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Abstract. The goal of this work is to detect the onset of material 

cross-contamination in laser powder bed fusion (L-PBF) additive 

manufacturing (AM) process using data from in-situ sensors. 

Material cross-contamination refers to trace foreign materials that 

may be introduced in the powder feedstock used in the process due 

to reasons, such as poor cleaning of the AM machine after previous 

builds, or inadequate quality control during production and storage 

of the feedstock powder material. Material cross-contamination may 

lead to deleterious changes in the microstructure of the AM part and 

consequently affect its functional properties. Accordingly, the 

objective of this work is to develop and apply a spectral graph 

theoretic approach to detect the occurrence of material cross-

contamination in real-time during the build using in-process sensor 

signatures, such as those acquired from a photodetector. To realize 

this objective Inconel alloy 625 test parts were made on a custom-

built L-PBF apparatus integrated with multiple sensors, including a 

photodetector (300 nm to 1100 nm). During the process the powder 

bed was contaminated with two types of foreign materials, namely, 

tungsten and aluminum powders under varying degrees of severity. 

Offline X-ray Computed Tomography (XCT) and metallurgical 

analyses indicated that contaminant particles may cascade to over 

eight subsequent layers of the build, and enter up to three previously 

deposited layers. This research takes the first-step towards detecting 

cross-contamination in AM by tracking the process signatures from 

the photodetector sensor hatch-by-hatch invoking spectral graph 

transform coefficients. These coefficients are subsequently traced 

on a Hoteling T2 statistical control chart. Using this approach, 

instances of Type II statistical error in detecting the onset of material 

cross-contamination was 5% in the case of aluminum, in contrast, 

traditional stochastic time series modeling approaches, e.g., ARMA 

had corresponding error exceeding 15%.   

Keywords. Additive Manufacturing, Laser Powder Bed 

Fusion, Inconel 625, Material Cross-Contamination, Real-

time Monitoring, Photodetector, Spectral Graph Theory, 

Qualify-as-you-build.   

1 Introduction 

1.1 Motivation 
Powder Bed Fusion (PBF) is the AM process of choice for 

making metal parts. Recent studies in the aerospace industry 

have demonstrated that the PBF AM process can drastically 

reduce the so-called buy-to-fly ratio, which is the ratio of the 

material that is required to make a part to the final weight of 

the part. The buy-to-fly ratio is typically 20:1 for traditional 

subtractive and formative processes, while in the case of 

metal AM this ratio can be as small as 2:1. Simultaneously, 

the lead time for delivering a new part design can be 

shortened from five months to less than a week [1]. This 

unprecedented flexibility in design and manufacturing has 

the potential to revolutionize strategic industries, such as 

aerospace and biomedical. 

Despite these possibilities, the poor consistency of AM parts 

hinders their wider adoption for making mission-critical 

components. Particularly, the presence of defects in AM 

parts, such as porosity and geometric distortion, deleteriously 

affect their functional properties, e.g., fatigue life and 

strength [2, 3]. Unlike traditional manufacturing processes, 

given the layered nature of AM, defects may form at any 

layer and become permanently sealed in by subsequent layers 

if they are not detected and averted promptly. Hence, there is 
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a need to monitor the integrity of each layer as it is being built to 

ensure compliance [4].  

In the context of quality assurance in AM, the current practice is to 

examine the part after it is built using X-ray computed tomography 

(XCT), which is exceedingly expensive and cumbersome. In a 

recent review article, Seifi et al. attest that given the small batch 

sizes and time required for production, statistical qualification of 

AM parts based on destructive materials testing may amount to 

millions of dollars and take over a decade to complete, and is 

therefore impractical [5].  

However, if a sensor data record exists to attest the integrity of every 

layer, and if this data can be correlated back to the XCT for a few 

test parts, then this recorded sensor data for each layer, instead of 

XCT scanning and destructive analysis, can be used to rapidly 

qualify the part quality, leading to a so-called qualify-as-you-build 

paradigm in AM [6].  

1.2 Objectives 
As a first-step towards the long-term aim of qualify-as-you-build in 

AM, the goal of this work is to detect the onset of material 

contamination-related anomalies in L-PBF. In pursuit of this goal, 

the objective is to develop and apply a spectral graph theoretic 

approach for real-time detection of material cross-contamination 

using in-process sensor signatures acquired by a photodetector. The 

central hypothesis is that tracking the signatures acquired from the 

photodetector in the spectral graph domain leads to early and more 

accurate detection of material cross-contamination in L-PBF, 

compared to the traditional stochastic delay-embedded time series 

analysis of the signal, such as autoregressive (AR) and 

autoregressive moving average (ARMA) modeling.  

Current research in this area focuses extensively on defects, such as 

porosity or distortion which result from factors related to poor 

choice of process parameters, machine calibration, part design, 

material, support structures, and part orientation [7, 8]. However, 

detection of subtler process drifts, such as material cross-

contamination, which has been shown to cause variation in the 

microstructure and functional properties, remains to be investigated 

[9]. The initiation of contamination-related defects in L-PBF can be 

traced to: (a) poor quality control of the material feedstock during 

production and storage, and (b) inadequacies and lapses in the 

procedures used to purge trace material from the AM machine or 

powder recovery equipment. 

To put the challenge of cross-contamination in pictorial context, 

Figure 1 shows optical images of an etched Inconel 625 sample 

contaminated with tungsten and aluminum material. The following 

inferences can be drawn from this experimental result, which will 

be described further in depth in Sec. 2. 

• Figure 1(a): Contamination with tungsten manifests as unfused 

particles (light hued inclusions in the darker Inconel 625 

matrix). This is because the melting point of tungsten is much 

higher (3422 °C) than Inconel 625 (~1300 °C). In a recent 

publication, Brandão et al. hypothesize that given the hardness 

of tungsten, unmelted tungsten particles tend to become 

preferred sites for crack initiation under tensile loading 

[9]. At higher magnification the tungsten contaminant 

particles are seen to cascade over subsequent layers. 

• Figure 1(b): Contamination with aluminum does not 

manifest in clearly distinguishable particle traces, 

however it tends to distort the meltpool.  

 

Figure 1: Optical image of an etched and polished Inconel 

625 specimen. The black arrow indicates the build direction. 

(a) Contamination with Tungsten, which due to its high 

melting point does not fuse, and tends to cascade through 

several layers. The dashed-line (1) indicates the shape of a 

molten pool, penetrated into the previously deposited layer. 

Also, the overlaps between tracks could be recognized. The 

dashed line and circle (2) shown at the bottom of the tungsten 

specimen are representative of the hatching directions in the 

two consecutive layers. (b) The contamination with 

aluminum is not readily evident as trace particles, but closer 

examination of the hatch pattern reveals that aluminum tends 

to distort the meltpool as indicated by the arrows (3). 

These images demonstrate that material cross-contamination 

changes the basic microstructure of the build, and has the 

proclivity to spread beyond the layer in which they occur. 

This work addresses the following open research question in 

the context of material cross-contamination in L-PBF process 

 ̶  what process signatures can capture the onset of 

contamination? This is an important area of research, which 

is at the crux of the current repeatability and reliability-

related challenges in AM and will ultimately set the stage for 

a qualify-as-you-build paradigm in AM. 

The rest of this paper is organized is follows the experimental 

setup is described in Sec. 2, the spectral graph theoretic 

approach is explained and applied to the L-PBF process 

signals in Sec. 3, followed by conclusions and avenues for 

future work in Sec. 4.  

2 Experimental Setup 

2.1 Customized Test Bed and Data Acquisition 
In this research, a customized, open architecture L-PBF 

system was designed and implemented at Edison Welding 

Institute (EWI) [10]. An array of heterogeneous sensors is 

integrated within the apparatus, and are located on an optical 

table near the laser scanning mechanism. Further details of 

this setup are available in Ref [10]. To precisely control the 

degree of material contamination, a material dispensing setup 

was fabricated. The setup attaches to the recoater arm and 

powder material (contaminant) is dispensed from a motorized 

hopper. Figure 2 shows the schematic illustration of the 
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sensor test bed and the equipment used for contaminant dispersion.  

An Inconel 625 cuboid-shaped test part of size 10 mm × 10 mm × 

15.20 mm (height) was built with the following parameters after 

extensive offline studies studies: scan velocity (V) 960 mm/s, laser 

power (P) 270 W, layer thickness (T) 0.040 mm, and hatch spacing 

(H) 0.1 mm, i.e., an applied volumetric energy density (EV =  

P/(H×V×T))  ≈ 70 J/mm3
. The experimental procedure for dispersing 

contaminants, namely aluminum (Al) and tungsten (W), is depicted 

in Figure 3. The contaminants are dispersed over the powder bed 

every 20th layer.  

Photodetector signal data is acquired for total of 10 layers as 

follows: (1) two layers prior to contamination, (2) the contaminated 

layer, and (3) seven layers subsequent to the contamination. This 

procedure for purposely introducing contamination was repeated 3 

times over a total build consisting of 380 layers. The severity of 

contamination is controlled at three levels for each type of 

contaminant material (viz., aluminum and tungsten). Further, the 

contaminant is distributed over the powder bed in two ways, called 

dynamic contamination and static contamination. 

 

 

Figure 2: A schematic representation of the (a) L-PBF platform and 

(b) fixture made by EWI to deliver metered amount of 

contamination [10]. 

In static contamination, which occurs in levels labeled L1, L2, and 

L3, the contaminant material is dispensed entirely in one area with 

the recoater stopped. In the so-called dynamic contamination mode, 

the contaminant powder is dispensed synchronous with the recoater 

movement. That is, the hopper motor in the fixture shown in Figure 

2(b) is continually operational as the recoater rakes the Inconel 

powder across the bed. This sort of deposition of the contaminant 

results in an elongated line or streak across the powder bed, and is 

labeled L4, L5 and L6 in ascending order of severity. The 

consequence of the different types of contamination types is 

captured using an in-process optical camera in Figure 4(a1) and (a2); 

the severity of the contamination levels and their sequence within 

each replicate of experiment are further detailed in Figure 4(b1) and 

(b2). To minimize the eventuality of powder leakage, the whole test 

bed including dispenser, build plate, and collector was sealed. After 

testing the system for 100 times, no leakage of powder is detected 

from the powder container on the build platform and collector. 

 

Figure 3: The manner in which contamination is introduced 

during the build. The gray layers show the ones where data is 

captured. The red layers indicate where the contamination is 

introduced. 

 

 
Figure 4: Post recoating optical images after contamination 

with (a1) Tungsten and (a2) Aluminum. The unit volumes of 

deposited powders for each of six contamination levels in (b1) 

tungsten and (b2) aluminum. 

The photodetector sensor utilized in this study was a Thorlabs 

model PDA36A and is coaxial and synchronized with the 

switching of the laser, i.e., data is acquired only when the 

laser is active. The analog photodetector signal is acquired 

via National Instruments NI 9215 analog input module. The 

detection range of the photodetector is the 350 nm to 1100 

nm range with the gain of 40 dB, and the sampling rate is set 

at 10 KHz.  The data is acquired hatch-by-hatch; the laser 

traces hatch pattern alternating parallel  for odd layers, and 

perpendicular for even layers. The hatch pattern information 

will be used later in Sec. 3.2 to relate the sensor signatures to 

the position at which the contamination occurs in XCT. In all, 

data is available for 180 of the total 380 layers. Each layer is 

comprised of 100 hatches, and each hatch takes ~ 0.01 sec. 

(10 milliseconds) to melt noting that the laser scan velocity 

is 960 mm/sec. Hence there are 100 photodetector data points 

acquired per hatch given that the sensor sampling rate is 10 

KHz. In this build the laser stays on for ~ 1 sec. per layer, and 

for a total of under 7 minutes counting the time to melt the 

contour.  The photodetector signal related to the six level of 

tungsten and aluminum contamination for one iteration are 

shown in Figure 5(a) and (b), respectively. The layers 

contaminated with tungsten portray significant peaks. 

However, such a clear change is not apparent in the 

photodetector signal for the aluminum contamination case. 
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Table 1: The build layout and contamination pattern. The 

contamination set of L1 through L6 was deposited three times, and 

in the end of 3 iterations was followed by 20 cover layers. 

Contamination 

Set # 

Base Line (BL) / 

Contamination 

Layer (Ln, n=1 to 6) 

Start 

Layer 

End 

Layer 

End 

Height 

(mm) 

Iteration 1 

BL 1 19 0.76 

L1 -1 20 20 0.80 

BL 21 39 1.56 

L2 -1 40 40 1.60 

BL 41 59 2.36 

L3 -1 60 60 2.40 

BL 61 79 3.16 

L4-1 80 80 3.20 

BL 81 99 3.96 

L5-1 100 100 4.00 

BL 101 119 4.76 

L6-1 120 120 4.80 

× 2 iterations of 

the build pattern) 

BL- L6 -2 

BL- L6 -3 
121 360 14.44 

Cover Layers BL 361 380 15.20 

  

 

Figure 5: (top row) The photodetector signal associated with the six 

level of (a) Tungsten contamination and (b) Aluminum 

contamination in Inconel 625. (bottom row) The second 

contamination level (L2) is magnified and the signal corresponding 

to tungsten contamination has clear spikes compared to aluminum. 

3.2 Offline X-Ray Computed Tomography (XCT) 
Analysis of the Build 

The aim of this section is to understand the effect of contamination 

on the structure of the build. To realize this aim, the specimen is 

examined using X-Ray Computed Tomography (XCT) along the 

various cutting planes demarcated in Figure 6. The vertical and 

horizontal cross sections of the 3D volume captured for the tungsten 

contaminated specimen is shown in Figure 7, wherefrom the 

contaminant powder is clearly discerned. 

 

Figure 6: Three-dimensional (3D) reconstruction of the 

specimen contaminated with tungsten powder particles. The 

powder recoating moves along the X-axis direction. 

Figure 7(a) shows the XCT across the vertical cross-section 

(Y-Z plane, cutting plane A-A as depicted in Figure 7) of the 

test artifact. Observed in Figure 7(a) are the contaminated 

layers over three replicates. Closer examination of these 

vertical cross-sections reveals that for high tungsten 

contamination levels, such as L3, the tungsten particles 

disperse up to three layers preceding the layer in which they 

are introduced, and as much as eight subsequent layers. In 

other words, contamination tends to cascade across layers, 

and influences the structure of both the preceding and 

subsequent deposition.  This assertion is further corroborated 

through metallurgical analysis in Figure 8. 

Similarly, Figure 7 (b) shows the effect of contamination as 

viewed along the X-Z direction (cutting plane B-B); Figure 7 

(c) is the cross-section taken along the X-Y direction (cutting 

plane C-C). We note that in Figure 7(a) and (b), due to 

procedural lapses during XCT scanning. the second level of 

tungsten contamination (L2) for the first iteration was not 

captured. This missing data is demarcated by a star in Figure 

7(a) and (b). 

 

Figure 7: The cross sectional views of the specimen 

contaminated by the Tungsten powder particles, a) vertical 

cross section normal to the recoating direction (cutting plane 

A-A, Y-Z direction), b) vertical cross section along the 

recoating direction (cutting plane B-B, X-Z direction) c) 

horizontal cross section (cutting plane C-C, X-Y direction). 

The specimen with embedded tungsten contaminant was 

sectioned and primary etched with an alcohol-based 

Kalling’s solution. The specimens were secondary etched 

using a 10% chromic acid solution at 2.4 volts. In the optical 

micrograph of the etched sample shown in Figure 8(a) the 

presence of tungsten contaminants in the Inconel 625 matrix 
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is evident. More remarkably, tungsten particle traces are observed 

not just in the layer they are introduced, but also over multiple layers 

– both preceding and subsequent layers. The spread of contaminants 

to layers beyond which they are introduced is hypothesized as the 

effect of the repeated remelting of the material. However, modeling 

of the meltpool dynamics is required for confirming this effect. 

Recent computational modeling work at Lawrence Livermore 

National Laboratories by King et al. towards simulating the 

meltpool dynamics shows that material reflow and remelting 

influences the structure of the previous layers, and may even be used 

beneficially to control and mitigate defects, such as porosity [11]. 

Further investigation in this direction to elucidate how and why 

material contamination cascades across layers is beyond the scope 

of this work.    

The cascading effect of contamination is further verified in the XCT 

observations in Figure 8(b). The XCT cross-section in Figure 8(b) 

is taken in the X-Y plane, the label n refers to the layer in which 

contamination is introduced, n-1 is the immediate preceding layer, 

n-2 is two layers prior, and so on; similarly a plus sign is used to 

indicate layers subsequent to layer n.  

 

Figure 8: The optical micrograph of a tungsten contaminated 

specimen with tungsten particles observed over 8 layers. (b) XCT 

images in the horizontal plane section (cutting plane C-C, X-Y 

direction) for the L3 severity level shows that trace tungsten particles 

persist over eight subsequent layers and penetrate through three 

preceding layers.   

 

Figure 9: The cross sectional views of the specimen contaminated 

by the Aluminum powder particles, a) vertical cross section normal 

to the recoating direction (cutting plane A-A, Y-Z direction), b) 

vertical cross section along the recoating direction (cutting plane B-

B, X-Z direction). 

In the context of aluminum contamination, Figure 9 shows the 

vertical cross sections of the specimen; aluminum trace particles 

were not detected with XCT, but as first shown in Figure 1(b2), the 

meltpool in the etched sample where aluminum contamination 

occurs is distorted. The subsequent section, Sec. 3 develops and 

applies a spectral graph theoretic approach to capture these instances 

of contamination during the build using data from the photodetector. 

3 Spectral Graph Theory and its Application to 
Detection of Material Cross-Contamination in 
L-PBF 

The aim of this section is to detect the onset of material cross-

contamination in L-PBF process using in-process data. To 

realize this aim, the key idea is to transform the raw data into 

a domain that makes it tractable to extract signatures in real-

time. In this work, the signal transformation procedure 

adopted is from the area of spectral graph theory, and has 

been discussed in depth in our previous research [12]. The 

novelty herein is to focus on one signal hatch - specified as 

the single line printed by the laser- and extract the sensor 

signatures using spectral graph theory.  

The procedure is summarized in Figure 10, and encapsulates 

the four key steps. Steps 1 through 3 can be considered as the 

training phase, wherein a library of sensor signatures 

representing non-contaminated states is created. The last 

step, Step 4 classifies an unknown signal into one of the two 

states (contaminated vs. non-contaminated) in real-time 

within a control chart framework. The underlying concept for 

each step is summarized herewith. The mathematical 

convention is to denote matrices and vectors in bold. 

 

Figure 10: Graphical overview of the proposed spectral graph 

theoretic approach for detecting material contamination. 

Step 1: The photodetector signal 𝒙𝑙
𝑝
 representing each hatch 

𝑝 ∈  {1 … ℎ} at layer 𝑙 ∈  {1 … 𝐿} of the melting process is 

converted into a weighted and undirected network graph 𝐺 ≡
(𝑉, 𝐸, 𝑊). 

Step 2: The topological information in the graph 𝐺 ≡
(𝑉, 𝐸, 𝑊) is extracted in terms of the eigenvectors (𝒗𝒙1

𝑝) and 

eigenvalues (λ𝒙1
𝑝) of the Laplacian matrix (𝓛𝒙1

𝑝). In other 

words, a spectral graph transform 𝐺(⋅) on the signal 𝒙1
𝑝
 is 

defined, i.e., 𝐺(𝒙1
𝑝

) → 𝓛𝒙1
𝑝(λ𝒙1

𝑝 , 𝒗𝒙1
𝑝). 

Step 3: A learning procedure is used to obtain a universal 

eigenvector basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  corresponding to the normal or 

non-contaminated process state. Through this universal basis 
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a spectral graph Fourier transform 𝐺̂(𝒙𝑙
𝑝

) = [(𝒙𝑙
𝑝

)
𝑇

(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] is 

defined. Such a graph-based Fourier transform facilitates creating a 

library of spectral graph coefficients 𝑪 archetypical of the non-

contaminated process state.  

Step 4: The coefficients 𝑪 representative of the normal or non-

contaminated process state are used to build a multivariate statistical 

control chart, called the Hoteling T2  control chart. Given a new 

signal 𝒚 an inner product with the basis vector 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  , 𝐺̂(𝒚) =
[(𝒚)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )], leads to a set of new spectral graph Fourier 

coefficients 𝐺̂(𝒚) that are easily traced on the control chart. If 𝐺̂(𝒚) 

falls outside the control limits it is deemed as belonging to an out-

of-control state, i.e., in this work the data is presumably from a layer 

contaminated with trace materials.  

3.1 The Spectral Graph Theoretic Approach for 
Analyzing Signals in Real-time 

Step 1: Converting the photodetector signal hatch-by-hatch into a 

network graph. 

In this step, the aim is to represent each hatch related to the 

photodetector sensor data 𝒙 as a weighted, undirected network 

𝐺(𝑉, 𝐸, 𝑊). Where 𝑉, 𝐸 and W are the graph vertices, edges and 

weight between the edges, respectively. This graph 𝐺(𝑉, 𝐸, 𝑊) is a 

lower dimensional representation of the signal 𝒙.  

Consider a m-data point long 1-dimensional signal 𝒙 for a layer 𝑙 ∈
 {1 … 𝐿} per the matrix shown in Eqn. (1). In this work L = 180 (data 

from ten layers for each of the six levels of contamination replicated 

thrice, 10 × 6 × 3). 

𝒙𝑙 = [𝑥1 … 𝑥𝑖 ⋯ 𝑥𝑚]T, 𝑙 ∈  {1 … 𝐿} (1) 

Each layer is comprised of h hatches, in this work h = 100, m = 

10,000. Thus, the signal 𝒙𝑙 is further divisible into the corresponding 

h hatches, each hatch has k data points, with k = 100. This 

information was obtained by tracking the on-off switching time of 

the laser in each layer, i.e., the time between when the laser goes on 

and off relates to one hatch.  Let each hatch in a layer be defined as 

a matrix 𝒙𝑙
𝑝
 , 𝑝 ∈  {1 … ℎ}, 𝑙 ∈  {1 … 𝐿}, where h (=100) is the 

number of hatches per layer and L (=180) is the number of layers, 

so that it can be written in matrix form as, 

𝒙𝑙
𝑝

= [𝑥1 … 𝑥𝑞 ⋯ 𝑥𝑟 ⋯ 𝑥𝑘]T  (2) 

To transform a signal of each hatch into a network graph, the 

following procedure is followed. First, the pairwise comparisons 

𝓌𝑞𝑟 is computed using a kernel function Ω [13] per Eqn. (3), where 

𝑥𝑞 and 𝑥𝑟 are two points of signal for hatch 𝒙𝑙
𝑝
 

𝓌𝑞𝑟 = Ω(𝑥𝑞 , 𝑥𝑟) ∀ 𝑞, 𝑟 ∈ (1 ⋯ 𝑘). (3) 

While different types of kernel functions Ω, such as the radial basis 

or Mahalanobis can be defined to obtain the graph 𝐺. For simplicity, 

in this work we use the standardized Euclidean kernel shown in Eqn. 

(4), where 𝑉 is the variance of the signal 𝒙𝑙
𝑝
.  

𝓌𝑞𝑟 =  (𝑥𝑞 − 𝑥𝑟)𝑉−1(𝑥𝑞 − 𝑥𝑟) (4) 

The symmetric similarity matrix 𝑺𝑘×𝑘 = [𝓌𝑞𝑟] represents a 

weighted and undirected network graph 𝐺; each row and 

column of 𝑺𝑘×𝑘 is the vertex 𝑉 (or node) of the graph, the 

relationship between two nodes is indexed by edges, in terms 

of its connection status 𝐸 and weight 𝑊. The graph is then 

represented as 𝐺 ≡ (𝑉, 𝐸, 𝑊) [14]. To be more specific we 

make the following notational additions to the similarity 

matrix 𝑺 and graph 𝐺: 𝑺𝒙𝑙
𝑝; 𝐺𝒙𝑙

𝑝 , where 𝒙𝑙
𝑝
 relates to a specific 

hatch 𝑝 for the signal related to the layer l. 

Step 2: Extracting topological information for the graph 

surface 

This phase aims to extract topological information from the 

graph 𝐺. Once the data 𝒙𝑙
𝑝
  in a particular hatch is represented 

as a graph 𝐺𝒙𝑙
𝑝 , the Laplacian Eigenvectors 𝒗𝒙𝑙

𝑝  are 

computed. This topological information is subsequently used 

to capture the process drifts from the nominal condition.  

From 𝒙𝑙
𝑝
,  the degree 𝑑𝑞 of a node 𝑞, 𝑞 = {1 … 𝑘} is 

computed, which is a count of the number of edges that are 

incident upon the node. The node degree is the sum of each 

row in the similarity matrix 𝑺𝑘 × 𝑘  and the diagonal degree 

matrix 𝓓 is structured from 𝑑𝑞 as follows, 

𝑑𝑞 = ∑ 𝑤𝑞𝑟

𝑘

𝑟=1

 ∀ 𝑞 = {1 … 𝑘} 

(5) 

𝓓𝑘 × 𝑘 ≝ diag(𝑑1, ⋯ , 𝑑𝑘). (6) 

This leads to the normalized Laplacian 𝓛 of the graph 𝐺, 

which is defined as, 

𝓛 ≝ 𝓓 −
1
2 × (𝓓 − 𝑺) × 𝓓 −

1
2, 

where, 𝓓 −
1

2 = diag (1
√𝑑1

⁄ , ⋯ , 1
√𝑑𝑘

⁄ ). 
(7) 

Thereafter, the Eigen spectrum of 𝓛 is computed as, 

𝓛𝒗 = λ𝒗. (8) 

At the end of step 2, we have essentially defined a spectral 

graph transform on a signal 𝒙𝑙
𝑝
;  

𝐺(𝒙𝑙
𝑝

) → 𝓛𝒙𝑙
𝑝(λ𝒙𝑙

𝑝 , 𝒗𝒙𝑙
𝑝). (9) 

In other words, we have transformed the signal 𝒙𝑙
𝑝
 for a 

specific hatch in terms of the eigenvectors (𝒗) and 

eigenvalues (λ𝒙𝑙
𝑝) of its Laplacian matrix (𝓛𝒙𝑙

𝑝).  

Step 3: Building the signal basis and spectral transformation 

This step aims to obtain the eigenvectors of 𝓛𝒙1
𝑝  across all 

non-contaminated hatches and converge it towards a 

universal eigenvector basis. In other words, we want to 

represent the signal during the non-contaminated state in 

terms of a single or universal eigenvector represented as 

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  .  
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Step 3.1: A single universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙   is obtained by applying 

a simple update schema [15]. As the eigenvectors 𝒗𝒙𝑙
𝑝 , for each 

hatch is calculated, we update the basis as follows, 

𝓥
𝒙𝑙

𝑝+1  = 𝓥𝒙𝑙
𝑝 + ∆ (𝒗

𝒙𝑙
𝑝+1 − 𝒗𝒙𝑙

𝑝) , 𝑝 ∈  {1 … ℎ}, 

𝑙 ∈  {1 … 𝐿},  

𝓥𝑛𝑜𝑟𝑚𝑎𝑙  = 𝓥
𝒙𝐿

ℎ  

(10) 

Initialized with 𝓥𝒙1
1 = 𝒗𝒙1

1  with ∆ set the to a small value (in our 

case 0.001). To make the process computationally simpler only a 

small set of the first 10 non-zero Eigenvectors of the Laplacian 𝓛𝒙1
𝑝  

are updated. 

Step 3.2: We define the spectral graph transform, which is analogous 

to the discrete Fourier transform. A spectral graph Fourier transform 

𝐺̂(⋅) on a signal hatch 𝒙𝑙
𝑝
 can be defined as follows [16], 

𝐺̂(𝒙𝑙
𝑝

) = [(𝒙𝑙
𝑝

)
𝑇

(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] (11) 

Applying this inner product through all the non-contaminated layers 

and hatches by taking the product (𝒙𝑙
𝑝

)
T

∙ 𝓥𝑛𝑜𝑟𝑚𝑎𝑙 , 𝑙 =  {1 … 𝐿}, 

𝑝 ∈  {1 … ℎ}, leads to the graph coefficient matrix 𝑪. 

𝑪 = [[(𝒙1
1)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄1,1 ];…                              

…;[(𝒙L
𝑝

 
)

T
(𝒱𝑛𝑜𝑟𝑚𝑎𝑙  ) = 𝒄𝐿,𝑝 ]] 

(12) 

Essentially, each term 𝒄𝑙,𝑝, 𝑙 =  {1 … 𝐿}, 𝑝 ∈  {1 … ℎ}, is a matrix 

that is 1 × 𝓃 long, where 𝓃 is the number of Eigenvectors in the 

universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  selected for analysis. Each 𝒄𝑙,𝑝 can be 

visualized as a set of output variables which needs to be tracked 

across the process – they are termed as spectral graph Fourier 

transform coefficients.  

Step 4: Change point detection using spectral graph control chart 

This step aims to detect material cross-contamination by tracking 

the spectral graph transform coefficients 𝒄𝑙,𝑝. To realize this aim, we 

use a multivariate statistical control chart called the Hotelling T2 

[17]. The control limit of the chart is constructed based on the so-

called in-control state which in the context of this work is defined 

as the non-contaminated signal. For the Hoteling T2 control chart 

only the upper control limit needs to be estimated as the lower 

control limit is zero. The application of the control chart proceeds in 

two phases, in the first phase (Phase 1) called the training phase, the 

upper control limit of the chart is constructed based on the spectral 

graph Fourier coefficients from the non-contaminated state; and in 

the second phase (Phase 2), called the monitoring phase, the 

coefficients for incoming signals for each new hatch is tracked on 

the chart, and their status, i.e., whether they belong to contaminated 

or non-contaminated state is determined. 

Step 4.1: Phase 1 – Training the control chart 

In this phase we ascertain the control limits of the chart. Data points 

within the control limits are said to be in-control, which in the 

context of this work refers to non-contaminated state. The data 

points falling outside the control limits are termed out-of-control. In 

this research, an out-of-control point is interpreted as the onset of 

cross-contamination.  

For setting the control limits, we only use the photodetector 

signals from the two layers before the contamination is 

introduced, and only those from the first iteration of the build. 

Such an exceedingly conservative strategy towards 

determining the control limits largely precludes the 

possibility of introducing signals which might be vitiated, 

noting that metallurgical analysis revealed that 

contamination tends to cascade over several subsequent 

layers.  

Accordingly, only 24 of the total 60 layers for which data is 

available in iteration 1 are used in the training phase, 

amounting to 2400 hatches. This translates to roughly 15% 

of the available data for 180 layers used for analysis.   

The test statistic, or the point plotted on the control chart is 

called the T2 value, and is delineated in Eqn. (13) where 𝑪̅ is 

the spectral graph theoretic coefficient matrix mean vector,  

and 𝑆−1 is the inverse of the covariance matrix of 𝑪.  

𝑇𝑙,𝑝
2 = (𝒄𝑙,𝑝 − 𝑪̅ )

 ′
𝑆−1 (𝒄𝑙,𝑝 − 𝑪̅ )  (13) 

The upper control limit (UCL) of the chart is calculated using 

Eqn. (14) where 𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 is the upper α tail of a Beta 

distribution with parameters 𝓃 (the number of eigenvectors) 

and ℎ and 𝐿 are the number of hatches and number of layers, 

respectively. The lower control limit of a Hoteling T2
 is set at 

zero. In this work, we set α = 0.1%.  

UCL =
(ℎ𝐿 − 1)2

ℎ𝐿
𝛽 𝛼,𝓃/2,(ℎ𝐿−𝓃−1)/2 (14) 

Thereafter, the T2 values from Eqn. (13) are plotted on the 

control chart, and the UCL is revised by removing any data 

points that fall erroneously above it. The re-estimation of the 

control limit by removing erroneous out-of-control data is 

only done once, and is called the delete and revise procedure. 

Step 4.2: Phase 2 – Using the control chart for monitoring 

the process 

Once the UCL of a chart is determined, the new sensor 

signatures are plotted upon the chart as follows.  Suppose a 

photodetector signal 𝒚 is obtained for a hatch, we estimate its 

graph Fourier coefficients 𝐺̂(𝒚) as,  

𝐺̂(𝒚) = [(𝒚)𝑇(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  )] (15) 

The Hoteling T2
 statistic, labeled 𝑇𝑦

2 for this new sensor 

signature is calculated as follows, 

𝑇𝑦
2 = (𝐺̂(𝒚) − 𝑪̅ )

 ′
𝑆−1 (𝐺̂(𝒚) − 𝑪̅ )  (16) 

The 𝑇𝑦
2 value is plotted on the control chart, and if it falls 

above the UCL, we conclude that contamination has 

occurred. 

We now briefly describe the statistical error measurements 

that underscore the effectiveness of detecting contamination 

in the context of a control chart.  Control charts are culpable 

of two types of statistical errors, namely, Type I (α or false 



8 

 

 

alarm) and Type II (β or failing to detect). The Type I error rate is 

the percentage of data points (each data point on the control chart 

used in this work represents a hatch) that are falsely categorized as 

falling above the upper control limit when the process is in-control. 

In other words, a data point is falsely deemed to indicate 

contamination, i.e., there is no actual contamination, but the control 

chart erroneously indicates that contamination has occurred. 

Conversely, the Type II (β) error rate is the percentage of data points 

that fall inside the UCL when they should in reality lie outside, i.e., 

contamination has occurred, but the control chart fails to indicate it 

because the data point falls inside the control limits. Given a finite 

amount of data there is a tradeoff involved between Type I and Type 

II errors. 

3.2 Application to Detection of Contamination in L-PBF 

In this section, the proposed spectral graph theoretic algorithm is 

applied to the L-PBF process with the aim of detecting the onset of 

aluminum and tungsten cross-contamination from the photodetector 

signals.  First, the photodetector signal for the non-contaminated 

state is apportioned hatch-by-hatch for each layer. This is possible 

because the laser position is tracked and recorded throughout the 

build. The photodetector signal for each hatch p for layer l is denoted 

as 𝒙𝑙
𝑝
 in Eqn. (2).  

Next, using Eqn. (3) and (4) the pairwise comparison between 

different rows of photodetector hatch is performed to provide the 

similarity matrix 𝑺 elated to graph 𝐺 ≡ (𝑉, 𝐸, 𝑊). Going through 

the second step, the Laplacian matrix of graph 𝓛 is constructed using 

Eqn. (7). Then the first 10 (= 𝓃) non-zero Laplacian Eigenvectors 

𝒗𝑖 , 𝑖 = {2 … 11} are used to build a spectral universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  

necessary for spectral transformation (Eqn. (10)). Next, the spectral 

graph Fourier coefficients (𝑪) are obtained by taking the inner 

product (𝒙𝑙
𝑝

)
𝑇

(𝓥𝑛𝑜𝑟𝑚𝑎𝑙  ) per Eqn. (12). 

Finally, the coefficients of 𝑪 are traced on a Hoteling T2 control 

chart. Per the procedure for building the Phase 1 control chart 

described in Step 4.1, the upper control limit (UCL) is first estimated 

by only considering the so-called in-control signal, viz., those layers 

not contaminated with tungsten or aluminum particles. As 

mentioned previously, this was restricted to 24 of the 60 layers for 

the first iteration of the build with 100 hatches per layer. The 𝑇2 

statistic and the upper control limit (UCL) are calculated based on 

Eqn. (13) and (14).  

The Phase 1 spectral graph theoretic Hoteling T2 control chart along 

with the data for the six level of tungsten and aluminum 

contamination for the first iteration is shown in Figure 11. There are 

a total of 6000 hatches (60 layers) for which the data is available in 

the first iteration. Each point of the control chart is representative of 

the spectral graph coefficients for one hatch. It is observed that the 

chart captures the occurrence of contamination almost 

instantaneously.  The Type I error for tungsten and aluminum in 

building the Phase 1 control chart was found to be ≈ 0.3% and 0.7%. 

After revising the control limit by applying the delete and revise 

procedure once, the Type I error rate reduced to ≈ 0.1%.  

 

Figure 11: The Phase 1 spectral Hoteling T2 control chart 

related to six levels of contamination for (a) Tungsten and 

(b) Aluminum contamination, wherein the control limits are 

fixed. 

Next, following the procedure in Step 4.2, the Hoteling T2 

chart is used to detect contamination in the rest of the two 

experimental iterations of the build. The data is 

representative of 120 layers, with each layer having 100 

hatches for a total of 12,000 hatches. To plot the spectral 

control chart for the other replicates, the upper control limit 

(UCL) stays identical from Phase 1 in Figure 11. As new data 

𝒚 arrives, it is multiplied with the universal basis 𝓥𝑛𝑜𝑟𝑚𝑎𝑙  to 

extract the first ten spectral graph Fourier coefficients 𝐺̂(𝒚) 

as shown in from Eqn. (15). 

Subsequently, 𝑇𝑦
2 is obtained in Eqn. (16), and plotted on the 

control chart. This simple inner product makes this approach 

suitable for online monitoring. Figure 12 shows the 

application of the Phase 2 control chart to each type of 

contamination. Every level of tungsten contamination is 

detected promptly detected by the control chart in Figure 12 

(a), whereas, the aluminum contamination level L5 is missed 

(an example of Type II error). 

 

Figure 12: The Phase 2 spectral Hoteling T2 control chart 

applied to two replications of the data for the related to the 

remaining two iterations, for each of the six levels of 

contamination for (a) tungsten and (b) aluminum 

contamination. 

Table 2 summarizes the Type I and Type II errors estimated 

from three replicates of the experiment in detecting powder 

contamination. We note that because it is intractable to 

pinpoint a priori the exact hatch where contamination has 

occurred, the Type II errors are reported in terms of all the 

hatches for the entire layer where contaminants are added. In 

contrast, it is known for certain whether a hatch belongs to a 

non-contaminated layer, hence the Type I error can be 

localized with respect to every hatch.  
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The results from the proposed approach are compared with 

traditional delay-embedded stochastic models, such as 

autoregressive (AR), autoregressive moving average (ARMA), and 

autoregressive integrative moving average (ARIMA) models. 

Starting with the simplest model with two autoregressive terms, the 

model search is stopped when the number of terms in the model 

reaches 10. The stopping criteria is chosen so that the number of 

terms in the most complicated model does not exceed the number of 

eigenvectors (𝓃 =10) used in the spectral graph theoretic approach.  

For each model, the Hoteling T2 control chart is constructed and the 

Type I and Type II errors are estimated using the same procedure 

used for the proposed spectral graph theoretic approach. The Phase 

2 results for the traditional stochastic time series methods are 

presented in Table 2, from which it is evident that the onset of 

material cross-contamination is promptly detected in the case of 

tungsten contamination; the Type II (β) error rate is negligible for 

tungsten contamination and the Type I (α) error is less than 1% for 

a majority of cases. However, detection of aluminum contamination 

is rather intractable with existing approaches; the Type II error 

exceeds 10%. The results depicted in Table 2 also provide the 

average computation time for extracting the T2 values for one hatch 

in the Phase 2 part of the control chart. The computation time for the 

proposed approach is less than a millisecond (~ 0.8 millisecond), 

which is magnitude smaller in comparison to traditional approaches. 

Thus, attesting to the viability of the approach for real-time process 

monitoring in AM. 

Table 2: The algorithm accuracy in comparison with traditional 

approaches for detecting the Tungsten and Aluminum 

contamination. The numbers in the parenthesis are from three-fold 

experimental replications. 

Aluminum Contamination 

Model 

Structure 

Type I 

error  

(% ) 

Type II error  

(% ) 

Computation 

Time  

(Per hatch, sec) 

ARMA (4,6) 0.8 (0.2) 66.7(16.7) 0.1302 

ARMA (6,4) 1.7 (0.1) 16.7 (9.2) 0.2829 

ARIMA (4,6) 1.1 (0.0) 66.7(16.7) 0.1560 

ARIMA (6,4) 1.6 (0.1) 11.1 (9.6) 2.4152 

AR (10) 0,5 (0.1) 33.3 (17) 0.8641 

Stat Features 1.5 (0.0) 11.1 (9.6) 0.0427 

Proposed 

Approach 
0.5 (0.0) 5.0 (9.2) 0.0008 

Tungsten Contamination 

Model 

Structure 

Type I error  

(% ) 

Type II 

error  

(% ) 

Computation 

Time  

(Per hatch, sec) 

ARMA (4,6) 1.2 (0.0) 0.0 (0.0) 0.1302 

ARMA (6,4) 1.0 (0.1) 0.0 (0.0) 0.2829 

ARIMA (4,6) 1.2 (0.1) 0.0 (0.0) 0.1560 

ARIMA (6,4) 1.6 (0.1) 0.0 (0.0) 2.4152 

AR (10) 0.8 (0.2) 0.0 (0.0) 0.8641 

Stat Features 1.3 (0.7) 0.0 (0.0) 0.0427 

Proposed 

Approach 
1.1 (0.1) 0.0 (0.0) 0.0008 

3.3 Verification with XCT  

Continuing with the analysis, since the position data for each 

hatch of the photodetector signal is available, the spectral 

graph T2 coefficients can be correlated with the layer-by-layer 

contamination pattern obtained from the CT scan. Such an 

attempt is made in Figure 13 for the tungsten contamination 

case.  In Figure 13(a), the Hoteling T2
 values for the spectral 

graph coefficients are color coded, with red indicating out-

of-control or contaminated hatches, and black representing 

the nominal (contamination-free) condition. The coefficients 

are superimposed on the XCT of the specimen taken along 

the X-Z cross-section in Figure 13(b); the XCT is along the 

cutting plane B-B in Figure 13. From the overlaid plot in 

Figure 13(b) it is evident that there is a near one-to-one 

correlation between the sensor signatures and the layer at 

which contamination occurs.  

This result corroborates that the spectral graph sensor 

signatures are indeed indicative of material cross-

contamination and can be traced back to physical locations 

where contamination is present. This traceability of sensor 

signatures to XCT demonstrates the viability of the qualify-

as-you-build paradigm in AM, wherein in-process sensor 

data instead of cumbersome offline measurement and testing 

can be used to rapidly qualify the part quality. 

Furthermore, through this research, once the presence of 

contaminants is discovered at a layer, measures to forestall 

further their spread over future layers can be taken. Such a 

preventive strategy could be, for instance, rescanning an 

entire layer with higher energy density to ensure thorough 

fusion of contaminant particles like tungsten. In the worst-

case scenario, the build can be stopped to prevent poor 

quality builds and waste of expensive powder. 

 

Figure 13: (a) The T2 values of the spectral graph Fourier 

coefficients are color coded, red indicates out-of-control 

(contaminated) hatches, and black indicates in-control 

hatches. These T2 values are plotted along the X-Z plane of 

the part, since the position 
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4 Conclusions and Future Work 
This work describes a spectral graph theoretic approach to detect 

occurrence of material cross-contamination in laser powder bed 

fusion (L-PBF) additive manufacturing process (AM) based on in-

process sensor data. The key idea is to convert a signal into its 

network graph equivalent, and subsequently extract so-called 

spectral graph Fourier coefficients as surrogate signatures to track 

the process hatch-by-hatch. A photodetector signal is specifically 

used to demonstrate the efficacy of the approach in L-PBF of 

Inconel 625 alloy, in which are induced two types of foreign 

material contaminants, namely, tungsten and aluminum varying in 

the severity and the manner in which they are introduced (static 

deposition, and dynamic/continuous deposition over a layer).  

The key advantages of the approach over existing time-delay 

stochastic time series modeling techniques, such as autoregressive 

moving average (ARMA) is that: (a) it does not require fitting a 

model to the data, essentially it is model-free; and (b) eschews 

decomposition or extraction of features from each incoming signal, 

a simple inner product with a eigenvector basis is required thus 

saving on computational time. As a result, the approach detects 

instances of material contamination with high accuracy (worst case 

Type I error < ~1%, and Type II error < 5%), which is magnitude 

improvement over traditional time series modeling. The ability to 

detect contamination was corroborated with offline metallurgical 

and X-ray computed tomography (XCT) scanning. 

A major drawback of this work is that uses only a single type of 

sensor – a photodetector  ̶  to detect a specific type of defect, namely, 

material cross-contamination. The efficacy of the approach using 

multiple sensors for different types of defects remains to be 

ascertained. Furthermore, the type and severity of contamination 

could not be isolated based on data from a single photodetector, and 

the effect of contamination on the mechanical properties needs to be 

quantified through materials testing. This will allow completing the 

loop between process phenomena, sensor signatures, and part 

properties. The authors will attempt to address these gaps in their 

future work in the area. 
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