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Abstract. The goal of this work is to detect the onset of material
cross-contamination in laser powder bed fusion (L-PBF) additive
manufacturing (AM) process using data from in-situ sensors.
Material cross-contamination refers to trace foreign materials that
may be introduced in the powder feedstock used in the process due
to reasons, such as poor cleaning of the AM machine after previous
builds, or inadequate quality control during production and storage
of the feedstock powder material. Material cross-contamination may
lead to deleterious changes in the microstructure of the AM part and
consequently affect its functional properties. Accordingly, the
objective of this work is to develop and apply a spectral graph
theoretic approach to detect the occurrence of material cross-
contamination in real-time during the build using in-process sensor
signatures, such as those acquired from a photodetector. To realize
this objective Inconel alloy 625 test parts were made on a custom-
built L-PBF apparatus integrated with multiple sensors, including a
photodetector (300 nm to 1100 nm). During the process the powder
bed was contaminated with two types of foreign materials, namely,
tungsten and aluminum powders under varying degrees of severity.
Offline X-ray Computed Tomography (XCT) and metallurgical
analyses indicated that contaminant particles may cascade to over
eight subsequent layers of the build, and enter up to three previously
deposited layers. This research takes the first-step towards detecting
cross-contamination in AM by tracking the process signatures from
the photodetector sensor hatch-by-hatch invoking spectral graph
transform coefficients. These coefficients are subsequently traced
on a Hoteling 77 statistical control chart. Using this approach,
instances of Type II statistical error in detecting the onset of material
cross-contamination was 5% in the case of aluminum, in contrast,
traditional stochastic time series modeling approaches, e.g., ARMA
had corresponding error exceeding 15%.
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1 Introduction

1.1 Motivation

Powder Bed Fusion (PBF) is the AM process of choice for
making metal parts. Recent studies in the aerospace industry
have demonstrated that the PBF AM process can drastically
reduce the so-called buy-to-fly ratio, which is the ratio of the
material that is required to make a part to the final weight of
the part. The buy-to-fly ratio is typically 20:1 for traditional
subtractive and formative processes, while in the case of
metal AM this ratio can be as small as 2:1. Simultaneously,
the lead time for delivering a new part design can be
shortened from five months to less than a week [1]. This
unprecedented flexibility in design and manufacturing has
the potential to revolutionize strategic industries, such as
aerospace and biomedical.

Despite these possibilities, the poor consistency of AM parts
hinders their wider adoption for making mission-critical
components. Particularly, the presence of defects in AM
parts, such as porosity and geometric distortion, deleteriously
affect their functional properties, e.g., fatigue life and
strength [2, 3]. Unlike traditional manufacturing processes,
given the layered nature of AM, defects may form at any
layer and become permanently sealed in by subsequent layers
if they are not detected and averted promptly. Hence, there is



a need to monitor the integrity of each layer as it is being built to
ensure compliance [4].

In the context of quality assurance in AM, the current practice is to
examine the part after it is built using X-ray computed tomography
(XCT), which is exceedingly expensive and cumbersome. In a
recent review article, Seifi e al. attest that given the small batch
sizes and time required for production, statistical qualification of
AM parts based on destructive materials testing may amount to
millions of dollars and take over a decade to complete, and is
therefore impractical [5].

However, if a sensor data record exists to attest the integrity of every
layer, and if this data can be correlated back to the XCT for a few
test parts, then this recorded sensor data for each layer, instead of
XCT scanning and destructive analysis, can be used to rapidly
qualify the part quality, leading to a so-called qualify-as-you-build
paradigm in AM [6].

1.2 Objectives

As a first-step towards the long-term aim of qualify-as-you-build in
AM, the goal of this work is to detect the onset of material
contamination-related anomalies in L-PBF. In pursuit of this goal,
the objective is to develop and apply a spectral graph theoretic
approach for real-time detection of material cross-contamination
using in-process sensor signatures acquired by a photodetector. The
central hypothesis is that tracking the signatures acquired from the
photodetector in the spectral graph domain leads to early and more
accurate detection of material cross-contamination in L-PBF,
compared to the traditional stochastic delay-embedded time series
analysis of the signal, such as autoregressive (AR) and
autoregressive moving average (ARMA) modeling.

Current research in this area focuses extensively on defects, such as
porosity or distortion which result from factors related to poor
choice of process parameters, machine calibration, part design,
material, support structures, and part orientation [7, 8]. However,
detection of subtler process drifts, such as material cross-
contamination, which has been shown to cause variation in the
microstructure and functional properties, remains to be investigated
[9]. The initiation of contamination-related defects in L-PBF can be
traced to: (a) poor quality control of the material feedstock during
production and storage, and (b) inadequacies and lapses in the
procedures used to purge trace material from the AM machine or
powder recovery equipment.

To put the challenge of cross-contamination in pictorial context,
Figure 1 shows optical images of an etched Inconel 625 sample
contaminated with tungsten and aluminum material. The following
inferences can be drawn from this experimental result, which will
be described further in depth in Sec. 2.

e Figure 1(a): Contamination with tungsten manifests as unfused
particles (light hued inclusions in the darker Inconel 625
matrix). This is because the melting point of tungsten is much
higher (3422 °C) than Inconel 625 (~1300 °C). In a recent
publication, Brandéo et al. hypothesize that given the hardness
of tungsten, unmelted tungsten particles tend to become

preferred sites for crack initiation under tensile loading
[9]. At higher magnification the tungsten contaminant
particles are seen to cascade over subsequent layers.
e Figure 1(b): Contamination with aluminum does not
manifest in clearly distinguishable particle traces,
however it tends to distort the meltpool.
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Figure 1: Optical image of an etched and polished Inconel
625 specimen. The black arrow indicates the build direction.
(a) Contamination with Tungsten, which due to its high
melting point does not fuse, and tends to cascade through
several layers. The dashed-line (1) indicates the shape of a
molten pool, penetrated into the previously deposited layer.
Also, the overlaps between tracks could be recognized. The
dashed line and circle (2) shown at the bottom of the tungsten
specimen are representative of the hatching directions in the
two consecutive layers. (b) The contamination with
aluminum is not readily evident as trace particles, but closer
examination of the hatch pattern reveals that aluminum tends
to distort the meltpool as indicated by the arrows (3).

These images demonstrate that material cross-contamination
changes the basic microstructure of the build, and has the
proclivity to spread beyond the layer in which they occur.
This work addresses the following open research question in
the context of material cross-contamination in L-PBF process
— what process signatures can capture the onset of
contamination? This is an important area of research, which
is at the crux of the current repeatability and reliability-
related challenges in AM and will ultimately set the stage for
a qualify-as-you-build paradigm in AM.

The rest of this paper is organized is follows the experimental
setup is described in Sec. 2, the spectral graph theoretic
approach is explained and applied to the L-PBF process
signals in Sec. 3, followed by conclusions and avenues for
future work in Sec. 4.

2 Experimental Setup

2.1 Customized Test Bed and Data Acquisition

In this research, a customized, open architecture L-PBF
system was designed and implemented at Edison Welding
Institute (EWI) [10]. An array of heterogeneous sensors is
integrated within the apparatus, and are located on an optical
table near the laser scanning mechanism. Further details of
this setup are available in Ref [10]. To precisely control the
degree of material contamination, a material dispensing setup
was fabricated. The setup attaches to the recoater arm and
powder material (contaminant) is dispensed from a motorized
hopper. Figure 2 shows the schematic illustration of the



sensor test bed and the equipment used for contaminant dispersion.

An Inconel 625 cuboid-shaped test part of size 10 mm X 10 mm x
15.20 mm (height) was built with the following parameters after
extensive offline studies studies: scan velocity (V) 960 mm/s, laser
power (P) 270 W, layer thickness (T) 0.040 mm, and hatch spacing
(H) 0.1 mm, i.e., an applied volumetric energy density (Ev =
P/(HxVxT)) =70 J/mm?> The experimental procedure for dispersing
contaminants, namely aluminum (Al) and tungsten (W), is depicted
in Figure 3. The contaminants are dispersed over the powder bed
every 20" layer.

Photodetector signal data is acquired for total of 10 layers as
follows: (1) two layers prior to contamination, (2) the contaminated
layer, and (3) seven layers subsequent to the contamination. This
procedure for purposely introducing contamination was repeated 3
times over a total build consisting of 380 layers. The severity of
contamination is controlled at three levels for each type of
contaminant material (viz., aluminum and tungsten). Further, the
contaminant is distributed over the powder bed in two ways, called
dynamic contamination and static contamination.

Scanning Optlcil “lable

Figure 2: A schematic representation of the (a) L-PBF platform and
(b) fixture made by EWI to deliver metered amount of
contamination [10].

In static contamination, which occurs in levels labeled L, L,, and
Ls, the contaminant material is dispensed entirely in one area with
the recoater stopped. In the so-called dynamic contamination mode,
the contaminant powder is dispensed synchronous with the recoater
movement. That is, the hopper motor in the fixture shown in Figure
2(b) is continually operational as the recoater rakes the Inconel
powder across the bed. This sort of deposition of the contaminant
results in an elongated line or streak across the powder bed, and is
labeled Ls, Ls and Le¢ in ascending order of severity. The
consequence of the different types of contamination types is
captured using an in-process optical camera in Figure 4(a;) and (ay);
the severity of the contamination levels and their sequence within
each replicate of experiment are further detailed in Figure 4(b,) and
(b2). To minimize the eventuality of powder leakage, the whole test
bed including dispenser, build plate, and collector was sealed. After
testing the system for 100 times, no leakage of powder is detected
from the powder container on the build platform and collector.

Figure 3: The manner in which contamination is introduced
during the build. The gray layers show the ones where data is
captured. The red layers indicate where the contamination is
introduced.
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Figure 4: Post recoating optical images after contamination
with (a;) Tungsten and (a2) Aluminum. The unit volumes of
deposited powders for each of six contamination levels in (b;)
tungsten and (bz) aluminum.

The photodetector sensor utilized in this study was a Thorlabs
model PDA36A and is coaxial and synchronized with the
switching of the laser, i.e., data is acquired only when the
laser is active. The analog photodetector signal is acquired
via National Instruments NI 9215 analog input module. The
detection range of the photodetector is the 350 nm to 1100
nm range with the gain of 40 dB, and the sampling rate is set
at 10 KHz. The data is acquired hatch-by-hatch; the laser
traces hatch pattern alternating parallel for odd layers, and
perpendicular for even layers. The hatch pattern information
will be used later in Sec. 3.2 to relate the sensor signatures to
the position at which the contamination occurs in XCT. In all,
data is available for 180 of the total 380 layers. Each layer is
comprised of 100 hatches, and each hatch takes ~ 0.01 sec.
(10 milliseconds) to melt noting that the laser scan velocity
is 960 mm/sec. Hence there are 100 photodetector data points
acquired per hatch given that the sensor sampling rate is 10
KHz. In this build the laser stays on for ~ 1 sec. per layer, and
for a total of under 7 minutes counting the time to melt the
contour. The photodetector signal related to the six level of
tungsten and aluminum contamination for one iteration are
shown in Figure 5(a) and (b), respectively. The layers
contaminated with tungsten portray significant peaks.
However, such a clear change is not apparent in the
photodetector signal for the aluminum contamination case.



Table 1: The build layout and contamination pattern. The
contamination set of L; through L¢ was deposited three times, and
in the end of 3 iterations was followed by 20 cover layers.

Contamination Base Lm? (B.L) / Start End Epd
Set # Contamination Layer | Layer Height
Layer (Ln, n=1 to 6) (mm)

BL 1 19 0.76

Li-1 20 20 0.80

BL 21 39 1.56

L2-1 40 40 1.60

BL 41 59 2.36

lteration 1 Ls-1 60 60 2.40

BL 61 79 3.16

L4-1 80 80 3.20

BL 81 99 3.96

Ls-1 100 100 4.00

BL 101 119 4.76

Le-1 120 120 4.80

x 2 iterations of BL- L¢ -2

the build pattern) BL- L -3 1211 360 | 1444
Cover Layers BL 361 380 15.20
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Figure 5: (top row) The photodetector signal associated with the six
level of (a) Tungsten contamination and (b) Aluminum
contamination in Inconel 625. (bottom row) The second
contamination level (L) is magnified and the signal corresponding
to tungsten contamination has clear spikes compared to aluminum.

3.2 Offline X-Ray Computed Tomography (XCT)
Analysis of the Build

The aim of this section is to understand the effect of contamination
on the structure of the build. To realize this aim, the specimen is
examined using X-Ray Computed Tomography (XCT) along the
various cutting planes demarcated in Figure 6. The vertical and
horizontal cross sections of the 3D volume captured for the tungsten
contaminated specimen is shown in Figure 7, wherefrom the
contaminant powder is clearly discerned.

Direction

Figure 6: Three-dimensional (3D) reconstruction of the
specimen contaminated with tungsten powder particles. The
powder recoating moves along the X-axis direction.

Figure 7(a) shows the XCT across the vertical cross-section
(Y-Z plane, cutting plane A-A as depicted in Figure 7) of the
test artifact. Observed in Figure 7(a) are the contaminated
layers over three replicates. Closer examination of these
vertical cross-sections reveals that for high tungsten
contamination levels, such as L3, the tungsten particles
disperse up to three layers preceding the layer in which they
are introduced, and as much as eight subsequent layers. In
other words, contamination tends to cascade across layers,
and influences the structure of both the preceding and
subsequent deposition. This assertion is further corroborated
through metallurgical analysis in Figure 8.

Similarly, Figure 7 (b) shows the effect of contamination as
viewed along the X-Z direction (cutting plane B-B); Figure 7
(c) is the cross-section taken along the X-Y direction (cutting
plane C-C). We note that in Figure 7(a) and (b), due to
procedural lapses during XCT scanning. the second level of
tungsten contamination (L) for the first iteration was not
captured. This missing data is demarcated by a star in Figure
7(a) and (b).

Figure 7: The cross sectional views of the specimen
contaminated by the Tungsten powder particles, a) vertical
cross section normal to the recoating direction (cutting plane
A-A, Y-Z direction), b) vertical cross section along the
recoating direction (cutting plane B-B, X-Z direction) c)
horizontal cross section (cutting plane C-C, X-Y direction).

The specimen with embedded tungsten contaminant was
sectioned and primary etched with an alcohol-based
Kalling’s solution. The specimens were secondary etched
using a 10% chromic acid solution at 2.4 volts. In the optical
micrograph of the etched sample shown in Figure 8(a) the
presence of tungsten contaminants in the Inconel 625 matrix



is evident. More remarkably, tungsten particle traces are observed
not just in the layer they are introduced, but also over multiple layers
— both preceding and subsequent layers. The spread of contaminants
to layers beyond which they are introduced is hypothesized as the
effect of the repeated remelting of the material. However, modeling
of the meltpool dynamics is required for confirming this effect.
Recent computational modeling work at Lawrence Livermore
National Laboratories by King et al. towards simulating the
meltpool dynamics shows that material reflow and remelting
influences the structure of the previous layers, and may even be used
beneficially to control and mitigate defects, such as porosity [11].
Further investigation in this direction to elucidate how and why
material contamination cascades across layers is beyond the scope
of this work.

The cascading effect of contamination is further verified in the XCT
observations in Figure 8(b). The XCT cross-section in Figure 8(b)
is taken in the X-Y plane, the label n refers to the layer in which
contamination is introduced, n-/ is the immediate preceding layer,
n-2 is two layers prior, and so on; similarly a plus sign is used to
indicate layers subsequent to layer n.

Figure 8: The optical micrograph of a tungsten contaminated
specimen with tungsten particles observed over 8 layers. (b) XCT
images in the horizontal plane section (cutting plane C-C, X-Y
direction) for the L3 severity level shows that trace tungsten particles
persist over eight subsequent layers and penetrate through three
preceding layers.

o

Figure 9: The cross sectional views of the specimen contaminated
by the Aluminum powder particles, a) vertical cross section normal
to the recoating direction (cutting plane A-A, Y-Z direction), b)
vertical cross section along the recoating direction (cutting plane B-
B, X-Z direction).

In the context of aluminum contamination, Figure 9 shows the
vertical cross sections of the specimen; aluminum trace particles
were not detected with XCT, but as first shown in Figure 1(b,), the
meltpool in the etched sample where aluminum contamination
occurs is distorted. The subsequent section, Sec. 3 develops and
applies a spectral graph theoretic approach to capture these instances
of contamination during the build using data from the photodetector.

3  Spectral Graph Theory and its Application to
Detection of Material Cross-Contamination in
L-PBF

The aim of this section is to detect the onset of material cross-
contamination in L-PBF process using in-process data. To
realize this aim, the key idea is to transform the raw data into
a domain that makes it tractable to extract signatures in real-
time. In this work, the signal transformation procedure
adopted is from the area of spectral graph theory, and has
been discussed in depth in our previous research [12]. The
novelty herein is to focus on one signal hatch - specified as
the single line printed by the laser- and extract the sensor
signatures using spectral graph theory.

The procedure is summarized in Figure 10, and encapsulates
the four key steps. Steps 1 through 3 can be considered as the
training phase, wherein a library of sensor signatures
representing non-contaminated states is created. The last
step, Step 4 classifies an unknown signal into one of the two
states (contaminated vs. non-contaminated) in real-time
within a control chart framework. The underlying concept for
each step is summarized herewith. The mathematical
convention is to denote matrices and vectors in bold.
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Figure 10: Graphical overview of the proposed spectral graph
theoretic approach for detecting material contamination.
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Step 1: The photodetector signal xl representing each hatch
p € {1..h} at layer [ € {1...L} of the melting process is
converted into a weighted and undirected network graph G =
(V,E,W).

Step 2: The topological information in the graph G =
(V,E, W) is extracted in terms of the eigenvectors (vlez) and
eigenvalues ()‘xﬁ’) of the Laplacian matrix (szlz). In other
words, a spectral graph transform G(-) on the signal x% is
defined, i.e., G(x7) = Lp (A2, v,p).

Step 3: A learning procedure is used to obtain a universal
eigenvector basis V,,r-ma corresponding to the normal or
non-contaminated process state. Through this universal basis



a spectral graph Fourier transform G(x}) = [(xf)T(Vnormal )] is

defined. Such a graph-based Fourier transform facilitates creating a
library of spectral graph coefficients C archetypical of the non-
contaminated process state.

Step 4: The coefficients € representative of the normal or non-
contaminated process state are used to build a multivariate statistical
control chart, called the Hoteling 7° control chart. Given a new
signal y an inner product with the basis vector V,,prmar » G(¥) =
[TV 0rma )], leads to a set of new spectral graph Fourier
coefficients G (y) that are easily traced on the control chart. If G (y)
falls outside the control limits it is deemed as belonging to an out-
of-control state, i.e., in this work the data is presumably from a layer
contaminated with trace materials.

3.1 The Spectral Graph Theoretic Approach for
Analyzing Signals in Real-time

Step 1: Converting the photodetector signal hatch-by-hatch into a
network graph.

In this step, the aim is to represent each hatch related to the
photodetector sensor data x as a weighted, undirected network
G(V,E,W). Where V, E and W are the graph vertices, edges and
weight between the edges, respectively. This graph G(V,E,W) is a
lower dimensional representation of the signal x.

Consider a m-data point long 1-dimensional signal x for a layer [ €
{1 ... L} per the matrix shown in Eqn. (1). In this work L = 180 (data
from ten layers for each of the six levels of contamination replicated
thrice, 10 x 6 x 3).

1

x, =" . T le (1.1} (1)

Each layer is comprised of / hatches, in this work # = 100, m =
10,000. Thus, the signal x; is further divisible into the corresponding
h hatches, each hatch has k& data points, with & = 100. This
information was obtained by tracking the on-off switching time of
the laser in each layer, i.e., the time between when the laser goes on
and off relates to one hatch. Let each hatch in a layer be defined as
a matrix x} ,p € {1..h}, L € {1..L}, where i (=100) is the
number of hatches per layer and L (=180) is the number of layers,
so that it can be written in matrix form as,

xf = [xl e xq xT .. xk]T (2)

To transform a signal of each hatch into a network graph, the
following procedure is followed. First, the pairwise comparisons
Wy, is computed using a kernel function Q [13] per Eqn. (3), where

x9 and x" are two points of signal for hatch x}
wer = Q(x%,x")V q,r € (1--k). 3)

While different types of kernel functions (3, such as the radial basis
or Mahalanobis can be defined to obtain the graph G. For simplicity,
in this work we use the standardized Euclidean kernel shown in Eqn.
(4), where V is the variance of the signal x?.

wer = (x7 - X"V x? —x7) “)

The symmetric similarity matrix S*¥ = [w, | represents a
weighted and undirected network graph G; each row and
column of $¥*¥ is the vertex V (or node) of the graph, the
relationship between two nodes is indexed by edges, in terms
of its connection status E and weight W. The graph is then
represented as G = (V,E,W) [14]. To be more specific we
make the following notational additions to the similarity
matrix S and graph G: S P G P> where x7 relates to a specific

hatch p for the signal related to the layer /.

Step 2: Extracting topological information for the graph
surface

This phase aims to extract topological information from the
graph G. Once the data xf in a particular hatch is represented
as a graph G > the Laplacian Eigenvectors v,p are

computed. This topological information is subsequently used
to capture the process drifts from the nominal condition.
From x}, the degree d, of a node q, q={1..k} is
computed, which is a count of the number of edges that are
incident upon the node. The node degree is the sum of each
row in the similarity matrix $¥** and the diagonal degree
matrix D is structured from d, as follows,

i )
dg =Zqu Vg={1..k}
r=1

Drxk ¢ diag(d,, -, dy). (6)
This leads to the normalized Laplacian £ of the graph G,
which is defined as,

1 1
LEDZx(D—S)xD 2,

1 w1 >
@
Thereafter, the Eigen spectrum of £ is computed as,
Ly = v. (8)

At the end of step 2, we have essentially defined a spectral
graph transform on a signal xf;

G(x7) > LpAp,v,0). ©)
In other words, we have transformed the signal x] for a
specific hatch in terms of the eigenvectors (v) and
eigenvalues (?\x?) of its Laplacian matrix (fo)

1 (7)
where, D "z = diag

Step 3: Building the signal basis and spectral transformation

This step aims to obtain the eigenvectors of £ » across all
1
non-contaminated hatches and converge it towards a
universal eigenvector basis. In other words, we want to
represent the signal during the non-contaminated state in
terms of a single or universal eigenvector represented as

vnormal .



Step 3.1: A single universal basis V,,o;mq; 1S obtained by applying
a simple update schema [15]. As the eigenvectors VP, for each

hatch is calculated, we update the basis as follows,
foﬂ = vxf +A (Uxf+1 - Uxf) , p€E {1..h},
le {1..1}, (10)
Vwormar = vx;‘l
Initialized with V,1 = v,1 with A set the to a small value (in our
case 0.001). To make the process computationally simpler only a
small set of the first 10 non-zero Eigenvectors of the Laplacian szlv

are updated.

Step 3.2: We define the spectral graph transform, which is analogous
to the discrete Fourier transform. A spectral graph Fourier transform
G(-) on a signal hatch x7’ can be defined as follows [16],

6(x0) = | Vnormat )] (an
Applying this inner product through all the non-contaminated layers
and hatches by taking the product (xf)T “Voormar» L = {1...L},
p € {1...h}, leads to the graph coefficient matrix C.

C= [[(x%)T(vnormal )= Cl,l]?n'
a[(xﬁ )T(Vnormal )= Crp ”

Essentially, each term c;,,, [ = {1..L},p € {1...h}, is a matrix
that is 1 X n long, where 7 is the number of Eigenvectors in the
universal basis Vyopmq selected for analysis. Each ¢;, can be
visualized as a set of output variables which needs to be tracked
across the process — they are termed as spectral graph Fourier
transform coefficients.

(12)

Step 4: Change point detection using spectral graph control chart

This step aims to detect material cross-contamination by tracking
the spectral graph transform coefficients ¢, ;. To realize this aim, we
use a multivariate statistical control chart called the Hotelling 72
[17]. The control limit of the chart is constructed based on the so-
called in-control state which in the context of this work is defined
as the non-contaminated signal. For the Hoteling 7% control chart
only the upper control limit needs to be estimated as the lower
control limit is zero. The application of the control chart proceeds in
two phases, in the first phase (Phase 1) called the training phase, the
upper control limit of the chart is constructed based on the spectral
graph Fourier coefficients from the non-contaminated state; and in
the second phase (Phase 2), called the monitoring phase, the
coefficients for incoming signals for each new hatch is tracked on
the chart, and their status, i.e., whether they belong to contaminated
or non-contaminated state is determined.

Step 4.1: Phase 1 — Training the control chart

In this phase we ascertain the control limits of the chart. Data points
within the control limits are said to be in-control, which in the
context of this work refers to non-contaminated state. The data
points falling outside the control limits are termed out-of-control. In
this research, an out-of-control point is interpreted as the onset of
cross-contamination.

For setting the control limits, we only use the photodetector
signals from the two layers before the contamination is
introduced, and only those from the first iteration of the build.
Such an exceedingly conservative strategy towards
determining the control limits largely precludes the
possibility of introducing signals which might be vitiated,
noting that metallurgical analysis revealed that
contamination tends to cascade over several subsequent
layers.

Accordingly, only 24 of the total 60 layers for which data is
available in iteration 1 are used in the training phase,
amounting to 2400 hatches. This translates to roughly 15%
of the available data for 180 layers used for analysis.

The test statistic, or the point plotted on the control chart is
called the 7? value, and is delineated in Eqn. (13) where C is
the spectral graph theoretic coefficient matrix mean vector,
and S™1 is the inverse of the covariance matrix of C.

Tl?p = (Cl.p -C ) ‘s (crp — c) (13)

The upper control limit (UCL) of the chart is calculated using
Eqn. (14) where B ¢ /2, (h.-n-1)/2 15 the upper a tail of a Beta
distribution with parameters 7 (the number of eigenvectors)
and h and L are the number of hatches and number of layers,
respectively. The lower control limit of a Hoteling 77 is set at
zero. In this work, we set o= 0.1%.

(hL — 1)?

UCL = TBO{/VL/Z,(hL—%—l)/Z (14)

Thereafter, the T2 values from Eqn. (13) are plotted on the
control chart, and the UCL is revised by removing any data
points that fall erroneously above it. The re-estimation of the
control limit by removing erroneous out-of-control data is
only done once, and is called the delete and revise procedure.

Step 4.2: Phase 2 — Using the control chart for monitoring
the process

Once the UCL of a chart is determined, the new sensor
signatures are plotted upon the chart as follows. Suppose a
photodetector signal y is obtained for a hatch, we estimate its
graph Fourier coefficients G (y) as,

C(}’) = [(y)T(vnormal )] (15)

The Hoteling 77 statistic, labeled T; for this new sensor
signature is calculated as follows,

Ty =(60-C) S (GE»-C) (16)
The T; value is plotted on the control chart, and if it falls

above the UCL, we conclude that contamination has
occurred.

We now briefly describe the statistical error measurements
that underscore the effectiveness of detecting contamination
in the context of a control chart. Control charts are culpable
of two types of statistical errors, namely, Type I (a or false



alarm) and Type II (B or failing to detect). The Type I error rate is
the percentage of data points (each data point on the control chart
used in this work represents a hatch) that are falsely categorized as
falling above the upper control limit when the process is in-control.
In other words, a data point is falsely deemed to indicate
contamination, i.€., there is no actual contamination, but the control
chart erroneously indicates that contamination has occurred.
Conversely, the Type II (B) error rate is the percentage of data points
that fall inside the UCL when they should in reality lie outside, i.e.,
contamination has occurred, but the control chart fails to indicate it
because the data point falls inside the control limits. Given a finite
amount of data there is a tradeoff involved between Type I and Type
II errors.

3.2 Application to Detection of Contamination in L-PBF

In this section, the proposed spectral graph theoretic algorithm is
applied to the L-PBF process with the aim of detecting the onset of
aluminum and tungsten cross-contamination from the photodetector
signals. First, the photodetector signal for the non-contaminated
state is apportioned hatch-by-hatch for each layer. This is possible
because the laser position is tracked and recorded throughout the
build. The photodetector signal for each hatch p for layer / is denoted
as xf in Eqn. (2).

Next, using Eqn. (3) and (4) the pairwise comparison between
different rows of photodetector hatch is performed to provide the
similarity matrix S elated to graph G = (V, E,W). Going through
the second step, the Laplacian matrix of graph £ is constructed using
Eqn. (7). Then the first 10 (= ) non-zero Laplacian Eigenvectors
v;,i = {2 ...11} are used to build a spectral universal basis V,rma
necessary for spectral transformation (Eqn. (10)). Next, the spectral
graph Fourier coefficients (C) are obtained by taking the inner

T
product (x7)" (Vpormar ) per Eqn. (12).

Finally, the coefficients of C are traced on a Hoteling 7% control
chart. Per the procedure for building the Phase 1 control chart
described in Step 4.1, the upper control limit (UCL) is first estimated
by only considering the so-called in-control signal, viz., those layers
not contaminated with tungsten or aluminum particles. As
mentioned previously, this was restricted to 24 of the 60 layers for
the first iteration of the build with 100 hatches per layer. The T?
statistic and the upper control limit (UCL) are calculated based on
Eqn. (13) and (14).

The Phase 1 spectral graph theoretic Hoteling 7% control chart along
with the data for the six level of tungsten and aluminum
contamination for the first iteration is shown in Figure 11. There are
a total of 6000 hatches (60 layers) for which the data is available in
the first iteration. Each point of the control chart is representative of
the spectral graph coefficients for one hatch. It is observed that the
chart captures the occurrence of contamination almost
instantaneously. The Type I error for tungsten and aluminum in
building the Phase 1 control chart was found to be = 0.3% and 0.7%.
After revising the control limit by applying the delete and revise
procedure once, the Type I error rate reduced to ~ 0.1%.
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Figure 11: The Phase 1 spectral Hoteling T2 control chart
related to six levels of contamination for (a) Tungsten and
(b) Aluminum contamination, wherein the control limits are
fixed.
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Next, following the procedure in Step 4.2, the Hoteling 77
chart is used to detect contamination in the rest of the two
experimental iterations of the build. The data is
representative of 120 layers, with each layer having 100
hatches for a total of 12,000 hatches. To plot the spectral
control chart for the other replicates, the upper control limit
(UCL) stays identical from Phase 1 in Figure 11. As new data
y arrives, it is multiplied with the universal basis V,,p;-mar t0
extract the first ten spectral graph Fourier coefficients G (y)
as shown in from Eqn. (15).

Subsequently, T; is obtained in Eqn. (16), and plotted on the
control chart. This simple inner product makes this approach
suitable for online monitoring. Figure 12 shows the
application of the Phase 2 control chart to each type of
contamination. Every level of tungsten contamination is
detected promptly detected by the control chart in Figure 12
(a), whereas, the aluminum contamination level Ls is missed
(an example of Type Il error).
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Figure 12: The Phase 2 spectral Hoteling T2 control chart
applied to two replications of the data for the related to the
remaining two iterations, for each of the six levels of
contamination for (a) tungsten and (b) aluminum
contamination.

Table 2 summarizes the Type I and Type II errors estimated
from three replicates of the experiment in detecting powder
contamination. We note that because it is intractable to
pinpoint a priori the exact hatch where contamination has
occurred, the Type II errors are reported in terms of all the
hatches for the entire layer where contaminants are added. In
contrast, it is known for certain whether a hatch belongs to a
non-contaminated layer, hence the Type I error can be
localized with respect to every hatch.




The results from the proposed approach are compared with
traditional delay-embedded stochastic models, such as
autoregressive (AR), autoregressive moving average (ARMA), and
autoregressive integrative moving average (ARIMA) models.
Starting with the simplest model with two autoregressive terms, the
model search is stopped when the number of terms in the model
reaches 10. The stopping criteria is chosen so that the number of
terms in the most complicated model does not exceed the number of
eigenvectors (7 =10) used in the spectral graph theoretic approach.

For each model, the Hoteling 7? control chart is constructed and the
Type I and Type II errors are estimated using the same procedure
used for the proposed spectral graph theoretic approach. The Phase
2 results for the traditional stochastic time series methods are
presented in Table 2, from which it is evident that the onset of
material cross-contamination is promptly detected in the case of
tungsten contamination; the Type II (B) error rate is negligible for
tungsten contamination and the Type I (a) error is less than 1% for
a majority of cases. However, detection of aluminum contamination
is rather intractable with existing approaches; the Type II error
exceeds 10%. The results depicted in Table 2 also provide the
average computation time for extracting the 72 values for one hatch
in the Phase 2 part of the control chart. The computation time for the
proposed approach is less than a millisecond (~ 0.8 millisecond),
which is magnitude smaller in comparison to traditional approaches.
Thus, attesting to the viability of the approach for real-time process
monitoring in AM.

Table 2: The algorithm accuracy in comparison with traditional
approaches for detecting the Tungsten and Aluminum
contamination. The numbers in the parenthesis are from three-fold
experimental replications.

Aluminum Contamination
Type | Computation
Model Type I error .
Structure error (%) Time
(%) (Per hatch, sec)

ARMA (4,6) 0.8 (0.2) 66.7(16.7) 0.1302

ARMA (6,4) 1.7 (0.1) 16.7 (9.2) 0.2829

ARIMA (4,6) 1.1 (0.0) 66.7(16.7) 0.1560

ARIMA (6,4) 1.6 (0.1) 11.1 (9.6) 2.4152

AR (10) 0,5 (0.1) 33.3(17) 0.8641

Stat Features 1.5 (0.0) 11.1 9.6) 0.0427
Proposed

Approach 0.5 (0.0) 5.0(09.2) 0.0008

Tungsten Contamination
Model Type I error Type I Computation
Structure (%) error Time
(%) (Per hatch, sec)

ARMA (4,6) 1.2 (0.0) 0.0 (0.0) 0.1302

ARMA (6,4) 1.0 (0.1) 0.0 (0.0) 0.2829

ARIMA (4,6) 1.2 (0.1) 0.0 (0.0) 0.1560

ARIMA (6,4) 1.6 (0.1) 0.0 (0.0) 2.4152

AR (10) 0.8 (0.2) 0.0 (0.0) 0.8641

Stat Features 1.3 (0.7) 0.0 (0.0) 0.0427
Proposed

Approach 1.1(0.1) 0.0 (0.0) 0.0008

3.3 Verification with XCT

Continuing with the analysis, since the position data for each
hatch of the photodetector signal is available, the spectral
graph T2 coefficients can be correlated with the layer-by-layer
contamination pattern obtained from the CT scan. Such an
attempt is made in Figure 13 for the tungsten contamination
case. In Figure 13(a), the Hoteling 77 values for the spectral
graph coefficients are color coded, with red indicating out-
of-control or contaminated hatches, and black representing
the nominal (contamination-free) condition. The coefficients
are superimposed on the XCT of the specimen taken along
the X-Z cross-section in Figure 13(b); the XCT is along the
cutting plane B-B in Figure 13. From the overlaid plot in
Figure 13(b) it is evident that there is a near one-to-one
correlation between the sensor signatures and the layer at
which contamination occurs.

This result corroborates that the spectral graph sensor
signatures are indeed indicative of material cross-
contamination and can be traced back to physical locations
where contamination is present. This traceability of sensor
signatures to XCT demonstrates the viability of the qualify-
as-you-build paradigm in AM, wherein in-process sensor
data instead of cumbersome offline measurement and testing
can be used to rapidly qualify the part quality.

Furthermore, through this research, once the presence of
contaminants is discovered at a layer, measures to forestall
further their spread over future layers can be taken. Such a
preventive strategy could be, for instance, rescanning an
entire layer with higher energy density to ensure thorough
fusion of contaminant particles like tungsten. In the worst-
case scenario, the build can be stopped to prevent poor
quality builds and waste of expensive powder.

Figure 13: (a) The T? values of the spectral graph Fourier
coefficients are color coded, red indicates out-of-control
(contaminated) hatches, and black indicates in-control
hatches. These T? values are plotted along the X-Z plane of
the part, since the position



4 Conclusions and Future Work

This work describes a spectral graph theoretic approach to detect
occurrence of material cross-contamination in laser powder bed
fusion (L-PBF) additive manufacturing process (AM) based on in-
process sensor data. The key idea is to convert a signal into its
network graph equivalent, and subsequently extract so-called
spectral graph Fourier coefficients as surrogate signatures to track
the process hatch-by-hatch. A photodetector signal is specifically
used to demonstrate the efficacy of the approach in L-PBF of
Inconel 625 alloy, in which are induced two types of foreign
material contaminants, namely, tungsten and aluminum varying in
the severity and the manner in which they are introduced (static
deposition, and dynamic/continuous deposition over a layer).

The key advantages of the approach over existing time-delay
stochastic time series modeling techniques, such as autoregressive
moving average (ARMA) is that: (a) it does not require fitting a
model to the data, essentially it is model-free; and (b) eschews
decomposition or extraction of features from each incoming signal,
a simple inner product with a eigenvector basis is required thus
saving on computational time. As a result, the approach detects
instances of material contamination with high accuracy (worst case
Type I error < ~1%, and Type II error < 5%), which is magnitude
improvement over traditional time series modeling. The ability to
detect contamination was corroborated with offline metallurgical
and X-ray computed tomography (XCT) scanning.

A major drawback of this work is that uses only a single type of
sensor — a photodetector —to detect a specific type of defect, namely,
material cross-contamination. The efficacy of the approach using
multiple sensors for different types of defects remains to be
ascertained. Furthermore, the type and severity of contamination
could not be isolated based on data from a single photodetector, and
the effect of contamination on the mechanical properties needs to be
quantified through materials testing. This will allow completing the
loop between process phenomena, sensor signatures, and part
properties. The authors will attempt to address these gaps in their
future work in the area.
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