
Manufacturing Science and Engineering Conference 
MSEC 2018 

June 18-22, 2018, Texas A&M University, College Station, Texas, USA 
 

MSEC2018-6477  

 

LAYERWISE IN-PROCESS QUALITY MONITORING IN LASER POWDER BED FUSION 
 

 

Farhad Imani 
Industrial and Manufacturing Engineering,  

Pennsylvania State University, State College, 
Pennsylvania, United States 

Aniruddha Gaikwad 
Mechanical and Materials Engineering Department 

University of Nebraska-Lincoln 
Lincoln, Nebraska, United States 

 

Mohammad Montazeri 
Mechanical and Materials Engineering Department 

University of Nebraska-Lincoln 
Lincoln, Nebraska, United States 

 Prahalada Rao 
Mechanical and Materials Engineering Department 

University of Nebraska-Lincoln 
Lincoln, Nebraska, United States 

 

Hui Yang 
Industrial and Manufacturing Engineering,  

Pennsylvania State University, State College, 
Pennsylvania, United States 

 

 
 

Edward Reutzel 
Applied Research Laboratory,  

Pennsylvania State University, State College, 
Pennsylvania, United States 

Abstract. The goal of this work is to understand the effect of 

process conditions on part porosity in laser powder bed fusion 

(LPBF) Additive Manufacturing (AM) process, and 

subsequently, detect the onset of process conditions that lead to 

porosity from in-process sensor data. In pursuit of this goal, the 

objectives of this work are two-fold:  

(1) Quantify the count (number), size and location of pores as 

a function of three LPBF process parameters, namely, the 

hatch spacing (H), laser velocity (V), and laser power (P).  

(2) Monitor and identify process conditions that are liable to 

cause porosity through analysis of in-process layer-by-

layer optical images of the build invoking multifractal and 

spectral graph theoretic features.  

This is important because porosity has a significant impact on 

the functional integrity of LPBF parts, such as fatigue life. 

Furthermore, linking process conditions to sensor signatures 

and defects is the first-step towards in-process quality assurance 

in LPBF. To achieve the first objective, titanium alloy (Ti-6Al-

4V) test cylinders of 10 mm diameter × 25 mm height were built 

under differing H, V, and P settings on a commercial LPBF 

machine (EOS M280). The effect of these parameters on count, 

size and location of pores was quantified based on X-ray 

computed tomography (XCT) images. To achieve the second 

objective, layerwise optical images of the powder bed were 

acquired as the parts were being built. Spectral graph theoretic 

and multifractal features were extracted from the layer-by-layer 

images for each test part. Subsequently, these features were 

linked to the process parameters using machine learning 

approaches. Through these image-based features, process 

conditions under which the parts were built was identified with 

the statistical fidelity over 80% (F-score). 

Keywords: Laser Powder Bed Fusion, Porosity, In-process 

Monitoring, Image Analysis, Spectral Graph Theory, 

Multifractal Analysis. 

1. Introduction 

Powder bed fusion (PBF) refers to a family of Additive 

Manufacturing (AM) processes in which thermal energy 

selectively fuses regions of a powder bed [1]. Figure 1 shows 

the schematic of the PBF process that embodies a laser power 

source for melting the material, accordingly, the convention is 

to refer to the process as Laser Powder Bed Fusion (LPBF). A 

galvanic mirror scans the laser across the powder bed. The laser 

is focused on the bed with a spot size on the order of 50 µm ‒ 

100 µm in diameter, the laser power is typically maintained in 

the range of 200 W to 400 W, and the linear scan speed of the 

laser is varied in the 200 mm/s to 2000 mm/s range [2].  In the 

PBF process, a layer of powder material is spread across a build 

plate. Certain areas of this layer of powder are then selectively 

melted (fused) with an energy source, such as a laser or electron 

beam. The bed is lowered and another layer of powder is spread 

over it and melted [2]. This cycle continues until the part is 

built.  
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Figure 1: The schematic diagram of the laser-based powder bed 

fusion (LPBF) process. 

1.1 Motivation 

The ability of LPBF to produce intricate geometry parts from 

hard-to-process materials, such as cobalt-chrome and nickel-

based super alloys has been conclusively demonstrated for a 

variety of demanding applications ranging from biomedical to 

aerospace [3, 4]. Process repeatability and product quality, 

however, remain imposing barriers towards scaling LPBF to 

production environments [5]. Given the layer-by-layer nature 

of the process, a defect in a layer will be permanently sealed in 

by subsequent layers. These trapped defects adversely affect 

part performance, such as fatigue life and strength [6, 7].  

A major gap in the current research lies in the lack of correlation 

models between process conditions and specific defects, such 

as porosity via the data acquired from in-situ sensors. 

Addressing this gap is the first-step towards in-process quality 

assurance in LPBF. Therefore, there is an urgent need to: (1) 

understand and quantify the effect of LPBF process conditions 

on defects, and (2) institute in-process sensing and monitoring 

to capture the onset of defects. Close to 50 parameters are 

involved in the melting and solidification process in LPBF [8]. 

The following types of LPBF defects have attracted the most 

attention: porosity, surface finish, cracking, layer delamination, 

and geometric distortion. These defects are tracked to the 

following four root causes [9, 10]: 

1) poor part design, such as inadequately supported features 

[11];  

2) machine and environmental factors, such as poor 

calibration of the bed and optics;  

3) inconsistencies in the input powder material, such as 

contamination and deviations in particle distributions; and  

4) improper process parameter settings, for example, 

inordinately high laser power causes vaporization of the 

material leading to pinhole porosity, while insufficient 

laser power prevents powder particles from fusing together 

leading to large acicular pores [12]. This work specifically 

focuses on characterizing and detecting porosity in-situ due 

to the improper selection of process parameters. 

1.2 Objectives  

The goal of this work is to quantify the effect of process 

conditions on part porosity in the LPBF, and subsequently, 

detect the onset of process conditions that lead to porosity from 

in-process sensor data.  

In pursuit of this goal, the objectives of this work are two-fold: 

1. Quantify the effect of three LPBF process parameters, 

namely, laser power (P), hatch spacing (H), and velocity 

(V) on the size, frequency, and location of pores using 

X-ray computed tomography (XCT) scan data of the 

part. 

2. Monitor and discriminate process conditions that are 

liable to cause porosity using in-process optical images 

of the powder bed invoking multifractal and spectral 

graph theoretic analysis. 

The first objective is realized by simultaneously building nine 

tungsten alloy cylinders on a commercial LPBF machine (EOS 

M280) at varying P, H, and V conditions, and quantifying their 

effect on the pore spatial distribution frequency, size and 

location are quantified using XCT images. 

The second objective is achieved by acquiring layer-by-layer 

optical images of the parts while they are being built, and then 

extracting statistical, multifractal and spectral graph theoretic 

features from these images. These features are subsequently 

used in various classification approaches such as neural 

networks to ascertain their ability to isolate process conditions 

that are liable to produce parts with severe pores. 

The rest of this paper is structured as follows. A brief review of 

the literature is presented in Sec. 2; Sec. 3 describe the 

experimental conditions and layer-by-layer acquisition of part 

images; Sec. 4 describes the spectral graph theory and 

multifractal analysis of in-process image data for feature 

extraction and process modeling, and conclusions and avenues 

for future work are presented in Sec. 5. 

2 Literature Review 

2.1 Analysis of process parameters on defects  

Beuth et al. have established process maps to correlate areal 

energy density (EA = 
𝑃

𝐻 ×𝑉
 J/mm2) with porosity and residual 

stresses [13-15]. Their studies indicate that as the energy 

density increases beyond a threshold, the process enters the 

keyhole melting mode wherein the laser beam penetrates deep 

into the powder bed, through several layers, and causes the 

material to vaporize. The pores resulting from operating in the 

keyhole melting mode are termed as gas pores; they are 

typically in the region of 10 μm [9].  

In contrast, when the energy density is insufficient to fuse the 

material, the pores formed are large and irregular, often 

approaching 50 μm -100 μm, and beyond range. Aboulkhair et 

al. [12, 16] and Stucker et al. [17-19] report process 

optimization studies related to porosity in LPBF with 

conclusions in line with findings by Beuth et al.  While, most 

of the existing process maps relate the effect of energy density 

(EA) to porosity with the aid of X-ray computed tomography, a 
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conspicuous gap is in relating pore size, density and location 

simultaneously with EA. This work addresses the foregoing gap 

through Objective 1.       

2.2 Sensing and Monitoring of defects in LPBF 

Comprehensive review articles for in-process sensing are 

available in Ref. [9, 20-23]. Significant research in process 

sensing and control for metal AM processes is being done in 

academe and national laboratories [24-30].   Nassar and 

Reutzel, et al. experimented with imaging of the LPBF powder 

bed under various illumination conditions[27, 30, 31]. The 

resulting layer data was analyzed, and defects, such as voids 

caused by improper raking of the powder across the bed were 

identified.  Lane et al. at NIST integrated an LPBF machine 

(EOS M270) with thermal and high-speed cameras, and a 

photodetector [24]. NIST and Edison Welding Institute (EWI) 

are currently building a customized LPBF testbed instrumented 

with multiple sensors [29, 32]. A large body of work in sensing 

and monitoring in LPBF is reported by the Kruth group [33-37] 

and Witt group [38-41] in Europe.  

To detect evolving process anomalies researchers have sought 

to incorporate sensing techniques such as vibration, CCD video 

imaging, infrared and ultraviolet imaging, pyrometers, 

photodiodes, ultrasonic wave generators in AM machines Refs. 

[38, 42-46]. An early example (1994) was presented by Melwin 

et al. [47], who used a video-micrography apparatus bearing 

band pass and polarizing filters for observing the meltpool in 

polymer LPBF.  

In a series of related works, Craeghs et al. [34-37] describe 

optical-based approaches for monitoring build quality in PBF 

by imaging the thermal behavior at the meltpool. Craeghs et al., 

were able to detect process defects, such as deformation and 

overheating using their optical system [35]. Bartkowiak [48] 

describes a PBF apparatus integrated with a spectrometer for in 

situ measurement of the layer melt characteristics, such as 

emissivity. Other researchers, e.g., Chivel et al. [49], and 

Jacobsmuhlen et al. [38] have also developed optical imaging 

systems for process monitoring in AM [49]. In a recent work, 

Rieder et al. [45] used an ultrasonic sensing system for tracking 

build status in PBF. A broadband ultrasonic sensor mounted on 

the underside of the build plated is used to detect voids, akin to 

acoustic microscopy  

Craeghs et. al [35, 50, 51] report that the amplitude of the 

photodiode signal is correlated with the melt-pool area and the 

melt-pool temperature. They subsequently use this information 

to identify process failures, such as detection of deformation 

due to thermal stresses and overheating at overhang structures, 

in each build layer. Further, they developed a feedback control 

sensor based on optical images. Chivel and Smurov [49] use 

two different wavelengths and selected temperature profiles to 

extract information of the bed temperature distribution, and the 

size of the meltpool for process monitoring.  

A main drawback in most of these studies is that they do not 

connect practical process conditions to defects, but rather focus 

on artificially inducing flaws by way of catastrophic process 

anomalies. Furthermore, the analytical techniques rely on 

classical time-series signal processing techniques, which may 

not be effective in capturing subtle defects. Recent progress to 

overcome this limitation is reported by the Clare group at 

Nottingham University who have used spatially resolved 

acoustic spectroscopy (SRAS) to detect porosity in-situ in 

LPBF, wherein the amplitude of a surface acoustic wave 

generated by laser is correlated with the location and severity 

of porosity at different laser power settings [52, 53]. The current 

work addresses this extant gap through Objective 2. 

3 Experimental Setup and Data Acquisition 

Experiments were conducted on an EOS M280 LPBF machine. 

The input material was a Titanium alloy, ASTM B348 Grade 

23 Ti-6Al-4V powder material whose particle size ranges from 

14 μm to 45 μm. The parts analyzed in this study are cylinders 

which were printed by varying the hatch spacing (H), scan 

velocity (V) and laser power (P). The cylinders are 25 mm in 

length and 20 mm in diameter.  

Table 1 shows the seven process parameter settings which were 

used to print these cylinders. The nominal settings are labeled 

as H0 = 0.12 mm, V0 = 1250 mm/s, and P0 = 340 W. Hatch 

spacing and laser print velocity are increased by 25% and 50%, 

and laser powder has been decreased by 25% and 50% from 

their nominal settings. The three process settings are aggregated 

in terms of the areal energy density applied for melting called 

the Andrew number: EA = 
𝑃

𝐻 ×𝑉
 J/mm2.  

A digital single-lens reflex camera (DSLR, Nikon D800E) 

along with multiple flash-lamps placed inside the build 

chamber are used to capture the layer-by-layer powder bed 

images. Images are captured at two instances in every layer, 

namely, post laser scan and post re-coat. The camera shutter is 

controlled by a proximity sensor that registers the location of 

the re-coater blade. Five images of the powder bed images are 

captured under bright-field and dark-field flash settings. The 

layout of the camera and flash-lamp location are shown in 

Figure 2, and the representative images under the five light 

schemes are shown in Figure 3. In this work, images from 

bright-field light scheme in Figure 3(a) are analyzed. Details of 

the experimental setup are available in Ref. [31]. 

Table 1: The combination of power (P), hatch spacing (H), scan 

velocity (V) process conditions used for making the titanium 

alloy parts. 

Process Condition 

(P, H, V) [W, mm, mm/sec] 

EA [J.mm-2] 

Andrew’s number 

P0, H0, V0 (340, 0.12, 1250) 2.27 

P -25%, H0, V0 (255, 0.12, 1250) 1.70 

P-50%, H0, V0 (170, 0.12, 1250) 1.13 

P0, H +25%, V0 (170, 0.15, 1250) 1.81 

P0, H +50%, V0 (170, 0.18, 1250) 1.51 

P0, H0, V +25% (170, 0.12, 1562) 1.81 

P0, H0, V +50% (170, 0.12, 1875) 1.51 
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Figure 2: Schematic diagram of the location of flash-lamps and 

camera used to capture in-situ powder bed images [31].  

 

Figure 3: Cropped image of the powder bed in different light 

schemes. 

 

Figure 4: Effect of process conditions on the parts as seen in 

XCT scan images. Pore frequency increases as process 

conditions drift from nominal conditions. Highest number of 

pores are seen in the part printed at P -50 % (c3) 

4 Methodology and Results 

The LPBF process data is analyzed in two phases, namely, (1) 

offline analysis of X-ray computed tomography (XCT) data in 

Sec. 4.1; and (2) analysis of in-situ images of the powder bed in 

Sec. 4.2.  

4.1 Phase 1: Offline analysis of porosity. 

This section aims to analyze the effect of hatch spacing (H), 

laser velocity (V), and laser power (P) on the count, size, and 

location of pores. Representative XCT images of parts under 

different P, H and V conditions are shown in Figure 4.  

 

A visual inspection of the XCT scans shows that the size and 

number (count) of the pore is inversely proportional to the 

energy density (EA). The following inference are made based 

on Figure 4. 

 

• The severity of pores is influenced by all three process 

parameters. However, laser power (P) seems to have an 

inordinately high effect. 

• As Andrew’s number (EA) is reduced, the size and number 

of the pores become larger. 

 

These observations are quantified by extracting count, size and 

location attributes by analyzing the XCT scan images through 

the steps shown in Figure 5. 

 

• Figure 5 (a) - XCT scans for 30 randomly chosen cross-

sectional areas are analyzed. 

• Figure 5 (b) and (c) - The XCT scan images are binarized 

based on a heuristically determined threshold. Some 

information is inevitably compromised during the 

binarization process. A complement of the binary image 

is taken to return a black background, which makes 

computation easier as the image matrix becomes sparse. 

• Figure 5 (d) - To reduce noise induced due to binarization 

a nearest neighborhood approach is used [54]. We note 

that while it is customary to refer to voxels in the context 

of XCT, because the images are converted to binary 

images (binarized), we revert to using the term pixel.  In 

this procedure, a binarized XCT pixel is labeled as a 

defect only if it is connected to the 8-nearest pixels. In 

other words, if the 8 nearest neighboring pixels of a 

particular pixel are also bright (i.e., 1), then the pixel is 

deemed to represent part of a defect. 
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Figure 5: An overview of the image processing methodology used to analyze the computed tomography (XCT) scan images. (a) 

XCT scan image of part printed with P -50 %, (b) binarization of the XCT scan image of the part, (c) complemented binary image of 

the XCT scan image, and (d) noise reduced XCT scan image which is used for the spatial distribution analysis

Next, the pore count, size and location are extracted as follows: 

• Pore count – The number of 8-connected binarized XCT 

pixel over a layer translates to the pore count. 

• Size of pores – The size of a pore is grouped into one of 5 

classes contingent on its radius. Each pore is considered as 

an annular structure on the noise reduced image, and then, 

the number of pixels within each annulus is calculated. 

Depending on the number of pixels in the annulus, the 

pores are classified into various radii, namely 1-5 pixel 

radii. A radius of one-pixel unit equates to a pore radius of 

16 µm on the part.  

• Pore Location – The pore location is determined by 

segmenting the XCT scan image into 5 concentric areas as 

shown in  Figure 6. The number of pores in each 1-mm 

thick segment of the XCT scan image is then counted. This 

establishes the distance of the pores from the center of the 

cylinder. 

 

 
Figure 6: An example of the procedure followed to divide XCT scan image of a part into concentric segments. (a) First segment 0 

mm –  4 mm of the XCT scan image (L1), i.e., the segment that encompasses the center of the XCT scan image, (b) second segment 

4 mm – 8mm of the XCT scan image (L2), (c) third segment 8 mm – 12 mm of the XCT scan image (L3), (d) fourth segment 12 mm 

– 16 mm of the XCT scan image (L4), and (e) last segment 12 mm – 16 mm of the XCT scan image (L5), i.e., the segment which is 

farthest from the center of the XCT scan image. 

 

a) Effect of process parameters on count and size of pores  

Analysis of the XCT scan images shows that decrease in the 

areal energy density (EA) leads to an increase in the count 

(number of pores) and size of pores. This effect of laser power 

(P), hatch spacing (H), and laser print velocity (V) on pore 

count and size is exemplified in Figure 8 from which the 

following inferences are drawn. In Figure 8, the x-axis is the 

pore size, and the y-axis is the mean count (or number) of the 

pore observed on 30 randomly selected slices of the XCT scan. 

These results are also detailed in Table 2, which reports the 

mean number of pores, rounded to the nearest integer, along 

with the standard deviation for 30 randomly chosen layers. 

• Referring to Figure 8 (a), the pore distribution in terms of 

count vs. pore size is plotted for different levels of laser 

power (P). The decrease in laser power by 50% (170 W) 

leads to almost a 100-fold increase in the number of pores. 

Further, parts produced under P -50% (170 W) have pores 

ranging from 1 pixel to 4 pixels in size, i.e., 28 μm to 112 

μm, whereas parts produced under nominal power (P0= 

340 W) and P -25% (270 W) have pores of radius 2 pixels 

(~ 32 μm) at most. 

• Referring to Figure 8 (b), increasing the hatch spacing (H) 

leads to an increase in both the count and size of pores. The 
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magnitude of the effect of laser hatch spacing is 

significantly smaller than that of laser power. In case of 

varying hatch spacing (Figure 8 (b)), the highest number of 

pores are seen in the cylinder which is printed with H +50 

%, i.e., 0.18 mm hatch spacing. From Figure 8 (b), for all 

the three levels of hatch spacing, the largest pore radius 

observed is 2 pixels. 

• Referring to Figure 8 (c), akin to hatch spacing, increase in 

laser print velocity (V) leads to increase in count and size 

of pores. The largest pore size of radius 3 pixels (~48 μm) 

was recorded in the cylinder printed with V +50 % (1875 

mm/s). The effect of velocity on porosity is least 

consequential of the three factors studied in this work. 

 

Figure 7: Count of pores vs. Pore size in varying process conditions. (a) In P -50 % printing condition highest number of pores are seen 

of size R1 (16 μm), and in P0 and P -25 % printing condition, very few pores of size R1 (16 μm) are seen. (b) In parts printed with 

varying hatch spacing only pores of size R1 (16 μm) and R2 (32 μm) are seen, and the highest number of pores is seen in H +50 % 

printing condition. (c) In comparison with other printing conditions, the lowest number of pores is seen in parts printed with varying 

velocity. Pores of size R1 (16 μm) are highest in number in V0, V +25 %, and V +50 % printing conditions. 

 

b) Effect of process parameters on the location of pores 

The location of pores in the test cylinders is determined by 

segmenting the XCT scan image of a cylinder into 5 concentric 

parts as described previously in the context of Figure 6. This 

establishes the distance of the pores from the center of the 

cylinder. The mean and standard deviation of pores in each 

segment of the part for 30 randomly chosen layers are reported 

in in Figure 8, from which the following inferences are drawn:  

• Referring to Figure 8 (a), it is evident that as the laser 

power decreases, more number of pores are recorded in the 

L2 (4 mm – 8 mm) to L4 (8 mm – 12 mm) segment, of the 

cylinder. Figure 8 (a) further reveals that the cylinder 

printed with nominal laser power (340 W) has most 

number of pores in the first two annular segments of length 

L1 (0 mm – 4 mm) and L2 (4 mm – 8 mm), which indicates 

that the pores are located close to the center. This trend is 

also observed in the cylinder printed with P -25 % laser 

power (270 W). In contrast, the cylinder printed with -50 

% laser power has most number of pores in the third 

segment 8-12 mm. 

• Referring to Figure 8 (b) and (c), in cylinders printed with 

varying hatch spacing (H) and laser print velocity (V), 

respectively it is observed that parts produced at +50% 

hatch spacing (0.18 mm) and laser print velocity (1875 

mm/s) have the highest number of pores at the radial 

distance with L3 (8-12 mm). Pores in the cylinders printed 

with +25% and nominal hatch spacing and laser print 

velocity are mainly located in the first two segments 0 mm 

- 1 mm and 1 mm - 2 mm.  

The sharp drop in porosity in L5 is likely due to the reason that 

the external boundary of the part is scanned with increased EA 

after the rest of the part (post-contour melting). The added heat 

at the periphery mitigates porosity in L5. Further, the 

concentration of heat in the core of the part may explain the 

reduced porosity towards the center (L1). Lastly, the effect of 

thresholding to convert may lead to a loss of information, this 

last reason can be largely discounted in the light of Figure 5(a 

and d), wherein pores in the boundaries are captured 

appreciably. 
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Figure 8: Mean pore count vs. radius from center of image at varying process conditions. (a) Parts printed with laser power of P -50 % 

have highest number of pores in the third segment (L3= 2-3mm) of the XCT scan image. Parts printed with P 0 (nominal condition), 

and P -25 % have pores located in second segment (L2= 1-2 mm) of the XCT scan image. (b) In parts printed with varying hatch spacing 

highest number of pores are seen in the third segment (L3= 2-3 mm) of the XCT scan image in all conditions. (c) In parts printed with 

varying velocity highest number of pores are seen in V +50 % in the third segment (L3= 2-3 mm), and in V0 and V +25 % conditions, 

highest number of pores are seen in the second segment (L2= 1-2 mm) of the XCT scan images.  

4.2 Phase 2: Analysis of online data of laser powder bed 

fusion process (LPBF). 

This section links the process conditions to the layer-by-layer 

images of the parts as they are melted. This will allow detection 

of process drifts in their early stages. For this purpose, two 

methods are proposed, the first based on spectral graph theory, 

and the second on multifractal and lacunarity analysis. 

a) Application of spectral graph theory for image analysis 

Spectral graph theoretic Laplacian eigenvalues extracted from 

online images are used to identify the process conditions under 

which a part is produced. The approach has the following two 

steps.  

Step 1: Representing the image of each part as a graph. 

A layer-wise image obtained from the DSLR camera for a laser 

sintered cylinder layer with M × N pixels can be represented by 

a matrix X M × N. As shown in Figure 9, each row of the matrix 

X is considered as a row vector and it represents a node or vertex 

(V) of an undirected graph which is denoted as 𝐺 ≡ (𝑉, 𝐸), 

where E is the edges in the graph [55]. The M row vectors of 

the matrix 𝑋 are represented as 𝒂𝐾 , 𝐾 =  {1,2, …M} .   

 
Figure 9: An in-situ image of part depicting the row vectors 

which are used for pairwise comparison.  

Further, a pairwise comparison is performed between each of 

the row vectors through a kernel function Ω [56]. A pairwise 

comparison along the columns has been shown to lead to 

similar results as long as the image is homogeneous [57]. 

   𝓌𝑝𝑞 = Ω(𝑎𝑝⃗⃗⃗⃗ , 𝑎𝑞⃗⃗⃗⃗ ) ∀ 𝑝, 𝑞 ∈ 𝐾  (1) 

The kernel function Ω used in this study to compute the 

pairwise comparison is the radial basis kernel function (Eqn. (2) 

and  (3)) . 

 
𝓌𝑝𝑞 = 𝑒

−[
𝑬
𝜎𝑋

]
2

 
(2) 

 𝑬 =  [‖𝒂𝑝⃗⃗ ⃗⃗  −  𝒂𝑞⃗⃗ ⃗⃗  ‖
2
] (3) 
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where, 𝜎𝑋 is the overall standard deviation of 𝐸. Next, a binary 

similarity matrix 𝑺 = [𝓌𝑝𝑞] is created with help of a threshold 

function. This threshold function 𝜃 when applied to 𝓌𝑝𝑞 

converts it into binary form[58]. 

 Θ(𝓌𝑝𝑞) =  w𝑝𝑞 = (0,1) (4) 

This threshold function facilitates in determining whether there 

is a connection between two nodes [58]. 𝓌𝑝𝑞= 1 if there is a 

connection and otherwise it is zero.  

 
 Θ(𝓌𝑝𝑞) =  w𝑝𝑞 = {

1,𝓌𝑝𝑞  ≤ 𝑟

0,𝓌𝑝𝑞  > 𝑟
  

 

(5) 

Here 𝑟 is given by, 

 
𝑟 =  

∑ ∑ w𝑝𝑞
𝑞=M
𝑞=1

𝑝=M
𝑝=1

M2
 

(6) 

Step 2: Extracting features from the graph. 

Once a graph is formulated from the image, topological features 

are extracted from the graph. These features are useful in 

classification of parts which are made with different process 

parameters. The first step towards feature extraction is 

computing the degree 𝑑𝑝 of a node 𝑝, i.e., the number of edges 

that pass through the node 𝑝. The degree of node 𝑝 is computed 

by summing each row in the similarity matrix 𝑺.  From the 

degree of node 𝑑𝑝, a diagonal degree matrix 𝓓 is formed as 

follows, 

 𝓓 ≝ diag(𝑑1,⋯ , 𝑑𝑀) (7) 

Now, with the help of the degree 𝓓 matrix and the similarity 

matrix  𝑺, the normalized Laplacian 𝓛 of the graph is defined as 

follows, 

 
𝓛 ≝ 𝓓 −

1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2 (8) 

where, 𝓓 −
1

2 = diag (1
√𝑑1

⁄ ,⋯ , 1
√𝑑𝑀

⁄ ).  

Finally, the Eigen spectra of the Laplacian is computed as 

follows [59]. 

𝓛𝒗 = 𝜆∗𝒗. (9) 

The eigenvalues (λ) of the Laplacian are used in the 

classification of LPBF parts per their processing conditions. In 

this work, the first five smallest non-zero eigenvalues are used. 

Also, the Kirchhoff index for each graph is computed as 

follows, where 𝜆𝑖 are the non-zero eigen values of the 

Laplacian. 

𝐾𝑓 = 2 × 𝜀 × ∑𝜆𝑖
−1

M

𝑖=2

 

where 𝜀 =  
∑ ∑ 𝑺𝑖𝑗

𝑗=M
𝑗=1

𝑖=M
𝑖=1

2
. 

 

(10) 

where 𝜀 =  
∑ ∑ 𝑺𝑖𝑗

𝑗=M
𝑗=1

𝑖=M
𝑖=1

2
. 

The non-irradiated part of the part image i.e. the un-sintered 

powder, is fairly homogenous, so when it the image undergoes 

a row-wise comparison, the distance kernel function becomes 

zero. The nodes which are far apart from each other are 

connected on the graph. 

b) Multifractal and lacunarity analysis of part images 

The fractal dimension has been extensively used to characterize 

the texture and patterns of manufactured surfaces [60].This 

work goes beyond the traditional methods that extract a single 

fractal dimension from the surface image, but rather assume the 

irregularity and non-homogeneity of image data are due to the 

presence of several fractal dimensions [61]. As such, we extract 

a spectrum of multifractal features to characterize the layer-by-

layer images obtained in LPBF. A fractal is defined as a shape 

that embodies geometric similarity across multiple scales [62]. 

Assuming that a fractal object occupies a limited area in the 

Euclidean space, then the object can be covered by N measure 

elements with size 𝜀 as follows, 

𝑁(ε) = ε−𝐷 (11) 

where D is the fractal dimension. The box-counting method is 

widely used to estimate the fractal dimension of an irregular 

object. This method covers a fractal set with measure elements 

(e.g., box) at different sizes and observe how the number of 

boxes varies with its size [63]. This procedure is repeated using 

different boxes of size l. Once the l becomes sufficiently small, 

N(l) being the number of boxes that are needed to cover a fractal 

object with the size l, then the box-counting dimension 𝐷0 is 

defined as, 

 
Figure 10. Simulated trees by the multifractal iterated function system, (a) IFS tree T1, (b) IFS tree T2, (c), IFS tree T3. All three IFS 

trees have the same box-counting fractal dimension of 2.0449, but different multifractal spectra as shown in Figure 11.  



9 

 

 

For example, Figure 10 shows three types of fractal objects 

called multifractal trees that are constructed with the iterated 

function systems (IFS) method.  These fractal trees are labeled 

T1, T2, and T3. The estimates of fractal dimension (𝐷0) using the 

box-counting method in Figure 10 are 𝐷0 = 2.0449 for all three 

fractal trees. However, three trees show high levels of self-

similarity, irrgularity and heterogeneity due to the presence of 

a spectrum of fractal dimensions.  This demonstrates that the 

traditional box-counting fractal dimension is limited in the 

ability to fully characterize the patterns of multifractal objects 

[64]. Multifractal analysis provides a means to overcome this 

limitation of traditional fractal dimensions. The procedure to 

estimate the multifractal spectrum from image data is as 

follows, 

Step 1: Estimating the local densities function (𝑃𝑖(𝐿)).  

𝑃𝑖(𝐿) =
𝑁𝑖(𝑙)

𝑁𝑇

 
          

(12) 

where 𝑁𝑖(𝑙) is the number of mass or pixels in the ith box of 

size l, 𝑁𝑇 is the total mass of a set and 𝑃𝑖(𝑙) is the probability 

in the ith box. 

Step 2: Calculating singularity strength exponent (𝑙𝛼𝑖).  

𝑃𝑖(𝑙)~𝑙𝛼𝑖  (13) 

where 𝛼𝑖 reflects the local behavior of Pi (l) in the ith box with 

size l and it can be derived as 

𝛼𝑖 = lim
𝑙→0

ln 𝑃𝑖(𝑙)

ln 𝑙
 

  (14) 

Step 3: Estimating multifractal spectrum (𝑓(𝛼)).  

The multifractal spectrum 𝑓(𝛼) is the fractal dimension of the 

set of locations that have same values for singularity strength 

exponents 𝛼𝑖. Given the number of boxes 𝑁(𝛼) where the 

probability 𝑃𝑖(𝑙) has exponent values between 𝛼 and 𝛼 + 𝑑𝛼 

the multifractal spectrum 𝑓(𝛼) can be calculated as follows, 

𝑓(𝛼) = lim
𝑙→0

ln𝑁(𝛼)

ln (1 𝑙⁄ )
 (15) 

Step 4: Characterizing multifractal measures (𝐷𝑞).  

Multifractal measures are characterized by the scaling of the qth 

moments of 𝑃𝑖(𝑙) distributions  as, 

             ∑ 𝑃𝑖
𝑞(𝑙)𝑁(𝑙)

𝑖=1 = 𝑙𝜏(𝑞) (16) 

where 𝜏(𝑞) is called the mass exponent of qth order moment. 

Then, the generalized fractal dimensions 𝐷𝑞  is written as, 

𝐷𝑞 =
𝜏(𝑞)

𝑞 − 1
 

               

(17) 

Then, the Legendre transformation is used to derive the 

multifractal spectrum as, 

𝑓(𝛼(𝑞)) = 𝑞𝛼(𝑞) − 𝜏(𝑞) (18) 

𝛼(𝑞) =
𝑑𝜏(𝑞)

𝑑𝑞
 

(19) 

However, Legendre transformations is computationally 

demanding in the calculation of 𝑓(𝛼). Also, this approach 

requires smoothing the 𝐷𝑞  curve which causes errors in the 

estimated 𝑓(𝛼) [65]. To overcome this limitation and bypass 

intermediate smoothing steps in estimating 𝑓(𝛼),  a family of 

normalized measures 𝜇𝑖(𝑞, 𝑙) as qth moments of mass 

probability Pi(l) are introduced in Eqn.(20). A constant l range 

is also used to avoid multifractal properties over a small interval 

of scales. 

𝜇𝑖(𝑞, 𝑙) =  
𝑃𝑖

𝑞(𝑙)

∑ 𝑃𝑖
𝑞(𝑙)𝑁(𝑙)

𝑖=1

 (20) 

As such, the multifractal spectrum 𝑓(𝛼) and the average 

singularity strength exponent 𝛼(𝑞) can be written as, 

𝑓(𝛼(𝑞)) =  lim
𝑙→0

∑ 𝜇𝑖(𝑞, 𝑙) ln[𝜇𝑖(𝑞, 𝑙)]𝑁(𝑙)
𝑖=1

ln 𝑙
 

(21) 

𝛼(𝑞) =  lim
𝑙→0

∑ 𝜇𝑖(𝑞, 𝑙) ln[𝑃𝑖
𝑞(𝑙)]𝑁(𝑙)

𝑖=1

ln 𝑙
 

(22) 

 

Figure 11 shows the multifractal spectra for three IFS trees in 

Figure 10. It is evident that multifractal features effectively 

distinguish the differences in the three IFS trees that were not 

captured using the traditional fractal dimension. Note that the 

tail of the third IFS tree T3 is longer than other two IFS trees. 

Because T3  has more pixels with lower values (value towards 

0 or black pixels) in comparison to the other two trees,  and the 

𝑓(𝛼(𝑞)) spectrum intensifies the effect of pixels with lower 

values. 

 
Figure 11. Multifractal spectra of IFS trees shows the self-

similarity, irregularity, and non-homogeneity of fractal objects 

that cannot be adequately characterized using a single fractal 

dimension.  

𝐷0 = lim
𝑙→0

ln𝑁(𝑙)

ln (
1
𝑙
)
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Futhermore, lacunarity complements multifractal analysis by 

characterizing the manner or distribution in which the fractal 

objects fills the space [66]. Lacunarity and multifractal analysis 

jointly describe the irregularity and non-homogeneity in fractal 

objects as well as how they fill the space that cannot be 

otherwise achived by traditional box-counting dimension or 

statistical features.  

To obtain the lacunarity measure, a unit box of size l is placed 

over the object and the number of set points s (black pixels) in 

the image is counted – this is called the box mass. Next, the box 

is translated one space along the set, and the box mass is again 

determined. This process is repeated over the entire set, creating 

a frequency distribution of the box masses represented as N(s,l). 

This frequency distribution is converted into a probability 

distribution Q(s,l) by dividing by the total number of boxes N(l) 

of a given size l [67].  

𝑄(𝑠, 𝑙) =
𝑁(𝑠, 𝑙)

𝑁(𝑙)
 

(23) 

The first and second moments of this distribution can be 

written respectively as: 

𝑍1 = ∑𝑠𝑄(𝑠, 𝑙) (24) 

𝑍2 = ∑𝑠2𝑄(𝑠, 𝑙) (25) 

 

The lacunarity method with box size l can be computed as: 

Ʌ(𝑙) =
𝑍2

(𝑍1)
2
 

(26) 

In Eqn. (23), Ʌ(l) represents the lacunarity for the box size l. 

This procedure is repeated for different box sizes, and a log-

log plot of the lacunarity versus the size of the box is traced. 

Figure 12 shows T3 has higher lacunarity values in 

comparison to the two other trees. The distribution of gap 

sizes is termed as lacunarity. 

Figure 13 shows the singularity strength exponent α(q) and 

multifractal spectrum f(α(q)) estimated from 3132 layerwise 

images in the LPBF process. There are 1044 images in 

EA=2.27; 696 in EA=1.81; 348 in EA=1.70; 696 in EA=1.51; 

and 348 in EA=1.13. Note that multifractal spectra of these 

images show significant variations with respect to the different 

Andrew’s numbers.  

 

 
Figure 12. Lacunarity analysis of IFS trees describes how 

fractal objects fill the space that cannot be adequately captured 

using traditional fractal analysis. 

 

 

Figure 13: The varaitions of multifractal spectra w. r. t. the Andrew’s Number for 3132 layerwise images in LPBF. 

 



11 

 

 

4.3 Application of Multifractal and Spectral Graph 
Theory to Online Images 

Further, the parts built under the different EA conditions 

described in Table 1 were classified using different machine 

learning approaches with various types of input features. A 

70%-15%-15% split for training, testing, and validation data 

was imposed.  The classification fidelity is reported in terms of 

the F-score, which is an aggregate of the Type I and Type II 

statistical errors. The results are summarized in Table 2.  

Table 2: Accuracy of classifiers used for classification of parts 

using statistical, spectral graph theoretic, multifractal and 

lacunarity features. The numbers in parenthesis are the standard 

deviations from a 5-fold replication study. 

Classifier 
Statistical 

features 

(A) Spectral 

graph  

theoretic 

features 

(B) 

Multifrac

tal and 

lacunarit

y features 

Combined 

features  

A+B 

Support Vector 

Machine 

55.58% 

(0.58)  

71.94% 

(0.20) 

76.16% 

(0.30) 

89.36% 

(0.21) 

Complex Tree 
54.10% 
(0.14)  

68.02% 
(0.66) 

68.60% 
(0.50) 

79.98% 
(0.23) 

Linear 

Discriminant 
Analysis 

52.72% 
(0.34)  

63.22% 
(0.49) 

63.02% 
(0.08) 

82.16% 
(0.21) 

K-Nearest 

Neighbor 

 56.62% 

(0.50) 

67.66% 

(0.25) 

70.38% 

(0.27) 

78.60% 

(0.34) 

Ensemble  
(Bagged Trees) 

 51.06% 
(0.58) 

72.50% 
(0.10) 

72.64% 
(0.61) 

85.86% 
(0.30) 

Feed Forward 

Neural Network 

49.66% 

(1.99) 

64.62% 

(1.7) 

66.54% 

(1.76) 

84.40% 

(1.67) 

Three types of input features are used: (1) statistical image 

features, namely, intensity (mean) of an image, and local 

standard deviation of an image in 3 × 3 neighborhood, (2) 

spectral graph theoretic features, namely, the first five non-zero 

Eigenvalues and the Kirchhoff index, and (3) the multifractal 

and lacunarity features.  It is observed that irrespective of the 

classification approaches used, the spectral graph, and 

multifractal and lacunarity features outperform the 

conventional statistical features. Furthermore, combining the 

spectral graph and multifractal features results in F-score 

around 80%. The results reported in Table 2 show that the 

spectral graph theoretic and multifractal features discriminate 

the part quality with higher fidelity than traditional statistical 

analysis. This is valuable from the in-process quality 

monitoring viewpoint. In a practical scenario, images of the 

parts can be used to conclude whether the process within an 

optimal window. 

5 Conclusions and Future Work 

This paper presents the modeling and analysis of in-process 

layerwise images in LPBF to investigate the effect of LPBF 

process conditions on the severity, size, and location of 

porosity, and further connects the process conditions to sensor 

signatures. This is an indirect way to monitor the LPBF process. 

The specific outcomes of the work are as follows: 

 

1. Three process parameters, namely, laser power (P), hatch 

spacing (H), and scan velocity (V) were varied during the 

LPBF of Ti-6Al-4V powder material. The effect of varying 

these parameters on porosity were characterized offline 

using X-ray computed tomography (XCT). Based on 

analysis of the XCT images the following inference is 

tendered. Decreasing the laser power by 50% from 340 W 

to 170 W leads to almost a three-fold increase in the 

average number of pores, compared to an equivalent 

percentage increase in hatch spacing, and ten-fold increase 

compared to scan velocity. Hence, the control of laser 

power is most consequential for avoiding porosity.  

2. Online visible spectrum images of the part were acquired 

as they are built using a still camera. These images were 

analyzed using multifractal and graph theoretic 

approaches. The features extracted by applying these 

approaches were subsequently used within various 

machine learning techniques. The aim was to distinguish 

the process conditions under which the parts were built 

given an image of the part. It is observed that combining 

multifractal and graph theoretic analysis leads to as much 

as 30% increase in the accuracy of discriminating process 

conditions compared to using traditional statistical 

measurements. Using this approach, the process 

conditions can be isolated with F-score approaching 80%. 

From a practical perspective, although the P, H, and V 

settings are predetermined for each material in terms of 

the Andrew number (EA), the laser power, particularly, is 

liable to drift due to occlusion of the focusing optics; the 

vaporized material tends to condense on the lens 

especially during long builds. 

One limitation of this work is that it does not relate the sensor 

signatures directly to the defects, but rather isolates the process 

condition that leads to porosity. This is mainly due to the fact 

that the resolution of the camera is not sufficient to identify 

pores, which are in the 16 μm – 65 μm, from the images directly. 

To overcome this drawback, data from multiple sensors will be 

combined (e.g., thermography and meltpool monitoring) to not 

only capture multiple types of defects simultaneously, but also 

improve upon the detection fidelity. Furthermore, in the future 

work, the authors will endeavor to understand the effect of 

process parameters on other type of defects, such as distortion 

and geometric inaccuracy.  
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