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Abstract. The goal of this work is to understand the effect of
process conditions on part porosity in laser powder bed fusion
(LPBF) Additive Manufacturing (AM) process, and
subsequently, detect the onset of process conditions that lead to
porosity from in-process sensor data. In pursuit of this goal, the
objectives of this work are two-fold:

(1) Quantify the count (number), size and location of pores as
a function of three LPBF process parameters, namely, the
hatch spacing (H), laser velocity (V), and laser power (P).

(2) Monitor and identify process conditions that are liable to
cause porosity through analysis of in-process layer-by-
layer optical images of the build invoking multifractal and
spectral graph theoretic features.

This is important because porosity has a significant impact on
the functional integrity of LPBF parts, such as fatigue life.
Furthermore, linking process conditions to sensor signatures
and defects is the first-step towards in-process quality assurance
in LPBF. To achieve the first objective, titanium alloy (Ti-6Al-
4V) test cylinders of 10 mm diameter x 25 mm height were built
under differing H, V, and P settings on a commercial LPBF
machine (EOS M280). The effect of these parameters on count,
size and location of pores was quantified based on X-ray
computed tomography (XCT) images. To achieve the second
objective, layerwise optical images of the powder bed were
acquired as the parts were being built. Spectral graph theoretic
and multifractal features were extracted from the layer-by-layer
images for each test part. Subsequently, these features were
linked to the process parameters using machine learning
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approaches. Through these image-based features, process
conditions under which the parts were built was identified with
the statistical fidelity over 80% (F-score).
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1. Introduction

Powder bed fusion (PBF) refers to a family of Additive
Manufacturing (AM) processes in which thermal energy
selectively fuses regions of a powder bed [1]. Figure 1 shows
the schematic of the PBF process that embodies a laser power
source for melting the material, accordingly, the convention is
to refer to the process as Laser Powder Bed Fusion (LPBF). A
galvanic mirror scans the laser across the powder bed. The laser
is focused on the bed with a spot size on the order of 50 pm —
100 pm in diameter, the laser power is typically maintained in
the range of 200 W to 400 W, and the linear scan speed of the
laser is varied in the 200 mm/s to 2000 mm/s range [2]. In the
PBF process, a layer of powder material is spread across a build
plate. Certain areas of this layer of powder are then selectively
melted (fused) with an energy source, such as a laser or electron
beam. The bed is lowered and another layer of powder is spread
over it and melted [2]. This cycle continues until the part is
built.



Figure 1: The schematic diagram of the laser-based powder bed
fusion (LPBF) process.

1.1 Motivation

The ability of LPBF to produce intricate geometry parts from
hard-to-process materials, such as cobalt-chrome and nickel-
based super alloys has been conclusively demonstrated for a
variety of demanding applications ranging from biomedical to
aerospace [3, 4]. Process repeatability and product quality,
however, remain imposing barriers towards scaling LPBF to
production environments [5]. Given the layer-by-layer nature
of the process, a defect in a layer will be permanently sealed in
by subsequent layers. These trapped defects adversely affect
part performance, such as fatigue life and strength [6, 7].

A major gap in the current research lies in the lack of correlation
models between process conditions and specific defects, such
as porosity via the data acquired from in-situ sensors.
Addressing this gap is the first-step towards in-process quality
assurance in LPBF. Therefore, there is an urgent need to: (1)
understand and quantify the effect of LPBF process conditions
on defects, and (2) institute in-process sensing and monitoring
to capture the onset of defects. Close to 50 parameters are
involved in the melting and solidification process in LPBF [8§].

The following types of LPBF defects have attracted the most
attention: porosity, surface finish, cracking, layer delamination,
and geometric distortion. These defects are tracked to the
following four root causes [9, 10]:

1) poor part design, such as inadequately supported features
[11];

2) machine and environmental factors, such as poor
calibration of the bed and optics;

3) inconsistencies in the input powder material, such as
contamination and deviations in particle distributions; and

4) improper process parameter settings, for example,
inordinately high laser power causes vaporization of the
material leading to pinhole porosity, while insufficient
laser power prevents powder particles from fusing together
leading to large acicular pores [12]. This work specifically
focuses on characterizing and detecting porosity in-situ due
to the improper selection of process parameters.

1.2 Objectives

The goal of this work is to quantify the effect of process
conditions on part porosity in the LPBF, and subsequently,
detect the onset of process conditions that lead to porosity from
in-process sensor data.

In pursuit of this goal, the objectives of this work are two-fold:

1. Quantify the effect of three LPBF process parameters,
namely, laser power (P), hatch spacing (H), and velocity
(V) on the size, frequency, and location of pores using
X-ray computed tomography (XCT) scan data of the
part.

2. Monitor and discriminate process conditions that are
liable to cause porosity using in-process optical images
of the powder bed invoking multifractal and spectral
graph theoretic analysis.

The first objective is realized by simultaneously building nine
tungsten alloy cylinders on a commercial LPBF machine (EOS
M280) at varying P, H, and V conditions, and quantifying their
effect on the pore spatial distribution frequency, size and
location are quantified using XCT images.

The second objective is achieved by acquiring layer-by-layer
optical images of the parts while they are being built, and then
extracting statistical, multifractal and spectral graph theoretic
features from these images. These features are subsequently
used in various classification approaches such as neural
networks to ascertain their ability to isolate process conditions
that are liable to produce parts with severe pores.

The rest of this paper is structured as follows. A brief review of
the literature is presented in Sec. 2; Sec. 3 describe the
experimental conditions and layer-by-layer acquisition of part
images; Sec. 4 describes the spectral graph theory and
multifractal analysis of in-process image data for feature
extraction and process modeling, and conclusions and avenues
for future work are presented in Sec. 5.

2 Literature Review
2.1  Analysis of process parameters on defects

Beuth et al. have established process maps to correlate areal

energy density (E, = ﬁ J/mm?) with porosity and residual

stresses [13-15]. Their studies indicate that as the energy
density increases beyond a threshold, the process enters the
keyhole melting mode wherein the laser beam penetrates deep
into the powder bed, through several layers, and causes the
material to vaporize. The pores resulting from operating in the
keyhole melting mode are termed as gas pores; they are
typically in the region of 10 um [9].

In contrast, when the energy density is insufficient to fuse the
material, the pores formed are large and irregular, often
approaching 50 um -100 um, and beyond range. Aboulkhair et
al. [12, 16] and Stucker et al [17-19] report process
optimization studies related to porosity in LPBF with
conclusions in line with findings by Beuth ef al. While, most
of the existing process maps relate the effect of energy density
(Ea) to porosity with the aid of X-ray computed tomography, a



conspicuous gap is in relating pore size, density and location
simultaneously with Ea. This work addresses the foregoing gap
through Objective 1.

2.2 Sensing and Monitoring of defects in LPBF

Comprehensive review articles for in-process sensing are
available in Ref. [9, 20-23]. Significant research in process
sensing and control for metal AM processes is being done in
academe and national laboratories [24-30]. Nassar and
Reutzel, et al. experimented with imaging of the LPBF powder
bed under various illumination conditions[27, 30, 31]. The
resulting layer data was analyzed, and defects, such as voids
caused by improper raking of the powder across the bed were
identified. Lane et al. at NIST integrated an LPBF machine
(EOS M270) with thermal and high-speed cameras, and a
photodetector [24]. NIST and Edison Welding Institute (EWI)
are currently building a customized LPBF testbed instrumented
with multiple sensors [29, 32]. A large body of work in sensing
and monitoring in LPBF is reported by the Kruth group [33-37]
and Witt group [38-41] in Europe.

To detect evolving process anomalies researchers have sought
to incorporate sensing techniques such as vibration, CCD video
imaging, infrared and ultraviolet imaging, pyrometers,
photodiodes, ultrasonic wave generators in AM machines Refs.
[38,42-46]. An early example (1994) was presented by Melwin
et al. [47], who used a video-micrography apparatus bearing
band pass and polarizing filters for observing the meltpool in
polymer LPBF.

In a series of related works, Craeghs et al. [34-37] describe
optical-based approaches for monitoring build quality in PBF
by imaging the thermal behavior at the meltpool. Craeghs ef al.,
were able to detect process defects, such as deformation and
overheating using their optical system [35]. Bartkowiak [48]
describes a PBF apparatus integrated with a spectrometer for in
situ measurement of the layer melt characteristics, such as
emissivity. Other researchers, e.g., Chivel et al. [49], and
Jacobsmuhlen et al. [38] have also developed optical imaging
systems for process monitoring in AM [49]. In a recent work,
Rieder et al. [45] used an ultrasonic sensing system for tracking
build status in PBF. A broadband ultrasonic sensor mounted on
the underside of the build plated is used to detect voids, akin to
acoustic microscopy

Craeghs et. al [35, 50, 51] report that the amplitude of the
photodiode signal is correlated with the melt-pool area and the
melt-pool temperature. They subsequently use this information
to identify process failures, such as detection of deformation
due to thermal stresses and overheating at overhang structures,
in each build layer. Further, they developed a feedback control
sensor based on optical images. Chivel and Smurov [49] use
two different wavelengths and selected temperature profiles to
extract information of the bed temperature distribution, and the
size of the meltpool for process monitoring.

A main drawback in most of these studies is that they do not
connect practical process conditions to defects, but rather focus
on artificially inducing flaws by way of catastrophic process
anomalies. Furthermore, the analytical techniques rely on

classical time-series signal processing techniques, which may
not be effective in capturing subtle defects. Recent progress to
overcome this limitation is reported by the Clare group at
Nottingham University who have used spatially resolved
acoustic spectroscopy (SRAS) to detect porosity in-situ in
LPBF, wherein the amplitude of a surface acoustic wave
generated by laser is correlated with the location and severity
of porosity at different laser power settings [52, 53]. The current
work addresses this extant gap through Objective 2.

3 Experimental Setup and Data Acquisition

Experiments were conducted on an EOS M280 LPBF machine.
The input material was a Titanium alloy, ASTM B348 Grade
23 Ti-6Al-4V powder material whose particle size ranges from
14 pm to 45 um. The parts analyzed in this study are cylinders
which were printed by varying the hatch spacing (H), scan
velocity (V) and laser power (P). The cylinders are 25 mm in
length and 20 mm in diameter.

Table 1 shows the seven process parameter settings which were
used to print these cylinders. The nominal settings are labeled
as HO = 0.12 mm, VO = 1250 mm/s, and PO = 340 W. Hatch
spacing and laser print velocity are increased by 25% and 50%,
and laser powder has been decreased by 25% and 50% from
their nominal settings. The three process settings are aggregated
in terms of the areal energy density applied for melting called

the Andrew number: Ex = —— J/mm?.
H XV

A digital single-lens reflex camera (DSLR, Nikon DSO0O0E)
along with multiple flash-lamps placed inside the build
chamber are used to capture the layer-by-layer powder bed
images. Images are captured at two instances in every layer,
namely, post laser scan and post re-coat. The camera shutter is
controlled by a proximity sensor that registers the location of
the re-coater blade. Five images of the powder bed images are
captured under bright-field and dark-field flash settings. The
layout of the camera and flash-lamp location are shown in
Figure 2, and the representative images under the five light
schemes are shown in Figure 3. In this work, images from
bright-field light scheme in Figure 3(a) are analyzed. Details of
the experimental setup are available in Ref. [31].

Table 1: The combination of power (P), hatch spacing (H), scan
velocity (V) process conditions used for making the titanium
alloy parts.

Process Condition Ea [J.mm™]
(P, H, V) [W, mm, mm/sec] Andrew’s number

P0, HO, VO (340, 0.12, 1250) 2.27
P -25%, HO, VO (255,0.12, 1250) 1.70
P-50%, HO, VO (170, 0.12, 1250) 1.13
PO, H +25%, VO (170, 0.15, 1250) 1.81
P0, H +50%, VO (170, 0.18, 1250) 1.51
P0, HO, V +25% (170, 0.12, 1562) 1.81
PO, HO, V +50% (170, 0.12, 1875) 1.51
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Figure 2: Schematic diagram of the location of flash-lamps and
camera used to capture in-situ powder bed images [31].
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Figure 3: Cropped image of the powder bed in different light
schemes.

Figure 4: Effect of process conditions on the parts as seen in
XCT scan images. Pore frequency increases as process
conditions drift from nominal conditions. Highest number of
pores are seen in the part printed at P -50 % (c3)

4 Methodology and Results

The LPBF process data is analyzed in two phases, namely, (1)
offline analysis of X-ray computed tomography (XCT) data in
Sec. 4.1; and (2) analysis of in-situ images of the powder bed in
Sec. 4.2.

4.1  Phase 1: Offline analysis of porosity.

This section aims to analyze the effect of hatch spacing (H),
laser velocity (V), and laser power (P) on the count, size, and
location of pores. Representative XCT images of parts under
different P, H and V conditions are shown in Figure 4.

A visual inspection of the XCT scans shows that the size and
number (count) of the pore is inversely proportional to the
energy density (Ea). The following inference are made based
on Figure 4.

e The severity of pores is influenced by all three process
parameters. However, laser power (P) seems to have an
inordinately high effect.

e As Andrew’s number (E,) is reduced, the size and number
of the pores become larger.

These observations are quantified by extracting count, size and
location attributes by analyzing the XCT scan images through
the steps shown in Figure 5.

e Figure 5 (a) - XCT scans for 30 randomly chosen cross-
sectional areas are analyzed.

e Figure 5 (b) and (c) - The XCT scan images are binarized
based on a heuristically determined threshold. Some
information is inevitably compromised during the
binarization process. A complement of the binary image
is taken to return a black background, which makes
computation easier as the image matrix becomes sparse.

e  Figure 5 (d) - To reduce noise induced due to binarization
a nearest neighborhood approach is used [54]. We note
that while it is customary to refer to voxels in the context
of XCT, because the images are converted to binary
images (binarized), we revert to using the term pixel. In
this procedure, a binarized XCT pixel is labeled as a
defect only if it is connected to the 8-nearest pixels. In
other words, if the 8 nearest neighboring pixels of a
particular pixel are also bright (i.e., 1), then the pixel is
deemed to represent part of a defect.
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Figure 5: An overview of the image processing methodology used to analyze the computed tomography (XCT) scan images. (a)
XCT scan image of part printed with P -50 %, (b) binarization of the XCT scan image of the part, (c) complemented binary image of
the XCT scan image, and (d) noise reduced XCT scan image which is used for the spatial distribution analysis

Next, the pore count, size and location are extracted as follows:

e Pore count — The number of 8-connected binarized XCT
pixel over a layer translates to the pore count.

e Size of pores — The size of a pore is grouped into one of 5
classes contingent on its radius. Each pore is considered as
an annular structure on the noise reduced image, and then,
the number of pixels within each annulus is calculated.
Depending on the number of pixels in the annulus, the
pores are classified into various radii, namely 1-5 pixel

radii. A radius of one-pixel unit equates to a pore radius of
16 um on the part.

Pore Location — The pore location is determined by
segmenting the XCT scan image into 5 concentric areas as
shown in Figure 6. The number of pores in each 1-mm
thick segment of the XCT scan image is then counted. This
establishes the distance of the pores from the center of the
cylinder.

Figure 6: An example of the procedure followed to divide XCT scan image of a part into concentric segments. (a) First segment 0
mm — 4 mm of the XCT scan image (L1), i.e., the segment that encompasses the center of the XCT scan image, (b) second segment
4 mm — 8mm of the XCT scan image (L»), (c) third segment 8 mm — 12 mm of the XCT scan image (L3), (d) fourth segment 12 mm
— 16 mm of the XCT scan image (L4), and (e) last segment 12 mm — 16 mm of the XCT scan image (Ls), i.e., the segment which is

farthest from the center of the XCT scan image.

a) Effect of process parameters on count and size of pores
Analysis of the XCT scan images shows that decrease in the
areal energy density (EA) leads to an increase in the count
(number of pores) and size of pores. This effect of laser power
(P), hatch spacing (H), and laser print velocity (V) on pore
count and size is exemplified in Figure 8 from which the
following inferences are drawn. In Figure 8, the x-axis is the
pore size, and the y-axis is the mean count (or number) of the
pore observed on 30 randomly selected slices of the XCT scan.
These results are also detailed in Table 2, which reports the
mean number of pores, rounded to the nearest integer, along
with the standard deviation for 30 randomly chosen layers.

Referring to Figure 8 (a), the pore distribution in terms of
count vs. pore size is plotted for different levels of laser
power (P). The decrease in laser power by 50% (170 W)
leads to almost a 100-fold increase in the number of pores.
Further, parts produced under P -50% (170 W) have pores
ranging from 1 pixel to 4 pixels in size, i.e., 28 ym to 112
um, whereas parts produced under nominal power (P0=
340 W) and P -25% (270 W) have pores of radius 2 pixels
(~ 32 pum) at most.

Referring to Figure 8 (b), increasing the hatch spacing (H)
leads to an increase in both the count and size of pores. The



magnitude of the effect of laser hatch spacing is
significantly smaller than that of laser power. In case of
varying hatch spacing (Figure 8 (b)), the highest number of
pores are seen in the cylinder which is printed with H +50
%, i.e., 0.18 mm hatch spacing. From Figure 8 (b), for all
the three levels of hatch spacing, the largest pore radius
observed is 2 pixels.

e  Referring to Figure 8 (c), akin to hatch spacing, increase in
laser print velocity (V) leads to increase in count and size
of pores. The largest pore size of radius 3 pixels (~48 um)
was recorded in the cylinder printed with V +50 % (1875
mm/s). The effect of velocity on porosity is least
consequential of the three factors studied in this work.
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Figure 7: Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing condition highest number of pores are seen
of size R1 (16 um), and in PO and P -25 % printing condition, very few pores of size R1 (16 um) are seen. (b) In parts printed with
varying hatch spacing only pores of size R1 (16 pm) and R2 (32 um) are seen, and the highest number of pores is seen in H +50 %
printing condition. (c¢) In comparison with other printing conditions, the lowest number of pores is seen in parts printed with varying
velocity. Pores of size R1 (16 um) are highest in number in VO, V +25 %, and V +50 % printing conditions.

b) Effect of process parameters on the location of pores

The location of pores in the test cylinders is determined by
segmenting the XCT scan image of a cylinder into 5 concentric
parts as described previously in the context of Figure 6. This
establishes the distance of the pores from the center of the
cylinder. The mean and standard deviation of pores in each
segment of the part for 30 randomly chosen layers are reported
in in Figure 8, from which the following inferences are drawn:

e Referring to Figure 8 (a), it is evident that as the laser
power decreases, more number of pores are recorded in the
L> (4 mm — 8 mm) to L4 (8 mm — 12 mm) segment, of the
cylinder. Figure 8 (a) further reveals that the cylinder
printed with nominal laser power (340 W) has most
number of pores in the first two annular segments of length
L; (0 mm — 4 mm) and L, (4 mm — 8§ mm), which indicates
that the pores are located close to the center. This trend is
also observed in the cylinder printed with P -25 % laser
power (270 W). In contrast, the cylinder printed with -50
% laser power has most number of pores in the third
segment 8-12 mm.

e Referring to Figure 8 (b) and (c), in cylinders printed with
varying hatch spacing (H) and laser print velocity (V),
respectively it is observed that parts produced at +50%
hatch spacing (0.18 mm) and laser print velocity (1875
mm/s) have the highest number of pores at the radial
distance with L3 (8-12 mm). Pores in the cylinders printed
with +25% and nominal hatch spacing and laser print
velocity are mainly located in the first two segments 0 mm
-1 mm and 1 mm - 2 mm.

The sharp drop in porosity in Ls is likely due to the reason that
the external boundary of the part is scanned with increased Ea
after the rest of the part (post-contour melting). The added heat
at the periphery mitigates porosity in Ls. Further, the
concentration of heat in the core of the part may explain the
reduced porosity towards the center (L;). Lastly, the effect of
thresholding to convert may lead to a loss of information, this
last reason can be largely discounted in the light of Figure 5(a
and d), wherein pores in the boundaries are captured
appreciably.
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Figure 8: Mean pore count vs. radius from center of image at varying process conditions. (a) Parts printed with laser power of P -50 %
have highest number of pores in the third segment (L3= 2-3mm) of the XCT scan image. Parts printed with P 0 (nominal condition),
and P -25 % have pores located in second segment (L2= 1-2 mm) of the XCT scan image. (b) In parts printed with varying hatch spacing
highest number of pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all conditions. (c) In parts printed with
varying velocity highest number of pores are seen in V +50 % in the third segment (L3= 2-3 mm), and in VO and V +25 % conditions,
highest number of pores are seen in the second segment (L2= 1-2 mm) of the XCT scan images.

4.2 Phase 2: Analysis of online data of laser powder bed
fusion process (LPBF).

This section links the process conditions to the layer-by-layer
images of the parts as they are melted. This will allow detection
of process drifts in their early stages. For this purpose, two
methods are proposed, the first based on spectral graph theory,
and the second on multifractal and lacunarity analysis.

a) Application of spectral graph theory for image analysis

Spectral graph theoretic Laplacian eigenvalues extracted from
online images are used to identify the process conditions under
which a part is produced. The approach has the following two
steps.

Step 1: Representing the image of each part as a graph. 155 pixels
A layer-wise image obtained from the DSLR camera for a laser Figure 9: An in-situ image of part depicting the row vectors
sintered cylinder layer with M x N pixels can be represented by which are used for pairwise comparison.

a matrix X ¥ *~. As shown in Figure 9, each row of the matrix o o
Xis considered as a row vector and it represents a node or vertex Further, a pairwise comparison is performed between each of

(V) of an undirected graph which is denoted as G = (V, E), the row vectors through a kernel function Q [56]. A pairwise
comparison along the columns has been shown to lead to

where E is the edges in the graph [55]. The M row vectors of o ! !
similar results as long as the image is homogeneous [57].

the matrix X are represented as ag, K = {1,2,...M}.

Whq = (@, a@g) Vp,q EK M

The kernel function Q wused in this study to compute the
pairwise comparison is the radial basis kernel function (Eqn. (2)

and (3)).
2 2
Wpq = e_[%] .
E= [z - @] ®



where, gy is the overall standard deviation of E. Next, a binary
similarity matrix § = [wpq] is created with help of a threshold
function. This threshold function 6 when applied to 1w,
converts it into binary form[58].

O(wy,q) = Wy = (0,1) )

This threshold function facilitates in determining whether there
is a connection between two nodes [58]. w,,= 1 if there is a
connection and otherwise it is zero.

lLw,, <r
_ _ (b Wpq =
O(1wpq) = Wpq = {0' Wpq >T ®

Here 7 is given by,
p=M yq=M
r= szl Zq=1 qu (6)

MZ

Step 2: Extracting features from the graph.

Once a graph is formulated from the image, topological features
are extracted from the graph. These features are useful in
classification of parts which are made with different process
parameters. The first step towards feature extraction is
computing the degree d,, of a node p, i.e., the number of edges
that pass through the node p. The degree of node p is computed
by summing each row in the similarity matrix §. From the
degree of node d,, a diagonal degree matrix D is formed as
follows,

D diEf diag(dl, *tcy, dM) (7)

Now, with the help of the degree D matrix and the similarity
matrix S, the normalized Laplacian £ of the graph is defined as
follows,

1 1
LEYD2x(D—-S)xD 2 ®)

1
where, D 2z = d]ag(l/ ’.,.’1/ )
NCR N

Finally, the Eigen spectra of the Laplacian is computed as
follows [59].

Ly = A"v. 9
(a) IF8 Tree type 1 (T,)

(B)IFS Troe type 2(T,)

The eigenvalues (1) of the Laplacian are used in the
classification of LPBF parts per their processing conditions. In
this work, the first five smallest non-zero eigenvalues are used.
Also, the Kirchhoff index for each graph is computed as
follows, where A; are the non-zero eigen values of the
Laplacian.

M
Kf=2xsxz,1;1 (10)
i=2

i=M j=M
Ei:]_ Zj=1 Sij

2

where € =

The non-irradiated part of the part image i.e. the un-sintered
powder, is fairly homogenous, so when it the image undergoes
a row-wise comparison, the distance kernel function becomes
zero. The nodes which are far apart from each other are
connected on the graph.

b) Multifractal and lacunarity analysis of part images

The fractal dimension has been extensively used to characterize
the texture and patterns of manufactured surfaces [60].This
work goes beyond the traditional methods that extract a single
fractal dimension from the surface image, but rather assume the
irregularity and non-homogeneity of image data are due to the
presence of several fractal dimensions [61]. As such, we extract
a spectrum of multifractal features to characterize the layer-by-
layer images obtained in LPBF. A fractal is defined as a shape
that embodies geometric similarity across multiple scales [62].
Assuming that a fractal object occupies a limited area in the
Euclidean space, then the object can be covered by N measure
elements with size € as follows,

N(e) = &P (11)

where D is the fractal dimension. The box-counting method is
widely used to estimate the fractal dimension of an irregular
object. This method covers a fractal set with measure elements
(e.g., box) at different sizes and observe how the number of
boxes varies with its size [63]. This procedure is repeated using
different boxes of size /. Once the / becomes sufficiently small,
N(l) being the number of boxes that are needed to cover a fractal
object with the size /, then the box-counting dimension D, is
defined as,

{c) IFS Tree type 3 (T2)

Figure 10. Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS tree T2, (¢), IFS tree T3. All three IFS
trees have the same box-counting fractal dimension of 2.0449, but different multifractal spectra as shown in Figure 11.
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For example, Figure 10 shows three types of fractal objects
called multifractal trees that are constructed with the iterated
function systems (IFS) method. These fractal trees are labeled
Ti, T, and Ts. The estimates of fractal dimension (D) using the
box-counting method in Figure 10 are D, = 2.0449 for all three
fractal trees. However, three trees show high levels of self-
similarity, irrgularity and heterogeneity due to the presence of
a spectrum of fractal dimensions. This demonstrates that the
traditional box-counting fractal dimension is limited in the
ability to fully characterize the patterns of multifractal objects
[64]. Multifractal analysis provides a means to overcome this
limitation of traditional fractal dimensions. The procedure to
estimate the multifractal spectrum from image data is as
follows,

Step 1: Estimating the local densities function (P;(L)).

P(L) = ——> (12)

where N; (1) is the number of mass or pixels in the i box of
size [, Ny is the total mass of a set and P; (1) is the probability
in the i box.

Step 2: Calculating singularity strength exponent (1%).
Pi(l)"’lai (13)

where a; reflects the local behavior of P; (/) in the i box with
size [ and it can be derived as

In P;(1) (14)
-0 Inl

a; =

Step 3: Estimating multifractal spectrum (f (a)).

The multifractal spectrum f(a) is the fractal dimension of the
set of locations that have same values for singularity strength
exponents a;. Given the number of boxes N(a) where the
probability P;(1) has exponent values between a and a + da
the multifractal spectrum f (&) can be calculated as follows,

(15)

Step 4. Characterizing multifractal measures (Dg).
Multifractal measures are characterized by the scaling of the ¢
moments of P;(l) distributions as,
N papy —
SYOPIQ) = '@ (16)

th

th

where 7(q) is called the mass exponent of ¢” order moment.
Then, the generalized fractal dimensions D, is written as,
_1(q)
qa= qu a7
Then, the Legendre transformation is used to derive the
multifractal spectrum as,

f(a(@) = qa(q) — 1(q) (18)

dr(q) (19)
dq

a(q) =

However, Legendre transformations is computationally
demanding in the calculation of f(a). Also, this approach
requires smoothing the D, curve which causes errors in the
estimated f(a) [65]. To overcome this limitation and bypass
intermediate smoothing steps in estimating f(a), a family of
normalized measures ;(q,I) as ¢” moments of mass
probability P;(l) are introduced in Eqn.(20). A constant / range
is also used to avoid multifractal properties over a small interval
of scales.

P'()
N (l) Pq )
As such, the multifractal spectrum f (@) and the average
singularity strength exponent a(q) can be written as,

YO (g, DInfi(q, D] @D
Inl

wi(q, D) = (20)

f(a@) = lim

Zi“? wi(q, D[R] (22)
0 Inl

a(q) =

Figure 11 shows the multifractal spectra for three IFS trees in
Figure 10. It is evident that multifractal features effectively
distinguish the differences in the three IFS trees that were not
captured using the traditional fractal dimension. Note that the
tail of the third IFS tree T3 is longer than other two IFS trees.
Because T3 has more pixels with lower values (value towards
0 or black pixels) in comparison to the other two trees, and the
f (a(q)) spectrum intensifies the effect of pixels with lower
values.

205
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\
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Figure 11. Multifractal spectra of IFS trees shows the self-
similarity, irregularity, and non-homogeneity of fractal objects
that cannot be adequately characterized using a single fractal
dimension.



Futhermore, lacunarity complements multifractal analysis by
characterizing the manner or distribution in which the fractal
objects fills the space [66]. Lacunarity and multifractal analysis
jointly describe the irregularity and non-homogeneity in fractal
objects as well as how they fill the space that cannot be
otherwise achived by traditional box-counting dimension or
statistical features.

To obtain the lacunarity measure, a unit box of size / is placed
over the object and the number of set points s (black pixels) in
the image is counted — this is called the box mass. Next, the box
is translated one space along the set, and the box mass is again
determined. This process is repeated over the entire set, creating
a frequency distribution of the box masses represented as N(s,/).
This frequency distribution is converted into a probability
distribution Q(s,/) by dividing by the total number of boxes N(I)
of a given size / [67].

N(s, 1
0.1 = 1\5?1)) (23)

The first and second moments of this distribution can be
written respectively as:

Z=) sQGs.D @
Z,= ) 5%Q(s,D @)
The lacunarity method with box size / can be computed as:
Z, (26)
A ===
(Z,)?

In Eqn. (23), A(l) represents the lacunarity for the box size 1.
This procedure is repeated for different box sizes, and a log-

log plot of the lacunarity versus the size of the box is traced.
Figure 12 shows T3 has higher lacunarity values in
comparison to the two other trees. The distribution of gap
sizes is termed as lacunarity.

Figure 13 shows the singularity strength exponent a(g) and
multifractal spectrum f(a(q)) estimated from 3132 layerwise
images in the LPBF process. There are 1044 images in
Ea=2.27; 696 in Ex=1.81; 348 in Eo=1.70; 696 in Ex=1.51;
and 348 in Ex=1.13. Note that multifractal spectra of these
images show significant variations with respect to the different
Andrew’s numbers.
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Figure 12. Lacunarity analysis of IFS trees describes how
fractal objects fill the space that cannot be adequately captured
using traditional fractal analysis.
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Figure 13: The varaitions of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise images in LPBF.



4.3 Application of Multifractal and Spectral Graph
Theory to Online Images

Further, the parts built under the different Eo conditions
described in Table 1 were classified using different machine
learning approaches with various types of input features. A
70%-15%-15% split for training, testing, and validation data
was imposed. The classification fidelity is reported in terms of
the F-score, which is an aggregate of the Type I and Type 11
statistical errors. The results are summarized in Table 2.

Table 2: Accuracy of classifiers used for classification of parts
using statistical, spectral graph theoretic, multifractal and
lacunarity features. The numbers in parenthesis are the standard
deviations from a 5-fold replication study.

(B)
. (A) Spectral | Multifrac
Classifier Statistical graph tal and Combined
features . .

theoretic lacunarit features

features y features A+B
Support Vector 55.58% 71.94% 76.16% 89.36%
Machine (0.58) (0.20) (0.30) (0.21)
Complex Tree 54.10% 68.02% 68.60% 79.98%

(0.14) (0.66) (0.50) (0.23)

Linear
Discriminant 52.72% 63.22% 63.02% 82.16%
Analysis (0.34) (0.49) (0.08) (0.21)
K-Nearest 56.62% 67.66% 70.38% 78.60%
Neighbor (0.50) (0.25) (0.27) (0.34)
Ensemble 51.06% 72.50% 72.64% 85.86%
(Bagged Trees) (0.58) (0.10) (0.61) (0.30)
Feed Forward 49.66% 64.62% 66.54% 84.40%
Neural Network (1.99) (1.7) (1.76) (1.67)

Three types of input features are used: (1) statistical image
features, namely, intensity (mean) of an image, and local
standard deviation of an image in 3 x 3 neighborhood, (2)
spectral graph theoretic features, namely, the first five non-zero
Eigenvalues and the Kirchhoff index, and (3) the multifractal
and lacunarity features. It is observed that irrespective of the
classification approaches used, the spectral graph, and
multifractal and lacunarity features outperform the
conventional statistical features. Furthermore, combining the
spectral graph and multifractal features results in F-score
around 80%. The results reported in Table 2 show that the
spectral graph theoretic and multifractal features discriminate
the part quality with higher fidelity than traditional statistical
analysis. This is valuable from the in-process quality
monitoring viewpoint. In a practical scenario, images of the
parts can be used to conclude whether the process within an
optimal window.

5 Conclusions and Future Work

This paper presents the modeling and analysis of in-process
layerwise images in LPBF to investigate the effect of LPBF
process conditions on the severity, size, and location of
porosity, and further connects the process conditions to sensor
signatures. This is an indirect way to monitor the LPBF process.
The specific outcomes of the work are as follows:
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1. Three process parameters, namely, laser power (P), hatch
spacing (H), and scan velocity (V) were varied during the
LPBF of Ti-6Al-4V powder material. The effect of varying
these parameters on porosity were characterized offline
using X-ray computed tomography (XCT). Based on
analysis of the XCT images the following inference is
tendered. Decreasing the laser power by 50% from 340 W
to 170 W leads to almost a three-fold increase in the
average number of pores, compared to an equivalent
percentage increase in hatch spacing, and ten-fold increase
compared to scan velocity. Hence, the control of laser
power is most consequential for avoiding porosity.

2. Online visible spectrum images of the part were acquired
as they are built using a still camera. These images were
analyzed using multifractal and graph theoretic
approaches. The features extracted by applying these
approaches were subsequently used within various
machine learning techniques. The aim was to distinguish
the process conditions under which the parts were built
given an image of the part. It is observed that combining
multifractal and graph theoretic analysis leads to as much
as 30% increase in the accuracy of discriminating process
conditions compared to using traditional statistical
measurements. Using this approach, the process
conditions can be isolated with F-score approaching 80%.
From a practical perspective, although the P, H, and V
settings are predetermined for each material in terms of
the Andrew number (EA), the laser power, particularly, is
liable to drift due to occlusion of the focusing optics; the
vaporized material tends to condense on the lens
especially during long builds.

One limitation of this work is that it does not relate the sensor
signatures directly to the defects, but rather isolates the process
condition that leads to porosity. This is mainly due to the fact
that the resolution of the camera is not sufficient to identify
pores, which are in the 16 pm — 65 pm, from the images directly.
To overcome this drawback, data from multiple sensors will be
combined (e.g., thermography and meltpool monitoring) to not
only capture multiple types of defects simultaneously, but also
improve upon the detection fidelity. Furthermore, in the future
work, the authors will endeavor to understand the effect of
process parameters on other type of defects, such as distortion
and geometric inaccuracy.
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