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ABSTRACT

With the advances in automation technologies, data
science, process modeling and process control, industries
worldwide are at the precipice of what is described as the
fourth industrial revolution (Industry 4.0). This term was
coined in 2011 by the German federal government to
define their strategy related to high tech industry [1],
specifically multidisciplinary sciences involving physics-
based process modeling, data science and machine
learning, cyber-physical systems, and cloud computing
coming together to drive operational excellence and
support sustainable manufacturing. The boundaries
between Information Technologies (I.T.) and Operation
Technologies (O.T.) are quickly dissolving and the
opportunities for taking lab-scale manufacturing science
research to plant and enterprise wide deployment are better
than ever before. There are still questions to be answered,
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such as those related to the future of manufacturing
research and those related to meeting such demands with a
highly skilled workforce. Furthermore, in this new
environment it is important to understand how process
modeling, monitoring, and control technologies will be
transformed. The aim of the paper is to provide state-of-
the-art review of Smart Manufacturing and Industry 4.0
within scope of process monitoring, modeling and control.
This will be accomplished by giving comprehensive
background review and discussing application of smart
manufacturing framework to conventional (machining)
and advanced (additive) manufacturing process case
studies. By focusing on process modeling, monitoring,
analytics, and control within the larger vision of Industry
4.0, this paper will provide a directed look at the efforts in
these areas, and identify future research directions that
would accelerate the pace of implementation in advanced
manufacturing industry.

1. INTRODUCTION

Various manufacturing industries are constantly
improving the efficiency and consistency in their
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operations by reducing the extant of manual labor tending
to advanced manufacturing equipment. This reduction
happens with the increased level of integration of advanced
controls into manufacturing processes. This control spans
from manufacturing preparation tasks, material handling,
logistics, material removal, additive manufacturing
operations, assembly, quality control, and packaging.
Some global companies have introduced lights-out
facilities and are moving towards a more distributed
approach of process control and monitoring. However,
recent advances in computing capabilities are not always
easy to implement since not all advanced manufacturing
equipment has up to date embedded systems that would
enable network connectivity. Utilization rates could vary
greatly across the different parts of the manufacturing
systems and many of these systems could have long life
cycles. Typical advanced manufacturing systems will have
machines that have interfaces and controllers that can be
from different generations, or they could be from different
manufacturers. They can vary greatly in what kind of data
storage capabilities they have, as well as in network
accessibility and security systems. Due to the sensitive
nature of advanced manufacturing systems and various
worst-case scenarios that may occur during the non-
proficient operation of these, many of the equipment
manufacturers limit access to modifying and adapting
control units and processing systems, aside from also
limiting local data storage. These limitations inhibit more
integrated and connected manufacturing systems of the
future. In fact, to some extent, many of these advances in
the possible use of cloud-based computing and on-demand
data analytics in industrial processes are effectively being
hindered by such restrictions imposed by advanced
manufacturing equipment manufacturers.

This state of the art review discusses smart
manufacturing in the context of conventional and modern
manufacturing process modeling, monitoring and control.
To facilitate the discussion, the first few sections of the
paper present the state of industrial automation in the 21
century, laying down the terms of the automation pyramid
in smart manufacturing pyramid. The upcoming and
ongoing revolution in industry (Industry 4.0) is then
discussed with its various aspects. The discussion then
diverts to state of modeling, monitoring and control for
conventional processes, as an example. Then, the Additive
Manufacturing process is presented as a representative of
the modern manufacturing process, which is evolving in
the smart manufacturing environment, along with current
and future developments. The paper concludes with a brief
discussion of challenges and opportunities.

1.1 STATE OF INDUSTRIAL AUTOMATION IN 21ST
CENTURY

One paradigm of digital manufacturing (DM) is related
to the design and development of manufacturing systems
that would support the whole product lifecycle. This view
of DM emphasizes the importance of a digital thread,
which would enable accurate and real-time data sharing
among different lifecycle stages. As per the report by
McKinsey (2015), the fourth industrial revolution is
marked by digitalization of manufacturing operations,
assets and integration of design, manufacturing, life cycle
tracking and eventual recycle/reuse of the materials
towards the next product lifecycle [2]. Towards the end of
the third industrial revolution, the rapid growth in
computer technology led to moving from manual control
to automatic control; further, the advances in information
technology allowed growth of business intelligence
applications that streamline product design, development
and manufacturing. However, the development of all these
systems were done in isolated environments.

The second paradigm of digital manufacturing is
related to the data exchange in real-time on the shop floor.
It is applicable to previously defined concepts of Computer
Integrated Manufacturing (CIM). In 2010, the
International Society of Automation launched a standard
(ANSI/ISA95) that outlines and assigns “levels” to
constitute an automation pyramid, as shown in Figure 1,
and described subsequently [3]. It is important to mention
that the ideology that ANSI/ISA95 is built on has been
around in traditional metal manufacturing since 1990’s.
Levels 0 through 3 have been existing for manufacturing
control, but with ANSI/ISA95 it has been formalized and
propagated across other industries.

Planning,
Logistics

Manufacturing
Operations

Management

= Real-time Control 1

© |sA-595 Automation Control Levels

Figure 1: ISA Automation levels
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The anticipated benefits claimed by Industry 4.0 can
only be achieved if there is a robust framework to allow
interaction between all these automation layers, minding
the efficiency, cost, and security.

Levels 0 & 1: Sensors, Actuators and Real-time
Controllers

Sensors and actuators in manufacturing process are the
foundational layer of the ISA95 automation pyramid.
These include position, velocity, acceleration, temperature,
pressure, humidity sensors, etc. and pneumatic/hydraulic
actuators, servo motors actuators, etc. Over time the
sensors and actuators have evolved in terms of the task
delivery accuracy, as well as reporting their own health.
Across different industries, the standard used for Level 1
is a combination of microcontrollers and Programmable
Logic Controllers (PLC); however, while PLCs are known
for their fast execution (~5-10 ms deterministic loop rate),
they fall short on reporting, trending, and data historian
tasks. For some of the time-critical applications, advanced
microcontrollers are also used as a level 1 controller. Over
last few years, the trend in the process industry has
gravitated towards combined Level O/Level 1 solution
systems. This makes sense because it decreases the
maintenance requirements for the manufacturing plants, as
well as provides a means to connect to the higher
automation layers.

Level 2: Advanced Control Solutions

ISA95 defines the second level of automation as the
advanced control layer [4]. This is the level at which the
process setup control (feed forward/predictive), which is
within the process control (model-based control, adaptive
control), as well as run-to-run control (product-to-product
adaption and control) are deployed. The Level 2 control
provides set points for the Level 1 control hardware. This
is important since the process knowledge (physics-based
models, process experience and recipes, and data driven
knowledge) can be embedded in a control strategy at this
layer. The control execution loop rate is in the order of 100
ms and up to the duration of the manufacturing cycle. Such
control is typically hosted on industrial computers running
real time Linux or Windows Operating systems.

Level 2 is also a platform for leveraging the process
modeling solutions. Over time, there have been
tremendous advances in creating manufacturing process
models. These are typically first principles-based models
coupled with experimental and/or numerical simulated
data. Due to advances in High Performance Computing
(HPC), it is possible to embed intelligence of these models

in process monitoring and control. When this is
‘perfected,” Level 2 would be the host for such solutions.

Level 3: Manufacturing Operations Management
Systems

For any modern manufacturing facility, the actual
manufacturing process is only a subset of the activity
performed. In the manufacturing flowpath, there are
multiple non-manufacturing process related activities that
need to be performed for efficient production.
Manufacturing Operations Management (MOM) refers to
the infrastructure that encompasses raw material
acquisition and preprocessing, scheduling, and resource
planning. This requires interchange of information
between various process databases and historians, and user
interfaces for engineers and managers to execute activities
required for production. Level 3 is the first instance where
operation intelligence and business intelligence interface
drives process optimality.

At Level 3, process solutions, such at line balancing,
predictive process setup, and flowpath optimization can be
deployed since it has an overarching view of the process,
as well as business goals. Although current MOM systems
mostly focus on driving the basic performance metrics,
such as an Overall Equipment Efficiency (OEE) and
Downtime and Scrap rate, there are opportunities for more
profitable solutions.

Level 4: Business Planning and Logistics

Enterprise Resource Planning (ERP) and other
logistics applications are hosted at Level 4. At this level
the variation in the system is only based on the type of
manufacturing viz: continuous, semi-continuous or
discrete. There is limited influence on the type of system
deployed (for example, the ERP systems for glass
manufacturing and chemical manufacturing would have
similarities due to both being continuous manufacturing
processes, but MOM systems would be drastically
different). Such solutions are well developed and deployed
widely in various industries.

1.2 KEY COMPONENTS OF INDUSTRY 4.0:

Industry 4.0, being an emerging phase/trend in the
digitization of manufacturing, naturally has a number of
evolving definitions; however, all these descriptions
include certain key technological components briefly
outlined next. Among the current descriptors of the fourth
industrial revolution, many of which were coined by
consultancies predominantly based in the United States
and Germany, perhaps McKinsey [2, 5] captures best the
overarching disruptions that inevitably gave birth to and

3 Copyright © 2018 by ASME



essentially constitutes Industry 4.0 — “(i) the rise in data
volumes, computational power, and connectivity; (ii) the
emergence of analytics and business-intelligence
capabilities; (7ii) new forms of human-machine interaction;
and (iv) improvements in transferring digital instructions
to the physical world.”
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Figure 2: Key Elements and Benefits of Smart Manufacturing
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Figure 2 shows some of the key elements of Smart
Manufacturing / Industry 4.0 framework along with the
benefits. The connected enterprise enables operational
excellence focused benefits such as energy optimization,
asset utilization, process insights and health monitoring. At
the same time, promoting sustainable manufacturing as
shown in Figure 3.
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Figure 3: Smart manufacturing benefits promoting sustainable
manufacturing

It is important to note that while Smart Manufacturing is a
framework for enterprise operations, the focus of the
current state of the review is based on modeling,

monitoring and process control. To that end, the following
discussion will focus on elements that enable the same.

Rise in Data Volumes, Computational Power, and
Connectivity — Big Data, Cloud Computing, Industrial

Internet of Things (I1oT)

Big Data: Big Data is termed as massive datasets having
large, varied, and complex structure with the purposes of
storing, analyzing, and visualizing for further process
improvements [6]. For data generated in manufacturing,
this takes a slightly different flavor while retaining some
of the major characteristics, typically known as “3V”’s of
Big Data [7]. These are — Volume: disk space occupied,
Variety: different forms of data (SQL databases, text files,
video logs, web files, documents), and Velocity: sampling
frequency of data. Note that there have been extensions of
these characteristics to Veracity (replication of same data
and filtering through the same) and Value (the extent to
which big data generates economic value [8-10]. Big Data
research is an active area in the fields of computer science
and technology [11]. However, Big Data, as it applies to
manufacturing, must be considered in its own context. A
large manufacturing facility typically generates data that
satisfies the definition of Big Data (has “5V”
characteristics). Retention and processing of data is not
only valuable from a process efficiency point of view, but
also a regulatory standpoint in certain cases. This requires
a large enterprise level of data architecture leveraging
advances in database technology. Data infrastructure of
this scale is termed Data Warehousing [12]. A typical data
warehousing architecture has data collection and related
functions (ETLR - Extraction, Transform, Load &
Refresh), physical storage and servers to serve analytics,
reports and data mining.

Cloud Computing.: Also called the “cloud,” this is another
key enabler of Industry 4.0. As defined by the National
Institute of Standards and Technology (NIST), it is
essentially “...a model for on-demand network access to a
shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services)”
[13]. Together with high-performance computing (HPC)
and high-throughput computing (HTC) capabilities, which
are rapidly increasing in computing power/efficiency, this
combination provides a very powerful and decentralized
data/computing resource.

Industrial Internet of Things (IIoT): Internet of Things is a
paradigm in which the pervasive presence around us are of
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a variety of things or objects, which through unique
addressing schemes, can interact with each other and
cooperate with their neighbors to achieve common goals
[14]. This paradigm rose out of maturity of multiple
communication technologies like wireless communication,
Near Field Communications, and Wireless Sensor and
Actuators. One of the many sub-paradigms is the Industrial
Internet of Things, which is the information networks of
physical objects (sensors, actuators, machines) that allow
interaction and cooperation towards achieving a
synergistic goal [15]. The IloT can be thought of as a
bridge between the real and digital counterparts [3].

In this context, one can understand the importance of
data infrastructure architecture, as detailed by the ISA95
automation pyramid. Having data infrastructure in place
that can connect between Level 2 (advanced modeling and
control solutions) and Level 3 (PLM) enables seamless
integration of smart objects across the factory floor. As
shown in Figure 4, the Industrial Internet of Things acts as
a connecting layer between physical and cyber counterpart.

Network of real things

-

From dat: ( :)
r'!c.-J |"|;J:!l-.9I'I Industrial Internet of Things
PLM models L.d Digital Factory

Network of digital models

Figure 4: Industrial Internet of Things

Representative examples of IloT deployment at the
customer/consumer-level include equipment health and
status updates/alerts provided to consumers of machinery
(e.g., Caterpillar), HVAC systems (both commercial and
residential), mobility avenues (e.g., traffic, monitoring of
commercial fleets, telemetry for farming, fuel efficiency),
and infrastructure (building security, climate control,
elevators). It should be noted that, often, a third-party
entity proficient in data analytics is tasked with collecting
the data and managing notifications. Further, though the
majority of these actions lead to an eventual manual
intervention to investigate or remedy a potential problem,
growing levels of automated decision making and control
are being implemented in these scenarios. These decision
making and control actions are more prevalent in the
digital factory. For instance, parts are tracked through the
inventory, retrieval, processing, assembly and quality
testing/control stages by RFID and other means in
integrated factory setups to address production bottlenecks

or other failures in leading players like BMW, Zeiss,

Siemens and Airbus. In these instances, real-time data is

collected through an array of sensors, quality management

accomplished through automated decision making,
tangible actions/tasks conducted through control to move
along the production process, and the data points, and
information and analytics recorded in a time-historied
cloud-database for future use. Some examples include

[16]:

- The German chemical giant BASF at a pilot smart
factory, “is producing fully customized shampoos and
liquid soaps. When a customer inputs an order, RFID
tags attached to empty soap bottles on the assembly
line communicate to production machines what kind of
soap, fragrance, and labeling is required,” leading to
highly customizable products.

- A global tech firm, CGI, “has teamed-up with
Microsoft to deliver a predictive maintenance solution
for elevators manufactured by ThyssenKrupp, by
securely connecting thousands of sensors and systems
within elevators, which monitor everything from
motor temperature to shaft alignment, to Microsoft’s
cloud-based Azure Intelligent Systems Service,
enabling technicians to use real-time IIoT data to spot
a repair before the breakdown occurs.”

- AGCO, headquartered in the U.S., is “tackling the
pending food shortage of the projected increase in the
world population by using AgCommand, a precision
agriculture telemetry tool to enable users to better
understand their operation’s performance through an
interface that farmers and dealers could understand.”

Emergence of Business-Intelligence — System
Integration, Analytics

Business Intelligence is defined as the collection of
decision support technologies that enable knowledge
workers to make better decisions [12, 17]. Some of the
most promising advantages of Industry 4.0 include
leveraging data generated inside the smart factory,
decisions related to the product and process quality,
flowpath optimizations, as well as operational excellence.
To fulfill this vision, the systems, operating at different
levels of automation pyramid, must be integrated in
cohesive manner. Table 1 shows how the automation
levels, analytics tasks, and data sampling requirements are
related.
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Table 1: Automation levels, analytics tasks and supporting data
sampling requirements

Automation | Modeling/Monitor | Data Sampling
Level ing/Analytics task | period

0 Real Time Signal Milliseconds
processing/ Feature
Extraction

1 Supervisory
Control/ Simplistic
Models /
Visualization

2 Advanced
Analytics Models /
Advanced Control
3 Process
Optimizations/Pred
ictive Models/
Simulations/BI
tools

4 Plant/Enterprise
Optimizations/Pred
ictive Models

Seconds

Minutes/hours

Hours/days

Months

At the lower levels of automation, more real time and
low computationally expensive tasks are performed; at
higher levels, both complexity of models and the amount
of data rises. It is also important to note the data sampling
needs at each level. For instance, Level 0-1 systems
operate at millisecond time intervals for fast data
operations. The fidelity required for operations at higher
levels allow for either summary data or features extracted
on higher frequency data.

In addition to the vertical integration of different levels
(0-4) within the automation pyramid, as described above,
horizontal integration across all aspects of the supply
chain, both within and external to the factory, is an
essential aspect of Industry 4.0. Note that the analytics and
reports are typically used with the explicit information
available in the data (production volume, sales, downtime,
overall equipment efficiency (OEE), etc.). Data mining, on
the other hand, is used to generate knowledge out of the
implicit information in the data [12, 18-20].

Forms of Human-Machine Interaction _and,
Connecting the Digital to the Physical World

Other key components of Industry 4.0 include novel
forms of human-machine interaction through interfaces
such as touch and feature/voice recognition. The use of
virtual reality (VR) and augmented reality (AR) interfaces,
sometimes in combination with haptic, visual or audio
feedback, further refine the capabilities and efficiency of

such interactions. The ability to embed (simple)
knowledge-based algorithms within the setup to predict
process outcomes for simple perturbations in input process
parameter makes this even more powerful. Finally, the
drastic improvements in transferring digital instructions to
the physical world through mature cyber-physical systems,
such as in advanced robotics systems and on-demand
additive manufacturing, help complete the loop for
translating concepts/needs to functional products.

1.3 Focus TOPICS OF THIS REVIEW

With this background on Smart Manufacturing
infrastructure, automation levels, and interaction with the
IIOT, we can review process modeling, monitoring, and
control. The goal of this review is to show the historical
context of the process modeling/monitoring/control
methodology for conventional processes, as well as a few
recent developments. Then, the Additive Manufacturing
process modeling, monitoring and control use case will be
discussed to put it in the context of Industry 4.0.

2. MODELING, MONITORING, ANALYTICS AND
CONTROL OF TRADITIONAL MANUFACTURING
PROCESSES

2.1 MATERIAL AND PROCESS MODELING

Modeling has typically been used as a tool to gain an
understanding  of  the  machine-process-material
interaction. The objective is to determine the list of key
sub-processes and phenomena dominating the behavior of
the processed material. In essence, the physical model and
associated mathematical model are built to construct the
virtual process, where the input of processing (in terms of
tunable parameters) is mapped to output quantities (part
performance predictions). The primary goal of material
and process modeling is to design, monitor, predict, and
control the interactions between work materials and
processes. At a high level, the material and process
modeling can be divided into two major categories —
physics-based modeling and data driven modeling.
Physics-based modeling methods rely on mathematical
representation of the physical phenomena that occur during
the processing of material. The primary modes for model
building are analytical and numerical within the physics-
based process modeling. A summary of the modeling
approach examples is shown in Table 2. As a use case(s),
Machining process and Rolling process modeling have
been chosen due to the volume of industrial products these
two conventional processes generate. It is important to note
that the list of references is representative and not
exhaustive.
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Table 2: Modeling Methodology for use cases of conventional
manufacturing processes.

Modeling | Machining  Process | Rolling Process
Method Modeling Modeling
Analytical | Orthogonal Machining | Primary roll
Theory [21, 22] force model
Single DOF chatter | based on static
[23] equilibrium [29]
Nonlinear regenerative | Roll  pressure
Chatter [24] equivalence to
Shear zone deformation | strip stress [30]
theory [25] Simplified &
Ploughing process | usable Orowan
theory [26] model [31]
Elastic contact
deformation and
friction effects [27]
Tool chip interface
theory improvements
[28]
Numerical | Thermal finite element | Numerical
analysis of machining | Integration of
[32] Orowan’s
Cutting model based on | equations [36]
plane strain assumption | 2D finite
[33] element model
Viscoelastic model to | [37]
predict chip geometry | 2D model
[34] including
Incremental elastic- | thermal effects
plastic finite element | [38]
model [35]

Need for Surrogate Models of Physical Processing in
Manufacturing

In the previous sections, we discussed the
conventional methods of process modeling, which has
been a traditional approach in the last few decades.
However, as the complexity of the manufacturing
increases, the modeling of all stages and phenomena
becomes challenging due to high computational cost. A
traditional modeling effort is typically used for process
optimization in terms of processing variables (e.g.
deposition speed, temperature or laser power in AM) to
determine the optimal processing window. Very often
these tasks can be performed off line, where computational
cost is less important. However, when any real time
autonomous correction is required (Level 2), there is a need

for reliable models that can provide almost instantaneous
response to, and suggestion for, the corrective action.
Typically, the accuracy of the reliable model is correlated
with the complexity of the physics-based model and
associated high cost of the prediction. With the advances
of data driven approaches, there is a need for wider
adoption of these techniques to build statistical surrogate
models of manufacturing that could accelerate the online
process control schemes without sacrificing the accuracy
of modeling (Level 2). Moreover, the surrogate models
should be adaptable for reuse when new specification
arrives. This is of high importance in the context of shifting
manufacturing from mass production to model
customization.

2.2 DIAGNOSTICS/PROGNOSTICS APPROACHES FOR
MODEL-BASED VS. DATA-DRIVEN MODELS

The diagnostics are mainly classified into either model-
based or data-driven approaches. Model-based techniques
rely on an accurate dynamic model of the system and are
capable of detecting even unanticipated faults. They use
the actual system and model outputs to generate a
“‘discrepancy’’ or residual, between the two outputs to
indicate a potential fault condition, then a bank of filters is
used to identify the actual faulty component. On the other
hand, data-driven techniques often address only
anticipated fault conditions, where a fault ‘‘model’’ is a
construct or a collection of constructs, such as neural
networks or expert systems that must be trained first with
the known prototype fault patterns (data) and then
employed online to detect and determine the faulty
component’s identity. The Pros and Cons of different fault
diagnosis approaches are summarized in Table 3.
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Table 3: Comparisons on Different Fault Diagnosis Approaches

Approaches Pros Cons
Data- Expert Suit for systems that are difficult to model, | A considerable amount of time may elapse
Driven system i.e. systems involving subtle and | before enough knowledge is accumulated to
Approach complicated interaction whose outcomes | develop the necessary set of heuristic rules for
are hard to predict reliable diagnosis, very domain dependent,
difficult to validate
Neural Able to implicitly detect complex | Black box nature, great computational burden,
network nonlinear relationships between dependent | proneness to overfitting, and the empirical
and independent variables, able to detect | nature of model development.
possible interactions between predictor
variables, and the availability of multiple
training algorithms.
Fuzzy Easily understood linguistic variables, | Hard to develop a model from a fuzzy system,
logic allows imprecise inputs, | no systematic approach to fuzzy system
reconciles conflicting objectives, rule base | designing.  Instead,  empirical  ad-hoc
or fuzzy sets easily modified, simplify | approaches are used. Require more fine tuning
knowledge acquisition and representation, | and simulation before operational
a few rules encompass great complexity
Hidden Can easily be extended, because in the | The Viterbi algorithm is expensive, both in
Markov training stages, HMMs are dynamically | terms of memory and compute time. For a
Model assembled according to the class | given set of seed sequences, there are many
sequence. Smaller models are easier to | possible HMMs, and choosing one can be
understand, but larger models can fit the | difficult.
data better.
Model- Fault Easy to read and understand, can be | Difficultto include information about ordering
Based tree synthesis automatically and timing information of events in fault tree.
Approach No way to treat common-cause failures
resulting from fault propagation.
Model Mostly for continuous system, is able to [ Computation load for detailed online
based detect abrupt faults and incipient fault modeling of process, the sensitivity of
analytical detection process with respecting errors and
redundancy measurement noise
Finite Easy to set up the component and system | Model complexity explosion by explicitly
state model, mostly for DES listing all possible states and events, lack of
automaton readily available software packages
Petri Mathematical capability and graph | Lack of readily available software packages
net description of DES

Prognostics focuses on understanding the failure
modes, detecting precursors to failure, tracking
degradation mechanisms, and predicting the remaining
useful life of components and systems. Prognostics is still
an emerging field, and much of the published work has
been exploratory in nature. Current prognostics technology
is considered to be immature due to the lack of uncertainty
calculations, validation, and verification methods, as well
as risk assessment for Prognostics and Health Management
(PHM) system development [39].

The prognostics methods are largely classified in three
types [40]. Type I: Reliability data-based (population),
which considers historical time to failure data used to
model the failure distribution. They estimate the life of an
average component under average usage conditions. Type
II: Stressor data-based (population), which also considers
the environmental stresses (temperature, load, vibration,
etc.) on the component. They estimate the life of an
average component under specific usage conditions. Type
III: Effects-based (individual), which also consider the
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measured or inferred component degradation. They
estimate the life of a specific component under specific
usage and degradation conditions. The pros and cons for
these three approaches are summarized in Table 4.
Manufacturing-related  prognostic  and  health
management (PHM) research work is divided into
machine-level and system-level studies, which highlights
the greater emphasis found in the literature on the machine-

level, such as machine tools PHM. These machine tool
PHM studies include the machine tool spindle, cutting tool
wear or breakage [41-45] and the machine tool feed-axis
system [46-48].

The PHM in the system level starts from the overall
equipment efficiency (OEE) to the overall throughput
effectiveness [49].

Table 4 Comparisons on Different Prognostics Approaches

Typical
Type Pros Cons algorithm(s)
Reliability Estimate failure density functions with | Failure modes cannot be random, it must | Weibull
data- parametric or non-parametric models: A | be related to measurable stressors for | Analysis
based population of components is tracked and | historical data to be beneficial.
their failure times are noted. Components | Without  consider the operating
that have not failed are called censored data, | condition of the component.
which is also useful in predicting the failure
density.
Stressor Use covariates to control or predict | Environmental effects that drive the | Proportional
data based reliability model on the failure distribution | failure modes must be measurable Hazards
parameters Model
Effects- Use degradation measures to form a | Degradation severity must be related to | Cumulative
based degradation path for prognostic prediction a measurable parameter such as tread | Damage
depth or bearing vibration level or | Models
temperature General Path
Models

2.3 CASE STUDY (TRADITIONAL MANUFACTURING) —
MACHINING PROCESSES

With connected enterprise, model based manufacturing
provides a concept of using a digital twin as a basis to plan
the processes before they are being implemented with
minimal downtime. A digital factory provides an option to
use simulations of assembly and manufacturing processes
to determine assembly tasks and tool paths in a digital
environment. Figure 5 shows an example of digital thread
in a machining process centered manufacturing. The main
machine controller captures all necessary parameters for a
machine controls such as spindle speed, material feed,
cutter shape, cutting, depth and such. The cell with the
CNC machine is connected through the data acquisition
module to the network. This enables two way
communication : from the cloud and database with control
programs related to different parts and their machining
operations to the machine controller, and from the
connected transducers to the cloud and database. The main
machine network at the shop floor is connected through
ethernet cards and connectivity modules to the main digital
thread data pathway. Internet of Things serves is

furthermore connected to the office network through the
web based enterprise resource tier. The Client Tier is
providing staff access through the office network to all
Computer Aided Engineering Applications, such as
Computer Aided Design, Computer Aided Manufacturing
applications, applications used for process planning and
simulation, converters of files to neutral data exchange
files, and furthermore to the external customer access
through the rich or thin clients.
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Figure 5:: Example of Digital Thread/Digital Twin framework

Albeit demonstrated for a single machine, the same
concept can be extended for entire machining facility. Such
framework enables advanced monitoring and control of
machining processes.

ANALYTICS AND
MANUFACTURING

3. MODELING,
CONTROL oF
PROCESSES

MONITORING,
ADVANCED

3.1 PARADIGM SHIFT IN PHYSICS-BASED MODELS OF
MANUFACTURING

Traditionally modeling has been used as a
prefabrication tool to gain a fundamental understanding of
machine-process-material interaction [50, 51], and
ultimately to optimize the fabrication process in terms of
identifying the optimal processing window. In general, the
focus has been centered around key sub-processes and
phenomena dominating the fabrication of interest [50, 52].
Significantly less attention has been paid to multi-scale
models that couple the manufacturing level with the
material behavior [53, 54]. However, as process
automation increases, the modeling must be expanded
towards multiple steps up to the entire production line.
Moreover, Industry 4.0 will heavily rely on real time
autonomous response to unexpected events like failure or
process drifts. In this context, there is a need for reliable
models that can provide almost instantaneous response in
terms of the recovery or corrective actions. Finally, the
models should be tunable towards mass customization,
small production series, and personalized products at
relatively low costs. All together the requirements for
simulation tools posed by Industry 4.0 need to reshape the
physics-based simulations. In particular, a new paradigm
for modeling tools is highly needed -- customizable, high
fidelity, multiscale models up to system level with low
computational costs seamlessly coupled with the sensors to
enable autonomous actions.

To provide a more detailed perspective, we focus here
on additive manufacturing as the new emerging
technology. However, the discussion included below is
applicable to other processes, as well. In general, we
highlight four main critical needs: (i) co-simulation, (ii)
model adaptation, (ii) model validation (iv) computational
cost, along with their interrelationships.

Co-simulation: Simulations are used in many areas in
industry with varying level of details and focus, ranging
from behavior of individual beads in direct energy
deposition processes up to supply chain modeling.
Interoperability between specialized tools and different
simulations becomes more and more important. Taking
additive manufacturing as an example, a designer creates
the project in STL format using one software, e.g.
Autodesk. The file is then sliced using another tool, for
example Slic3r [55], Cura [56], Slimplify3d [57]. If any
physics-based analysis is to be performed the STL file,
along with the generated G-code, needs to be converted
into the computational mesh that is gradually activated
using the birth and death method [58-60]. At this stage, the
choice of software is limited and dictated by the choice of
modeling tool used. Simulation software, such as NetFabb
[61] (integrated with Autodesk) or 3DSim [62] (recently
acquired by Ansys), begin to offer end-to-end solutions,
where physics-based models are integrated with the design
process. The focus of these tools is mostly on metal
printing processes and thermomechanical behavior of the
built part [63], such as the prediction of distortion
accumulation or microstructure evolution [64]. Even
within the metal additive manufacturing practices, the
physics-based simulators are yet to be fully adopted. The
choice of deposition parameters, design of supports, or any
trouble shooting are still predominantly made using trial
and error approaches. Other technologies in the additive
manufacturing family still largely lack the physics-based
simulators integrated with the design tool to optimize the
fabrication process. For example, aerosol jet printing [65]
or fused filament fabrication [66-70] received significantly
less attention, most likely due to lower business benefits.
Nevertheless, to fully capitalize on the advent of Industry
4.0 there is a need to advance physics-based modeling and
integrated simulation tools for other technologies. Outside
of the AM domain, the progress is being made around
Functional MockUp Units [70, 71] along with workflows,
where the goal is to facilitate the seamless [71, 72]
integration of various software by interface design and data
sharing.

Model adaptation: Static simulation model is currently the
dominant mode of physics-based simulation. In particular,
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the specifics of the design are translated into the input
parameters of the model, with the specific question
targeted. For example, in metal, AM engineers seek to
design the supports for structural stability [72-74].
Although some design rules can be drawn to facilitate the
decision-making process, the intricacies of the part
geometry may hamper the process necessitating geometry-
specific queries [75]. Moreover, very often several
versions of the models are constructed as a result of
optimization or customization. In such cases, significant
savings can be gained by the smart reuse of previous results
without manual interventions, for example during slicing
step [76]. AM is a highly repetitive process with high level
redundancy and high potential for model adaptation in
terms of part geometry. Recently, neural network has been
successfully harnessed to capture the thermal behavior of
several layers, building a data driven surrogate a model and
subsequently adapting it to predict temperature field for
another geometry [77]. The progress in this field is highly
needed [51, 52]. Although some design rules can be drawn
to facilitate the decision-making process, the intricacies of
the part geometry may hamper the process necessitating
geometry-specific queries.

Another challenge emerges in the relation to the Materials
Genome Initiative [78]. We witness growing effort to
accelerate the discovery of new materials. The goal is to
deploy them twice as fast at the fraction of cost [78].
Manufacturing is an important ingredient of this ambitious
goal. Consequently, the progress made around “Industry
4.0” needs to be ready for the vast expansion of the
materials to be manufactured. The modeling effort in the
area needs to be refocused into understanding the
parameters of materials, and expanding their ranges, to
facilitate manufacturing or leveraging the current
technologies. Hence, there is a need for computationally
inexpensive  surrogate models for manufacturing
processes, where the input is extended to include the
design variables of materials, as opposed to materials
properties.

Computational cost: The ability to predict the behavior of
material, one step of the production line, or the system of
factories is at the core of any optimization or adoption
within a cyber physical system. However, the accuracy of
the reliable model is typically correlated with the
complexity of the physics-based model and the associated
high cost of the prediction. With the advances of data
driven approaches, there is a need for wider adoption of
these techniques to build statistical surrogate models of
manufacturing that could accelerate the online process
control schemes without scarifying the accuracy of

modeling (Level 2). Moreover, the surrogate models
should be adaptable for reuse when new specification
arrives. This is of high importance in the context of shifting
manufacturing from mass production to model
customization. In the context of AM, the current
computational cost of physics-based models is still very
high. There are various approaches to reduce the cost. The
reduction can be achieved either at the model level by
simultaneous deposition of several layers, instead of
gradual deposition according to the path. Another
reduction can be achieved at the numerical solver level [79,
80] or by mesh coarsening whenever processes are less
dynamic [80, 81]. Finally, the surrogate models are yet to
be advanced with high impact on the design for closed loop
process control.

Model validation: Physics-based models are still to be
thoroughly validated if they are to be routinely used in the
industrial application, especially in the context of advances
towards Industry 4.0. This is certainly true if these models
are to be used as a virtual counterpart of the physical
process to suggest corrective action due to unexpected
event. In an ideal case scenario, a so called “Digital Twin”
[82-84] would use physics-based models to predict the
nominal behavior of the system of interest, with the goal to
identify potential issues of the real machine counterpart
and suggest corrective action. In the context of AM, model
validation is typically performed post-production. Due to
high computational costs associated with the high-fidelity
physics-based models, in situ validation has been limited
with recent attempts [84, 85]. As indicated in the previous
section, there is a need for surrogate models that shadow
the high-fidelity models to enable detection of potential
issues during the deposition. Self-awareness of the
machine is of high importance for AM processes, where
the part properties may be impaired by the local defects
that occurred and remained uncorrected during the printing
process. Finally, models need to be validated across
multiple levels in terms of uncertainty stacking.

3.2 CASE STUDY (ADVANCED MANUFACTURING) —
ADDITIVE MANUFACTURING PROCESSES
The advent of additive manufacturing (AM) promises
to revolutionize the reach and possibility of manufacturing.
Hod Lipson’s book Fabricated makes the case for AM as
a disruptive technology in terms of 10 different principles;
a deeper examination of these principles behooves the
following freedoms to AM from the constraints of
traditional manufacturing [86].
e Freedom of infinite complexity — it takes the same
effort, for instance, to make a square hole versus a
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round hole. Indeed, there is no need to restrict to
simple Euclidean shapes to ease manufacturing.
Freedom from assembly — the number of component
parts can be reduced by several orders of magnitude.
For example, the oft-cited General Electric LEAP
engine nozzle has zero sub-assemblies, compared to
over 20 parts in the earlier design, while being 25%
lighter.

Freedom of variation in size — the manual effort to
scale a part is negligible, as no new fixtures need to be
made if the size of the part is decreased or increased.
Freedom from material constraints — there is a
significantly reduced burden on determining the recipe
for different materials; a part can be made from
stainless steel or titanium by changing a few
parameters (laser power, scan speed, etc.), as opposed
to perhaps changing the tooling.

Freedom from expensive, skilled labor and
experience-driven knowledge — AM processes run
almost entirely on their own, irrespective of the
material and shape being produced.

Freedom from waste of energy and materials — the
amount of material and energy needed is magnitudes
smaller, for instance, the buy-to-fly ratio in AM, viz.,
the ratio of material processed to the final weight of
the part is as small as 7:1 compared to 20:1 with
traditional machining [87-89].

Freedom from specialized tooling, fixtures, and waste
from wear — there is no special tooling or different type
of die or tooling required. Because AM does not
require the tool to be harder than the material of the
part to be produced there is no wear or possibility of
stoppage due to broken dies.

Freedom from waste of movement and logistics — All
parts required for a product can conceivably be made
under the same roof without having to source from
different suppliers.

Freedom of production flexibility, and breaking of
batch size scheduling constraints and inventory — the
batch size and product mix can be varied at will to
match to demand. Hence, given adequate resources,
the production rate can be made to match the takt time
with zero buffer inventory needed. Furthermore, in an
AM-oriented facility, because all machines are
identical, there are no bottleneck machines (in the
parlance of theory of constraints [90]) that dictate
production. If a machine breaks down, there are other
identical machines to take the load without having to
adjust production.

Freedom from variability due to breakdowns and
maintenance — because there is no variability due to

tooling, controlling the input material is sufficient to
reduce variability. Furthermore, the uniformity of
machines regardless of part design has a great impact
on the reliability and maintainability aspects of the
production line. Instead of maintaining several service
parts and employing repair technicians for various
types of machines, a small group of personnel and
replacement items is sufficient to keep production at
pace.

These freedoms afforded by AM, make it an apt
vanguard technology to implement in the emerging
paradigm of smart and digital manufacturing (Industrie
4.0), as pointed out in the 2011 Whitehouse report on
advanced manufacturing [91]. Despite these revolutionary
possibilities, recent roadmap reports by federal agencies
and national labs emphasize the need for fundamental
research in the following areas in additive manufacturing
[92-97]:

a) Advanced and novel materials customized to the
application.

b) Process development to increase the speed and volume
of the part produced.

¢) Design rules and support structure optimization.

d) Efficient and accurate process modeling and
simulations to anticipate potential problems.

e) In-process sensing, monitoring, and control to ensure
parts are produced to specification.

f) Non-destructive evaluation and post-process quality
assurance.

g) Post-process finishing to improve surface and
geometric integrity of free-form surfaces and aid in the
removal of supports.

h) Standardization of test procedures, geometric
dimensioning and tolerancing (GD&T) and metrology
of AM parts, standardization of best practices, such as
post-process cleaning, and safety benchmarks for
handling powders.

1) Logistics and supply chain implications of AM.

j)  Cyber security to defend against intrusion of the digital
thread in AM, and protection of design intellectual

property.

From a technical vista, the current lack of fundamental
understanding of causal process mechanisms, the
microstructure of the part produced, and its relationship
with the property of the part, i.e., the process-structure-
property relationship, is at the heart of the current
repeatability and reliability-related challenges in AM.
Unlike machining and forming operations, wherein the
surface and near-surface is of concern, and the bulk of the
part can be assumed to remain unchanged, in AM the
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mechanics of surface generation is contingent on each
individual layer. A defect at any layer, if not detected and
averted before the next layer is deposited, is liable to be
permanently sealed in and, thus, affect the property of the
part.

Given the putative lack of confidence in the
consistency of AM processes, industries such as aerospace
and biomedical, therefore, demand extensive post-process
inspection of AM parts, such as X-Ray computed
tomography (XCT) [98-100]. This is cumbersome and
expensive, and will inhibit the drive to incorporate the use
of AM for mission-critical parts. This challenge is further
compounded by the need for materials testing and process
databases to qualify parts for critical components,
particularly, for aerospace applications. Because, the
sample sizes available in AM are small due to the relatively
slow and, oftentimes, highly specialized nature of the part
design, manufacturers do not have the advantage of
material performance datasets, as in machining and
forging, which have been developed over the last several
decades [98, 99].

For instance, Gorelik et al. cite the example of a crash
of a F/A-18 aircraft in 1981 that was attributed to the
premature and catastrophic failure of a turbine disk made
using a powder metallurgy process [100]. This accident led
to a 5-year decline in powder metallurgy components in
the defense industry. Given that AM processes favored for
metal parts, such as powder bed fusion (PBF) and directed
energy deposition (DED), rely on powder raw material,
there is hesitancy on the part of defense manufacturers to
adapt AM processes for mission-critical components.

A solution to overcome these quality-related
impediments in AM is to qualify the integrity of the part
in-process using in-situ sensor data. For instance,
SigmaLabs has recently trademarked the phrase in-process
quality assurance (IPQA). In a 2013 NSF workshop in AM,
Huang et al. suggest the term, certify-as-you-build,
wherein the integrity of the part is ascertained as it is being
built via the sensor signature patterns [94, 95]. A slight
caveat to the phrase certify-as-you-build is the use of the
word certify; certify typically relates to a third party
involvement. A slightly different term qualify-as-you-
build can be used instead to skirt the unsuitable
connotations associated with the former.

The crux of the challenge towards realizing the
qualify-as-you-build paradigm is to establish sensor
signature-based process maps, wherein specific sensor
signatures are intimately tied to specific types of defects.
To build these sensor signature-based process maps
requires fundamental understanding of each link in the
following AM process chain.

Process Conditions — Process Phenomena — Process
Signatures — Part Microstructure (Defects) — Process
Control (Rectification) — Part Performance.

Each of these aspects is listed herewith and exemplified in

Figure 6.

e Process conditions (e.g., parameter settings, material
contamination, part design, machine errors).

e Process phenomena (e.g., vaporization, incomplete
fusion, meltpool instability, thermal gradients).

e Sensor data signatures (e.g., meltpool thermal profile,
meltpool shape, spatter pattern) extracted from
heterogeneous in-process sensors (e.g., thermal and
high-speed cameras, photodetectors).

e Part microstructure/defects (e.g., pinhole pores,
acicular pores, distortion) caused by the above
phenomena.

e Process control (e.g., changing the process parameters,
scan strategy, part design, and support structures to
compensate for defects)

e Part performance or quality, such as the fatigue life and
surface finish.

The progress towards sensor-signature based process
maps can be put in historical perspective in terms of four
phases, with each phase often overlapping with the others.
We note that none of the following phases can be
considered to have been finished; they continue to remain
avenues for active research, given the pace at which new
materials, processes, and applications are being introduced
in AM.
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Figure 6: Schematic Stratification of the AM Process chain

Phase 1: Process Conditions - Process Phenomena

In the earlier stages of AM, the emphasis was to
establish the link between the process conditions and
process phenomena through empirical process variable-
based maps for AM processes [101-103]. For instance, in
the context of L-PBF this meant relating the areal energy
density (Ea) in terms of the laser power, scan velocity, and
hatch spacing to the structure of the meltpool. To explain
further, an inordinately high energy density leads to a
phenomena called balling, wherein the meltpool separates
into discrete parts due to changes in the surface tension and
wetting characteristics [104]. Concomitantly, the laser can
enter the so-called keyhole mode, and instead of fusing the
powder particles it may vaporize material, leading to
pinhole-shaped spherical pores, called gas porosity in the
range of 10 um. In contrast, at low Ea the energy required
to fuse the powder particles is inadequate, and the material
fails to consolidate properly, leading to large (~ 30 um to
100 pm) acicular porosity.

Phase 2: Process Phenomena - Process Conditions - Part
Microstructure = Part Performance.

Research in this phase seeks to establish the process-
structure-property relationship in AM by creating a
fundamental understanding of the causal phenomena in
AM, and its impact on the functional integrity of the part
[105-107]. Staying within this context, the multi-scale

nature of AM defects and their dependence on specific
process phenomena still remains a significant barrier. For
instance, the particle size and laser power used in laser
powder bed fusion (L-PBF) is significantly different than
blown powder DED. Hence, this phase of process
mapping is a tedious and difficult process that involves
process modeling, empirical design of experiments, and,
finally, materials characterization and testing. Each of the
links in the process chain, summarized above, is fraught
with challenges.

For example, in L-PBF there are over 50 independent
process variables [108]. Investigating the so-called
statistical main effects, let alone the interactions, of these
variables is cumbersome, and perhaps beyond the scope of
traditional design of experiments schemas. Next, the causal
phenomena itself occurs at different levels, for instance, in
L-PBF the fusion of powder and dynamics of the meltpool
has a distinctive effect on porosity. At the higher-scale, the
temperature distribution of the part and the heat flux,
owing to part design, is an important aspect influencing the
residual stresses in the part. King ef al. have used powder-
level dynamics and elucidated the effect of laser power,
scan speed, and hatch spacing on the meltpool shape and
splatter pattern [93, 109, 110]. These so-called powder-
level models require tracking each particle in and around
the meltpool, and require several days to complete on a
supercomputer. The higher-level modeling of residual
stresses though more tractable, is not easy either, and
currently, simulations are reported for a few layers of
simple geometries [105].

Phase 3: Process Conditions - Process Phenomena -
Process Signatures = Part Performance.

The aim of this phase is to capture the process
phenomena as it evolves and links them to specific defects
through sensor-signatures [91, 96]. This phase is tied to
development of new sensor hardware and data analytics to
synthesize the sensor signatures into process decisions.
Process decisions imply deducing the type, severity, and
location of an impending defect based on the sensor
signatures. Sensing and monitoring in AM can be stratified
per the scale into the following aspects [109]:

1. Monitoring of the machine condition, such as the
vibration of the recoater, clogging of the nozzle, and
the condensation of residue over the optical system.

2. Meltpool-level monitoring, such as tracking the
temperature distributions and the shape of the
meltpool, and relating these characteristics to process
conditions.

3. Hatch or scan-level monitoring, such as tracking the
temperature distribution of each hatch.
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4. Layer-level monitoring, such as imaging of the
integrity of the powder bed using an optical camera
or the thermal distribution of the layer.

5. Part-level monitoring, such as obtaining the thermal
image of the part, or its ultrasonic signature.

These five different sensing strategies are each geared
towards detecting a specific type of defect, for instance,
meltpool monitoring uncovers porosity in the part, which
occurs in the range of 10 pm to 100 wm, whereas, imaging
of the powder bed with optical sensors are focused on
detecting the onset of delamination and distortion. This
detection of multi-scale  phenomena  mandates
heterogeneous sensing, and concomitantly there is a need
for efficient methods to synthesize the sensor signatures,
and furthermore, to integrate this data with real-time
decision-making algorithms. While the sensor hardware is
continually improving, the data analytics and decision-
making aspect, which must be seamlessly integrated with
the data acquisition protocol, are currently lagging.

Phase 4: Process Conditions - Phenomena -> Process
Signatures - Microstructure (Defects) - Process Control
(Rectification) - Part Performance.

In the final phase, once the type of defect is pinpointed,
a corrective action must be suggested. The corrective
action can take several different forms, including
continuing to build with the changed process parameters or
stopping the build to prevent further waste of material.
With the advent of hybrid additive manufacturing systems,
such as the Maatsura’s Lumex series L-PBF system, DMG
Mori-Seiki’s Lasertec DED system, Optomec’s Hybrid
LENS system, wherein subtractive machining heads are
incorporated within the AM machine, it is possible to
entirely remove a layer instead of discarding the print. This
new development offers the possibility to extend the
qualify-as-you-build concept to a correct-as-you-build
paradigm, wherein, the part can be guaranteed to be defect-
free. This development of hybrid AM techniques can be
foreseen as akin to an undo command, whereby mistakes
in previous layers can be rectified.

Additive Manufacturing in the context of Smart
Manufacturing / Industry 4.0

Table 5: Additive manufacturing in context of Smart Manufacturing
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After review of the Additive Manufacturing process
modeling, monitoring and control, it is important to view
it in the Smart Manufacturing framework. Table 5 shows
an example of how various modeling, monitoring, and
control methodologies can be placed at various automation
levels. Additive manufacturing technology is ripe for
taking advantage of all aspects of Smart Manufacturing
framework, as shown in Figure 7.

Material and production
planning, PLM, part design

Process Scheduling,
Knowledge Management

Advanced Process
Monitoring and Control

L
o
g
=]
3
-
5
5]
e
S
|
£
8
-]
<
0
8
9@
<
L)

Real-time control,
multivariate monitoring

o

Figure 7: Smart Infrastructure for leveraging AM

As shown in Figure 4. the Smart infrastructure can be
leveraged right from the part design in digital space to part
production in physical space.

4. CHALLENGES AND OPPORTUNITIES

4.1 DATA COMMUNICATION AND INTEROPERABILITY
The biggest challenge in adapting the ISA 95

automation strategy is that although the process solutions

for individual levels exist, it is extremely difficult to find

15 Copyright © 2018 by ASME



one system that can communicate between all the levels in
a cost effective way. A complementary challenge is that
such a framework can be cost prohibitive for small or
medium scale manufacturing industries. Given the premise
that the production management system will be
amalgamation of heterogeneous systems at different levels
(different technologies, different vendors and OEMs etc.),
the connecting system should be able to communicate
between these system in an interoperable way.

42 MAKE VS BuUY DECISION & LONG TERM
MAINTAINABILITY

Suppose that a small or medium size manufacturing
facility wants to leverage the promise of a connected shop.
One such option is to develop a home grown system that
takes advantage of the open source protocols (MT Connect
standard, open computing platforms, etc.), by managing
the scope and organically developing a staff that can
maintain and operate such a solution. The upside of this
approach is a targeted solution that can grow with the
company, with a possible downside of not leveraging the
best practices, as well as reinventing some of the
functionalities. An alternative is to hire an automation
contractor, who can deliver a solution ready to use. This
approach can deliver a tactical solution without having to
hire and develop a software organization, with the risk of
the automation contractor not being able to sustain support
over a long period of time. In either case, a manufacturing
facility is faced with the challenge of keeping up with the
pace of computer technology development and
obsolescence.

4.3 TIME AND COST OF DEPLOYMENT OF ADVANCED
SOLUTIONS

The investment of Smart Manufacturing infrastructure
can only be justified if, through the use of advanced
process scheduling, modeling, monitoring and control, the
manufacturing process can be done faster, cheaper, and
safer. As the smart systems are being deployed at plant
level, the time and cost of deployment of such advanced
solutions cannot be overlooked. To reduce the time to
deployment, one of the major factors is availability of the
relevant data in the analytics ready format. This aspect will
be discussed further in detail in the following sections.
Secondly, there should be a platform to rapidly develop
process solutions and deploy in a “shadow-mode” with the
production facility to fine tune the model parameters and
make it ready for deployment. Finally, there should be
rigorous testing protocol to ensure the deployed solution
will not cause any adverse effect on process of people
operating it.

5. CONCLUSIONS AND FUTURE TRENDS

The fourth industrial revolution has brought opportunities
to understand manufacturing processes better and control
them to serve the business purpose. Out of the 4 levels of
the automation pyramid, Level 2 serves as the brains of the
smart system. While commercially off the shelf (COTS),
solutions are available for Level 0, 1, 2, and 4, and Level 2
remains highly specialized to particular industry, process
and manufacturing facility. With large amounts of data
generated from Level 0/1, Level 2 systems will be able to
compress, summarize, contextualize and visualize data for
visual analytics, engineering analytics and
prognostics/diagnostics. Academic research performed in
fundamental physics based process modeling will need to
be fused with this enhanced data to get process insights,
predictive process and part quality, and process control.
Smart systems will also be able to perform high fidelity
process simulations for process set up using High
Performance Computing (HPC). With these revolutionary
trends, the manufacturing industry of tomorrow is certainly
well posed to respond to the challenges of energy
efficiency, sustainability, and ever growing demand.
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