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Abstract. The process of data mining with differential privacy produces results that are affected
by two types of noise: sampling noise due to data collection and privacy noise that is designed
to prevent the reconstruction of sensitive information. In this paper, we consider the problem
of designing confidence intervals for the parameters of a variety of differentially private machine
learning models. The algorithms can provide confidence intervals that satisfy differential privacy
(as well as the more recently proposed concentrated differential privacy) and can be used with
existing differentially private mechanisms that train models using objective perturbation and output
perturbation.

1. Introduction

Differential privacy [Dwork et al., 2006b] is now seen as a gold standard for protecting individual
data records while releasing aggregate information such as noisy count queries or parameters of
data mining models. There has been a great deal of focus on answering queries and building models
using differential privacy but much less focus on empirically understanding their uncertainty, for
example, through the length of confidence intervals for parameters or query answers. Uncertainty
estimates are needed by data users to understand how much they can trust a data mining model.

Uncertainty comes from two sources: uncertainty in the data and uncertainty due to privacy
mechanisms. Uncertainty in the data is often referred to as sampling error – the data are a sample
from a larger population (so a different sample could yield different results). Uncertainty due to
privacy mechanisms comes from the fact that any useful algorithm that satisfies differential privacy
must have randomized behavior. Both must be quantified in an uncertainty estimate.

In the setting we consider, a differentially private algorithm has trained a model and released its
parameters. The end user would like to obtain confidence intervals around each parameter. These
confidence intervals themselves must satisfy differential privacy. There has been very little work on
this topic and, to the best of our knowledge, all of it has focused on linear regression [Sheffet, 2017,
Barrientos et al., 2017].
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On the other hand, differentially private model fitting algorithms such as objective perturbation
[Chaudhuri et al., 2011] and output perturbation [Chaudhuri et al., 2011] can train a variety of
models, such as logistic regression and SVM, and achieve state-of-the-art (or near state-of-the-art)
accuracy on many datasets. However, they do not come with confidence intervals.

In this paper, we propose privacy-preserving algorithms for generating confidence intervals for
differentially private models trained by the techniques of Chaudhuri et al. [2011]. We provide versions
of these algorithms for pure ε-differential privacy, as well as the recently introduced concentrated
differential privacy (zCDP) [Bun and Steinke, 2016].

There are three basic steps in our framework. The first is to use either the output or objective
perturbation techniques [Chaudhuri et al., 2011] to provide model parameters. In the case of

objective perturbation, the result satisfies both ε-differential privacy as well as ε2

2 -zCDP. In the case
of output perturbation, the algorithms for differentially privacy and zCDP (concentrated differential
privacy) are different. In the second step, we use Taylor’s Theorem and the Central Limit Theorem
to approximate the randomness in the model coefficients that is due to both the data and the
privacy mechanisms. This approximation relies on properties of the data and thus necessitates a
third step of estimating them using either differential privacy or zCDP. Thus, the overall privacy
budget must be split into two phases: the budget allocated to getting the model parameters and
the budget allocated to estimating uncertainty in the parameters.

In our experiments, we verify the accuracy of our confidence intervals and observe that under
pure differential privacy, the confidence intervals for models trained with objective perturbation
are shorter than those for models trained with output perturbation. However, under concentrated
differential privacy, the confidence intervals for output perturbation are much smaller.

Note that the goal of this paper is not to introduce new model fitting algorithms. The goal is
to add capabilities for quantifying uncertainty in the model coefficients.

To summarize, our contributions are the following.

• To the best of our knowledge, this is the first paper that provides differentially private confidence
intervals for models other than linear regression and our work is not limited to any specific model
– it works for any model that can be trained using objective perturbation [Chaudhuri et al., 2011].

• The confidence intervals can be made to satisfy different variations of differential privacy, including
pure ε-differential privacy [Dwork et al., 2006b], zero-mean concentrated differential privacy (zCDP)
[Bun and Steinke, 2016], and approximate (ε, δ)-differential privacy [Dwork et al., 2006a].

• We empirically validate our confidence intervals using a variety of public datasets.

• Finally, we provide a small improvement to the original objective perturbation model fitting
technique [Chaudhuri et al., 2011] by improving some of the constants in the algorithm.

We discuss related work in Section 2 and introduce the preliminaries and notation in Section 3.
We derive confidence intervals for models trained with objective perturbation in Section 4. We
derive confidence intervals for models trained with output perturbation in Section 5. We show how
to apply our algorithms to logistic regression and support vector machines in Section 6 and present
experiments in Section 7. We present conclusions and open problems in Section 8.

2. Related Work

Differentially private training of data mining models has been extensively studied, for example, in
Chaudhuri et al. [2011], Friedman and Schuster [2010], Kifer et al. [2012], Yu et al. [2014b], Zhang
et al. [2012], Wu et al. [2015], Bassily et al. [2014], Kasiviswanathan and Jin [2016], Zhang et al.
[2013], Jain and Thakurta [2013], Wang et al. [2017], Zhang et al. [2017], Rubinstein et al. [2009],
Talwar et al. [2014, 2015], Jain and Thakurta [2014], Kasiviswanathan et al. [2017], Ligett et al.
[2017], Wang et al. [2018]. However, such work provides model parameters without any uncertainty
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estimates (such as confidence intervals) about the parameters. To the best of our knowledge, the
only exceptions are for linear regression [Sheffet, 2017, Barrientos et al., 2017].

Chaudhuri et al. [2011] studied a general class of models that (without privacy) are trained with
empirical risk minimization. They proposed two general approaches, called objective perturbation
and output perturbation for training such models with differential privacy. Subsequent work increased
the set of models that can be trained [Kifer et al., 2012, Yu et al., 2014b, Zhang et al., 2012, 2013, Wu
et al., 2015]. Kifer et al. [2012] extended the algorithm of Chaudhuri et al. [2011] by removing some
differentiability requirements and allowing constraints in model training. Yu et al. [2014b] solved
the problem of differentially private penalized logistic regression with elastic-net regularization by
extending the objective perturbation technique to any convex penalty function. Zhang et al. [2012]
proposed the functional mechanism, which approximates models by polynomials. Subsequently,
Zhang et al. [2013] proposed a general solution based on genetic algorithms and a novel random
perturbation technique called the enhanced exponential mechanism. Wu et al. [2015] proposed
another output perturbation technique for learning tasks with convex and Lipschitz loss functions
on a bounded domain. They relaxed the condition of differentiable loss functions in Chaudhuri et al.
[2011]. However, we found that when both methods are applicable, the noise added by the output
perturbation technique of Wu et al. [2015] is generally larger than the noise added by the output
perturbation technique of Chaudhuri et al. [2011].

High dimensional regression problems were also studied in Bassily et al. [2014], Kasiviswanathan
and Jin [2016]. Bassily et al. [2014] proposed new algorithms for the private convex ERM problem
when the loss function is only Lipschitz and the domain of the optimization is bounded. They
also proposed separate algorithms when the loss function is also strongly convex. They propose
algorithms for both pure and approximate differential privacy. Kasiviswanathan and Jin [2016]
improved the worst-case risk bounds of Bassily et al. [2014] under differential privacy with access to
full data. Moreover, with access to only the projected data and the projection matrix, they derived
the excess risk bounds for generalized linear loss functions.

There has been some work on quantifying the uncertainty for differentially private models,
mostly in the form of confidence intervals and hypothesis testing.

Differentially private hypothesis testing has been studied in Uhler et al. [2013], Yu et al.
[2014a], Wang et al. [2015], Gaboardi et al. [2016], Rogers and Kifer [2017], Kakizaki et al. [2017],
Cai et al. [2017], Acharya et al. [2017]. Uhler et al. [2013] and Yu et al. [2014a] conducted
differentially private independence testing through χ2-tests with output perturbation, and adjusted
the asymptotic distribution used to compute p-values. Using input perturbation, Wang et al. [2015],
and later independently Gaboardi et al. [2016] proposed differentially private hypothesis testing for
independence and goodness of fit. Rogers and Kifer [2017] later proposed new test statistics for
chi-squared testing that are more compatible with privacy noise. Kakizaki et al. [2017] proposed
the unit circle mechanism for independence testing on 2 × 2 tables with known marginal sums. Cai
et al. [2017] studied the sample complexity to conduct differentially private goodness of fit test with
guaranteed type I and II errors. Later work by Acharya et al. [2017] derived the upper and lower
bounds on the sample complexity for goodness of fit and closeness testing under (ε, δ)-differential
privacy.

Providing diagnostics for differentially private regression analysis was studied in Chen et al.
[2016], where Chen et al. designed differentially private algorithms to construct residual plots for
linear regression and receiver operating characteristics (ROC) curves for logistic regression.

Work on differentially private confidence intervals includes D’Orazio et al. [2015], Sheffet [2017],
Karwa and Vadhan [2017]. D’Orazio et al. [2015] and Karwa and Vadhan [2017] did not study
models, instead they constructed differentially private confidence intervals for a mean [Karwa and
Vadhan, 2017] and the difference of two means [D’Orazio et al., 2015]. In the context of model
coefficients, Sheffet [2017] studied (ε, δ)-differentially private Ordinary Least Squares Regression
(OLS) and generated confidence intervals for the parameters. Barrientos et al. [2017] used differential
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privacy to quantify the uncertainty of the coefficients of differentially private linear regression models.
They generated differentially private t statistics for each coefficient.

Thus the closest work related to ours is Sheffet [2017] and Barrientos et al. [2017]. While their
work only targets linear regression, our work targets any models that can be trained under the
objective perturbation and output perturbation techniques of Chaudhuri et al. [2011], which include
many models such as logistic regression and SVM, but exclude linear regression.

To obtain confidence intervals, we also need to privately estimate second order matrices from
the data. Perturbing second order matrices for data are common in privacy-preserving principal
component analysis (PCA). Chaudhuri et al. proposed to perturb the second order matrices with
the exponential mechanism to achieve differential privacy in Chaudhuri et al. [2012]. With the
SuLQ framework [Blum et al., 2005], Blum et al. added Gaussian noise to the second moment
matrix and used it in the PCA to protect a notion of (ε, δ, T )-Privacy. Jiang et al. [2016] studied
the problem of publishing differentially private second order matrices by adding proper Laplace or
Wishart noise. Dwork et al. worked on projecting the second moment matrix of data into the low
dimensional space using the notion of approximate differential privacy in Dwork et al. [2014]. Later
in Sheffet [2015], Sheffet also discussed three techniques to get the second moment matrix while
preserving the approximate differential privacy, with the matrices being positive-definite.

Due to the structure of the matrices needed by our techniques, a spherical version of the Laplace
Mechanism, introduced in the objective perturbation method [Chaudhuri et al., 2011] to achieve
differential privacy, or the Gaussian Mechanism [Bun and Steinke, 2016] to achieve zero-mean
concentrated differential privacy [Bun and Steinke, 2016], are most appropriate.

3. Preliminaries and Notation

In this section, we introduce notation used in the paper and then review the background of differential
privacy and its variants, empirical risk minimization, and its applications to logistic regression and
support vector machines.

Let D = {(~x1, y1), . . . , (~xn, yn)} be a set of n records. Each record i has a d-dimensional vector
~xi of real numbers known as a feature vector and each yi ∈ {−1, 1} is called the target. Following
Chaudhuri et al. [2011], we require that each record is normalized so that ||~xi||2 = 1.

3.1. Differential Privacy.

Definition 1. (Differential Privacy [Dwork et al., 2006b]). Given an ε > 0 and δ ≥ 0, a randomized
mechanism M satisfies (ε, δ)-differential privacy if for all pairs of databases D,D′ differing on the
value of a record, and all V ⊆ range(M),

Pr(M(D) ∈ V ) ≤ eε Pr(M(D′) ∈ V ) + δ.

When δ = 0, we refer to it as both ε-differential privacy and pure differential privacy. When
δ > 0, we refer to it as both (ε, δ)-differential privacy and approximate differential privacy. Another
relaxation of differential privacy is known as zero-mean concentrated differential privacy, or ρ-zCDP
for short. It relies on the concept of α-Rényi Divergence, which is defined as follows.

Definition 2. (Rényi Divergence [Rényi, 1961]). Let P and Q be probability distributions defined
on the domain Ω, then for α ∈ (1,∞), the α-Rényi Divergence between P and Q is defined as

Dα(P ||Q) =
1

α− 1
log

(
∫

Ω
P (z)αQ(z)(1−α) dz

)

.
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Definition 3. (Zero-Concentrated Differential Privacy (zCDP) [Bun and Steinke, 2016]). A
randomized mechanism M satisfies ρ-zero-concentrated differential privacy (i.e., ρ-zCDP) if for all
pairs of databases D and D′ that differ on the value of a single record and all α ∈ (1,∞),

Dα(M(D)||M(D′)) ≤ ρα,

where Dα(M(D)||M(D′)) is the α-Rényi divergence between the distribution of M(D) andM(D′).

ρ-zCDP is weaker than pure differential privacy and stronger than approximate differential
privacy. The following results make the relations between them precise.

Proposition 1. [Bun and Steinke, 2016]. If M satisfies ε-differential privacy, then M satisfies
(ε2/2)-zCDP.

Proposition 2. [Bun and Steinke, 2016]. IfM satisfies ρ-zCDP then it satisfies (ρ+2
√

ρ log(1/δ), δ)-
differential privacy.

Thus, we only focus on pure differential privacy and ρ-zCDP in this paper. All ρ-zCDP
algorithms can be converted into algorithms for approximate differential privacy using Proposition
2.

The algorithms studied in this paper rely on the concept of L2 sensitivity:

Definition 4. (L2-Sensitivity [Chaudhuri et al., 2011, Bun and Steinke, 2016]). The L2-sensitivity
for a (scalar- or vector-valued) function f is

∆2(f) = max
D,D′
‖f(D)− f(D′)‖2

for all pairs of databases D,D′ ∈ domain(f) differing on the value of at most one entry.

For example, the L2 sensitivity is used to set the variance of the Gaussian Mechanism for
ρ-zCDP.

Proposition 3. (Gaussian Mechanism [Bun and Steinke, 2016]). Let f be a vector-valued function
(whose output is a vector of dimension d) with L2 sensitivity ∆2(f). Let σ = ∆2(f)/

√
2ρ. The

Gaussian Mechanism, which outputs f(D) +N(~0, σ2Id), satisfies ρ-zCDP.

Both differential privacy and ρ-zCDP are invariant under post-processing [Dwork et al., 2006b,
Bun and Steinke, 2016]. That is, if a mechanismM satisfies ε-differential privacy (resp., ρ-zCDP),
and if A is any algorithm whose input is the output of M, then the composite algorithm, which
first runsM on the input data and then runs A on the result satisfies ε-differential privacy (resp.,
ρ-zCDP).

Another useful property of these definitions is composition, which allows the privacy parameter
of a complicated algorithm be derived from the privacy parameters of its sub-components.

Proposition 4. (Composition [Dwork et al., 2006b, Bun and Steinke, 2016]). Let M be a ran-
domized mechanism that satisfies ε-differential privacy (resp., ρ-zCDP) and M′ be a randomized
mechanism that satisfies ε′-differential privacy (resp., ρ′-zCDP). Then the composite algorithm
M∗ that, on input D outputs the tuple (M(D),M′(D)) satisfies (ε+ ε′)-differential privacy (resp.,
(ρ+ ρ′)-zCDP).

3.2. Empirical Risk Minimization. Empirical risk minimization is a common way of training
machine learning models. There is an assumption that the dataset D = {(~x1, y1), . . . , (~xn, yn)}
is independently sampled from some unknown distribution F0. In this setting, the model has a
parameter vector θ and a prediction function g. Its prediction for y is g(~x, θ).
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To train the model, in the setting assumed by Chaudhuri et al. [2011], one specifies a loss
function in the form of f(~x, y, θ) = f(yθT · ~x), and finds the θ that minimizes the empirical risk:

θ̂ = argmin
θ

1

n

n
∑

i=1

[

f(~xi, yi, θ) + c‖θ‖22
]

. (3.1)

To satisfy differential privacy, Chaudhuri et al. [2011], proposed the objective perturbation
technique to add noise to the objective function and then produce minimizer of the perturbed
objective:

argmin
θ

Jn(θ,D) = argmin
θ

[

Ln(θ,D) +
1

n
βT θ

]

≡ argmin
θ

(

1

n

n
∑

i=1

[

f(~xi, yi, θ) + c||θ||22
]

+
1

n
βT θ

)

,

where β is a zero-mean random variable with density

v(β) =
1

u
e−γ‖β‖2 , (3.2)

where u is the normalizing constant, and γ depends on the privacy budget and the L2-sensitivity of
Ln(·).

Their proof of privacy depends on the concept of strong convexity:

Definition 5. (Strong-Convexity). A function f(θ) over θ ∈ R
d is said to be λ-strongly convex if

for all α ∈ (0, 1), θ and η,

f(αθ + (1− α)η) ≤ αf(θ) + (1− α)f(η)− 1

2
λα(1− α)‖θ − η‖22.

3.3. Logistic Regression and SVM. In the paper, we will work with the applications of logistic
regression and support vector machines (SVM)1. In logistic regression, the goal is to predict
P (y = 1 | ~x) and this is done by modeling P (y = 1 | ~x) = S(θ · ~x), where S is the sigmoid function:

S(z) =
1

1 + exp (−z) =
exp (z)

1 + exp (z)
.

Logistic regression is trained in the ERM framework using the loss function

f(~x, y, θ) = log [1 + exp (−yθ · ~x)].
In support vector machines, the prediction for y is 1 if θ · ~x ≥ 0 and is −1 otherwise. To train it

in the ERM framework, we will use the Huberized hinge Loss [Chapelle, 2007], defined as follows:

fHuber(~x, y, θ) =











0 if z > 1 + h
1
4h(1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h,

where z = yθ · ~x and where h is a fixed constant [Chapelle, 2007].

4. Confidence Intervals for Objective Perturbation

In this section, we show how to obtain confidence intervals for models trained by objective pertur-
bation [Chaudhuri et al., 2011]. For completeness, we present a slightly improved version of the
algorithm in Section 4.1 and then derive the confidence interval algorithm in Sections 4.2, 4.3, and
4.4.

1We use these two applications as examples, but our algorithms are not restricted to them.
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4.1. Objective Perturbation. The objective perturbation algorithm modifies the ERM framework
by randomly drawing a noise vector β from a spherical analogue of the Laplace distribution (see

Equation 3.2). Then, instead of minimizing the original ERM objective 1
n

n
∑

i=1

[

f(~xi, yi, θ) + c||θ||22
]

,

it modifies it by adding 1
nβ

T θ and then minimizes it with respect to θ. The version of the techniques
shown in Algorithm 1 slightly differs from the original [Chaudhuri et al., 2011] in the first line,
allowing it to use less noise.

Algorithm 1: Objective Perturbation

input :Data D = {(~xi, yi)}ni=1, privacy budget ε, loss function f with |f ′′(·)| ≤ t,
coefficient c with c > t

2n(eε−1)

1 ε′ ← ε− log
(

1 + t
2nc

)

2 Sample a d-dimensional vector β with density from Equation 3.2 with γ = ε′/2

3 θ̃ ← argminθ

(

1
n

n
∑

i=1

[

f(~xi, yi, θ) + c||θ||22
]

+ 1
nβ

T θ

)

4 Output θ̃

Theorem 1 . If the loss function f(·) is convex and doubly differentiable, with |f ′(·)| ≤ 1 and
|f ′′(·)| ≤ t, then Algorithm 1 satisfies ε-differential privacy whenever all the feature vectors ~xi have
||~xi||2 ≤ 1.

The proof of Theorem 1 is in Appendix A.1.
In order to achieve ρ-zCDP, we use Proposition 1 to conclude that the algorithm satisfies

ε2

2 -zCDP.

4.2. Confidence Intervals. In this section, we describe one of our main contributions – the con-

struction of confidence intervals for objective perturbation. Set Jn(θ) =
1
n

n
∑

i=1

[

f(~xi, yi, θ) + c||θ||22
]

+

1
nβ

T θ.

Let θ̃ be the privacy preserving parameters output by the objective perturbation algorithm. Let
θ0 be the non-private solution we would get if we had infinite data (i.e. the true parameter vector of
the distribution from which data is sampled). Since the noise in Algorithm 1 is divided by n, then

θ0 is also the privacy-preserving solution one would obtain with infinite data and E[∇Jn(θ0,D)] = ~0,

where the expectation is taken over the data and β (note that β has ~0 mean).

Expanding the Taylor series of ∇Jn around θ̃ and noting that the gradient of Jn at θ̃ is 0 by
construction (since θ̃ minimizes Jn), we have

∇Jn(θ0) ≈ ∇Jn(θ̃) +H[Jn(θ̃)](θ0 − θ̃) = H[Jn(θ̃)](θ0 − θ̃),

where H[Jn(θ̃)] is the Hessian (matrix of second derivatives) of Jn evaluated at θ̃.
Now, ∇Jn(θ0) is equal to 1

nβ plus the average n terms – one for each ~xi. This means that by

the Central Limit Theorem,
√
n∇Jn(θ0) can be approximated by the sum of 1√

n
β and N(~0,Σ),

where N(~0,Σ) is a zero-mean Gaussian with covariance matrix:

Σ = E

[

(

∇
(

f(~x, y, θ0) + c||θ0||22
))(

∇
(

f(~x, y, θ0) + c||θ0||22
))T

]

.

If the Hessian and covariance matrices were known, we could combine the two approximations
for ∇Jn(θ0) as follows. Let G be a random variable with distribution N(~0,Σ). Let Q be an
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independent random variable having the same distribution as G+ β/
√
n. Then we can approximate

the distribution of
√
nH[Jn(θ̃)](θ0 − θ̃) with the distribution of Q.

However, since the Hessian and the covariance matrix are unknown, we will need to obtain
privacy preserving estimates H̃ and Σ̃. Now let G̃ be a random variable having distribution
N(~0, Σ̃) and let Q̃ be an independent random variable having the same distribution as G̃+ β/

√
n.

Substituting in G̃ for G and H̃ for H, we now approximate the distribution of
√
nH̃[Jn(θ̃)](θ0 − θ̃)

with the distribution of Q̃. Multiplying by H̃−1, we get the following approximation:

Distribution of θ0 − θ̃ ≈ Distribution of H̃[Jn(θ̃)]
−1Q̃/

√
n. (4.1)

We note that the right hand side of Equation 4.1 is easy to sample from. We next discuss how to
estimate the Hessian and covariance matrix and use them with Equation 4.1 to produce confidence
intervals for each component of θ0.

4.3. Computations of the Hessian and Covariance Matrix. If privacy was not a concern,
the Hessian would be computed as:

H[Jn(θ)] =
1

n

n
∑

i=1

H[f(~xi, yi, θ)] + 2cI, (4.2)

and the covariance matrix Σ would be estimated as:

Σ =E

[

(

∇
(

f(~x, y, θ0) + c||θ0||22
))(

∇
(

f(~x, y, θ0) + c||θ0||22
))T

]

=E
[

(∇f(~x, y, θ0) + 2cθ0) (∇f(~x, y, θ0) + 2cθ0)
T
]

=E
{

∇(f(~x, y, θ0))[∇f(~x, y, θ0)]T
}

+ 2cE[∇f(~x, y, θ0)]θT0 + 2cθ0E[∇f(~x, y, θ0)]T + 4c2θ0θ
T
0

=E
{

∇(f(~x, y, θ0))[∇f(~x, y, θ0)]T
}

− 4c2θ0θ
T
0

≈ 1

n

n
∑

i=1

∇f(~xi, yi, θ̃)[∇f(~xi, yi, θ̃)]T − 4c2θ̃θ̃T , (4.3)

where the second-to-last step is obtained from the fact that E[∇Jn(θ0)] = ~0 from which it follows

that E[∇f(~x, y, θ0)] + 2cθ0 = ~0.
However, since privacy is indeed a concern, we need to obtain estimates of the Hessian and

covariance matrix using either ε-differential privacy or ρ-zCDP. The same algorithm works for both
matrices and is shown in Algorithm 2.

The algorithm takes the matrix M , which is either the Hessian (computed as in Equation 4.2)
or the covariance matrix (computed as in Equation 4.3). It also takes the L2 sensitivity of these
matrices (we show how to compute the sensitivities for logistic regression and SVM in Section 6). It
uses the L2 sensitivity to determine the variance of the noise that must be added. The distribution
of this noise depends on whether we want to use pure differential privacy or zCDP.

These resulting noisy matrices might not be symmetric positive-semidefinite (even though the
Hessian and covariance matrices must have those properties). Thus we add a postprocessing step to
make the matrix symmetric and have all eigenvalues at least 2c.

Lemma 1. Algorithm 2 satisfies φ-differential privacy and φ-zCDP.

The proof of Lemma 1 is in Appendix A.2.
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Algorithm 2: Private Symmetric Positive Definite Matrix (PrivSPDMat)

input :Matrix M ∈ Rd×d, L2 sensitivity Sens(M), privacy budget φ, parameter c
1 if Requiring ε-differential privacy with ε = φ then

2 Sample a d2-dimensional vector η with density from Equation 3.2 with γ = φ
Sens(M)

3 else

// for ρ-zCDP with ρ = φ

4 Sample a noise vector η from N
(

~0, Sens(M)2

2φ Id

)

5 end

6 Reshape η to a d× d matrix mat (η)

7 M̃ ←M +mat (η)

8 M̃ ← (M̃ + M̃T )/2

9 Let V diag (Λ) = M̃V be the eigen-decomposition for M̃

// columns of V are orthonormal eigenvectors

10 for i← 1 to d do

11 Λ[i]← max (Λ[i], 2c)

12 end

13 M̃ ← V diag (Λ)V T

14 Output M̃

4.4. Putting It All Together: Confidence Intervals Generation. The overall algorithm is
shown in Algorithm 3. It first splits the privacy budget into 3 pieces φ1, φ2, φ3. Using privacy budget
φ1, it runs the objective perturbation algorithm to provide privacy-preserving model parameters θ̃.
Privacy budget φ2 is used to provide a privacy-preserving estimate of the Hessian H̃ and privacy
budget φ3 is used to provide a privacy preserving estimate of the covariance matrix Σ̃. Once
these quantities are obtained, it can use Equation 4.1. This equation says that the distribution of
θ0 − θ̃ can be approximated by sampling G̃ from N(~0, Σ̃), β̃ from Equation 3.2, computing Q̃ from

G̃+ β̃/
√
n, and then plugging Q̃ into Equation 4.1. By obtaining many such samples z1, . . . , zm

where each zi is a d-dimensional vector (because θ0 and θ̃ are d-dimensional), for each dimension j
we take an interval (aj , bj) that covers 1− α (e.g., 95%) of the zi[j]. Then the estimated confidence

interval for θ0[j] is (θ̃[j] + aj , θ̃[j] + bj). Note that this sampling step is strict postprocessing – never
accesses the original data and it only uses privacy preserving estimates from the previous steps.

Theorem 2 . Under the conditions of Theorem 1, Algorithm 3 satisfies (φ1 + φ2 + φ3)-differential
privacy and (φ2

1/2 + φ2 + φ3)-zCDP.

The proof of Theorem 2 is in Appendix A.3.

5. Confidence Intervals for Output Perturbation

In this section, we provide confidence intervals for model parameters learned with output perturbation
rather than objective perturbation. Again, we will have algorithms for both differential privacy and
zCDP. We will follow similar steps as Section 4 to obtain the intervals.

5.1. Output Perturbation. We first review the output perturbation method of Chaudhuri et al.
[2011]. Then we will explain how to obtain confidence intervals for the resulting parameters in
Section 5.2 (recall that they must account for noise due to the data being a sample as well as noise
due to privacy).



10 Y. WANG, D. KIFER, AND J. LEE

Algorithm 3: Private (1−α)-Confidence Intervals for θ0 trained with Objective Perturbation

input :Data D = {(~xi, yi)}ni=1, privacy budgets φ1, φ2 and φ3, parameters c, t, f used
by objective perturbation (Algorithm 1), the number of postprocessing samples
m to generate, confidence level α

1 θ̃ ← ObjPerturb(D, φ1, t, c) // calling Algorithm 1

2 ε′ ← ε′ in Algorithm 1

3 H[Jn(θ̃)]← 1
n

∑n
i=1H[f(~xi, yi, θ̃)] + 2cI

4 H̃[Jn(θ̃)]← PrivSPDMat(H[Jn(θ̃)], Sens(H[Jn(θ̃)]), φ2, c) // calling Algorithm 2

5 Σ← 1
n

∑n
i=1∇f(~xi, yi, θ̃)[∇f(~xi, yi, θ̃)]T − 4c2θ̃θ̃T

6 Σ̃← PrivSPDMat(Σ, Sens(Σ), φ3, c)

7 Generate m i.i.d. samples G̃i (i = 1, . . . ,m) from N(~0, Σ̃)

8 Generate m i.i.d samples βi (i = 1, . . . ,m) with density from Equation 3.2 with

γ = ε′/2 (same γ parameter as used in Algorithm 1)

9 for i← 1 to m do

10 Q̃i ← G̃i + βi/
√
n

11 θ(i) ← θ̃ + H̃[Jn(θ̃)]
−1Q̃i/

√
n

12 end

13 for j ← 1 to d do

14 (θL[j], θR[j])← (1− α)-confidence interval for θ(1)[j], . . . , θ(m)[j]

15 end

16 Output θL, θR

In output perturbation, the first step is to compute the non-private parameters θ̂:

θ̂ = argmin
θ

1

n

n
∑

i=1

[

f(~xi, yi, θ) + c‖θ‖22
]

, (5.1)

and then add noise to them [Chaudhuri et al., 2011]. The L2 sensitivity of θ̂ is 1/(nc) [Chaudhuri

et al., 2011] and so for ε-differential privacy, they release θ̂ + β, where β has the distribution from
Equation 3.2 with parameter γ = ncε. To obtain ρ-zCDP one uses the Gaussian Mechanism instead,

and samples β from the multivariate normal distribution N
(

~0, 1
2ρ(nc)2

Id

)

. Algorithm 4 summarizes

their output perturbation technique.

Algorithm 4: Output Perturbation (ERMOutput)

input :Data D = {(~xi, yi)}ni=1, privacy budget φ, regularization coefficient c.

1 θ̂ ← argminθ
1
n

∑n
i=1

[

f(~xi, yi, θ) + c‖θ‖22
]

2 if Requiring ε-differential privacy with ε = φ then

3 Sample a noise vector β with density from Equation 3.2 with γ = ncφ

4 else

// for ρ-zCDP with ρ = φ

5 Sample a noise vector β ∼ N
(

~0, 1
2φ(nc)2

Id

)

6 end

7 θ̃ ← θ̂ + β

8 Output θ̃
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Theorem 3 . ([Chaudhuri et al., 2011]) If the loss function f(·) is convex and differentiable with
|f ′(·)| ≤ 1, then Algorithm 4 satisfies φ-differential privacy and φ-zCDP.

5.2. Confidence Intervals. Now we discuss our main contribution in this section, obtaining
confidence intervals for the parameters returned by output perturbation. Recall θ0 is the infinite
sample minimizer to Ln(θ) =

1
n

∑n
i=1

[

f(~xi, yi, θ) + c‖θ‖22
]

(i.e. when n→∞) while θ̂ is the finite

sample minimizer and θ̃ is the privacy preserving output of Algorithm 4 that we get by using privacy
budget φ1, i.e., θ̃ = θ̂ + β.

We apply Taylor’s theorem around θ̂ to ∇Ln(θ0):

∇Ln(θ0) ≈ ∇Ln(θ̂) +H[Ln(θ̂)](θ0 − θ̂) = H[Ln(θ̂)](θ0 − θ̂),

where H[Ln(θ̂)] is the Hessian of Ln evaluated at θ̂.
As in Section 4.2, by the Central Limit Theorem,

√
n∇Ln(θ0) approximately follows a Gaussian

distribution N(~0,Σ). Moreover, the formulas for the Hessian H[Ln(·)] (which is equal to H[Jn(·)])
and the covariance matrix Σ are the same as Equations 4.2 and 4.3, respectively, from Section 4.2.

Let G be a random variable with distribution N(~0,Σ). Then we can approximate the distribution

of
√
nH[Ln(θ̂)](θ0 − θ̂) with the distribution of G.
Again, since the Hessian and the covariance matrix are unknown, we will need to obtain

privacy preserving estimates H̃ and Σ̃. Now let G̃ be a random variable having distribution
N(~0, Σ̃). Substituting in G̃ for G and H̃[Ln(θ̃)] for H[Ln(θ̂)], we now approximate the distribution

of
√
nH̃[Ln(θ̃)](θ0 − θ̂) with the distribution of G̃. That is,

Distribution of
√
nH̃[Ln(θ̃)][θ0 − (θ̃ − β)] ≈ Distribution of G̃.

Multiplying by H̃−1 on both sides, and let Q̃ be a random variable having the same distribution
as H̃[Ln(θ̃)]

−1G̃/
√
n− β, we get the following approximation:

Distribution of θ0 − θ̃ ≈ Distribution of Q̃. (5.2)

We note that the right hand side of Equation 5.2 is easy to sample from. This equation also says
that the difference between θ0 and the privacy preserving estimate is approximately the same as the
distribution on the right hand side, which only depends on privacy preserving quantities (and not
the original data).

For differentially private confidence intervals, as before, we sample many times from the
distribution of Q̃ from the right hand side of Equation 5.2 to obtain approximate samples z1, . . . , zm
from the distribution of θ0 − θ̃. For each j, we find an interval (aj , bj) that contains (1− α) of the

zi[j]. Since θ̃ is a privacy preserving estimate, our privacy preserving confidence interval for θ0[j] is

(θ̃[j] + aj , θ̃[j] + bj).
On the other hand, if we use Gaussian noise in Algorithm 4, the algorithm for computing

confidence intervals becomes much more efficient. In this case Q̃ is the multivariate Gaussian
N(~0, U) where

U =
1

2φ(nc)2
Id +

1

n
H̃[Ln(θ̃)]

−1Σ̃H̃[Ln(θ̃)]
−1,

and φ is the privacy budget used in Algorithm 4 to perturb θ̂. Therefore we could compute the
confidence intervals for θ0 directly instead of doing Monte Carlo sampling. For each j, we directly
compute the confidence interval for θ0[j] as

[

θ̃[j]− zα/2
√

Ujj , θ̃[j] + zα/2
√

Ujj

]

,
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where zα/2 is the (1− α/2)-quantile of the standard normal distribution. The complete algorithm is

shown in Algorithm 5. Note that once we have privacy preserving estimates of θ̃, H̃, and Σ̃ using
privacy budgets φ1, φ2, φ3, respectively, everything else is post-processing and thus does not affect
the privacy cost.

Algorithm 5: Private (1− α)-Confidence Intervals for θ0 trained with Output Perturbation

input :Data D = {(~xi, yi)}ni=1, privacy budgets φ1, φ2 and φ3,
regularization coefficient c, the number of samples m, confidence level α.

1 θ̃ ← ERMOutput(D, φ1, c) // Calling Algorithm 4

2 H[Ln(θ̃)]← 1
n

∑n
i=1H[f(~xi, yi, θ̃)] + 2cI

3 H̃[Ln(θ̃)]← PrivSPDMat(H[Ln(θ̃)], Sens(H[Ln(θ̃)]), φ2, c) // calling Algorithm 2

4 Σ← 1
n

∑n
i=1∇f(~xi, yi, θ̃)[∇f(~xi, yi, θ̃)]T − 4c2θ̃θ̃T

5 Σ̃← PrivSPDMat(Σ, Sens(Σ), φ3, c)

6 if Requiring pure-differential privacy then

7 Generate m i.i.d. samples Gi (i = 1, . . . ,m) from N(~0, Σ̃)

8 Generate m i.i.d samples βi (i = 1, . . . ,m) with density from Equation 3.2

with γ = ncφ1

9 for i← 1 to m do

10 Qi ← H̃[Ln(θ̃)]
−1Gi/

√
n− βi

11 θ(i) ← θ̃ +Qi

12 end

13 for j ← 1 to d do

14 (θL[j], θR[j])← (1− α)-confidence interval for θ(1)[j], . . . , θ(m)[j]

15 end

16 else

// for zCDP

17 zα/2 ← (1− α/2)-quantile of standard normal

18 U = 1
2φ1(nc)2

Id +
1
nH̃[Ln(θ̃)]

−1Σ̃H̃[Ln(θ̃)]
−1

19 for j ← 1 to d do

20 θL[j]← θ̃[j]− zα/2
√

Ujj

21 θR[j]← θ̃[j] + zα/2
√

Ujj

22 end

23 end

24 Output θL, θR

Theorem 4 . Under the same conditions as Theorem 3, Algorithm 5 satisfies (φ1 + φ2 + φ3)-
differential privacy and (φ1 + φ2 + φ3)-zCDP.

The proof of Theorem 4 is in Appendix A.4.

6. Applications to Logistic Regression and SVM

We now apply our confidence interval algorithms to logistic regression and support vector machines.
Both models can be learned by objective and output perturbation [Chaudhuri et al., 2011]. In order
to apply our confidence interval algorithms, we need to compute the L2 sensitivity of the Hessian
and covariance matrices, as those quantities are needed to calibrate the amount of perturbation
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of those matrices that we need to protect privacy (Algorithm 2). Again, we will assume that the
feature vector x has ‖x‖2 ≤ 1 and the label y ∈ {−1, 1}.

For logistic regression, the gradient and Hessian are well known:

∇f(yθT~x) = −yS(−yθT~x)~x,
H[f(yθT~x)] = S(−yθT~x)S(yθT~x)~x~xT ,

where S is the sigmoid function. It is also well known that the loss function is convex and doubly
differentiable with |f ′(z)| ≤ 1 and |f ′′(z)| ≤ 1/4.

For SVM, it is well-known that the piecewise gradient and Hessian for the Huber loss fHuber(yθ
T~x)

are:

∇fHuber(yθ
T~x) =











~0 if yθT~x > 1 + h
y
2h(yθ

T~x− 1− h)~x if |1− yθT~x| ≤ h

−y~x if yθT~x < 1− h,

and

H[fHuber(yθ
T~x)] =

{

y2

2h~x~x
T if |1− yθT~x| ≤ h

0d×d otherwise.

Huber loss is convex and differentiable, and piecewise doubly-differentiable, with |f ′
Huber(z)| ≤ 1

and |f ′′
Huber(·)| ≤ 1

2h [Chaudhuri et al., 2011]. Even though the second derivative does not exist
at a few isolated points, Chaudhuri et al. [2011] proved that objective and output perturbation
algorithms for SVM still preserve privacy.

We now derive the L2 sensitivity for the Hessian and the covariance matrix for logistic regression
and SVM.

Lemma 2. The L2-sensitivity of the covariance matrix Σ (defined in Equation 4.3) for logistic
regression is at most 2S(‖θ0‖2)2/n.

The proof of Lemma 2 is in Appendix A.5.

Lemma 3. The L2-sensitivity of the Hessian H[Jn(θ̃)] (defined in Equation 4.2) for logistic
regression is at most 1/(2n).

The proof of Lemma 3 is in Appendix A.6.

Lemma 4. The L2-sensitivity of the covariance matrix Σ (defined in Equation 4.3) for SVM is at
most 2/n.

The proof of Lemma 4 is in Appendix A.7.

Lemma 5. The L2-sensitivity of the Hessian H[Jn(θ̃)] (defined in Equation 4.2) for SVM is at
most 1/(nh).

The proof of Lemma 5 is in Appendix A.8.

7. Experiments

To test the differentially private confidence interval algorithms, we run comprehensive experiments
on several real datasets, which are described in Section 7.1. We discuss evaluation metrics in
Section 7.2.

The experiments are then organized as follows. The algorithms have to allocate portions of the
privacy budget across several sub-tasks – obtaining the differentially private coefficients, estimating
the covariance matrix, and estimating the Hessian. Thus, we first experiment with the allocation
of the privacy budget across sub-tasks in Section 7.3. We empirically find the split of the privacy
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budget for the three parts such that the private confidence intervals are short in length. We then
use the chosen split throughout the rest of the experiments.

In Section 7.4, we present results about the sample size needed to achieve a desired coverage
percentage from the differentially private confidence intervals. We also present the corresponding
interval lengths (coverage and length must be considered together, since a confidence interval with
100% coverage but near-infinite length is of no use). Then in Section 7.5, we compare the empirical
sample complexity of private and non-private confidence intervals. More precisely, given a sample
size n′, we map it to n such that the length of the non-private confidence intervals computed using
n′ data points is equivalent to that of the differentially private confidence intervals computed using
n data points.

In Section 7.6, we empirically study how far our intervals are from optimality. The length of our
confidence intervals depends on four factors: (A) the randomness in the data, (B) the randomness
in the private regression algorithms, (C) the randomness and estimation error of the Hessian and
covariance matrix, (D) the approximation error from our derivation. Combining real datasets with
simulations, we measure the variability of the regression coefficients that is due to points (A) and
(B). We call those intervals Variability Intervals (see Section 7.2 for more information) and they can
be interpreted as the true variability of private regression algorithms. Hence they are a lower bound
on any possible differentially private confidence interval length – this is not necessarily a tight lower
bound, as variability intervals are not differentially private themselves. By comparing confidence
intervals to variability intervals, we are isolating the overhead due to our approach – the loss due to
points (C) and (D) in Section 7.6. In Section 7.7, we study the relationship between length of the
private confidence intervals and other parameters. The run time of our algorithms is reported in
Section 7.8.

Sections 7.3 through 7.7 contain a representative sample of the experiments (as many results
are qualitatively similar). For complete experimental results, see Supplemental Appendix B.

7.1. Datasets. We run experiments on several real datasets: Adult and KDDCUP99 data sets
from Lichman [2013], the Banking data set [Moro et al., 2014], the IPUMS-US [ipu, 2017b] dataset
and the IPUMS-BR [ipu, 2017a] dataset. Adult [Lichman, 2013] is a dataset extracted from the
1994 Census database and contains 30,162 records on demographic information. A common task
based on it is predicting whether annual income exceeds $50K. KDDCUP99 [Lichman, 2013] is the
dataset used for the Third International Knowledge Discovery and Data Mining Tools Competition
which contains 4,898,431 records. It contains network traffic data simulated in a military network
environment and the goal is to distinguish network attacks. Banking [Moro et al., 2014] contains
45,211 records on the direct marketing phone calls of a Portuguese banking institution, and is used
for predicting whether the client will subscribe a term deposit. US [ipu, 2017b] and BR [ipu, 2017a]
are from IPUMS that provides census and survey data from around the world integrated across time
and space. Users can freely choose the data samples and the variables to be used to create data
extracts. In the paper, we use the versions from Zhang et al. [2013] where US has 39,928 records
and BR has 38,000 records. The targets for both of them are predicting whether personal income
exceeds some thresholds.

All the datasets contain both numerical and categorical attributes. As was done in Chaudhuri
et al. [2011], Zhang et al. [2013], following common practice for regression problems, we binarize
each categorical attribute so that an attribute with cardinality k becomes k binary attributes.
Following Chaudhuri et al. [2011], Zhang et al. [2013], we then standardize each attribute so its
maximum attribute value becomes 1. As for the target column, it is mapped to either -1 or 1. After
pre-processing, the dimensionality of each dataset is given in Table 1. To experiment with the
sample size and dimensionality, we may extract sub-datasets from those datasets by first randomly
permuting the dataset and then taking the first n1 samples and/or the first d1 features from it. We
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Table 1: Real Datasets Summary
Dataset n d (after binarizing categorical attributes)
Adult 30,162 37

KDDCUP99 4,898,431 90
Banking 45,211 34

IPUMS-US 39,928 57
IPUMS-BR 38,000 53

also add a column of ones as the constant feature to each dataset, and normalize each record so
that it lies in the unit L2 ball. The dimensionality d reported with the experimental results is the
one before adding the constant feature.

7.2. Measures and Methodology. The quality of confidence intervals is evaluated using two
complementary measures, coverage percentage and length. Coverage percentage is the fraction of
times they cover the true parameters, so a putative 95% confidence interval should cover the true
parameter at least 95% of the time. However, an infinitely long confidence interval can also cover the
true parameter at least 95% of the time, so we must also evaluate how short the confidence intervals
are. We next explain how we measure coverage and then we introduce a non-private baseline called
the variability interval, which is a lower bound on any differentially private confidence interval (that
is, no differentially private confidence interval can be shorter than the variability interval).

Coverage percentage. For each dataset D, we treat its empirical distribution as the true
distribution and the non-private model parameters learned on the data as θ0. To simulate the effects
of sampling, we create multiple “sampled” datasets D1, . . . ,Dk by sampling with replacement from
the original dataset D. Each such dataset Di is called a bootstrap replicate. To estimate coverage, for

each Di we use our algorithm to compute the privacy-preserving confidence interval
(

θ
(i)
L [j], θ

(i)
R [j]

)

for each coordinate j of θ0. The coverage percentage for a parameter θ0[j] is then the fraction of the
privacy-preserving confidence intervals that contain θ0[j]. The overall coverage is then the average
coverage over all parameters:

∑k
i=1

∑d′

j=1 1θ(i)
L

[j]≤θ0[j]≤θ
(i)
R

[j]

kd′
,

where 1 is the indicator function and d′ is the dimensionality of θ0 after adding the constant feature.

Variability Intervals VI. The variability interval is a non-private baseline that directly measures
the actual variation in parameter estimate due to sampling noise and due to the algorithm that
estimates the parameters (e.g., output perturbation or objective perturbation). This is possible to
obtain in controlled experiments. On the other hand, confidence intervals are an estimate (not a
direct measurement) of this variability. We obtain variability intervals as follows:

For each dataset D, we treat its empirical distribution as the true distribution and the non-
private model parameters learned on the data as θ0. To simulate the effects of sampling, we create
multiple “sampled” datasets D1, . . . ,Dm by sampling with replacement from the original dataset
D. Each such dataset Di is called a bootstrap replicate and there are m = 10, 000 of them. This
simulates variability due to sampling. On each Di we run the privacy-preserving ERM algorithm
(either output or objective perturbation) to get the estimate θ̃(i). The variability in these θ̃(i) is
thus solely due to sampling and privacy noise used to create the parameter estimates (with privacy
budget φ1) – in other words, it is not affected by the φ2 and φ3 that are used in our confidence
interval algorithms.

For 1 ≤ j ≤ d′, let θ̃L[j] and θ̃R[j] be the α/2-quantile and (1 − α/2)-quantile of θ̃(1)[j], · · · ,
θ̃(m)[j], respectively. Then the 1 − α variability interval for coordinate j is (θ̃L[j], θ̃R[j]).
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Note that the variability intervals are the true quantiles of our simulation. Any valid 1 − α
differentially private confidence interval must therefore be at least as long as the 1 − α variability
interval and so the quality of a confidence interval is measured as how long it is compared to the
variability interval. In experiments we plot average length of confidence intervals vs. average length
of variability intervals.

Throughout our experiments, we use α = 0.05, m = 10, 000 (recall m is also the number of post-
processing samples used in Algorithms 3 and 5 to estimate confidence intervals). For simplicity, in the
figure legends, we use DP for differential privacy, zCDP for zero-concentrated differential privacy,
CI for confidence interval, VI for variability interval, obj for ERM with objective perturbation,
output for ERM with output perturbation, LR for logistic regression and SVM for support vector
machines.

In our experimental results, we report the privacy parameters ε for differential privacy and ρ

for zCDP. To compare differentially private and zCDP algorithms on the same plot, we set ρ = ε2

2 .
This is the closest possible apples-to-apples comparison, as any algorithm satisfying ε-differential

privacy satisfies ρ = ε2

2 zCDP [Bun and Steinke, 2016].

7.3. Allocation for the Privacy Budget. Algorithms 3 and 5 each take three privacy budgets
φ1, φ2 and φ3 as parameters, used to compute the coefficients, Hessian, and covariance matrix,
respectively. In this section, we empirically study the allocation for the three parameters given
the total privacy budget. For each method, we experiment with various allocations under different
settings and select the one that produces the shortest private confidence intervals with at least 95%
coverage.

In the first group of experiments (Section 7.3.1), we test how much of the total privacy budget
should be allocated to φ1, which is used by the ERM algorithms for parameter estimation. While
varying the percentage of total privacy budget allocated to φ1, we split the remainder equally between
φ2 and φ3. For each setting, we use k = 100, 000 bootstrap replicates to compute the coverage
percentage and length of the privacy-preserving confidence intervals. For pure ε-differentially private
algorithms, we vary the proportion of the total privacy budget assigned to φ1 from 0.3 to 0.9. For
ρ-zCDP algorithms, we vary the proportion of the budget allocated to φ1 from 0.1 to 0.98.

Once we settle on an allocation for φ1, we experiment (in Section 7.3.2) with how to divide the
remaining privacy budget between φ2 and φ3 . We again use k = 100, 000 bootstrap replicates to
compute the coverage percentage and length of the privacy-preserving confidence intervals.

Ideally, we would find some allocation for the three budgets that consistently works well no
matter the dataset, the sample size, and the dimensionality. Therefore, for each method, we
experiment under various settings by using different datasets, sample sizes and dimensionality. The
results for logistic regression and SVM are similar, so we show representative results in this section
and the rest in Supplemental Appendix B.1.

7.3.1. Allocation for φ1. We first consider the combination of pure differential privacy and objective
perturbation. Out of a total budget of ε, ε1 out of ε is used by objective perturbation to obtain
logistic regression coefficients. The results are shown in Figure 1. It consists of two pairs of plots.
In Figure 1a, we consider the Adult dataset and dimensionality d = 5. The left part of the figure
shows coverage as a function of ε1/ε and the right side shows the corresponding confidence interval
length. Figure 1b uses the IPUMS-US dataset with d = 1 (i.e. we consider one feature aside from
the constant feature). As the ratio ε1/ε increases, coverage percentage also tends to increase in
Figure 1a. The coverage is greater than 95% for all values of ε1/ε that we tested in Figure 1a. In
Figure 1b, we observe that the coverage stays around 95% until ε1/ε increases to about 0.8. With
ε1/ε > 0.8, coverage slightly decreases. We also notice such patterns in other results where d = 1.
On the other hand, the length of the privacy-preserving confidence intervals from the plots shows a
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Appendix A. Proofs

A.1. Proof of Theorem 1.

Theorem 1 . If the loss function f(·) is convex and doubly differentiable, with |f ′(·)| ≤ 1 and
|f ′′(·)| ≤ t, then Algorithm 1 satisfies ε-differential privacy whenever all the feature vectors ~xi have
||~xi||2 ≤ 1.

Proof. The loss function f(~x, y, θ) = f(yθT~x). Because f(·) and ‖θ‖22 are convex and differentiable,

given any data set D, the gradient of the objective function equals to 0 at the empirical minimizer θ̃:

β = −2ncθ̃ −
n
∑

i=1

yif
′(yiθ̃

T~xi)~xi.
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To show ε-differential privacy, we compute the ratio of the densities of θ̃ under the two
neighboring data sets D and D′.

g(θ̃|D)
g(θ̃|D′)

=
v(β|D)
v(β′|D′)

· | det(J(θ̃ → β|D))|−1

| det(J(θ̃ → β′|D′))|−1
,

where J(θ̃ → β|D) is the Jacobian matrix of the mapping from θ̃ to β.

Given D, the (j, k)-th entry of J(θ̃ → β|D) is
∂β(j)

∂θ̃(k)
= −2nc1j=k −

n
∑

i=1

y2i f
′′(yiθ̃

T~xi)~x
(j)
i ~x

(k)
i ,

where 1 is the indicator function. The Jacobian is well defined since f(·) is doubly differentiable.
Given D and D′, define

A = 2ncId +
n−1
∑

i=1

y2i f
′′(yiθ̃

T~xi)~xi~x
T
i ,

~u~uT = y2nf
′′(ynθ̃

T~xn)~xn~x
T
n ,

~v~vT = y2zf
′′(yz θ̃

T~xz)~xz~x
T
z .

Then, J(θ̃ → β|D) = −(A+ ~u~uT ), J(θ̃ → β′|D′) = −(A+ ~v~vT ).
Therefore,

| det(J(θ̃ → β|D))|−1

| det(J(θ̃ → β′|D′))|−1
=
| det(A+ ~v~vT )|
| detA+ ~u~uT |

=
|(1 + ~vTA−1~v) det(A)|
|(1 + ~uTA−1~u) det(A)|

=
|1 + ~vTA−1~v|
|1 + ~uTA−1~u| .

We can see A is a symmetric positive definite matrix and its eigenvalues are at least 2nc. So the
eigenvalues of A−1 are at most 1

2nc . Since y ∈ {−1, 1}, ‖~x‖2 ≤ 1 and f ′′(·) ≤ t,

|1 + ~vTA−1~v|
|1 + ~uTA−1~u| ≤

1 + ‖~vTA−1~v‖2
1

(by the triangle inequality and ~uTA−1~u ≥ 0)

≤ 1 + ‖v‖2‖A−1~v‖2 ≤ 1 + ‖v‖22‖A−1‖2
= 1 + y2zf

′′(yz θ̃
T~xz)‖~xz‖22‖A−1‖2

≤ 1 + t‖A−1‖2 ≤ 1 +
t

2nc
.

Then by the definition of ε′, 1 + t
2nc = eε−ε′ .

Next, we bound the ratio of the densities of the noise vectors:

β′ − β = ynf
′(ynθ̃

T~xn)~xn − yzf
′(yz θ̃

T~xz)~xz.

Since y ∈ {−1, 1}, ‖~x‖2 ≤ 1 and f ′(·) ≤ 1,

‖β′‖2 − ‖β‖2 ≤ ‖β′ − β‖2 ≤ 2,

so
v(β|D)
v(β′|D′)

=
e−ε′‖β‖2/2

e−ε′‖β′‖2/2 = eε
′(‖β′‖2−‖β‖2)/2 ≤ eε

′

.
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Therefore,

g(θ̃|D)
g(θ̃|D′)

=
v(β|D)
v(β′|D′)

· | det(J(θ̃ → β|D))|−1

| det(J(θ̃ → β′|D′))|−1
≤ eε

′ · eε−ε′ = eε.

A.2. Proof of Lemma 1.

Lemma 1. Algorithm 2 satisfies φ-differential privacy and φ-zCDP.

Proof. In Algorithm 2, only Line 8 touches the matrix M since Lines 1 through 7 are sampling from
the noise distribution and all other lines are just post-processing on the perturbed matrix M̃ . So
we just need to prove getting M̃ through Line 8 satisfies differential privacy and zCDP.

(1) When protecting differential privacy:
To simplify, let vec (M) be the vector representation of M by stacking its rows. Let M ′

be the neighbor of M which differs in only one entry. Then given the density of the noise in
Equation 3.2 and the L2 sensitivity Sens(M),

vec (M̃)|M
vec (M̃)|M ′ =

v[vec (M̃ −M)]

v[vec (M̃ −M ′)]

=
e−φ/Sens(M)·‖ vec (M̃−M)‖2

e−φ/Sens(M)·‖ vec (M̃−M ′)‖2

=eφ/Sens(M)·(‖ vec (M̃−M ′)‖2−‖ vec (M̃−M ′)‖2)

≤eφ.
Therefore, Line 8 satisfies φ-differential privacy.

(2) When protecting zCDP:
By Proposition 3, Line 8 satisfies φ-zCDP.

The rest of the algorithm is just post-processing on the perturbed matrix. By the post-processing
property of differential privacy and zCDP, Algorithm 2 satisfies φ-differential privacy and φ-zCDP.

A.3. Proof of Theorem 2.

Theorem 2 . Under the conditions of Theorem 1, Algorithm 3 satisfies (φ1 + φ2 + φ3)-differential
privacy and (φ2

1/2 + φ2 + φ3)-zCDP.

Proof. In Algorithm 3, there are three parts that touch the true data.
First, the computation of the minimizer θ̃ to the objective function. Based on Theorem 1,

the computation is φ1-differentially private as long as the loss function f(·) is convex and doubly
differentiable with |f ′(·)| ≤ 1 and |f ′′(·)| ≤ t for some finite t. By Proposition 1, the computation
also satisfies (φ2

1/2)-zCDP.
The next two parts are the computations of the Hessian and the covariance matrix. By Lemma 1,

the computation of the Hessian satisfies φ2-differential privacy and φ2-zCDP, and the computation
of the covariance matrix satisfies φ3-differential privacy and φ3-zCDP.

All other computations are post-processing and therefore do not violate differential privacy
or zCDP. By the composition theorem of differential privacy and zCDP, Algorithm 3 satisfies
(φ1 + φ2 + φ3)-differential privacy and (φ2

1/2 + φ2 + φ3)-zCDP.
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A.4. Proof of Theorem 4.

Theorem 4 . Under the same conditions as Theorem 3, Algorithm 5 satisfies (φ1 + φ2 + φ3)-
differential privacy and (φ1 + φ2 + φ3)-zCDP.

Proof. In Algorithm 5, there are three parts that touch the true data.
First, the computation of the minimizer to the objective function. By Theorem 3, this

process satisfies φ1-differential privacy and φ1-zCDP as long as the loss function f(·) is convex and
differentiable with |f ′(·)| ≤ 1.

The next two parts are the computations of the Hessian and the covariance matrix. By Lemma 1,
the computation of the Hessian satisfies φ2-differential privacy and φ2-zCDP, and the computation
of the covariance matrix satisfies φ3-differential privacy and φ3-zCDP.

All other computations are post-processing and therefore do not violate differential privacy
or zCDP. By the composition theorem of differential privacy and zCDP, Algorithm 5 satisfies
(φ1 + φ2 + φ3)-differential privacy and (φ1 + φ2 + φ3)-zCDP.

A.5. Proof of Lemma 2.

Lemma 2. The L2-sensitivity of the covariance matrix Σ (defined in Equation 4.3) for logistic
regression is at most 2S(‖θ0‖2)2/n.
Proof. We compute the L2 sensitivity for Σ as

max
D,D′

∥

∥

∥
vec (ΣD − ΣD′)

∥

∥

∥

2

= max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec
[

∇(f(~xn, yn, θ0))[∇f(~xn, yn, θ0)]T
]

− vec
[

∇(f(~xz, yz, θ0))[∇f(~xz, yz, θ0)]T
]

∥

∥

∥

2

= max
~xn,yn,~xz ,yz

1

n

∥

∥

∥

[

S(−ynθT0 ~xn)2 vec (~xn~xTn )− S(−yzθT0 ~xz)2 vec (~xz~xTz )
]

∥

∥

∥

2

≤max
y,~x

2

n
S(−yθT0 ~x)2‖ vec (~x~xT )‖2.

Since ‖~x‖2 ≤ 1, we get ‖ vec (~x~xT )‖2 =
√

∑

1≤j,k≤d x[j]
2x[k]2 =

√

(
∑d

j=1 x[j]
2)2 ≤ 1. From the

Cauchy-Schwarz inequality, we get ‖θT~x‖2 ≤ ‖θ‖2‖~x‖2 ≤ ‖θ‖2. We know either θT~x = ‖θT~x‖2 or
θT~x = −‖θT~x‖2, then −‖θ‖2 ≤ θT~x ≤ ‖θ‖2. Based on the fact that the sigmoid function S(t) is
monotonically increasing in t and y ∈ {−1, 1},

max
y,~x

2

n
S(−yθT0 ~x)2‖ vec (~x~xT )‖2 ≤

2

n
S(‖θ0‖2)2.

A.6. Proof of Lemma 3.

Lemma 3. The L2-sensitivity of the Hessian H[Jn(θ̃)] (defined in Equation 4.2) for logistic
regression is at most 1/(2n).

Proof. We compute the L2 sensitivity for H[Jn(θ̃)] as:

max
D,D′

∥

∥

∥
vec (H[Jn(D, θ̃)]−H[Jn(D′, θ̃)])

∥

∥

∥

2

= max
~xn,yn~xz ,yz

1

n

∥

∥

∥
vec
[

H[f(~xn, yn, θ̃)]−H[f(~xz, yz, θ̃)]
]
∥

∥

∥

2
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= max
~xn,yn~xz ,yz

1

n

∥

∥

∥
vec
[

S(−ynθ̃T~xn)S(ynθ̃T~xn)~xn~xTn
]

− vec
[

S(−yz θ̃T~xz)S(yz θ̃T~xz)~xz~xTz
]∥

∥

∥

2

≤max
~x,y

2

n
S(−yθ̃T~x)S(yθ̃T~x)‖ vec (~x~xT )‖2

≤max
~x

2

n
S(θ̃T~x)S(−θ̃T~x).

In Appendix A.5, we have shown that −‖θ‖2 ≤ θT~x ≤ ‖θ‖2. The function S(θ̃T~x)S(−θ̃T~x)
achieves the maximum 1/4 at θ̃T~x = 0. So,

max
~x

2

n
S(θ̃T~x)S(−θ̃T~x) ≤ 1

2n
.

A.7. Proof of Lemma 4.

Lemma 4. The L2-sensitivity of the covariance matrix Σ (defined in Equation 4.3) for SVM is at
most 2/n.

Proof. We compute the L2 sensitivity for Σ as:

max
D,D′

∥

∥

∥
vec (Σ′

D − Σ′
D′)
∥

∥

∥

2

= max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec
[

∇f(~xn, yn, θ0)[∇f(~xn, yn, θ0)]T
]

− vec
[

∇f(~xz, yz, θ0)[∇f(~xz, yz, θ0)]T
]

∥

∥

∥

2

≤max
y,~x

2

n

∥

∥

∥
vec
[

∇f(~x, y, θ0)[∇f(~x, y, θ0)]T
]

∥

∥

∥

2
.

There are three cases:

(1) If yθT~x > 1 + h,

max
y,~x

2

n

∥

∥

∥
vec
[

∇f(~x, y, θ0)[∇f(~x, y, θ0)]T
]

∥

∥

∥

2
= 0.

(2) If |1− yθT~x| ≤ h,

max
y,~x

2

n

∥

∥

∥
vec
[

∇f(~x, y, θ0)[∇f(~x, y, θ0)]T
]

∥

∥

∥

2

=max
y,~x

2

n

[ y

2h
(yθT0 ~x− 1− h)

]2
‖ vec(~x~xT )‖2

≤max
y,~x

1

2nh2
(yθT0 ~x− 1− h)2

≤ 1

2nh2
· 4h2 since yθT0 ~x− 1 ∈ [−h, h]

=2/n.

(3) If yθT~x < 1− h,

max
y,~x

2

n

∥

∥

∥
vec
[

∇f(~x, y, θ0)[∇f(~x, y, θ0)]T
]

∥

∥

∥

2

=max
y,~x

2

n
y2‖ vec(~x~xT )‖2

≤2/n.
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Therefore, in all cases,

max
y,~x

2

n

∥

∥

∥
vec
[

∇f(~x, y, θ0)[∇f(~x, y, θ0)]T
]

∥

∥

∥

2
≤ 2/n.

A.8. Proof of Lemma 5.

Lemma 5. The L2-sensitivity of the Hessian H[Jn(θ̃)] (defined in Equation 4.2) for SVM is at
most 1/(nh).

Proof. The L2 sensitivity for H[Jn(θ̃)] can be computed as:

max
D,D′

∥

∥

∥
vec{H [Jn(D, θ̃)]−H[Jn(D′, θ̃)]}

∥

∥

∥

2

= max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec{H [f(ynθ̃~xn)]−H[f(yz θ̃~xz)]}

∥

∥

∥

2
.

There are two cases:

(1) If |1− yθT~x| ≤ h,

max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec{H [f(ynθ̃~xn)]−H[f(yz θ̃~xz)]}

∥

∥

∥

2

= max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec

{

y2n
2h

~xn~x
T
n −

y2z
2h

~xz~x
T
z

}

∥

∥

∥

2

≤max
~x,y

2

n
· 1

2h
‖ vec(~x~xT )‖2

≤1/(nh).
(2) Otherwise,

max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec{H [f(ynθ̃~xn)]−H[f(yz θ̃~xz)]}

∥

∥

∥

2
= 0.

Therefore, in all cases,

max
~xn,yn,~xz ,yz

1

n

∥

∥

∥
vec{H [f(ynθ̃~xn)]−H[f(yz θ̃~xz)]}

∥

∥

∥

2
≤ 1/(nh).
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