater rakes the Inconel 625 powder across the bed. This sort of deposition of the 

contaminant results in an elongated line or streak across the powder bed, and is labeled L4, L5 and 

L6 in ascending order of severity (Figure 5). The consequence of the different types of 

contamination modes, i.e., static and dynamic mode is captured using an in-process optical camera 

in Figure 5 (a1) and (a2); the severity of the contamination levels and their sequence within each 

replicate of experiment are further detailed in Figure 5 (b1) and (b2), and Table 1.  

The quantifier used for assessing severity of contamination (Figure 5) is the volume 

contamination per unit area of the base material (Inconel 625), i.e., mm3/mm2. This measure 

accounts for the distribution profile of contaminant powder in each contamination level. As a 

result, length, width, and compactness of contaminant powder were considered in the design of 

the six levels of contamination (L1, L2 and L3 for static contamination; and L4, L5 and L6 for 
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dynamic contamination). There is the possibility of the contaminant powder accidentally leaking 

from the hopper if there are gaps in the mechanism assembly. If leakage were to occur it would 

lead to erroneous traceability – i.e., the in-process photodetector sensor signatures would 

(correctly) show a spike, while the layer would be (incorrectly) recorded by the operator as not 

been contaminated. To ensure that powder leakage does not occur during the experimental tests, 

the whole test bed including dispenser, build plate, and collector was sealed, and the hopper system 

is tested for 100 times. During these test runs, no leakage of powder is detected from the powder 

container on the build platform and collector.  

Please Insert Figure 5a Here. 

Please Insert Figure 5b Here. 

Please Insert Table 1 Here 

3.2 Sensor Integration and Procedure used for In-process Data Acquisition 

Photodetector signal data is acquired for total of 10 following initiation of contamination as 

follows: (1) two layers prior to contamination, (2) the contaminated layer, and (3) seven layers 

subsequent to the contamination. In all, data is available for 180 of the total 380 layers of the build. 

The photodetector sensor is used in this study to detect occurrence of contamination. Specially, a 

Thorlabs model PDA36A photodetector is used and is located coaxial and synchronized with the 

switching of the laser, i.e., data is acquired only when the laser is active.  

The analog photodetector signal is acquired via National Instruments NI 9215 analog input 

module. The detection range of the photodetector is the 350 nm to 1100 nm range with the gain of 

40 dB, and the sampling rate is set at 10 KHz. The photodetector module is a Silicon junction 

photodiode (also called photoelectric pyrometer or photodiode) coupled with an amplifier, which 

proportionally translates radiated light intensity into an electrical signal. The transducing 

mechanism at play with this type of photodiode is the generation of a photocurrent upon light 
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absorption in the depleted region of the semi-conduction detecting element (silicon). The optical 

delivery to the photodetector aperture is integrated coaxially into the optical path of the laser, such 

that the light being interrogated stemmed from the laser plume during the melting process. In other 

words, the photodetector measures the radiation intensity of the laser plume (which in turn is 

proportional to the temperature of the meltpool) in terms of an amplified electrical signal with 

output in volts. 

The sensor operates in a fast, highly linear manner, producing a current output proportional to 

light intensity absorbed by the sensor. The data is acquired hatch-by-hatch; the laser traces hatch 

pattern alternating manner as shown in Figure 6  ‒  parallel (to the recoater direction) for odd 

layers, and perpendicular for even layers. The hatch pattern information will be used later in Sec. 

5.2 to relate the sensor signatures to the position at which the contamination occurs in XCT. Each 

layer is comprised of 100 hatches, and each hatch takes ~ 0.01 sec. (10 milliseconds) to melt noting 

that the laser scan velocity is 960 mm/sec. Hence there are 100 photodetector data points acquired 

per hatch given that the sensor sampling rate is 10 KHz. In this build the laser stays on for ~ 1 sec. 

per layer, and for a total of under 7 minutes counting the time to melt the contour.   

Please Insert Figure 6 Here. 

 

4. The Spectral Graph Theoretic Approach 

The aim of this section is to detect the onset of material cross-contamination in L-PBF process 

using in-process data. To realize this aim, the key idea is to transform the raw data into a domain 

that makes it tractable to extract signatures in real-time. In this work, the signal transformation 

procedure adopted is from the area of spectral graph theory, and has been discussed in depth in our 

previous research [66-71].  
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4.1 Overview of the Approach 

A similar form as the approach proposed in this work has been used previously by the authors 

in the context of surface finish characterization in chemical mechanical planarization (CMP) 

semiconductor manufacturing process; monitoring chatter in ultraprecision diamond turning; and 

recently for assessment of post-process geometric integrity in polymer additive manufacturing [66-

71]. The main difference of this work from these previous forays lies in the application of spectral 

graph eigenvectors for real-time classification of material cross-contamination in PBF. The 

previous works are mainly restricted for offline characterization, and use spectral graph 

eigenvalues which are not amenable for real-time adaptive monitoring of a fast-changing processes 

such as PBF. The underlying mathematics described herewith bears close resemblance to our 

previous works in spectral graph theory, but is nonetheless repeated here for the sake of 

cohesiveness and continuity [66-71].    

The procedure is summarized in Figure 7, and encapsulates the four key steps. Steps 1 through 

3 can be considered as the training phase, wherein a library of sensor signatures representing non-

contaminated states is created. The last step, Step 4, classifies a hatch photodetector signal for each 

hatch into one of the two states, namely, contaminated vs. non-contaminated in real-time within a 

control chart framework. The underlying concept for each step is summarized herewith. The 

mathematical convention is to denote matrices and vectors with bold typesets. 

Please Insert Figure 7 Here. 

 

The approach has the following four steps, each of these steps is described in detail in the 

forthcoming section, Sec. 4.2. 
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Step 1: The photodetector signal 𝒙𝑙
𝑝
 representing each hatch 𝑝 ∈  {1…ℎ} at layer 𝑙 ∈  {1…𝐿} of 

the melting process is converted into a weighted and undirected network graph 𝐺 ≡ (𝑉, 𝐸,𝑊). 

Where 𝑉, 𝐸 and W are the graph vertices, edges and weight between the edges, respectively. 

Step 2: The topological information in the graph 𝐺 ≡ (𝑉, 𝐸,𝑊) is extracted in terms of the 

eigenvectors (𝒗𝒙1
𝑝) and eigenvalues (λ𝒙1

𝑝) of the Laplacian matrix (𝓛𝒙1
𝑝). In other words, a spectral 

graph transform 𝐺(⋅) on the signal 𝒙1
𝑝
 is defined, i.e., 𝐺(𝒙1

𝑝) → 𝓛𝒙1
𝑝(λ𝒙1

𝑝 , 𝒗𝒙1
𝑝). 

Step 3: A learning procedure is used to obtain a universal eigenvector basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  corresponding 

to the normal or non-contaminated process state. Through this universal basis a spectral graph 

Fourier transform 𝐺̂(𝒙𝑙
𝑝) = [(𝒙𝑙

𝑝)
𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] is defined for non-contaminated layers. Such a 

graph-based Fourier transform facilitates creating a library of spectral graph coefficients 𝑪 

archetypical of the non-contaminated process state.  

Step 4: The coefficients 𝑪 representative of the normal or non-contaminated process state are used 

to build a multivariate statistical control chart, called the Hotelling T2  control chart. Given a new 

signal 𝒚 an inner product with the basis vector 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  , 𝐺̂(𝒚) = [(𝒚)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )], leads to a set 

of new spectral graph Fourier coefficients 𝐺̂(𝒚) that are easily traced on the control chart. If 𝐺̂(𝒚) 

falls outside the control limits established based on the data from the non-contaminated layers, 

then it is deemed as belonging to an out-of-control state, i.e., the data indicates that the layer is 

contaminated with trace materials.  

4.2 Procedure for Applying Spectral Graph Theory to the L-PBF Photodetector data 

Step 1: Converting the photodetector signal hatch-by-hatch into a network graph. 

In this step, the aim is to represent each hatch related to the photodetector sensor data 𝒙 as a 

weighted, undirected network 𝐺(𝑉, 𝐸,𝑊). This graph 𝐺(𝑉, 𝐸,𝑊) is a lower dimensional 
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representation of the signal 𝒙.  Consider a m-data point long 1-dimensional signal 𝒙 for a layer 𝑙 ∈

 {1…𝐿} per the matrix shown in Eqn. (1).  

𝒙𝑙 = [𝑥1 … 𝑥𝑖 ⋯ 𝑥𝑚]T, 𝑙 ∈  {1…𝐿 = 180}. (1) 

In this work L = 180 (data from ten layers for each of the six levels of contamination replicated 

thrice, 10 × 6 × 3). Each layer is comprised of h hatches, in this work h = 100, m = 10,000. Thus, 

the signal 𝒙𝑙 is further divisible into the corresponding h hatches, each hatch has k data points, 

with k = 100. This information was obtained by tracking the on-off switching time of the laser in 

each layer, i.e., the time between when the laser goes on and off relates to one hatch.  Let each 

hatch in a layer be defined as a matrix 𝒙𝑙
𝑝
 so that it can be written in matrix form as, 

𝒙𝑙
𝑝 = [𝑥𝑙

1 … 𝑥𝑙
𝑞 ⋯ 𝑥𝑙

𝑟 ⋯ 𝑥𝑙
𝑘]

T
 ,  

𝑘 ∈ {1…𝑘 = 100}, 𝑝 ∈  {1…ℎ = 100}, 𝑙 ∈  {1…𝐿 = 180}. 

(2) 

To transform a signal of each hatch into a network graph, the following procedure is followed. 

First, the pairwise comparisons 𝓌𝑞𝑟 is computed using a kernel function Ω [72] per Eqn. (3), where 

𝑥𝑙
𝑞,𝑝

 and 𝑥𝑙
𝑟,𝑝

 are two points of the photodetector signal for a specific hatch 𝒙𝑙
𝑝
 

𝓌𝑞𝑟
𝑙,𝑝 = Ω(𝑥𝑙

𝑞,𝑝, 𝑥𝑙
𝑟,𝑝) ∀ 𝑞, 𝑟 ∈ (1⋯𝑘). (3) 

While different types of kernel functions Ω, such as the radial basis or Mahalanobis can be 

defined to obtain the graph 𝐺. For simplicity, in this work we use the standardized Euclidean kernel 

shown in Eqn. (4), where V is the variance of the one-dimensional signal 𝒙𝑙
𝑝
.  

𝓌𝑞𝑟
𝑙,𝑝 = (𝑥𝑙

𝑞,𝑝 − 𝑥𝑙
𝑟,𝑝)V−1(𝑥𝑙

𝑞,𝑝 − 𝑥𝑙
𝑟,𝑝). (4) 
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The symmetric similarity matrix 𝑺𝑘×𝑘 = [𝓌𝑞𝑟
𝑙,𝑝

] represents a weighted and undirected 

network graph 𝐺; each row and column of  𝑺 is the vertex 𝑉 (or node) of the graph, the relationship 

between two vertices is captured in terms of its connection status 𝐸 and weight 𝑊. The graph is 

then represented as 𝐺 ≡ (𝑉, 𝐸,𝑊) [73]. To be more specific, we make the following notational 

additions to the similarity matrix 𝑺 and graph 𝐺: 𝑺𝒙𝑙
𝑝; 𝐺𝒙𝑙

𝑝, where 𝒙𝑙
𝑝
 relates to a specific hatch 𝑝 

for the signal related to the layer l. 

Notes for practical application:  In practice, we found that the number of data points k in each 

hatch h may not be exactly 100, but may vary about 10%. As explained earlier, immediately 

following Eqn. (1), a hatch is readily demarcated in the data based on the laser activation time - 

when the laser goes off, the photodetector signal immediately degrades to zero as illustrated in 

Figure 12, Sec. 5.2. This method of demarcating a hatch is readily applicable in this work given 

the simple cuboid geometry of the test part (10 mm × 10 mm × 15.2 mm) – the hatch length, as 

shown in Figure 6, is constant across a layer. Such a regular and constant hatch length rarely occurs 

in practice.  

Nevertheless, the approach can be readily modified even if a layer does not have a uniform 

hatch length. In case of an complex geometry a way to form the matrix 𝒙𝑙
𝑝
 is by tracking the data 

over a fixed timeframe instead of a complete hatch. Moreover, the part geometry does not 

intrinsically affect the approach because a pairwise comparison between data points is taken in 

Eqn. (4) to track the change in the process. 

Step 2: Extracting topological information for the graph surface 

This phase aims to extract topological information from the graph 𝐺. Once the data 𝒙𝑙
𝑝
  in a 

particular hatch is represented as a graph 𝐺𝒙𝑙
𝑝, the Laplacian Eigenvectors 𝒗𝒙𝑙

𝑝 are computed. This 
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topological information is subsequently used to capture the process drifts from the nominal 

condition.  From 𝑺𝒙𝑙
𝑝,  the degree 𝑑𝑞

𝑙,𝑝
 of a node 𝑞, 𝑞 = {1…𝑘} is computed, which is a count of 

the number of edges that are incident upon the node. The node degree is the sum of each row in 

the similarity matrix 𝑺. Subsequently, the diagonal degree matrix 𝓓𝑘×𝑘 is structured from 𝑑𝑞
𝑙,𝑝

  as 

follows, 

𝑑𝑞
𝑙,𝑝

= ∑𝓌𝑞𝑟
𝑙,𝑝

𝑘

𝑟=1

 ∀ 𝑞 = {1…𝑘}, (5) 

𝓓𝑘 × 𝑘 ≝ [
𝑑1

𝑙,𝑝 ⋯0⋯ 0
⋮ ⋱ ⋮

0 ⋯0⋯ 𝑑𝑘
𝑙,𝑝

]. 

(6) 

This leads to the normalized Laplacian 𝓛 of the graph 𝐺, for each hatch, which is defined as, 

𝓛 ≝ 𝓓 −
1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2, 

where, 𝓓 −
1

2 = 

[
 
 
 
 
 
 
1

√𝑑1
𝑙,𝑝⁄

⋯0⋯ 0

⋮ ⋱ ⋮

0 ⋯0⋯ 1

√𝑑𝑘
𝑙,𝑝⁄

]
 
 
 
 
 
 

. 
(7) 

Thereafter, the Eigen spectrum of 𝓛 is computed as, 

𝓛𝒗 = λ𝒗. (8) 

At the end of step 2, we have essentially defined a spectral graph transform on a signal 𝒙𝑙
𝑝
,  

𝐺(𝒙𝑙
𝑝) → 𝓛𝒙𝑙

𝑝(λ𝒙𝑙
𝑝 , 𝒗𝒙𝑙

𝑝). (9) 

In other words, we have transformed the signal 𝒙𝑙
𝑝
 for a specific hatch in terms of the eigenvectors 

(𝒗) and eigenvalues (λ𝒙𝑙
𝑝) of its Laplacian matrix (𝓛𝒙𝑙

𝑝).  
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Step 3: Building the signal basis and spectral transformation 

This step aims to obtain the eigenvectors of 𝓛𝒙1
𝑝 across all non-contaminated hatches and converge 

it towards a universal eigenvector basis. In other words, we want to represent the signal during the 

non-contaminated state in terms of a single or universal eigenvector represented as 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  .  

Step 3.1: A single universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙   is obtained by applying a simple update schema. As 

the eigenvectors 𝒗𝒙𝑙
𝑝, for each hatch is calculated, we update the basis as follows, 

𝓥
𝒙𝑙

𝑝+1 = 𝓥𝒙𝑙
𝑝 + ∆(𝒗

𝒙𝑙
𝑝+1 − 𝒗𝒙𝑙

𝑝) , 𝑝 ∈  {1…ℎ}, 𝑙 ∈  {1…𝐿},  

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  = 𝓥𝒙𝐿
ℎ 

(10) 

Initialized with 𝓥𝒙1
1 = 𝒗𝒙1

1 with ∆ set the to a small value (in our case 0.001). To make the process 

computationally simpler only a small set of the first 10 non-zero Eigenvectors of the Laplacian 

𝓛𝒙1
𝑝 are updated. 

Step 3.2: We define the spectral graph transform, which is analogous to the discrete Fourier 

transform. A spectral graph Fourier transform 𝐺̂(⋅) on a signal hatch 𝒙𝑙
𝑝
 can be defined as follows 

[74-78], 

𝐺̂(𝒙𝑙
𝑝) = [(𝒙𝑙

𝑝)
𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] , 𝑙 =  {1…𝐿}, 𝑝 ∈  {1…ℎ} (11) 

Applying this inner product through all the non-contaminated layers and hatches by taking the 

product (𝒙𝑙
𝑝)

T
∙ 𝓥𝑛𝑜𝑟𝑚𝑎𝑙 , leads to the graph coefficient matrix 𝑪. 

𝑪 = [[(𝒙1
1)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄1,1 ]; ⋯ ; [(𝒙L

𝑝

 
)
T
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄𝐿,𝑝 ]]  

𝑙 =  {1…𝐿}, 𝑝 ∈  {1…ℎ} 

(12) 
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Essentially, each term 𝒄𝑙,𝑝  is a matrix that is 1 × 𝓃 long, where 𝓃 (= 10) is the number of 

Eigenvectors in the universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  selected for analysis. Each 𝒄𝑙,𝑝 can be visualized as a 

set of output variables which needs to be tracked across the process – they are termed as spectral 

graph Fourier transform coefficients.  

Step 4: Change point detection using spectral graph Hotelling T2 control chart 

This step aims to detect material cross-contamination by tracking the spectral graph transform 

coefficients 𝒄𝑙,𝑝. To realize this aim, we use a multivariate statistical control chart called the 

Hotelling T2 [79]. The control limit of the chart is constructed based on the so-called in-control 

state which in the context of this work is defined as the non-contaminated signal. For the Hotelling 

T2 control chart only the upper control limit (UCL) needs to be estimated as the lower control limit 

(LCL) is zero. The application of the control chart proceeds in two phases, in the first phase (Phase 

1) called the training phase, the upper control limit of the chart is constructed based on the spectral 

graph Fourier coefficients from the non-contaminated state; and in the second phase (Phase 2), 

called the monitoring phase, the coefficients for incoming signals for each new hatch is tracked on 

the chart, and their status, i.e., whether they belong to contaminated or non-contaminated state is 

determined. 

Step 4.1: Phase 1 – Training the control chart 

In this phase we ascertain the control limits of the chart. Data points below the UCL are said 

to be in-control, which in the context of this work refers to non-contaminated state. The data points 

falling above the UCL are termed out-of-control. In this research, an out-of-control point is 

interpreted as the onset of cross-contamination.  

For setting the control limits, we only use the photodetector signals from the two layers before 

the contamination is introduced, and only those from the first iteration of the build. Such an 
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exceedingly conservative strategy towards determining the control limits largely precludes the 

possibility of introducing signals which might be vitiated, noting that metallurgical analysis 

revealed that contamination tends to cascade over several subsequent layers (Figure 11). 

Accordingly, only 24 of the total 60 layers for which data is available in iteration 1 are used in the 

training phase, amounting to 2400 hatches. This translates to roughly 15% of the available data for 

180 layers used for analysis.   

The test statistic, or the point plotted on the control chart is called the T2 value, and is 

delineated in Eqn. (13) where 𝑪̅ is the mean vector of spectral graph theoretic coefficients,  and 

𝜮−1 is the inverse of the covariance matrix of 𝑪, and T is the transpose operator. 

𝑇𝑙,𝑝
2 = (𝒄𝑙,𝑝 − 𝑪̅ )

 T
𝜮−1 (𝒄𝑙,𝑝 − 𝑪̅ )  (13) 

The upper control limit (UCL) of the chart is calculated using Eqn. (14) where 

𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 is the upper α tail of a Beta distribution with parameters 𝓃 (the number of 

eigenvectors = 10) and ℎ = 100 and 𝐿 = 24 are the number of hatches and number of layers, 

respectively. In this work, we set α = 0.0013 for the Beta distribution as. The LCL of a Hotelling 

T2
 is set at zero with these parameter values, the Type I error rate is found to be within 10% 

irrespective of the type of contamination.  

UCL =
(ℎ𝐿 − 1)2

ℎ𝐿
𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 (14) 

Thereafter, the T2 values from Eqn. (13) are plotted on the control chart, and the UCL is 

revised by removing any data points that fall erroneously above it. The re-estimation of the control 

limit by removing erroneous out-of-control data is only done once, and is called the delete and 

revise procedure. 
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Step 4.2: Phase 2 – Using the control chart for monitoring the process 

Once the UCL of a chart is determined, the new sensor signatures are plotted upon the chart 

as follows.  Suppose a photodetector signal 𝒚 is obtained for a hatch, we estimate its graph Fourier 

coefficients 𝐺̂(𝒚) as,  

𝐺̂(𝒚) = [(𝒚)T(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] (15) 

The Hotelling T2
 statistic, labeled 𝑇𝑦

2 for this new sensor signature is calculated as follows, 

𝑇𝑦
2 = (𝐺̂(𝒚) − 𝑪̅ )

T
𝑺−1 (𝐺̂(𝒚) − 𝑪̅ )  (16) 

The 𝑇𝑦
2 value is plotted on the control chart, and if it falls above the UCL, we conclude that 

contamination has occurred.  

We now briefly describe the statistical error measurements that underscore the effectiveness 

of detecting contamination in the context of a control chart. Control charts are culpable of two 

types of statistical errors, namely, Type I (α or false alarm) and Type II (β or failing to detect). The 

Type I error rate is the percentage of data points (each data point on the control chart used in this 

work represents a hatch) that are falsely categorized as falling above the upper control limit when 

the process is in-control. In other words, Type I error is a hatch that is falsely deemed to indicate 

contamination, i.e., there is no actual contamination, but the control chart erroneously indicates 

that contamination has occurred in that hatch.  

The Type II (β) error rate is the percentage of data points that fall inside the UCL when they 

should in reality lie outside, i.e., contamination has occurred, but the control chart fails to indicate 

it because the data point falls inside the control limits. However, because it is not possible to 

pinpoint exactly which hatch is contaminated, but it is known beforehand which layer is 
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contaminated, accordingly, in this work we estimate the Type II error in terms of layers. The Type 

I and Type II error rates are estimated as follows: 

Type I error rate =  𝛼 =
Number of hatches falsely indicated as belonging to contaminated layers

Number of hatches expected in non − contamined layers
 

Type II error rate =  𝛽 =
Number of layers incorrectly indicated as in control

Number of contamined layers
 

 There are two experimentally derived instances to verify these statistical detection errors:  

1) Information from the experimental design, in that, we know the exact layers at which the 

contaminants are dispensed over the base powder.  

2) The XCT scans of the part from which we can verify the presence of contamination on a layer 

when it is introduced. However, noting that the contamination is liable to spread from the layer 

in which it is introduced.to previous and subsequent layers. 

5. Results and Discussion 

5.1 Offline X-Ray Computed Tomography Analysis of the Build 

build. Using XCT scans additionally allows verification of the online analysis. To realize this 

aim, the specimen is examined using XCT along the various cutting planes demarcated Figure 8. 

The XCT scanning was made at 225 kV with resulting voxel resolution of 16 μm and pixel pitch 

of 200 μm on a Perkin Elmer detector.  The vertical and horizontal cross sections of the 3D volume 

captured for the tungsten contaminated specimen is shown in Figure 9, wherefrom the contaminant 

powder is clearly discerned.  

Please Insert Figure 8 Here. 

Figure 9 (a) shows the XCT across the vertical cross-section (Y-Z plane, cutting plane A-A 

as depicted in Figure 8) of the test artifact. Observed in Figure 9(a) are the contaminated layers 

over three replicates. Closer examination of these vertical cross-sections reveals that for high 
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tungsten contamination levels, such as L3, the tungsten particles disperse up to three layers 

preceding the layer in which they are introduced, and as much as eight subsequent layers. In other 

words, contamination tends to cascade across layers, and influences the structure of both the 

preceding and subsequent deposition.  This assertion is further corroborated through metallurgical 

analysis in Figure 11. Similarly, Figure 9(b) shows the effect of contamination as viewed along 

the X-Z direction (cutting plane B-B); Figure 9(c) is the cross-section taken along the X-Y 

direction (cutting plane C-C). We note that in Figure 9(a) and (b), due to procedural lapses during 

XCT scanning, the second level of tungsten contamination for the first iteration (L2-1) was not 

captured. This missing data is demarcated by a star in Figure 9 (a) and (b). In the context of 

aluminum contamination, Figure 10 shows the vertical cross sections of the specimen; aluminum 

trace particles were not detected with XCT. To reiterate, aluminum contaminant particles are not 

discernable in the XCT images, because, (a) aluminum is an alloying element in Inconel 625, and 

(b) the melting point of aluminum (~ 660 °C) is much lower than the melting point of Inconel 625 

(~ 1300 °C). Consequently, aluminum readily dissolves into the surrounding Inconel 625 matrix, 

and is therefore undetected in the XCT. Additionally, aluminum may also vaporize due to the high 

energy density (~ 70 J/mm3) applied in the process to melt Inconel 625.  

The specimen with embedded tungsten contaminant was sectioned and primary etched with an 

alcohol-based Kalling’s solution. The specimens were secondary etched using a 10% wt. chromic 

acid solution at 2.4 volts. In the optical micrograph of the etched sample shown in Figure 11 (a) 

the presence of tungsten contaminants in the Inconel 625 matrix is evident. More remarkably, 

tungsten particle traces are observed not just in the layer they are introduced, but also over multiple 

layers – both preceding and subsequent layers. The spread of contaminants to layers beyond which 

they are introduced is hypothesized as the effect of the repeated remelting of the material. 
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However, modeling of the meltpool dynamics is required for confirming this effect. Recent 

computational modeling work at Lawrence Livermore National Laboratories by King et al. 

towards simulating the meltpool dynamics shows that material reflow and remelting influences the 

structure of the previous layers, and may even be used beneficially to control and mitigate defects, 

such as porosity [80-82]. Further investigation in this direction to elucidate how and why material 

contamination cascades across layers is beyond the scope of this work.  

The cascading effect of contamination is further verified in the XCT observations in Figure 

11(b). The XCT cross-section in Figure 11(b) is taken in the X-Y plane, the label n refers to the 

layer in which contamination is introduced, n-1 is the immediate preceding layer, n-2 is two layers 

prior, and so on. Similarly, a plus sign is used to indicate layers subsequent to layer n. The ensuing 

section, Sec. 5.2  applies a spectral graph theoretic approach to capture these instances of 

contamination during the build using data from the photodetector. 

Please Insert Figure 9 Here. 

Please Insert Figure 10 Here. 

Please Insert Figure 11 Here. 

5.2 Online Spectral graph Theoretic Analysis of the Signal to Detect Contamination 

The photodetector signal related to the six level of tungsten and aluminum contamination for 

one iteration are shown in Figure 12(a) and (b), respectively. The layers contaminated with 

tungsten portray significant peaks. However, such a clear change is not apparent in the 

photodetector signal for the aluminum contamination case. We herewith provide a physical 

explanation of the signal characteristics. 

Because the photodetector signal essentially captures the optical intensity of the plume during 

the melting process, it is reasoned that it is intimately related to the laser-material interaction. This 

effect has been observed by the AM research group at Penn State Applied Research Laboratory in 
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both LPBF and DED processes [48, 49]. In these pioneering works, researchers show that the 

photodetector signal is connected to the intrinsic microstructure of the part. In a similar vein, in 

this work, when the laser passes over the powder bed area having contaminant particles, the optical 

intensity of the vapor plume changes, which is captured by the photodetector, and hence it is related 

to the elemental material aspects. The justification for this reasoning is as follows.  

A crucial difference between this work, and the research reported by the Penn State group is 

that the latter uses two photodiodes that capture two different wavelength intensities, one at 520 

nm (called line emission spectrum) and 530 nm (called continuum spectrum) [48, 49]. The ratio 

of the two spectra (line to continuum ratio) has been shown in three successive works by this group 

to be strongly correlated to pore severity in both LPBF and DED, and hence can be deemed to 

capture the microstructure-level aspects.  

In our present work, an unfiltered signal from a single photodiode is used. On juxtaposing the 

photodiode signal resulting from contamination from tungsten (Figure 12 (a)) with aluminum 

(Figure 12 (b)), it is evident that, when tungsten contamination occurs the amplitude of the signal 

(Volts) increases sharply from 1V to over 3V. Whereas for the case of aluminum contamination, 

barely any increase is evident. This observation that the photodiode voltage is dependent on the 

contaminant material, leads to the inference that the photodiode signal in this work is inclined to 

be element-specific.  

Please Insert Figure 12 Here. 

 

In this section, the proposed spectral graph theoretic algorithm is applied to the L-PBF process 

with the aim of detecting the onset of aluminum and tungsten cross-contamination from the 

photodetector signals.  First, the photodetector signal for the non-contaminated state is apportioned 

hatch-by-hatch for each layer. This is possible because the laser position is tracked and recorded 
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throughout the build. The photodetector signal for each hatch p for layer l is denoted as 𝒙𝑙
𝑝
 in Eqn. 

(2).  

We note that there is no clear correlation evident in the amplitude of the signal and the severity 

of the signal – the statistical features of the signal could not discriminate between different types 

and levels of severity. Next, using Eqn. (3) and (4), the pairwise comparison between different 

rows of photodetector hatch is performed to provide the similarity matrix 𝑺 related to graph 𝐺 ≡

(𝑉, 𝐸,𝑊). Going through the second step, the Laplacian matrix of graph 𝓛 is constructed using 

Eqn. (7). Then the first 10 (= 𝓃) non-zero Laplacian Eigenvectors 𝒗𝑖, 𝑖 = {2…11} are used to 

build a spectral universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙 necessary for spectral transformation (Eqn. (10)). 

Subsequently, the spectral graph Fourier coefficients (𝑪) are obtained by taking the inner product 

(𝒙𝑙
𝑝)

𝑇
(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) per Eqn. (12). 

Finally, the coefficients are 𝑪 are traced on a Hotelling T2 control chart. Per the procedure for 

building the Phase 1 control chart described in Step 4.1, the UCL is first estimated by only 

considering the so-called in-control signal, viz., those layers not contaminated with tungsten or 

aluminum particles. As mentioned previously, this was restricted to 24 of the 60 layers for the first 

iteration of the build with approximately 100 hatches per layer. The 𝑇2 statistic and UCL are 

calculated based on Eqn. (13) and (14).  

The Phase 1 spectral graph theoretic Hotelling T2 control chart along with the data for the six 

levels of tungsten and aluminum contamination for the first iteration is shown in Figure 13. There 

are a total of 6000 hatches (60 layers) for which the data is available in the first iteration. Each 

point of the control chart is representative of the spectral graph coefficients for one hatch. It is 

observed that the chart captures the occurrence of contamination almost instantaneously.   
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The Type I error is ≈ 1% for both tungsten and aluminum contamination in building the Phase 

1 control chart. This Type 1 error is obtained after revising the control limit by removing the 

outliers (so-called delete and revise procedure applied only once). This manner of constructing the 

control limit is an extremely conservative strategy that prioritizes the Type I error rate over the 

Type II error rate. In other words, the Type I error for the control chart is maintained close to 1%, 

while the Type II error is estimated based on the results. Furthermore, the control limits for a type 

of contaminant material (tungsten or aluminum) remains fixed.   

Please Insert Figure 13 Here. 

 

Next, following the procedure in Step 4.2, the Hotelling T2 chart is used to detect 

contamination in the rest of the two experimental iterations of the build. The data is representative 

of 120 layers, with each layer having 100 hatches for a total of 12,000 hatches. To plot the spectral 

control chart for the other replicates, the UCL stays identical from Phase 1 in Figure 13. As new 

data 𝒚 arrives, it is multiplied with the universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙 to extract the first ten spectral graph 

Fourier coefficients 𝐺̂(𝒚) as shown in from Eqn. (15). Subsequently, 𝑇𝑦
2 is obtained in Eqn. (16), 

and plotted on the control chart. This simple inner product makes this approach suitable for online 

monitoring.  

 Figure 14 shows the application of the Phase 2 control chart to each type of contamination 

(tungsten and aluminum) over iteration 2 and 3, i.e., L1-2 through L6-2; and L1-3 through L6-3. 

Every level of tungsten contamination, both static and dynamic, is detected promptly by the control 

chart in Figure 14(a). Whereas, as evident in Figure 14(a), in the case of aluminum contamination, 

the contamination level L5-3 (dynamic contamination type) is missed (an example of Type II 

error). This underscores some of the challenges with contamination detection.  

Please Insert Figure 14 Here. 
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Table 2 summarizes the Type I and Type II errors estimated from three replicates of the 

experiment in detecting powder contamination. We note that because it is intractable to pinpoint a 

priori the exact hatch where contamination has occurred, the Type II errors are reported in terms 

of all the hatches for the entire layer where contaminants are added. In contrast, it is known for 

certain whether a hatch belongs to a non-contaminated layer, hence the Type I error can be 

localized with respect to every hatch.  

Please Insert Table 2 Here. 

5.3 Verification with Statistical Time Series Analysis  

The results from the proposed approach are compared with traditional delay-embedded Box-

Jenkins stochastic time series models, such as autoregressive (AR), autoregressive moving average 

(ARMA), and autoregressive integrative moving average (ARIMA) models [83]. Starting with the 

simplest model with two autoregressive terms, the model search is stopped when the number of 

terms in the model reaches 10. The stopping criteria is chosen so that the number of terms in the 

most complicated model does not exceed the number of eigenvectors (𝓃 =10) used in the spectral 

graph theoretic approach.  

For instance, Eqn. (17), (18), and (19) show the AR(10), ARMA(6,4), and ARIMA(6, 4), 

respectively [83]. Where 𝕃 is the lag operator, such that 𝕃𝑖(𝑥𝑡) = 𝑥𝑡−1, where 𝑥𝑡 is a photodetector 

data point, i.e., amplitude of the photodetector signal at time t. The parameter 𝛼𝑖 is connected to 

the AR part of the time series model, 𝜃𝑖 are the parameters of the moving average (MA) part and 

𝜀𝑡 are model error terms. The terms 𝛼 and 𝜃 are optimized using the time series modeling toolbox 

in Matlab, such that the sum of squared errors, i.e.,  ∑ 𝜀𝑡
2

∀𝑡  is minimized. 

AR(10) model: (1 − ∑ 𝛼𝑖
10
𝑖=1 𝕃𝑖)𝑥𝑡 = 𝜀𝑡 (17) 

ARMA(6,4) model: (1 − ∑ 𝛼𝑖
6
𝑖=1 𝕃i)𝑥𝑡 = (1 + ∑ 𝜃𝑖

4
𝑖=1 𝕃𝑖)𝜀𝑡 (18) 
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ARIMA (6,4) model: (1 − ∑ 𝛼𝑖
6
𝑖=1 𝕃𝑖)(1 − L)𝑥𝑡 = (1 + ∑ 𝜃𝑖

4
𝑖=1 𝕃𝑖)𝜀𝑡 (19) 

In Phase 1, the model coefficients 𝛼 and 𝜃 are trained to fit the data hatch-by-hatch (using 

Matlab), and then these model coefficients are tracked on a Hotelling T2 control chart. The 

procedure followed is identical to the one described for the spectral graph theoretic approach 

previously in Sec. 5.2. The only difference is that 𝛼 and 𝜃 are used to populate the library of 

coefficients 𝑪 per Eqn. (12) instead of the spectral graph Fourier coefficients 𝐺̂(𝒙𝑙
𝑝). 

For each model, the Hotelling T2 control chart is constructed and the Type I and Type II errors 

are estimated using the same procedure used for the proposed spectral graph theoretic approach. 

The Phase 2 results for the traditional stochastic time series methods are presented in Table 2, from 

which it is evident that the onset of material cross-contamination is promptly detected in the case 

of tungsten contamination; the Type II (β) error rate is  negligible for tungsten contamination and 

the Type I (α) error is less than 1% for a majority of cases. However, detection of aluminum 

contamination is rather intractable with these existing traditional Box-Jenkins time series 

approaches; the Type II error exceeds 10%. These results are further juxtaposed with a Hotelling 

T2
 control chart built with statistical features extracted from each hatch, such as mean, standard 

deviation, skewness, etc. The results depicted in Table 2 also provide the average computation 

time for extracting the T2 values for one hatch in the Phase 2 part of the control chart. We note 

that, the computation time for the proposed graph theoretic approach is less than a millisecond (~ 

0.8 millisecond), which is magnitude smaller in comparison to traditional approaches. Thus 

attesting to the viability of the approach for real-time process monitoring in AM. 

5.4 Consistency Between Spectral Graph Theory and XCT  

Continuing with the analysis, since the position data for each hatch of the photodetector signal 

is available, the spectral graph T2 coefficients can be correlated with the layer-by-layer 
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contamination pattern obtained from the XCT scan. Such an attempt is made in Figure 15 for the 

tungsten contamination case.  In Figure 15(a), the Hotelling T2
 values for the spectral graph 

coefficients are color coded, with red indicating out-of-control or contaminated hatches. These 

color-coded T2 values are superimposed on the XCT of the specimen taken along the X-Z cross-

section in Figure 15(b); the XCT is along the cutting plane B-B in Figure 8. From the overlaid plot 

in Figure 15(b) it is evident that there is a near one-to-one correlation between the sensor signatures 

and the layer at which contamination occurs.  

However, such an overlaid plot for the aluminum contamination case could not be produced, 

because, the XCT of Inconel 625 specimens contaminated with the aluminum particles did not 

show visually prominent inclusions (Figure 10). To reiterate, the XCT of parts with aluminum is 

not informative, because, (a) aluminum particles may dissolve within the Inconel 625 matrix given 

their low melting temperature relative to Inconel 625 (~ 660 °C vs. ~1300 °C), and (b) aluminum 

vaporizes due to the high energy density (70 J/mm3) applied to process Inconel 625.  

Please Insert Figure 15 Here. 

 

This result corroborates that the spectral graph sensor signatures are indeed indicative of 

material cross-contamination and can be traced back to physical locations where contamination is 

present. This traceability of sensor signatures to XCT demonstrates the viability of the qualify-as-

you-build paradigm in AM, wherein in-process sensor data instead of cumbersome offline 

measurement and testing can be used to rapidly qualify the part quality. 

Furthermore, through this research, once the presence of contaminants is discovered at a layer, 

measures to forestall further their spread over future layers can be taken. Such a preventive strategy 

could be, for instance, rescanning an entire layer with higher energy density to ensure thorough 

fusion of contaminant particles like tungsten, or removing a layer using a hybrid additive-
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subtractive strategy. This in-process correct-as-you-build strategy is possible with hybrid L-PBF 

systems, e.g., Matsuura Lumex Avance and Sodick OPM250L, which have an in-built subtractive 

machining attachment that can be used to remove a contamination-afflicted layer.  In the worst-

case scenario, the build can be stopped to prevent poor part quality and waste of expensive powder. 

6. Conclusions and Future Work 

This work describes a spectral graph theoretic approach to detect occurrence of material cross-

contamination in laser powder bed fusion (L-PBF) additive manufacturing (AM) process based on 

in-process sensor data. The key idea is to convert a signal into its network graph equivalent, and 

subsequently, extract so-called spectral graph Fourier coefficients as surrogate signatures to track 

the process hatch-by-hatch. A photodetector signal is specifically used to demonstrate the efficacy 

of the approach of an L-PBF of an Inconel 625 alloy part. During the build, two types of foreign 

material contaminants are induced, namely, tungsten and aluminum varying in the severity and the 

controlled manner in which they are introduced ‒ static deposition, and dynamic/continuous 

deposition over a layer.  

The key advantages of the approach over existing time-delay stochastic time series modeling 

techniques, such as ARMA is that: (a) it does not require fitting a model to the data, essentially it 

is model-free; and (b) eschews decomposition or extraction of features from each incoming signal, 

a simple inner product with an eigenvector basis is required thus saving on computational time. 

As a result, the approach detects instances of material contamination with high accuracy; the worst 

case Type I error was found to be < ~1%, and Type II error < 5%, which presents a magnitude 

improvement over traditional time series modeling. The ability to detect contamination was 

corroborated with offline metallurgical and XCT scanning.  

 Specific conclusions from this work are as follows: 
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1. Metallurgical and XCT analysis of specimens revealed that contaminants are not confined to 

the layer in which they are introduced. Indeed, it was observed that contaminant particles not 

only enter previously deposited, but also tend to cascade to subsequent layers. The repeated 

re-melting of the material is hypothesized as the root cause of the behavior that leads to 

cascading of contamination to previous and subsequent layers. Physical modeling to explain 

the transportation of contaminant particles across layers is beyond the scope of this work. 

2. Tungsten contamination is readily discernable in both offline metallurgical and XCT images, 

and online photodetector signals. This is probably because tungsten has a higher melting point 

and is also not elemental to Inconel 625. In contrast, aluminum has a lower melting point than 

Inconel 625 and may be present as an alloying in minor quantities (< 0.4%) in the same. There 

is also the possibility that aluminum may be vaporized during the build (which causes pinhole 

porosity). Therefore, contamination of Inconel 625 with aluminum is harder to discern in either 

the XCT or photodetector signals than the tungsten contamination case. 

3. The graph Fourier coefficients were extracted for each hatch of the material and traced in a 

Hotelling T2 control chart. The occurrence of both tungsten and aluminum contamination are 

detected with high fidelity using the spectral graph Fourier coefficients; the Type I and Type 

II errors are < ~1% and < 5%, respectively.  

4. The Hotelling T2 values obtained from the spectral graph theoretic Fourier coefficients are 

overlaid on the XCT scans of the specimen. A near one-to-one correlation is demonstrated 

between the status of the Hotelling T2
 values  ̶  whether they are in-control or out-of-control   ̶ 

and the layer at which contamination is observed in the XCT of the specimen.  

A drawback of this work is that we have only used only a single type of sensor – a photodetector 

 ̶  to detect a specific type of defect, namely, material cross-contamination. The efficacy of the 
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approach using multiple sensors, such as a spectrometer and infrared thermal imaging for different 

types of defects remains to be ascertained. Furthermore, the material, i.e., whether the 

contamination relates to tungsten or aluminum, and the type of severity of contamination (L1 

through L6, and static or dynamic) could not be classified based on data from a single 

photodetector. Lastly, the effect of contamination on the mechanical properties of the part needs 

to be quantified through materials testing. This will allow completing the loop between process 

phenomena, sensor signatures, and part properties. The authors will attempt to address these gaps 

in their future work in the area. 
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Table 1: The build layout and contamination pattern. The contamination set of L1 through L6 was 

deposited three times, and in the end of 3 iterations was followed by 20 cover layers. 

Contamination 

Set # 

Base Line (BL) / Contamination 

Layer (Ln, n=1 to 6) 

Start 

Layer 

End 

Layer 

End Height 

(mm) 

Iteration 1  

Base line (non-contaminated layer) 1 19 0.76 

(Static contamination) L1 -1 20 20 0.80 

Base line (non-contaminated layer) 21 39 1.56 

(Static contamination) L2 -1 40 40 1.60 

Base line (non-contaminated layer) 41 59 2.36 

(Static contamination) L3 -1 60 60 2.40 

Base line (non-contaminated layer) 61 79 3.16 

(Dynamic contamination) L4-1 80 80 3.20 

Base line (non-contaminated layer) 81 99 3.96 

(Dynamic contamination) L5-1 100 100 4.00 

Base line (non-contaminated layer) 101 119 4.76 

(Dynamic contamination) L6-1 120 120 4.80 

× 2 iterations 

of the build 

pattern 

BL- L1-2 through L6 -2 

BL- L1-3 through L6 -3 
121 360 14.44 

Cover Layers Base line (non-contaminated layer) 361 380 15.20 
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Table 2: The algorithm accuracy in comparison with traditional approaches for detecting the Tungsten 

and Aluminum contamination. The numbers in the parenthesis are from three-fold experimental 

replications. 

 
Aluminum 

Contamination 
Tungsten Contamination Computation 

time  

per hatch (sec) 

 
Model 

Model 

Structure 

Type I 

error (% ) 

Type II 

error  (% ) 

Type I error 

(% ) 

Type II 

error  

(% ) 

ARMA 

(2,2) 0.6  (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0912 

(2,4) 0.6  (0.1) 83.3 (0.0) 1.0 (0.1) 0.0 (0.0) 0.0971 

(2,6) 0.6  (0.1) 83.3 (0.0) 1.0 (0.0) 0.0 (0.0) 0.1021 

(4,2) 0.7  (0.1) 83.3 (0.0) 1.2 (0.1) 0.0 (0.0) 0.0968 

(4,4) 0.7  (0.1) 83.3 (0.0) 1.3 (0.2) 0.0 (0.0) 0.0976 

(4,6) 0.8 (0.2) 66.7 (16.7) 1.2 (0.0) 0.0 (0.0) 0.1302 

(6,2) 1.2 (0.1) 33.3 (17) 1.0 (0.1) 0.0 (0.0) 0.1588 

(6,4) 1.7 (0.1) 16.7 (9.2) 1.0 (0.1) 0.0 (0.0) 0.2829 

ARIMA 

(2,2) 0.6 (0.2) 83.3 (0.0) 0.8 (0.1) 0.0 (0.0) 0.1128 

(2,4) 0.5 (0.1) 83.3 (0.0) 0.9(0.1) 0.0 (0.0) 0.1216 

(2,6) 0.7 (0.2) 83.3 (0.0) 0.9 (0.0) 0.0 (0.0) 0.1225 

(4,2) 1.1 (0.1) 66.7 (16.7) 1.3 (0.0) 0.0 (0.0) 0.2164 

(4,4) 1.2 (0.0) 66.7 (16.7) 1.3 (0.10 0.0 (0.0) 0.2576 

(4,6) 1.1 (0.0) 66.7 (16.7) 1.2 (0.1) 0.0 (0.0) 0.1560 

(6,2) 1.5 (0.1) 11.1 (9.6) 1.6 (0.2) 0.0 (0.0) 0.2011 

(6,4) 1.6 (0.1) 11.1 (9.6) 1.6 (0.1) 0.0 (0.0) 2.4152 

AR 

(2) 1.0 (0.0) 22.2 (19.2) 1.0 (0.20 0.0 (0.0) 0.0210 

(4) 1.1 (0.1) 16.7 (9.2) 0.9 (0.3) 0.0 (0.0) 0.0089 

(6) 0.8 (0.2) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0080 

(8) 0.7 (0.10) 16.7 (9.6) 0.9 (0.1) 0.0 (0.0) 0.0085 

(10) 0.5 (0.1) 33.3 (17) 0.8 (0.2) 0.0 (0.0) 0.8641 

Statistical  

Control Chart 
1.5 (0.0) 11.1 (9.6) 1.3 (0.7) 0.0 (0.0) 0.0427 

Proposed Spectral 

Graph Theoretic 

Approach 

0.5 (0.0) 5.0 (9.2) 1.1 (0.1) 0.0 (0.0) 0.0008 
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List of Figures 

Figure Number Figure Caption 

Figure 1 The schematic diagram of the L-PBF process. 

Figure 2 

Optical image of an etched and polished Inconel 625 specimen. The black 

arrow indicates the build direction.  

(a) Contamination with tungsten, which due to its high melting point does not 

fuse, and tends to cascade through several layers. The dashed-line (1) indicates 

the shape of a melt pool, penetrated into the previously deposited layer. Also, 

the overlaps between tracks could be recognized. The dashed line and circle (2) 

shown at the bottom of the tungsten specimen are representative of the hatching 

directions in the two consecutive layers.  

(b) The contamination with aluminum is not readily evident as trace particles, 

but closer examination of the hatch pattern reveals that aluminum tends to 

distort the meltpool as indicated by the arrows (3), and (4) vaporization of the 

aluminum particles causes uniform circular pinhole (gas-induced) porosity of 

diameter ~10 μm. 

Figure 3 

(a) A schematic representation of the open architecture L-PBF platform at EWI 

[45]. For scale purposes, the powder bed on the machine accommodates parts 

as large as 10 inch × 10 inch (250 mm × 250 mm). (b) Photograph of the L-

PBF platform (c) Schematic of the fixture made to deliver metered amount of 

contamination. (d) Photograph of the actual apparatus made for initiating 

contamination [65]. 

Figure 4 

The manner in which contamination is introduced during the build. The gray 

layers show the ones where data is captured. The red layers indicate where the 

contamination is introduced. 

Figure 5a 
Post recoating optical images after contamination with (a1) Tungsten and (a2) 

Aluminum. 

Figure 5b 
The unit volumes of deposited powders for each of six contamination levels in 

(b1) tungsten and (b2) aluminum. 

Figure 6 

The horizontal and vertical hatch patterns related to odd and even layers 

respectively. The symbols O and X demarcate the starting and ending points 

for a hatch. There are 100 hatches per layer, each hatch takes close to 10 

milliseconds to melt (laser velocity 960 mm/sec), the entire layer takes ~ 1 sec. 

to fuse. 

Figure 7 
Graphical overview of the proposed spectral graph theoretic approach for 

detecting material contamination. 

Figure 8 

Three-dimensional (3D) reconstruction of the XCT scan for the specimen 

contaminated with tungsten powder particles. The powder recoating moves 

along the X-axis direction. 
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Figure 9 

The cross sectional XCT views of the Inconel 625 specimen contaminated by 

the tungsten powder particles, (a) vertical cross section normal to the recoating 

direction (cutting plane A-A, Y-Z direction),(b) vertical cross section along the 

recoating direction (cutting plane B-B, X-Z direction) (c) horizontal cross 

section (cutting plane C-C, X-Y direction). Due to procedural lapses in the 

XCT process the second contamination level in the first iteration (L2-1) was 

missed. 

Figure 10 

The cross sectional views of the Inconel 625 specimen contaminated by the 

Aluminum powder particles, (a) vertical cross section normal to the recoating 

direction (cutting plane A-A, Y-Z direction), (b) vertical cross section along 

the recoating direction (cutting plane B-B, X-Z direction). The contaminant 

particles are not evident within the aluminum matrix. 

Figure 11 

(a)The optical micrograph of the Inconel 625 specimen contaminated with 

tungsten particles observed over 8 layers. (b)(c) XCT images in the horizontal 

plane section (cutting plane C-C, X-Y direction) for the L3 severity level shows 

that trace tungsten particles persist over eight subsequent layers and penetrate 

through three preceding layers.   

Figure 12 

(top row) The photodetector signal associated with the six level of (a) Tungsten 

contamination and (b) Aluminum contamination in Inconel 625. (bottom row) 

The second contamination level (L2) is magnified and the signal corresponding 

to tungsten contamination has clear spikes compared to aluminum. 

Figure 13 

The Phase 1 spectral Hotelling T2 control chart related to six levels of 

contamination for (a) Tungsten and (b) Aluminum contamination, wherein the 

control limits are fixed. 

Figure 14 

The Phase 2 spectral Hotelling T2 control chart applied to two replications of 

the data for the related to the remaining two iterations, for each of the six levels 

of contamination for (a) tungsten and (b) aluminum contamination. Note that 

the dynamic contamination case L5 for aluminum is not detected, indicating a 

Type II statistical error. 

Figure 15 

(a) The T2 values of the spectral graph Fourier coefficients are color coded, red 

indicates out-of-control (contaminated) hatches, and black indicates in-control 

hatches. These T2 values are plotted along the X-Z plane of the part, since the 

position of each hatch is known. (b) The spectral graph T2 values are overlaid 

upon the XCT scan to demarcate the near one-to-one correspondence between 

the two. 
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Figure 1: The schematic diagram of the L-PBF process. 
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Figure 2: Optical image of an etched and polished Inconel 625 specimen. The black arrow indicates the 

build direction. 

(a) Contamination with tungsten, which due to its high melting point does not fuse, and tends to cascade 

through several layers. The dashed-line (1) indicates the shape of a melt pool, penetrated into the previously 

deposited layer. Also, the overlaps between tracks could be recognized. The dashed line and circle (2) 

shown at the bottom of the tungsten specimen are representative of the hatching directions in the two 

consecutive layers.  

(b) The contamination with aluminum is not readily evident as trace particles, but closer examination of the 

hatch pattern reveals that aluminum tends to distort the meltpool as indicated by the arrows (3), and (4) 

vaporization of the aluminum particles causes uniform circular pinhole (gas-induced) porosity of diameter 

~10 μm. 
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Figure 3: (a) A schematic representation of the open architecture L-PBF platform at EWI [45]. For scale 

purposes, the powder bed on the machine accommodates parts as large as 10 inch × 10 inch (250 mm × 

250 mm). (b) Photograph of the L-PBF platform (c) Schematic of the fixture made to deliver metered 

amount of contamination. (d) Photograph of the actual apparatus made for initiating contamination [65]. 
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Figure 4: The manner in which contamination is introduced during the build. The gray layers show the 

ones where data is captured. The red layers indicate where the contamination is introduced. 
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Figure 5 

Figure 5a: Post recoating optical images after contamination with (a1) Tungsten and (a2) Aluminum. 

 

Figure 5b: The unit volumes of deposited powders for each of six contamination levels in (b1) 

tungsten and (b2) aluminum. 
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Figure 6: The horizontal and vertical hatch patterns related to odd and even layers respectively. The 

symbols O and X demarcate the starting and ending points for a hatch. There are 100 hatches per layer, 

each hatch takes close to 10 milliseconds to melt (laser velocity 960 mm/sec), the entire layer takes ~ 1 

sec. to fuse. 
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Figure 7: Graphical overview of the proposed spectral graph theoretic approach for detecting material 

contamination. 
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Figure 8: Three-dimensional (3D) reconstruction of the XCT scan for the specimen contaminated with 

tungsten powder particles. The powder recoating moves along the X-axis direction. 
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Figure 9: The cross sectional XCT views of the Inconel 625 specimen contaminated by the tungsten 

powder particles, a) vertical cross section normal to the recoating direction (cutting plane A-A, Y-Z 

direction), b) vertical cross section along the recoating direction (cutting plane B-B, X-Z direction) c) 

horizontal cross section (cutting plane C-C, X-Y direction). Due to procedural lapses in the XCT process 

the second contamination level in the first iteration (L2-1) was missed. 
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Figure 10: The cross sectional views of the Inconel 625 specimen contaminated by the Aluminum powder 

particles, a) vertical cross section normal to the recoating direction (cutting plane A-A, Y-Z direction), b) 

vertical cross section along the recoating direction (cutting plane B-B, X-Z direction). The contaminant 

particles are not evident within the aluminum matrix. 
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Figure 11: (a)The optical micrograph of the Inconel 625 specimen contaminated with tungsten particles 

observed over 8 layers. (b)(c) XCT images in the horizontal plane section (cutting plane C-C, X-Y 

direction) for the L3 severity level shows that trace tungsten particles persist over eight subsequent layers 

and penetrate through three preceding layers. 
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Figure 12: (top row) The photodetector signal associated with the six level of (a) Tungsten contamination 

and (b) Aluminum contamination in Inconel 625. (bottom row) The second contamination level (L2) is 

magnified and the signal corresponding to tungsten contamination has clear spikes compared to 

aluminum. 
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Figure 13: The Phase 1 spectral Hotelling T2 control chart related to six levels of contamination for (a) 

Tungsten and (b) Aluminum contamination, wherein the control limits are fixed. 
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Figure 14: The Phase 2 spectral Hotelling T2 control chart applied to two replications of the data for the 

related to the remaining two iterations, for each of the six levels of contamination for (a) tungsten and (b) 

aluminum contamination. Note that the dynamic contamination case L5 for aluminum is not detected, 

indicating a Type II statistical error. 

  



Revised Manuscript MANU-17-1706 (Research Paper) 

Page 64 of 64 

 

 

Figure 15: (a) The T2 values of the spectral graph Fourier coefficients are color coded, red indicates out-

of-control (contaminated) hatches, and black indicates in-control hatches. These T2 values are plotted 

along the X-Z plane of the part, since the position of each hatch is known. (b) The spectral graph T2 
-

values are overlaid upon the XCT scan to demarcate the near one-to-one correspondence between the two. 

 


