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ABSTRACT 

With the advances in automation technologies, data 

science, process modeling and process control, industries 

worldwide are at the precipice of what is described as the 

fourth industrial revolution (Industry 4.0). This term was 

coined in 2011 by the German federal government to 

define their strategy related to high tech industry [1], 

specifically multidisciplinary sciences involving physics-

based process modeling, data science and machine 

learning, cyber-physical systems, and cloud computing 

coming together to drive operational excellence and 

support sustainable manufacturing. The boundaries 

between Information Technologies (I.T.) and Operation 

Technologies (O.T.) are quickly dissolving and the 

opportunities for taking lab-scale manufacturing science 

research to plant and enterprise wide deployment are better 

than ever before. There are still questions to be answered, 

such as those related to the future of manufacturing 

research and those related to meeting such demands with a 

highly skilled workforce. Furthermore, in this new 

environment it is important to understand how process 

modeling, monitoring, and control technologies will be 

transformed. The aim of the paper is to provide state-of-

the-art review of Smart Manufacturing and Industry 4.0 

within scope of process monitoring, modeling and control. 

This will be accomplished by giving comprehensive 

background review and discussing application of smart 

manufacturing framework to conventional (machining) 

and advanced (additive) manufacturing process case 

studies. By focusing on process modeling, monitoring, 

analytics, and control within the larger vision of Industry 

4.0, this paper will provide a directed look at the efforts in 

these areas, and identify future research directions that 

would accelerate the pace of implementation in advanced 

manufacturing industry. 

 

1. INTRODUCTION 

Various manufacturing industries are constantly 

improving the efficiency and consistency in their 
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operations by reducing the extant of manual labor tending 

to advanced manufacturing equipment. This reduction 

happens with the increased level of integration of advanced 

controls into manufacturing processes. This control spans 

from manufacturing preparation tasks, material handling, 

logistics, material removal, additive manufacturing 

operations, assembly, quality control, and packaging. 

Some global companies have introduced lights-out 

facilities and are moving towards a more distributed 

approach of process control and monitoring. However, 

recent advances in computing capabilities are not always 

easy to implement since not all advanced manufacturing 

equipment has up to date embedded systems that would 

enable network connectivity. Utilization rates could vary 

greatly across the different parts of the manufacturing 

systems and many of these systems could have long life 

cycles. Typical advanced manufacturing systems will have 

machines that have interfaces and controllers that can be 

from different generations, or they could be from different 

manufacturers. They can vary greatly in what kind of data 

storage capabilities they have, as well as in network 

accessibility and security systems. Due to the sensitive 

nature of advanced manufacturing systems and various 

worst-case scenarios that may occur during the non-

proficient operation of these, many of the equipment 

manufacturers limit access to modifying and adapting 

control units and processing systems, aside from also 

limiting local data storage. These limitations inhibit more 

integrated and connected manufacturing systems of the 

future. In fact, to some extent, many of these advances in 

the possible use of cloud-based computing and on-demand 

data analytics in industrial processes are effectively being 

hindered by such restrictions imposed by advanced 

manufacturing equipment manufacturers. 

This state of the art review discusses smart 

manufacturing in the context of conventional and modern 

manufacturing process modeling, monitoring and control. 

To facilitate the discussion, the first few sections of the 

paper present the state of industrial automation in the 21st 

century, laying down the terms of the automation pyramid 

in smart manufacturing pyramid. The upcoming and 

ongoing revolution in industry (Industry 4.0) is then 

discussed with its various aspects. The discussion then 

diverts to state of modeling, monitoring and control for 

conventional processes, as an example. Then, the Additive 

Manufacturing process is presented as a representative of 

the modern manufacturing process, which is evolving in 

the smart manufacturing environment, along with current 

and future developments. The paper concludes with a brief 

discussion of challenges and opportunities. 

 

1.1 STATE OF INDUSTRIAL AUTOMATION IN 21ST 

CENTURY 

One paradigm of digital manufacturing (DM) is related 

to the design and development of manufacturing systems 

that would support the whole product lifecycle. This view 

of DM emphasizes the importance of a digital thread, 

which would enable accurate and real-time data sharing 

among different lifecycle stages. As per the report by 

McKinsey (2015), the fourth industrial revolution is 

marked by digitalization of manufacturing operations, 

assets and integration of design, manufacturing, life cycle 

tracking and eventual recycle/reuse of the materials 

towards the next product lifecycle [2]. Towards the end of 

the third industrial revolution, the rapid growth in 

computer technology led to moving from manual control 

to automatic control; further, the advances in information 

technology allowed growth of business intelligence 

applications that streamline product design, development 

and manufacturing. However, the development of all these 

systems were done in isolated environments.  

The second paradigm of digital manufacturing is 

related to the data exchange in real-time on the shop floor. 

It is applicable to previously defined concepts of Computer 

Integrated Manufacturing (CIM). In 2010, the 

International Society of Automation launched a standard 

(ANSI/ISA95) that outlines and assigns “levels” to 

constitute an automation pyramid, as shown in Figure 1, 

and described subsequently [3]. It is important to mention 

that the ideology that ANSI/ISA95 is built on has been 

around in traditional metal manufacturing since 1990’s. 

Levels 0 through 3 have been existing for manufacturing 

control, but with ANSI/ISA95 it has been formalized and 

propagated across other industries.  

 

 
Figure 1: ISA Automation levels 
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The anticipated benefits claimed by Industry 4.0 can 

only be achieved if there is a robust framework to allow 

interaction between all these automation layers, minding 

the efficiency, cost, and security. 

 

Levels 0 & 1: Sensors, Actuators and Real-time 

Controllers 

Sensors and actuators in manufacturing process are the 

foundational layer of the ISA95 automation pyramid. 

These include position, velocity, acceleration, temperature, 

pressure, humidity sensors, etc. and pneumatic/hydraulic 

actuators, servo motors actuators, etc. Over time the 

sensors and actuators have evolved in terms of the task 

delivery accuracy, as well as reporting their own health. 

Across different industries, the standard used for Level 1 

is a combination of microcontrollers and Programmable 

Logic Controllers (PLC); however, while PLCs are known 

for their fast execution (~5-10 ms deterministic loop rate), 

they fall short on reporting, trending, and data historian 

tasks. For some of the time-critical applications, advanced 

microcontrollers are also used as a level 1 controller. Over 

last few years, the trend in the process industry has 

gravitated towards combined Level 0/Level 1 solution 

systems. This makes sense because it decreases the 

maintenance requirements for the manufacturing plants, as 

well as provides a means to connect to the higher 

automation layers. 

 

Level 2: Advanced Control Solutions  

ISA95 defines the second level of automation as the 

advanced control layer [4]. This is the level at which the 

process setup control (feed forward/predictive), which is 

within the process control (model-based control, adaptive 

control), as well as run-to-run control (product-to-product 

adaption and control) are deployed. The Level 2 control 

provides set points for the Level 1 control hardware. This 

is important since the process knowledge (physics-based 

models, process experience and recipes, and data driven 

knowledge) can be embedded in a control strategy at this 

layer. The control execution loop rate is in the order of 100 

ms and up to the duration of the manufacturing cycle. Such 

control is typically hosted on industrial computers running 

real time Linux or Windows Operating systems. 

Level 2 is also a platform for leveraging the process 

modeling solutions. Over time, there have been 

tremendous advances in creating manufacturing process 

models. These are typically first principles-based models 

coupled with experimental and/or numerical simulated 

data. Due to advances in High Performance Computing 

(HPC), it is possible to embed intelligence of these models 

in process monitoring and control. When this is 

‘perfected,’ Level 2 would be the host for such solutions.  

 

Level 3: Manufacturing Operations Management 

Systems 

For any modern manufacturing facility, the actual 

manufacturing process is only a subset of the activity 

performed. In the manufacturing flowpath, there are 

multiple non-manufacturing process related activities that 

need to be performed for efficient production. 

Manufacturing Operations Management (MOM) refers to 

the infrastructure that encompasses raw material 

acquisition and preprocessing, scheduling, and resource 

planning. This requires interchange of information 

between various process databases and historians, and user 

interfaces for engineers and managers to execute activities 

required for production. Level 3 is the first instance where 

operation intelligence and business intelligence interface 

drives process optimality. 

At Level 3, process solutions,  such at line balancing, 

predictive process setup, and flowpath optimization can be 

deployed since it has an overarching view of the process, 

as well as business goals. Although current MOM systems 

mostly focus on driving the basic performance metrics, 

such as an Overall Equipment Efficiency (OEE) and 

Downtime and Scrap rate, there are opportunities for more 

profitable solutions.   

 

Level 4: Business Planning and Logistics 

Enterprise Resource Planning (ERP) and other 

logistics applications are hosted at Level 4. At this level 

the variation in the system is only based on the type of 

manufacturing viz: continuous, semi-continuous or 

discrete. There is limited influence on the type of system 

deployed (for example, the ERP systems for glass 

manufacturing and chemical manufacturing would have 

similarities due to both being continuous manufacturing 

processes, but MOM systems would be drastically 

different). Such solutions are well developed and deployed 

widely in various industries.  

 

1.2 KEY COMPONENTS OF INDUSTRY 4.0: 

Industry 4.0, being an emerging phase/trend in the 

digitization of manufacturing, naturally has a number of 

evolving definitions; however, all these descriptions 

include certain key technological components briefly 

outlined next. Among the current descriptors of the fourth 

industrial revolution, many of which were coined by 

consultancies predominantly based in the United States 

and Germany, perhaps McKinsey [2, 5] captures best the 

overarching disruptions that inevitably gave birth to and 
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essentially constitutes Industry 4.0 – “(i) the rise in data 

volumes, computational power, and connectivity; (ii) the 

emergence of analytics and business-intelligence 

capabilities; (iii) new forms of human-machine interaction; 

and (iv) improvements in transferring digital instructions 

to the physical world.” 

 

 
 

Figure 2: Key Elements and Benefits of Smart Manufacturing 

Figure 2 shows some of the key elements of Smart 

Manufacturing / Industry 4.0 framework along with the 

benefits. The connected enterprise enables operational 

excellence focused benefits such as energy optimization, 

asset utilization, process insights and health monitoring. At 

the same time, promoting sustainable manufacturing as 

shown in Figure 3. 

 
  
Figure 3: Smart manufacturing benefits promoting sustainable 

manufacturing 

It is important to note that while Smart Manufacturing is a 

framework for enterprise operations, the focus of the 

current state of the review is based on modeling, 

monitoring and process control. To that end, the following 

discussion will focus on elements that enable the same. 

 

 

Rise in Data Volumes, Computational Power, and 

Connectivity – Big Data, Cloud Computing, Industrial 

Internet of Things (IIoT) 
 

Big Data: Big Data is termed as massive datasets having 

large, varied, and complex structure with the purposes of 

storing, analyzing, and visualizing for further process 

improvements [6]. For data generated in manufacturing, 

this takes a slightly different flavor while retaining some 

of the major characteristics, typically known as “3V”s of 

Big Data [7]. These are – Volume: disk space occupied, 

Variety: different forms of data (SQL databases, text files, 

video logs, web files, documents), and Velocity: sampling 

frequency of data. Note that there have been extensions of 

these characteristics to Veracity (replication of same data 

and filtering through the same) and Value (the extent to 

which big data generates economic value [8-10]. Big Data 

research is an active area in the fields of computer science 

and technology [11]. However, Big Data, as it applies to 

manufacturing, must be considered in its own context. A 

large manufacturing facility typically generates data that 

satisfies the definition of Big Data (has “5V” 

characteristics). Retention and processing of data is not 

only valuable from a process efficiency point of view, but 

also a regulatory standpoint in certain cases. This requires 

a large enterprise level of data architecture leveraging 

advances in database technology. Data infrastructure of 

this scale is termed Data Warehousing [12]. A typical data 

warehousing architecture has data collection and related 

functions (ETLR – Extraction, Transform, Load & 

Refresh), physical storage and servers to serve analytics, 

reports and data mining. 

 

Cloud Computing: Also called the “cloud,” this is another 

key enabler of Industry 4.0. As defined by the National 

Institute of Standards and Technology (NIST), it is 

essentially “…a model for on-demand network access to a 

shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications, and services)” 

[13]. Together with high-performance computing (HPC) 

and high-throughput computing (HTC) capabilities, which 

are rapidly increasing in computing power/efficiency, this 

combination provides a very powerful and decentralized 

data/computing resource.  

 

Industrial Internet of Things (IIoT): Internet of Things is a 

paradigm in which the pervasive presence around us are of 
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a variety of things or objects, which through unique 

addressing schemes, can interact with each other and 

cooperate with their neighbors to achieve common goals 

[14]. This paradigm rose out of maturity of multiple 

communication technologies like wireless communication, 

Near Field Communications, and Wireless Sensor and 

Actuators. One of the many sub-paradigms is the Industrial 

Internet of Things, which is the information networks of 

physical objects (sensors, actuators, machines) that allow 

interaction and cooperation towards achieving a 

synergistic goal [15]. The IIoT can be thought of as a 

bridge between the real and digital counterparts [3]. 

In this context, one can understand the importance of 

data infrastructure architecture, as detailed by the ISA95 

automation pyramid. Having data infrastructure in place 

that can connect between Level 2 (advanced modeling and 

control solutions) and Level 3 (PLM) enables seamless 

integration of smart objects across the factory floor. As 

shown in Figure 4, the Industrial Internet of Things acts as 

a connecting layer between physical and cyber counterpart.  

 

 
Figure 4:  Industrial Internet of Things 

Representative examples of IIoT deployment at the 

customer/consumer-level include equipment health and 

status updates/alerts provided to consumers of machinery 

(e.g., Caterpillar), HVAC systems (both commercial and 

residential), mobility avenues (e.g., traffic, monitoring of 

commercial fleets, telemetry for farming, fuel efficiency), 

and infrastructure (building security, climate control, 

elevators). It should be noted that, often, a third-party 

entity proficient in data analytics is tasked with collecting 

the data and managing notifications. Further, though the 

majority of these actions lead to an eventual manual 

intervention to investigate or remedy a potential problem, 

growing levels of automated decision making and control 

are being implemented in these scenarios. These decision 

making and control actions are more prevalent in the 

digital factory. For instance, parts are tracked through the 

inventory, retrieval, processing, assembly and quality 

testing/control stages by RFID and other means in 

integrated factory setups to address production bottlenecks 

or other failures in leading players like BMW, Zeiss, 

Siemens and Airbus. In these instances, real-time data is 

collected through an array of sensors, quality management 

accomplished through automated decision making, 

tangible actions/tasks conducted through control to move 

along the production process, and the data points, and 

information and analytics recorded in a time-historied 

cloud-database for future use. Some examples include 

[16]: 

- The German chemical giant BASF at a pilot smart 

factory, “is producing fully customized shampoos and 

liquid soaps. When a customer inputs an order, RFID 

tags attached to empty soap bottles on the assembly 

line communicate to production machines what kind of 

soap, fragrance, and labeling is required,” leading to 

highly customizable products. 

- A global tech firm, CGI, “has teamed-up with 

Microsoft to deliver a predictive maintenance solution 

for elevators manufactured by ThyssenKrupp, by 

securely connecting thousands of sensors and systems 

within elevators, which monitor everything from 

motor temperature to shaft alignment, to Microsoft’s 

cloud-based Azure Intelligent Systems Service, 

enabling technicians to use real-time IIoT data to spot 

a repair before the breakdown occurs.” 

- AGCO, headquartered in the U.S., is “tackling the 

pending food shortage of the projected increase in the 

world population by using AgCommand, a precision 

agriculture telemetry tool to enable users to better 

understand their operation’s performance through an 

interface that farmers and dealers could understand.” 
 

Emergence of Business-Intelligence – System 

Integration, Analytics 

    Business Intelligence is defined as the collection of 

decision support technologies that enable knowledge 

workers to make better decisions [12, 17]. Some of the 

most promising advantages of Industry 4.0 include 

leveraging data generated inside the smart factory, 

decisions related to the product and process quality, 

flowpath optimizations, as well as operational excellence. 

To fulfill this vision, the systems, operating at different 

levels of automation pyramid, must be integrated in 

cohesive manner. Table 1 shows how the automation 

levels, analytics tasks, and data sampling requirements are 

related.  
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Table 1: Automation levels, analytics tasks and supporting data 

sampling requirements 

Automation 

Level 

Modeling/Monitor

ing/Analytics task 

Data Sampling 

period 

0 Real Time Signal 

processing/ Feature 

Extraction 

Milliseconds 

1 Supervisory 

Control/ Simplistic 

Models / 

Visualization 

Seconds 

2 Advanced 

Analytics Models / 

Advanced Control  

Minutes/hours 

3 Process 

Optimizations/Pred

ictive Models/ 

Simulations/BI 

tools 

Hours/days 

4 Plant/Enterprise 

Optimizations/Pred

ictive Models 

Months 

 

At the lower levels of automation, more real time and 

low computationally expensive tasks are performed; at 

higher levels, both complexity of models and the amount 

of data rises. It is also important to note the data sampling 

needs at each level. For instance, Level 0-1 systems 

operate at millisecond time intervals for fast data 

operations. The fidelity required for operations at higher 

levels allow for either summary data or features extracted 

on higher frequency data. 

In addition to the vertical integration of different levels 

(0-4) within the automation pyramid, as described above, 

horizontal integration across all aspects of the supply 

chain, both within and external to the factory, is an 

essential aspect of Industry 4.0. Note that the analytics and 

reports are typically used with the explicit information 

available in the data (production volume, sales, downtime, 

overall equipment efficiency (OEE), etc.). Data mining, on 

the other hand, is used to generate knowledge out of the 

implicit information in the data [12, 18-20]. 

 

Forms of Human-Machine Interaction and, 

Connecting the Digital to the Physical World 

Other key components of Industry 4.0 include novel 

forms of human-machine interaction through interfaces 

such as touch and feature/voice recognition. The use of 

virtual reality (VR) and augmented reality (AR) interfaces, 

sometimes in combination with haptic, visual or audio 

feedback, further refine the capabilities and efficiency of 

such interactions. The ability to embed (simple) 

knowledge-based algorithms within the setup to predict 

process outcomes for simple perturbations in input process 

parameter makes this even more powerful. Finally, the 

drastic improvements in transferring digital instructions to 

the physical world through mature cyber-physical systems, 

such as in advanced robotics systems and on-demand 

additive manufacturing, help complete the loop for 

translating concepts/needs to functional products. 

 

1.3 FOCUS TOPICS OF THIS REVIEW 

With this background on Smart Manufacturing 

infrastructure, automation levels, and interaction with the 

IIOT, we can review process modeling, monitoring, and 

control. The goal of this review is to show the historical 

context of the process modeling/monitoring/control 

methodology for conventional processes, as well as a few 

recent developments. Then, the Additive Manufacturing 

process modeling, monitoring and control use case will be 

discussed to put it in the context of Industry 4.0. 

 

2. MODELING, MONITORING, ANALYTICS AND 

CONTROL OF TRADITIONAL MANUFACTURING 

PROCESSES 
 

2.1 MATERIAL AND PROCESS MODELING 

Modeling has typically been used as a tool to gain an 

understanding of the machine-process-material 

interaction. The objective is to determine the list of key 

sub-processes and phenomena dominating the behavior of 

the processed material. In essence, the physical model and 

associated mathematical model are built to construct the 

virtual process, where the input of processing (in terms of 

tunable parameters) is mapped to output quantities (part 

performance predictions). The primary goal of material 

and process modeling is to design, monitor, predict, and 

control the interactions between work materials and 

processes. At a high level, the material and process 

modeling can be divided into two major categories – 

physics-based modeling and data driven modeling. 

Physics-based modeling methods rely on mathematical 

representation of the physical phenomena that occur during 

the processing of material. The primary modes for model 

building are analytical and numerical within the physics-

based process modeling. A summary of the modeling 

approach examples is shown in Table 2. As a use case(s), 

Machining process and Rolling process modeling have 

been chosen due to the volume of industrial products these 

two conventional processes generate. It is important to note 

that the list of references is representative and not 

exhaustive.  
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Table 2: Modeling Methodology for use cases of conventional 

manufacturing processes. 

Modeling 

Method 

Machining Process 

Modeling 

Rolling Process 

Modeling 

Analytical  Orthogonal Machining 

Theory [21, 22]  

Single DOF chatter 

[23] 

Nonlinear regenerative 

Chatter [24] 

Shear zone deformation 

theory [25] 

Ploughing process 

theory [26] 

Elastic contact  

deformation and 

friction effects [27] 

Tool chip interface 

theory improvements 

[28] 

Primary roll 

force model 

based on static 

equilibrium [29] 

Roll pressure 

equivalence to 

strip stress [30] 

Simplified & 

usable  Orowan 

model [31] 

 

Numerical Thermal finite element 

analysis of machining 

[32] 

Cutting model based on 

plane strain assumption 

[33] 

Viscoelastic model to 

predict chip geometry 

[34] 

Incremental elastic-

plastic finite element 

model [35] 

Numerical 

Integration of 

Orowan’s 

equations [36] 

2D finite 

element model 

[37] 

2D model 

including 

thermal effects 

[38] 

 

Need for Surrogate Models of Physical Processing in 

Manufacturing  

In the previous sections, we discussed the 

conventional methods of process modeling, which has 

been a traditional approach in the last few decades. 

However, as the complexity of the manufacturing 

increases, the modeling of all stages and phenomena 

becomes challenging due to high computational cost. A 

traditional modeling effort is typically used for process 

optimization in terms of processing variables (e.g. 

deposition speed, temperature or laser power in AM) to 

determine the optimal processing window. Very often 

these tasks can be performed off line, where computational 

cost is less important. However, when any real time 

autonomous correction is required (Level 2), there is a need 

for reliable models that can provide almost instantaneous 

response to, and suggestion for, the corrective action.  

Typically, the accuracy of the reliable model is correlated 

with the complexity of the physics-based model and 

associated high cost of the prediction. With the advances 

of data driven approaches, there is a need for wider 

adoption of these techniques to build statistical surrogate 

models of manufacturing that could accelerate the online 

process control schemes without sacrificing the accuracy 

of modeling (Level 2). Moreover, the surrogate models 

should be adaptable for reuse when new specification 

arrives. This is of high importance in the context of shifting 

manufacturing from mass production to model 

customization.  

 

2.2 DIAGNOSTICS/PROGNOSTICS APPROACHES FOR 

MODEL-BASED VS. DATA-DRIVEN MODELS 

The diagnostics are mainly classified into either model-

based or data-driven approaches. Model-based techniques 

rely on an accurate dynamic model of the system and are 

capable of detecting even unanticipated faults. They use 

the actual system and model outputs to generate a 

‘‘discrepancy’’ or residual, between the two outputs to 

indicate a potential fault condition, then a bank of filters is 

used to identify the actual faulty component. On the other 

hand, data-driven techniques often address only 

anticipated fault conditions, where a fault ‘‘model’’ is a 

construct or a collection of constructs, such as neural 

networks or expert systems that must be trained first with 

the known prototype fault patterns (data) and then 

employed online to detect and determine the faulty 

component’s identity. The Pros and Cons of different fault 

diagnosis approaches are summarized in Table 3.  
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Table 3: Comparisons on Different Fault Diagnosis Approaches 

Approaches  Pros Cons 

Data- 

Driven 

Approach 

Expert  

system 

Suit for systems that are difficult to model, 

i.e. systems involving subtle and 

complicated interaction whose outcomes 

are hard to predict 

A considerable amount of time may elapse 

before enough knowledge is accumulated to 

develop the necessary set of heuristic rules for 

reliable diagnosis, very domain dependent, 

difficult to validate 

Neural 

network 

Able to implicitly detect complex 

nonlinear relationships between dependent 

and independent variables, able to detect 

possible interactions between predictor 

variables, and the availability of multiple 

training algorithms.  

Black box nature, great computational burden, 

proneness to overfitting, and the empirical 

nature of model development. 

Fuzzy 

logic  

Easily understood linguistic variables, 

allows imprecise inputs, 

reconciles conflicting objectives, rule base 

or fuzzy sets easily modified, simplify 

knowledge acquisition and representation, 

a few rules encompass great complexity 

Hard to develop a model from a fuzzy system, 

no systematic approach to fuzzy system 

designing. Instead, empirical ad-hoc 

approaches are used. Require more fine tuning 

and simulation before operational 

 

Hidden 

Markov  

Model 

Can easily be extended, because in the 

training stages, HMMs are dynamically 

assembled according to the class 

sequence. Smaller models are easier to 

understand, but larger models can fit the 

data better. 

The Viterbi algorithm is expensive, both in 

terms of memory and compute time. For a 

given set of seed sequences, there are many 

possible HMMs, and choosing one can be 

difficult.  

Model- 

Based 

Approach 

Fault  

tree 

Easy to read and understand, can be 

synthesis automatically 

Difficult to include information about ordering 

and timing information of events in fault tree. 

No way to treat common-cause failures 

resulting from fault propagation. 

Model  

based  

analytical  

redundancy 

Mostly for continuous system, is able to 

detect abrupt faults and incipient fault 

Computation load for detailed online 

modeling of process, the sensitivity of 

detection process with respecting errors and 

measurement noise 

Finite  

state  

automaton 

Easy to set up the component and system 

model, mostly for DES 

Model complexity explosion by explicitly 

listing all possible states and events, lack of 

readily available software packages 

Petri 

 net 

Mathematical capability and graph 

description of DES 

Lack of readily available software packages 

 

Prognostics focuses on understanding the failure 

modes, detecting precursors to failure, tracking 

degradation mechanisms, and predicting the remaining 

useful life of components and systems. Prognostics is still 

an emerging field, and much of the published work has 

been exploratory in nature. Current prognostics technology 

is considered to be immature due to the lack of uncertainty 

calculations, validation, and verification methods, as well 

as risk assessment for Prognostics and Health Management 

(PHM) system development  [39].  

The prognostics methods are largely classified in three 

types  [40]. Type I: Reliability data-based (population), 

which considers historical time to failure data used to 

model the failure distribution. They estimate the life of an 

average component under average usage conditions. Type 

II: Stressor data-based (population), which also considers 

the environmental stresses (temperature, load, vibration, 

etc.) on the component. They estimate the life of an 

average component under specific usage conditions. Type 

III: Effects-based (individual), which also consider the 
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measured or inferred component degradation. They 

estimate the life of a specific component under specific 

usage and degradation conditions. The pros and cons for 

these three approaches are summarized in Table 4. 

Manufacturing-related prognostic and health 

management (PHM) research work is divided into 

machine-level and system-level studies, which highlights 

the greater emphasis found in the literature on the machine-

level, such as machine tools PHM. These machine tool 

PHM studies include the machine tool spindle, cutting tool 

wear or breakage [41-45] and the machine tool feed-axis 

system [46-48]. 

The PHM in the system level starts from the overall 

equipment efficiency (OEE) to the overall throughput 

effectiveness [49].

 
Table 4 Comparisons on Different Prognostics Approaches 

Type Pros Cons 
Typical 

algorithm(s) 

Reliability  

data- 

based 

Estimate failure density functions with 

parametric or non-parametric models: A 

population of components is tracked and 

their failure times are noted. Components 

that have not failed are called censored data, 

which is also useful in predicting the failure 

density. 

Failure modes cannot be random, it must 

be related to measurable stressors for 

historical data to be beneficial.  

Without consider the operating 

condition of the component. 

Weibull 

Analysis 

Stressor  

data based 

Use covariates to control or predict 

reliability model on the failure distribution 

parameters 

Environmental effects that drive the 

failure modes must be measurable 

Proportional 

Hazards 

Model 

Effects- 

based 

Use degradation measures to form a 

degradation path for prognostic prediction 

Degradation severity must be related to 

a measurable parameter such as tread 

depth or bearing vibration level or 

temperature 

Cumulative 

Damage 

Models 

General Path 

Models  

 

2.3 CASE STUDY (TRADITIONAL MANUFACTURING) – 

MACHINING PROCESSES 

 

With connected enterprise, model based manufacturing 

provides a concept of using a digital twin as a basis to plan 

the processes before they are being implemented with 

minimal downtime. A digital factory provides an option to 

use simulations of assembly and manufacturing processes 

to determine assembly tasks and tool paths in a digital 

environment. Figure 5 shows an example of digital thread 

in a machining process centered manufacturing. The main 

machine controller captures all necessary parameters for a 

machine controls such as spindle speed, material feed, 

cutter shape, cutting, depth and such. The cell with the 

CNC machine is connected through the data acquisition 

module to the network. This enables two way 

communication : from the cloud and database with control 

programs related to different parts and their machining 

operations to the machine controller, and from the 

connected transducers to the cloud and database. The main 

machine network at the shop floor is connected through 

ethernet cards and connectivity modules to the main digital 

thread data pathway. Internet of Things serves is 

furthermore connected to the office network through the 

web based enterprise resource tier. The Client Tier is 

providing staff access through the office network to all 

Computer Aided Engineering Applications, such as 

Computer Aided Design, Computer Aided Manufacturing 

applications, applications used for process planning and 

simulation, converters of files to neutral data exchange 

files, and furthermore to the external customer access 

through the rich or thin clients. 
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Figure 5:: Example of Digital Thread/Digital Twin framework 

 Albeit demonstrated for a single machine, the same 

concept can be extended for entire machining facility. Such 

framework enables advanced monitoring and control of 

machining processes. 

 

3. MODELING, MONITORING, ANALYTICS AND 

CONTROL OF ADVANCED MANUFACTURING 

PROCESSES 
 

3.1 PARADIGM SHIFT IN PHYSICS-BASED MODELS OF 

MANUFACTURING  

Traditionally modeling has been used as a 

prefabrication tool to gain a fundamental understanding of 

machine-process-material interaction [50, 51], and 

ultimately to optimize the fabrication process in terms of 

identifying the optimal processing window.  In general, the 

focus has been centered around key sub-processes and 

phenomena dominating the fabrication of interest [50, 52]. 

Significantly less attention has been paid to multi-scale 

models that couple the manufacturing level with the 

material behavior [53, 54]. However, as process 

automation increases, the modeling must be expanded 

towards multiple steps up to the entire production line. 

Moreover, Industry 4.0 will heavily rely on real time 

autonomous response to unexpected events like failure or 

process drifts. In this context, there is a need for reliable 

models that can provide almost instantaneous response in 

terms of the recovery or corrective actions. Finally, the 

models should be tunable towards mass customization, 

small production series, and personalized products at 

relatively low costs. All together the requirements for 

simulation tools posed by Industry 4.0 need to reshape the 

physics-based simulations. In particular, a new paradigm 

for modeling tools is highly needed -- customizable, high 

fidelity, multiscale models up to system level with low 

computational costs seamlessly coupled with the sensors to 

enable autonomous actions.  

To provide a more detailed perspective, we focus here 

on additive manufacturing as the new emerging 

technology. However, the discussion included below is 

applicable to other processes, as well. In general, we 

highlight four main critical needs: (i) co-simulation, (ii) 

model adaptation, (ii) model validation (iv) computational 

cost, along with their interrelationships. 

 

Co-simulation: Simulations are used in many areas in 

industry with varying level of details and focus, ranging 

from behavior of individual beads in direct energy 

deposition processes up to supply chain modeling. 

Interoperability between specialized tools and different 

simulations becomes more and more important. Taking 

additive manufacturing as an example, a designer creates 

the project in STL format using one software, e.g. 

Autodesk. The file is then sliced using another tool, for 

example Slic3r [55], Cura [56], Slimplify3d [57]. If any 

physics-based analysis is to be performed the STL file, 

along with the generated G-code, needs to be converted 

into the computational mesh that is gradually activated 

using the birth and death method [58-60]. At this stage, the 

choice of software is limited and dictated by the choice of 

modeling tool used. Simulation software, such as NetFabb 

[61] (integrated with Autodesk) or 3DSim [62] (recently 

acquired by Ansys), begin to offer end-to-end solutions, 

where physics-based models are integrated with the design 

process. The focus of these tools is mostly on metal 

printing processes and thermomechanical behavior of the 

built part [63], such as the prediction of distortion 

accumulation or microstructure evolution [64]. Even 

within the metal additive manufacturing practices, the 

physics-based simulators are yet to be fully adopted. The 

choice of deposition parameters, design of supports, or any 

trouble shooting are still predominantly made using trial 

and error approaches. Other technologies in the additive 

manufacturing family still largely lack the physics-based 

simulators integrated with the design tool to optimize the 

fabrication process. For example, aerosol jet printing [65] 

or fused filament fabrication [66-70] received significantly 

less attention, most likely due to lower business benefits. 

Nevertheless, to fully capitalize on the advent of Industry 

4.0 there is a need to advance physics-based modeling and 

integrated simulation tools for other technologies. Outside 

of the AM domain, the progress is being made around 

Functional MockUp Units [70, 71] along with workflows, 

where the goal is to facilitate the seamless [71, 72] 

integration of various software by interface design and data 

sharing.   

Model adaptation: Static simulation model is currently the 

dominant mode of physics-based simulation. In particular, 
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the specifics of the design are translated into the input 

parameters of the model, with the specific question 

targeted. For example, in metal, AM engineers seek to 

design the supports for structural stability [72-74]. 

Although some design rules can be drawn to facilitate the 

decision-making process, the intricacies of the part 

geometry may hamper the process necessitating geometry-

specific queries [75]. Moreover, very often several 

versions of the models are constructed as a result of 

optimization or customization. In such cases, significant 

savings can be gained by the smart reuse of previous results 

without manual interventions, for example during slicing 

step [76]. AM is a highly repetitive process with high level 

redundancy and high potential for model adaptation in 

terms of part geometry. Recently, neural network has been 

successfully harnessed to capture the thermal behavior of 

several layers, building a data driven surrogate a model and 

subsequently adapting it to predict temperature field for 

another geometry [77]. The progress in this field is highly 

needed [51, 52]. Although some design rules can be drawn 

to facilitate the decision-making process, the intricacies of 

the part geometry may hamper the process necessitating 

geometry-specific queries.  

Another challenge emerges in the relation to the Materials 

Genome Initiative [78]. We witness growing effort to 

accelerate the discovery of new materials. The goal is to 

deploy them twice as fast at the fraction of cost [78]. 

Manufacturing is an important ingredient of this ambitious 

goal. Consequently, the progress made around “Industry 

4.0” needs to be ready for the vast expansion of the 

materials to be manufactured. The modeling effort in the 

area needs to be refocused into understanding the 

parameters of materials, and expanding their ranges, to 

facilitate manufacturing or leveraging the current 

technologies. Hence, there is a need for computationally 

inexpensive surrogate models for manufacturing 

processes, where the input is extended to include the 

design variables of materials, as opposed to materials 

properties. 

 

Computational cost: The ability to predict the behavior of 

material, one step of the production line, or the system of 

factories is at the core of any optimization or adoption 

within a cyber physical system. However, the accuracy of 

the reliable model is typically correlated with the 

complexity of the physics-based model and the associated 

high cost of the prediction. With the advances of data 

driven approaches, there is a need for wider adoption of 

these techniques to build statistical surrogate models of 

manufacturing that could accelerate the online process 

control schemes without scarifying the accuracy of 

modeling (Level 2). Moreover, the surrogate models 

should be adaptable for reuse when new specification 

arrives. This is of high importance in the context of shifting 

manufacturing from mass production to model 

customization. In the context of AM, the current 

computational cost of physics-based models is still very 

high. There are various approaches to reduce the cost. The 

reduction can be achieved either at the model level by 

simultaneous deposition of several layers, instead of 

gradual deposition according to the path. Another 

reduction can be achieved at the numerical solver level [79, 

80] or by mesh coarsening whenever processes are less 

dynamic [80, 81]. Finally, the surrogate models are yet to 

be advanced with high impact on the design for closed loop 

process control. 

Model validation: Physics-based models are still to be 

thoroughly validated if they are to be routinely used in the 

industrial application, especially in the context of advances 

towards Industry 4.0. This is certainly true if these models 

are to be used as a virtual counterpart of the physical 

process to suggest corrective action due to unexpected 

event. In an ideal case scenario, a so called “Digital Twin” 

[82-84] would use physics-based models to predict the 

nominal behavior of the system of interest, with the goal to 

identify potential issues of the real machine counterpart 

and suggest corrective action. In the context of AM, model 

validation is typically performed post-production. Due to 

high computational costs associated with the high-fidelity 

physics-based models, in situ validation has been limited 

with recent attempts [84, 85]. As indicated in the previous 

section, there is a need for surrogate models that shadow 

the high-fidelity models to enable detection of potential 

issues during the deposition. Self-awareness of the 

machine is of high importance for AM processes, where 

the part properties may be impaired by the local defects 

that occurred and remained uncorrected during the printing 

process. Finally, models need to be validated across 

multiple levels in terms of uncertainty stacking. 

 

 

3.2 CASE STUDY (ADVANCED MANUFACTURING) – 

ADDITIVE MANUFACTURING PROCESSES 

The advent of additive manufacturing (AM) promises 

to revolutionize the reach and possibility of manufacturing. 

Hod Lipson’s book Fabricated makes the case for AM as 

a disruptive technology in terms of 10 different principles; 

a deeper examination of these principles behooves the 

following freedoms to AM from the constraints of 

traditional manufacturing [86]. 

● Freedom of infinite complexity – it takes the same 

effort, for instance, to make a square hole versus a 
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round hole. Indeed, there is no need to restrict to 

simple Euclidean shapes to ease manufacturing. 

● Freedom from assembly – the number of component 

parts can be reduced by several orders of magnitude. 

For example, the oft-cited General Electric LEAP 

engine nozzle has zero sub-assemblies, compared to 

over 20 parts in the earlier design, while being 25% 

lighter. 

● Freedom of variation in size – the manual effort to 

scale a part is negligible, as no new fixtures need to be 

made if the size of the part is decreased or increased.  

● Freedom from material constraints – there is a 

significantly reduced burden on determining the recipe 

for different materials; a part can be made from 

stainless steel or titanium by changing a few 

parameters (laser power, scan speed, etc.), as opposed 

to perhaps changing the tooling.  

● Freedom from expensive, skilled labor and 

experience-driven knowledge – AM processes run 

almost entirely on their own, irrespective of the 

material and shape being produced.  

● Freedom from waste of energy and materials – the 

amount of material and energy needed is magnitudes 

smaller, for instance, the buy-to-fly ratio in AM, viz., 

the ratio of material processed to the final weight of 

the part is as small as 7:1 compared to 20:1 with 

traditional machining [87-89]. 

● Freedom from specialized tooling, fixtures, and waste 

from wear – there is no special tooling or different type 

of die or tooling required. Because AM does not 

require the tool to be harder than the material of the 

part to be produced there is no wear or possibility of 

stoppage due to broken dies. 

● Freedom from waste of movement and logistics – All 

parts required for a product can conceivably be made 

under the same roof without having to source from 

different suppliers. 

● Freedom of production flexibility, and breaking of 

batch size scheduling constraints and inventory – the 

batch size and product mix can be varied at will to 

match to demand. Hence, given adequate resources, 

the production rate can be made to match the takt time 

with zero buffer inventory needed. Furthermore, in an 

AM-oriented facility, because all machines are 

identical, there are no bottleneck machines (in the 

parlance of theory of constraints [90]) that dictate 

production. If a machine breaks down, there are other 

identical machines to take the load without having to 

adjust production. 

● Freedom from variability due to breakdowns and 

maintenance – because there is no variability due to 

tooling, controlling the input material is sufficient to 

reduce variability. Furthermore, the uniformity of 

machines regardless of part design has a great impact 

on the reliability and maintainability aspects of the 

production line. Instead of maintaining several service 

parts and employing repair technicians for various 

types of machines, a small group of personnel and 

replacement items is sufficient to keep production at 

pace.  

These freedoms afforded by AM, make it an apt 

vanguard technology to implement in the emerging 

paradigm of smart and digital manufacturing (Industrie 

4.0), as pointed out in the 2011 Whitehouse report on 

advanced manufacturing [91].  Despite these revolutionary 

possibilities, recent roadmap reports by federal agencies 

and national labs emphasize the need for fundamental 

research in the following areas in additive manufacturing 

[92-97]:  

a) Advanced and novel materials customized to the 

application. 

b) Process development to increase the speed and volume 

of the part produced. 

c) Design rules and support structure optimization. 

d) Efficient and accurate process modeling and 

simulations to anticipate potential problems. 

e) In-process sensing, monitoring, and control to ensure 

parts are produced to specification.  

f) Non-destructive evaluation and post-process quality 

assurance.  

g) Post-process finishing to improve surface and 

geometric integrity of free-form surfaces and aid in the 

removal of supports.  

h) Standardization of test procedures, geometric 

dimensioning and tolerancing (GD&T) and metrology 

of AM parts, standardization of best practices, such as 

post-process cleaning, and safety benchmarks for 

handling powders.  

i) Logistics and supply chain implications of AM.  

j) Cyber security to defend against intrusion of the digital 

thread in AM, and protection of design intellectual 

property.  

 

From a technical vista, the current lack of fundamental 

understanding of causal process mechanisms, the 

microstructure of the part produced, and its relationship 

with the property of the part, i.e., the process-structure-

property relationship, is at the heart of the current 

repeatability and reliability-related challenges in AM. 

Unlike machining and forming operations, wherein the 

surface and near-surface is of concern, and the bulk of the 

part can be assumed to remain unchanged, in AM the 
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mechanics of surface generation is contingent on each 

individual layer. A defect at any layer, if not detected and 

averted before the next layer is deposited, is liable to be 

permanently sealed in and, thus, affect the property of the 

part.  

Given the putative lack of confidence in the 

consistency of AM processes, industries such as aerospace 

and biomedical, therefore, demand extensive post-process 

inspection of AM parts, such as X-Ray computed 

tomography (XCT) [98-100]. This is cumbersome and 

expensive, and will inhibit the drive to incorporate the use 

of AM for mission-critical parts. This challenge is further 

compounded by the need for materials testing and process 

databases to qualify parts for critical components, 

particularly, for aerospace applications. Because, the 

sample sizes available in AM are small due to the relatively 

slow and, oftentimes, highly specialized nature of the part 

design, manufacturers do not have the advantage of 

material performance datasets, as in machining and 

forging, which have been developed over the last several 

decades [98, 99].  

For instance, Gorelik et al. cite the example of a crash 

of a F/A-18 aircraft in 1981 that was attributed to the 

premature and catastrophic failure of a turbine disk made 

using a powder metallurgy process [100]. This accident led 

to a 5-year decline in powder metallurgy components in 

the defense industry. Given that AM processes favored for 

metal parts, such as powder bed fusion (PBF) and directed 

energy deposition (DED), rely on powder raw material, 

there is hesitancy on the part of defense manufacturers to 

adapt AM processes for mission-critical components.  

A solution to overcome these quality-related 

impediments in AM is to qualify the integrity of the part 

in-process using in-situ sensor data. For instance, 

SigmaLabs has recently trademarked the phrase in-process 

quality assurance (IPQA). In a 2013 NSF workshop in AM, 

Huang et al. suggest the term, certify-as-you-build, 

wherein the integrity of the part is ascertained as it is being 

built via the sensor signature patterns [94, 95]. A slight 

caveat to the phrase certify-as-you-build is the use of the 

word certify; certify typically relates to a third party 

involvement. A slightly different term qualify-as-you-

build can be used instead to skirt the unsuitable 

connotations associated with the former.  

The crux of the challenge towards realizing the 

qualify-as-you-build paradigm is to establish sensor 

signature-based process maps, wherein specific sensor 

signatures are intimately tied to specific types of defects. 

To build these sensor signature-based process maps 

requires fundamental understanding of each link in the 

following AM process chain.  

 

Process Conditions → Process Phenomena → Process 

Signatures → Part Microstructure (Defects) → Process 

Control (Rectification) → Part Performance.  

 

Each of these aspects is listed herewith and exemplified in 

Figure 6. 

● Process conditions (e.g., parameter settings, material 

contamination, part design, machine errors). 

● Process phenomena (e.g., vaporization, incomplete 

fusion, meltpool instability, thermal gradients).  

● Sensor data signatures (e.g., meltpool thermal profile, 

meltpool shape, spatter pattern) extracted from 

heterogeneous in-process sensors (e.g., thermal and 

high-speed cameras, photodetectors).  

● Part microstructure/defects (e.g., pinhole pores, 

acicular pores, distortion) caused by the above 

phenomena.  

● Process control (e.g., changing the process parameters, 

scan strategy, part design, and support structures to 

compensate for defects) 

● Part performance or quality, such as the fatigue life and 

surface finish. 

 

The progress towards sensor-signature based process 

maps can be put in historical perspective in terms of four 

phases, with each phase often overlapping with the others. 

We note that none of the following phases can be 

considered to have been finished; they continue to remain 

avenues for active research, given the pace at which new 

materials, processes, and applications are being introduced 

in AM. 
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Figure 6: Schematic Stratification of the AM Process chain 

. 

Phase 1: Process Conditions → Process Phenomena 

In the earlier stages of AM, the emphasis was to 

establish the link between the process conditions and 

process phenomena through empirical process variable-

based maps for AM processes [101-103]. For instance, in 

the context of L-PBF this meant relating the areal energy 

density (EA) in terms of the laser power, scan velocity, and 

hatch spacing to the structure of the meltpool. To explain 

further, an inordinately high energy density leads to a 

phenomena called balling, wherein the meltpool separates 

into discrete parts due to changes in the surface tension and 

wetting characteristics [104]. Concomitantly, the laser can 

enter the so-called keyhole mode, and instead of fusing the 

powder particles it may vaporize material, leading to 

pinhole-shaped spherical pores, called gas porosity in the 

range of 10 µm.  In contrast, at low EA the energy required 

to fuse the powder particles is inadequate, and the material 

fails to consolidate properly, leading to large (~ 30 µm to 

100 µm) acicular porosity. 

 

Phase 2: Process Phenomena → Process Conditions → Part 
Microstructure → Part Performance. 

Research in this phase seeks to establish the process-

structure-property relationship in AM by creating a 

fundamental understanding of the causal phenomena in 

AM, and its impact on the functional integrity of the part 

[105-107]. Staying within this context, the multi-scale 

nature of AM defects and their dependence on specific 

process phenomena still remains a significant barrier. For 

instance, the particle size and laser power used in laser 

powder bed fusion (L-PBF) is significantly different than 

blown powder DED.  Hence, this phase of process 

mapping is a tedious and difficult process that involves 

process modeling, empirical design of experiments, and, 

finally, materials characterization and testing. Each of the 

links in the process chain, summarized above, is fraught 

with challenges.  

For example, in L-PBF there are over 50 independent 

process variables [108]. Investigating the so-called 

statistical main effects, let alone the interactions, of these 

variables is cumbersome, and perhaps beyond the scope of 

traditional design of experiments schemas. Next, the causal 

phenomena itself occurs at different levels, for instance, in 

L-PBF the fusion of powder and dynamics of the meltpool 

has a distinctive effect on porosity. At the higher-scale, the 

temperature distribution of the part and the heat flux, 

owing to part design, is an important aspect influencing the 

residual stresses in the part. King et al. have used powder-

level dynamics and elucidated the effect of laser power, 

scan speed, and hatch spacing on the meltpool shape and 

splatter pattern [93, 109, 110]. These so-called powder-

level models require tracking each particle in and around 

the meltpool, and require several days to complete on a 

supercomputer. The higher-level modeling of residual 

stresses though more tractable, is not easy either, and 

currently, simulations are reported for a few layers of 

simple geometries [105]. 

 

Phase 3: Process Conditions → Process Phenomena → 
Process Signatures → Part Performance.  

The aim of this phase is to capture the process 

phenomena as it evolves and links them to specific defects 

through sensor-signatures [91, 96]. This phase is tied to 

development of new sensor hardware and data analytics to 

synthesize the sensor signatures into process decisions. 

Process decisions imply deducing the type, severity, and 

location of an impending defect based on the sensor 

signatures. Sensing and monitoring in AM can be stratified 

per the scale into the following aspects [109]: 

1. Monitoring of the machine condition, such as the 

vibration of the recoater, clogging of the nozzle, and 

the condensation of residue over the optical system. 

2. Meltpool-level monitoring, such as tracking the 

temperature distributions and the shape of the 

meltpool, and relating these characteristics to process 

conditions. 

3. Hatch or scan-level monitoring, such as tracking the 

temperature distribution of each hatch. 
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4. Layer-level monitoring, such as imaging of the 

integrity of the powder bed using an optical camera 

or the thermal distribution of the layer. 

5. Part-level monitoring, such as obtaining the thermal 

image of the part, or its ultrasonic signature. 

 These five different sensing strategies are each geared 

towards detecting a specific type of defect, for instance, 

meltpool monitoring uncovers porosity in the part, which 

occurs in the range of 10 µm to 100 µm, whereas, imaging 

of the powder bed with optical sensors are focused on 

detecting the onset of delamination and distortion. This 

detection of multi-scale phenomena mandates 

heterogeneous sensing, and concomitantly there is a need 

for efficient methods to synthesize the sensor signatures, 

and furthermore, to integrate this data with real-time 

decision-making algorithms. While the sensor hardware is 

continually improving, the data analytics and decision-

making aspect, which must be seamlessly integrated with 

the data acquisition protocol, are currently lagging.    

 

Phase 4: Process Conditions → Phenomena → Process 
Signatures → Microstructure (Defects) → Process Control 
(Rectification) → Part Performance.  

In the final phase, once the type of defect is pinpointed, 

a corrective action must be suggested. The corrective 

action can take several different forms, including 

continuing to build with the changed process parameters or 

stopping the build to prevent further waste of material. 

With the advent of hybrid additive manufacturing systems, 

such as the Maatsura’s Lumex series L-PBF system, DMG 

Mori-Seiki’s Lasertec DED system, Optomec’s Hybrid 

LENS system, wherein subtractive machining heads are 

incorporated within the AM machine, it is possible to 

entirely remove a layer instead of discarding the print. This 

new development offers the possibility to extend the 

qualify-as-you-build concept to a correct-as-you-build 

paradigm, wherein, the part can be guaranteed to be defect-

free. This development of hybrid AM techniques can be 

foreseen as akin to an undo command, whereby mistakes 

in previous layers can be rectified.   

 

Additive Manufacturing in the context of Smart 

Manufacturing / Industry 4.0 
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After review of the Additive Manufacturing process 

modeling, monitoring and control, it is important to view 

it in the Smart Manufacturing framework. Table 5 shows 

an example of how various modeling, monitoring, and 

control methodologies can be placed at various automation 

levels. Additive manufacturing technology is ripe for 

taking advantage of all aspects of Smart Manufacturing 

framework, as shown in Figure 7.  

  
Figure 7: Smart Infrastructure for leveraging AM 

 As shown in  Figure 4.  the Smart infrastructure can be 

leveraged right from the part design in digital space to part 

production in physical space.   

  

 

4. CHALLENGES AND OPPORTUNITIES 
 

4.1 DATA COMMUNICATION AND INTEROPERABILITY 

The biggest challenge in adapting the ISA 95 

automation strategy is that although the process solutions 

for individual levels exist, it is extremely difficult to find 
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one system that can communicate between all the levels in 

a cost effective way. A complementary challenge is that 

such a framework can be cost prohibitive for small or 

medium scale manufacturing industries. Given the premise 

that the production management system will be 

amalgamation of heterogeneous systems at different levels 

(different technologies, different vendors and OEMs etc.), 

the connecting system should be able to communicate 

between these system in an interoperable way.  

 

4.2 MAKE VS BUY DECISION & LONG TERM 

MAINTAINABILITY  

Suppose that a small or medium size manufacturing 

facility wants to leverage the promise of a connected shop. 

One such option is to develop a home grown system that 

takes advantage of the open source protocols (MT Connect 

standard, open computing platforms, etc.), by managing 

the scope and organically developing a staff that can 

maintain and operate such a solution. The upside of this 

approach is a targeted solution that can grow with the 

company, with a possible downside of not leveraging the 

best practices, as well as reinventing some of the 

functionalities. An alternative is to hire an automation 

contractor, who can deliver a solution ready to use. This 

approach can deliver a tactical solution without having to 

hire and develop a software organization, with the risk of 

the automation contractor not being able to sustain support 

over a long period of time. In either case, a manufacturing 

facility is faced with the challenge of keeping up with the 

pace of computer technology development and 

obsolescence.  

 

4.3 TIME AND COST OF DEPLOYMENT OF ADVANCED 

SOLUTIONS 

The investment of Smart Manufacturing infrastructure 

can only be justified if, through the use of advanced 

process scheduling, modeling, monitoring and control, the 

manufacturing process can be done faster, cheaper, and 

safer. As the smart systems are being deployed at plant 

level, the time and cost of deployment of such advanced 

solutions cannot be overlooked. To reduce the time to 

deployment, one of the major factors is availability of the 

relevant data in the analytics ready format. This aspect will 

be discussed further in detail in the following sections. 

Secondly, there should be a platform to rapidly develop 

process solutions and deploy in a “shadow-mode” with the 

production facility to fine tune the model parameters and 

make it ready for deployment. Finally, there should be 

rigorous testing protocol to ensure the deployed solution 

will not cause any adverse effect on process of people 

operating it. 

 

 

5. CONCLUSIONS AND FUTURE TRENDS 

The fourth industrial revolution has brought opportunities 

to understand manufacturing processes better and control 

them to serve the business purpose. Out of the 4 levels of 

the automation pyramid, Level 2 serves as the brains of the 

smart system. While commercially off the shelf (COTS), 

solutions are available for Level 0, 1, 2, and 4, and Level 2 

remains highly specialized to particular industry, process 

and manufacturing facility. With large amounts of data 

generated from Level 0/1, Level 2 systems will be able to 

compress, summarize, contextualize and visualize data for 

visual analytics, engineering analytics and 

prognostics/diagnostics. Academic research performed in 

fundamental physics based process modeling will need to 

be fused with this enhanced data to get process insights, 

predictive process and part quality, and process control. 

Smart systems will also be able to perform high fidelity 

process simulations for process set up using High 

Performance Computing (HPC). With these revolutionary 

trends, the manufacturing industry of tomorrow is certainly 

well posed to respond to the challenges of energy 

efficiency, sustainability, and ever growing demand.   
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