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Improving earthquake monitoring for gravitational-waves detectors with historical seismic data
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ABSTRACT

A remarkable level of isolation from the ground is required for Advanced gravitational-wave detec-
tors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) to function at peak
performance. These ground based detectors are susceptible to high magnitude teleseismic events such
as earthquakes, which can disrupt proper functioning, operation and significantly reduce their duty
cycle. As a result, data is lost and it can take several hours for a detector to stabilize and return
to the proper state for scientific observations. With advanced warning of impeding tremors, the im-
pact can be suppressed in the isolation system and the down time can be reduced at the expense of
increased instrumental noise. An earthquake early- warning system has been developed relying on
near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National
Oceanic and Atmospheric Administration (NOAA). The alerts can be used to estimate arrival times
and ground velocities at the gravitational-wave detectors. By using machine learning algorithms, a
prediction model and control strategy has been developed to reduce LIGO downtime by 30%. This
paper presents further improvements under consideration to better develop that prediction model and

decrease interruptions during LIGO operation.
I. INTRODUCTION

The two detectors that compose the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) along
with Virgo, and GEO600 detectors form a global net-
work of gravitational wave interferometers. Keeping the
detectors in operating mode requires an exceptional level
of isolation from the ground so that the cavities can be
held in optical resonance and be capable of observing
displacements in space-time of less than one thousandth
of the diameter of a proton. Environmental disturbances
such as earthquakes can disrupt operating mode, desta-
bilize detectors and cause the detectors to fall out of
lock despite seismic isolation systems already in place
to minimize interfering effects. When the detectors have
fallen out of lock, where the control system cannot main-
tain optics at their stabilized positions, it can take many
hours to return to the locked state and normal opera-
tion. During the observation run (referred as O1), from
January 18, 2015 to January 12, 2016 operation was
disrupted 62 times at LIGO Hanford and 83 times at
LIGO Livingston due to earthquakes. Previous studies
have shown that by using an early-warning earthquake
system, relying on alerts provided by the U.S. Geolog-
ical Survey (USGS) and the National Oceanic and At-
mospheric Administration (NOAA), arrival times and
ground velocities could be predicted which have a direct
correlation with the operation status of the interferom-
eters (Coughlin et al. 2017). The higher the incoming

seismic velocities the more unstable the interferometer.
A strategy intended to maintain lock and suppress these
seismic disturbances early in the isolation system, at the
expense of sensitivity and increased noise, would notably
increase the interferometers’ duty cycle (Biscans et al.
2018). Consequently, an earthquake early warning ap-
plication named Seismon has been created to process
real-time alerts from the USGS containing specific char-
acteristic information about the earthquakes to provide
estimated arrival times of the seismic phases and seismic
amplitudes of the surface waves at the detector sites. By
implementing detector control configurations, it is pre-
dicted that 40 to 100 earthquake operation interruptions
could be prevented in a 6-month period.

II. OBJECTIVES

We aim to improve the algorithms of Seismon and
as a result reduce LIGO downtime and increase the
time the detectors are in observing mode. The alerts
received from USGS contain information on time, lo-
cation, depth, and magnitude of a specific earthquake
which is then used to predict ground velocities, arrival
time and amplitude of the various seismic phases at
the detector sites. Seismon initially relies on earth-
quake notifications from a worldwide network of seis-
mometers. P-waves (primary) traveling twice as fast
as S-waves (secondary) reach the seismic stations first,
thus providing the initial earthquake character estima-
tions. As more and more data is acquired solutions to



2

the hypocenter and magnitude of the earthquake are
estimated and the solutions are sent to USGS’s Prod-
uct Distribution Layer (PDL). This ensures Seismon re-
ceives the most pertinent notifications. From there the
notifications are processed to predict the seismic wave
arrival time and the amplitude of the ground motion at
the detectors. Past earthquake records and the seismic
data at the detectors are also examined to predict how
the ground motion will affect the observatories. The
predicted amplitude and past earthquake data are com-
pared, with the difference being minimized by adaptive
simulated annealing algorithms to obtain solutions close
to the global minima. Lastly, the predictions are used
to create warnings delivered to the detectors contain-
ing the amplitude prediction, lockloss probability and
the anticipated earthquake arrival time at the observato-
ries. Seismon performance can be evaluated by record-
ing and analyzing the notification duration, accuracy
of predicted ground-motion amplitude, time-of-arrival
predictions and the detector lockloss predictions. Cur-
rent evaluations with the LIGO Observing Run 1 from
September 2015 to January 2016, show about 90% of
seismic events are within a factor of 5 of the predicted
ground velocity and within 3s of the final predicted ar-
rival time (Coughlin et al. 2017). Examining the times
lockloss occurred, it can be said that the detectors gen-
erally fall out of lock at ground velocities greater than
5 pm/s but at lower velocities the data is more com-
plex. Therefore, incorporating more ways of determin-
ing better lockloss predictions are of interest and would
demonstrate success in this project. We purpose to im-
prove the Seismon algorithm by incorporating more ma-
chine learning methods, broadening ground motion pa-
rameters and collecting more accurate data to enrich the
prediction models.

111. APPROACH

We intend on advancing the Seismon application by
improving predictions and acquiring more data of vari-
ous parameters of incoming teleseismic events. We will
test if the arrival time predictions can be improved by
machine learning algorithms. To enhance ground veloc-
ity predictions, we will explore broadening our data re-
sources and determine if we can acquire more data from
hundreds of other seismic stations around the United
States and the world.

IV. METHODS
A. INVESTIGATING P-WAVES

To better understand the effects of earthquake magni-
tude and global location on arriving earthquake surface
velocities at the detectors, P-wave properties and ve-

locities were initially investigated. Multiple plots using
historical data from Livingston and Hanford gathered
from observation run 1 and 2 have been made. In Fig-
ure 1, earthquake velocities are determined by dividing
the distance from earthquake origin to detector by the
difference of P-surface wave prediction times and earth-
quake times. These earthquake velocity magnitudes are
then plotted at their origin in regards to latitude and
longitude. These plots show the higher velocity P-wave
are distinguished clearly in the historical data.

Typically P-wave velocities are twice the speed of sur-
face waves yet these plots show velocities reaching up
to 16,000 m/s, which is higher than expected for simple
P-waves. Higher velocity speeds are often due to a cer-
tain azimuth degree and dept of the earthquake origin
which has an effect on the internal reflections the wave
experiences while traveling within the Earth. To explore
the contributions of reflections internal to the Earth, in
Figure 2, the effective velocities of the paths that in-
clude reflections (left) and those that do not (right) are
shown. These velocities are shown on a grid of depth
and azimuth degrees. While the plot on the right is in
line with expectations for P-wave velocities, the plot on
the left shows the contributions from reflections, leading
to much higher effective velocities (and therefore faster
arrivals). This result shows that the first arrivals of the
P-waves shown in Figure 1 derive from P-waves reflect-
ing in the Earth and that the historical data collected at
the LIGO interferometers includes P-wave data inclusive
of these reflections.

The surface velocities derived from the same historical
data at the Hanford and Livingston sites can now be ex-
plored. For easy comparison the same world maps were
made with surface wave velocity data in Figure 3 3 which
show the effective earthquake velocity, measured as the
distance of the earthquake divided by the difference of
the peak ground velocity time and earthquake time. It
shows a range of velocities from 2,000 to 5,000 m/s which
is appropriate for surface wave velocities dominating the
time-series, as expected. We include only the historical
data with peak ground velocities greater than 1 p/s.

A further analysis in the form of a histogram shows
the frequency of earthquakes at certain velocities. Fig-
ure 4 shows a histogram corresponding to the data used
for Figure 3. These plots show that the majority of
earthquakes have effective velocities between 2,000 and
4,000m/s, as expected for surface waves. However, this
graph shows that there are high speed outliers likely due
to body wave contributions such as a P-waves or con-
tamination from other earthquakes. This contamination
of earthquake waves different from simple surface waves
yet being categorized as surface waves can interfere with
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Figure 1. Magnitude of earthquake (EQ) velocities based on data using P-wave arrival times plotted at corresponding latitude
and longitude points. Data with peak ground velocities less than 1 /s have been omitted. Displayed on the left is the plot for
Livingston data and on the right is the plot for Hanford data.
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Figure 2. Magnitude of Earthquake velocities based on data using P-wave arrival times plotted in accord to degrees and dept of
earthquake origin. Displayed on the left plot is the velocity without taking into account reflections. On the right plot reflections
are taken into account and more expected P-wave velocities are shown.
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the accuracy of surface wave predictions used in machine
learning algorithms.

B. NEURAL NETWORK PREDICTIONS

Different experimentation in machine learning also led
to some practical results. Using a basic Keras neural
network, with a loss set to mean square error, histori-
cal data from Livingston, Hanford and Virgo seismome-
ters were used to create and test prediction models for
ground velocity and surface wave arrival time estimates.
A similar neural network with the loss set to categor-
ical crossentropy was used to predict detector status.
The neural network took 6 input parameters that con-
sisted of earthquake magnitude, longitude, latitude, dis-
tance from detector, dept and azimuth degree. With
only these 6 parameters initially available the goal was
to train a neural network model that could accurately
make the above predictions. When training the neu-
ral network a randomized portion of data is set as the
training set and another portion as the testing set. Ex-
perimentation with the amount of hidden layers and var-
ious hyper-parameters such as batch size, learning rate,
dropout rate, activation etc. was explored and the best
result models were saved. The predictions using the his-
torical data and in particular for the arrival time predic-
tions, all fell within a factor of 3.5 of the actual value.
This factor of 3.5 is determined by taking the difference
of the predicted and known actual ground velocities and
then dividing by the actual.

To get better neural network results, broadening data
resources was necessary. We decided to utilize earth-
quake data collected at Incorporated Research Institu-
tions for Seismology (IRIS), which included over 730,000
Earthquakes compared to the small amount of 2,000-
3,000 earthquakes for the historical datasets. The same
six input parameters were used to predict ground veloc-
ities and surface wave arrival times. This greatly im-
proved the accuracy of predictions but we noticed the
IRIS data included typical surface wave velocities and
higher velocities intermixed. To check the type of earth-
quake data within the IRIS dataset being fed into the
model is accurate and useful in itself, a plot of distance
versus time was produced in Figure 5. The three la-
beled lines plotted show where known Surface rayleigh
waves at different velocities would be represented in this
graph. A corresponding graph visualizes these points in
the form of density. These plots show us a high amount
of velocities characteristic of P-wave velocities. There-
fore a filter was placed on the IRIS data to only include
data with velocities less than 6,000 m/s and then train
the neural network model. This further improved the
accuracy of surface wave predictions and in Figure 6,

the actual versus predicted arrival times were plotted
in a density plot on the left. This plot shows the ma-
jority of earthquakes having arrival times between 2,000
and 6,000 seconds, concentrated along the trend line.
We expect to see the predicted and actual arrival times
plotted following a slope of 1. The more fitting to the
slope line shown, the more accurate the predictions. On
the right the counts versus relative error were plotted in
a histogram. The histogram shows all the arrival time
predictions within a factor of 1 with the majority within
a factor of .4. Using the IRIS data proved to improve
the neural network accuracy for ground velocity and ar-
rival time predictions greatly. To predict lockloss status,
a combination of Hanford and Livingston data was used
to train a neural network model based on a loss of cat-
egorical crossentropy. The same six input parameters
were used but the output was a prediction label of 0,
1, 2. The label 0 corresponds to detector not locked, 1
locked but can’t take data and 2 Locked but loss lock.

V. PERFORMANCE

Now that arrival times could be accurately predicted
under a factor of 1 using IRIS data we wanted to test
that particular model on the other historical data sets
of Livingston, Hanford and Virgo using the same six in-
put parameters. Testing all of Hanford data, including
velocities greater than 6,000 m/s the model was used to
predict arrival times and did so within a factor of 3.5
as can be seen in Figure 7 on the left. However, if the
Hanford data was filtered beforehand to exclude data
with earthquake velocities greater than 6,000 m/s the
predictions were slightly more accurate and is shown in
the right plot. Similar results were produced for ground
velocities. The lockloss model had the most inaccu-
rate predictions. A randomized portion of the combined
Hanford and Livingston data was set at the training set
and another as the testing set. The results were then
plotted in a confusion matrix in Figure 8. The quantity
of true label versus the label it was predicted as is dis-
played on the left. Since the amount of different labels
are not proportional the graph was transformed into a
normalized matrix on the right that shows the percent-
age of that label predicted. It is shown that only 53%
of the 0 label, 50% of the 1 label and 17% of the 2
label were predicted accurately.

VI. CONCLUSION

In this paper we have discussed the effects of earth-
quakes on gravitational-wave observatories and a earth-
quake early warning application named Seismon in place
already to combat the effects of earthquakes. We fur-
ther discuss improving a portion of Seismon’s algorithm
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Figure 3. Magnitude of earthquake (EQ) velocities based on data using peak ground velocity gps time plotted at corresponding
latitude and longitude points. Data with peak ground velocities under le-6 have been omitted. Displayed on the left is the plot
for Livingston data and on the right is the plot for Hanford data.
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Figure 4. Percentage of different earthquake (EQ) velocities based on data using peak ground velocity gps time divided by
the distance from the detectors. In association with the above Figure 3 plots. Data with peak ground velocities less than 1 /s
have been omitted. Displayed on the left is the plot for Livingston data and on the right is the plot for Hanford data.
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in predicting earthquake ground velocities, surface wave
arrival times and detector lockloss status. We have
shown the neural network models for ground velocity
and arrival times can be trained to make predictions
accurately within a factor of 1 but do not predict as
accurately on other historical datasets. It is shown we
can predict lockloss status as well, but increased amount
of training data would be beneficial. In the future we

hope neural network models can be implemented into
the seismon pipeline to increase the time the various
gravitatonal-wave detectors are in observation mode and
the amount of gravitational-waves detected. Further ef-
forts will be needed to determine what type of data
range is best and useful to train the models and then
be tested on. Further investigation into the lockloss sta-
tus model and its correlation to input parameters is also
recommended.
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Figure 5. The distance versus arrival times of the input data used to train the neural network model and produce Figure 6
graphs. The solid slope lines represent different rayleigh wave speeds commonly observed. A density plot of the same graph for
easier visualization of data is shown on the right.Data with peak ground velocities less than 1 x/s have been omitted.
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Figure 6. Surface wave arrival time predictions versus actual arrival times density plot (left). The closer the points displayed
are to the trend line of slope 1, the more accurate the prediction. Counts of earthquake arrival times versus the relative error
(right). Data with peak ground velocities less than 1 u/s have been omitted.
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Figure 7. Counts of earthquake arrival times versus the relative error using all Hanford data (left). Counts of earthquake
arrival times versus the relative error using Hanford data omitting velocities greater than 6,000 m/s (right). Data with peak
ground velocities less than 1 u/s have been omitted.
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Figure 8. A matrix showing counts of the actual lockloss status label versus the predicted label (left).The right shows the same
plot normalized to show the amount in percentage of a certain label and its prediction. The label 0 corresponds to detector
not locked, 1 locked but can’t take data and 2 locked but loss lock. Data with peak ground velocities less than 1 u/s have been
omitted.



