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Abstract
The effect of the ion wake downstream of grains immersed in a flowing plasma is observed
experimentally through the apparent non-reciprocal grain–grain interactions. Here we extend
amplitude-frequency response analysis to examine the nonlinear components of the interaction
of a dust particle pair aligned with the ion flow. The particle pair is modeled as two forced
coupled oscillators, and a new coordinate system is introduced in which the breathing and
sloshing modes are linearly decoupled. Multiple-scale analysis is used to derive analytical
expressions for the response in the vertical direction for each mode in this coordinate system. By
fitting the analytical expressions to experimentally measured response curves, the nonlinear part
of the wake-modified particle–particle interaction is determined and identified as the source for
the coupling between the sloshing and breathing modes. It is found that the restoring force acting
on the downstream particle is more linear, thus stabilizing the oscillations of the downstream
grain.
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1. Introduction

In a rf discharge plasma, dust particles levitated in the plasma
sheath region are greatly influenced by the ion wake which is
caused by the streaming ions scattered by the negatively
charged dust [1]. For dust particles aligned with the ion flow,
the ion wake field downstream of the dust particles lead to an
asymmetric interaction potential between the grains [2–11].
Thus the ion wake plays an essential role in the dynamics of
small grains in the plasma environment.

Numerical models of the ion wake including particle-in-
cell simulations [12–18], Monte Carlo simulation [3, 19–21],
or a combination of the two methods [22, 23], generally focus
on the dynamics of the electrons and ions. These models have
demonstrated that the wake potential behind dust grains takes
an oscillating form which facilitates the alignment of dust
particles below the upstream grains [15–17, 21]. From the
molecular dynamic point of view, the drag force from scat-
tered ions stabilizes this alignment [19]. The charge of the

downstream dust grains is also found to be decreased due to
the wakefield [14, 18]. Due to the large differences in the
characteristic timescales for the electrons, ions and dust, it is
computationally challenging to directly model the dynamics
of all three species at the same time. MD Simulations on
direct modeling the dynamics of dust particles have also been
conducted in various manners, including treating the dust as
‘dressed’ particles with the plasma appearing implicitly
through the plasma dielectric function [24–26], modeling the
ion wakefield as a point charge at a fixed point downstream of
the dust [27], modeling the electrons and ions through fluid
equations [28].

In experiment, it is possible to examine the ion wake in
terms of the dynamics of the affected dust particles. A paired
dust particle structure provides a suitable configuration to
examine the ion wake as it is the simplest 1D structure that
can be formed which still involves all relevant coupling
interaction [6, 29]. Experiments have confirmed the ion-
wake-induced decharging effect [5, 30], and shown the
instability triggered by the particle–particle interaction under
the influence of ion wake [29, 31–35]. Using a linear
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approximation of the interaction force, Kong et al [36, 37]
showed that the particle charge and effective Debye length
could be measured by investigating the coupled oscillation of
vertical dust pairs inside a glass box. Goree et al [38, 39]
employed velocity distribution correlations to anlyze the
oscillatory modes of dust particle pairs, which allowed them
to examine the heating effect caused by the ion wake.

These previous experiments approximated the non-
reciprocal particle–particle interaction by assuming a linear
interaction potential. To better understand how the ion wake
modifies the particle–particle interaction, it is necessary to
extend the theory to the nonlinear regime. Nonlinear response
analysis are so far limited to the dynamics of a single dust
particle [40–42]. Ivlev et al [40] studied the nonlinear
amplitude-frequency response for a single dust particle in
order to test the anharmonic potential in the sheath of a low-
pressure rf discharge. Zafiu et al [41] related the nonlinear
response of a single particle to the position dependent charge
variation as well as the asymmetric sheath potential. Wang
et al [42] showed the effects that other sources can have on
the nonlinear response of a single dust particle employing a
technique numerically based on a model with self-con-
sistently determined sheath field and dust charge. Shukla et al
[43, 44] presented a mechanism for self excited large ampl-
itude nonlinear oscillations at very low discharge pressure and
studied the response of a dust grain attributing the parametric
resonance to the plasma density oscillation by studying the
response curves.

Here, we extend the nonlinear-amplitude frequency
response analysis to a strongly coupled system with two
degrees of freedom for the first time in dusty plasma, and
apply amplitude-frequency response to measure the nonlinear
contributions of the ion wake to the particle–particle inter-
action force by studying the coupled motion of a dust particle
pair structure aligned with the ion flow and confined within a
glass box. Rather than considering the anharmonic sheath
potential [40, 41], we instead take the particle–particle
interaction as the main source of nonlinearity. We derive the
analytical form of particles’ motion governed by the nonlinear
equations of motion using the multiple scale method, and
compare with the experimentally measured response curves to
determine the quadratic terms for both the upstream and
downstream interaction forces.

2. Theory

A confined, vertically paired dust particle structure under
sinusoidal excitation of small amplitude and frequency Ω in a
plasma discharge can be modeled as two forced coupled
oscillators as shown in figure 1. At equilibrium, dust particles
are confined in a parabolic potential well due to the electric
field in the plasma sheath region (this assumption of parabolic
potential well will be justified later in the discussion section).
The variation of the particle–particle interaction force due to
the deviation of the inter-particle spacing is attributed to the
first and second order terms in the Taylor expansion of the

interaction force at the equilibrium inter-particle spacing R0,
where the nonlinearity is introduced by the second order term.

By considering neutral gas drag and assuming an iden-
tical mass m for both dust particles, the equations of motion in
the vertical direction are
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where x1 and x2 are the displacements from equilibrium
(1 and 2 being the indices for the upstream and downstream
particles), μ is the neutral gas drag coefficient, ω1 and ω2 are
the frequencies of the vertical confinements provided by the
sheath electric field, k1 and k2 are the coefficients of the linear
interaction between the particles, k1¢ and k2¢ are the coefficients
of the second order terms in the Taylor expansion of the
particle–particle interaction forces, F1 and F2 (should be
distinguished from the interaction force in figure 1) are
amplitudes of the external driving in acceleration unit. Here ‘
c.c.’ stands for the complex conjugate (for conciseness, ‘c.c.’
will be dropped from the following derivations, while all
solutions are understood to be accompanied by their complex
conjugate components). In most cases, k1 is not equal to k2 for
two particles aligned in a direction parallel to the ion flow,
due to the non-reciprocal ion wake.

Figure 1. Scheme of the model for a vertically aligned dust particle
pair in the plasma sheath region. The dust particles are trapped in
parabolic potential wells m x1

2 1 2 1 2
2 2wF = ( ) ( ) . The subscripts 1 and

2 are corresponding to the upstream and downstream dust particle.
The varation of the particle–particle interaction force due to the
deviation from the equilibrium position is determined by F1 2D =( )
m k x x k x x1 2 1 2 1 2 2 1 1 2 1 2 2 1

2- - + ¢ -[ ( ) ( ) ]( ) ( ) ( ) ( ) ( ) ( ) ( ) , where k1(2) and
k1 2¢( ) are related to the first and second derivative of the interaction
force at the equilibrium inter-particle distance R0 through
k F R m1 2 1 2 0 1 2= ¢ ( )( ) ( ) ( ) and k F R m21 2 1 2 0 1 2¢ = ( )( ) ( ) ( ). Here, the
interaction force is not presumed to be in any particular form.
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To solve these coupled nonlinear equations, we first
eliminate the linear coupling terms in x1 and x2 by introducing
a new coordinate system: x x x1 2a= -+ -( ) and x x1= --

x2a+( ) . Here a+ a-( ) are the oscillation amplitude ratios for
particles 1 and 2 corresponding to the breathing (sloshing)
mode, which can be measured experimentally employing the
scanning mode spectra (SMS) [45] technique (i.e. an exten-
sion of the traditional mode spectra technique where the
motion of the two particles is projected onto all the possible
eigenvectors). The original equations of motion can now be
written in the decoupled form

x x x g c x c x f t
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In equation (2) g g c c, , ,1 2 1 2 and f f,+ - are related to the

original parameters k k F, ,1 2 1¢ ¢ and F2 through the relation-
ships:
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In the linear limit, equation (2) provides the equations of
motion for the two oscillation modes, i.e. the breathing and
sloshing mode, respectively. Their natural frequencies w+ and
w- are directly measured by the SMS technique. In the rest of
this paper, we will call x+ (x-) the breathing (sloshing)
coordinate, ,a a+ - the decoupling parameters, and w+ and w-
the frequencies of the breathing and sloshing modes.

The nonlinear equations in equation (2) can be solved
using multiple scale perturbation theory by expanding a test
solution across different time scales [46]. In this case, we
assume an approximate solution keeping only terms to the
order of o 2�( ) as:
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where ò is a small dimensionless parameter that is used to
indicate the order of approximation, x 1+ and x 1- are
approximate solutions to first order in x, 2� + and x 2- are
approximate solutions to second order in 2� , and t1=òt is the
fast scale time. (See the appendix A for the full derivation of
equations (4)–(9).) Inserting these test solutions into
equation (2) and equating terms at different orders of ò, the
equations can now be solved independently for four different
regions in terms of the driving frequency Ω: primary
breathing (sloshing) regions where Ω is close to the breathing
(sloshing) mode frequency w w+ -( ) and super-harmonic
breathing (sloshing) regions where Ω is close to half the
breathing (sloshing) frequency w+(w-).

In the primary breathing region, �w dW = ++ , where δ
is the deviation of the driving frequency Ω from the breathing
mode frequency w+. The equations of motion to first order
take the form:
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with the solution:
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while the equations of motion in second order (ò2) take the
form:

7

x
t

x
x
t t
x
t

g c x c x f t

x
t

x
x
t t
x
t

g c x c x

2

exp i ,

2

.

2
2

2
2

2

2
1

1

1
1 1 1 2 1

2

2
2

2
2

2

2
1

1

1
2 1 1 2 1

2

w

m

w

m

¶
¶

+ =-
¶
¶ ¶

-
¶
¶

- - + W

¶
¶

+ =-
¶
¶ ¶

-
¶
¶

- -

+
+ +

+

+
+ - +

-
- -

-

-
+ -

( )

( ) ( )

( )

It is well known that linear undamped theory predicts
unbounded oscillations when Ω is equal to w+, irrespective of
the excitation amplitude. However, in an actual experimental
system these oscillations are generally finite, limited by
damping and nonlinearities within the system. Thus, to obtain
an uniformly valid approximate solution it is necessary to
consider the excitation term (when at resonance) to the same
order of ò used for the damping and all other nonlinearities
[46]. In this case, at breathing resonance the excitation term in
the breathing coordinate f texp iW+ ( ) appears in the equation
of motion to second order in ò (equation (7)) where both
damping and nonlinearity come into effect, while the exci-
tation term in the sloshing coordinate f texp iW- ( ) appears in
the equation of motion to first order in ò (equation (6)).
Substituting the first order solution shown in equation (6) into
the second order equations of motion given in equation (7)
and eliminating the secular terms, A and B are found to be
given by

A
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where C andC¢ are constants determined by initial conditions.
In this entire derivation, the situation of internal resonance

2w w»+ - is avoided, i.e. the possibility of the breathing
mode being excited directly by the sloshing resonance is
theoretically prohibited.
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Substituting equations (8) into (6), the solutions for the
primary breathing region yield:
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Following the same procedure, the solutions for the pri-
mary sloshing region to first order of approximation take the
form:
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The relationship of the primary breathing response x 1+ to
the driving frequency is given by the first term in
equation (9a), while the primary sloshing response x 1- is
given by the first term in equation (10b). The second term in
each of these equations is a transient response corresponding
to the natural frequencies of each mode. As can be seen, to
first order of approximation, the primary responses are inde-
pendent of the nonlinear parameters g1 and g2. Therefore at a
presumed low excitation amplitude (i.e. where only quadratic
nonlinearity is considered) the primary response behavior is
linear.

In the super-harmonic breathing (sloshing) regions, since
there is no primary resonance (i.e. Ω is not close to either w+
or w-), all excitations need only be considered to first order of
ò, i.e. all excitation terms should appear only to first order in
the equations of motion. Following the same procedure as
before, we find the solution for the secondary breathing
region to be:
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while for the secondary sloshing region:
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The secondary responses corresponding to twice the
excitation frequencies 2Ω can be clearly seen in
equations (11a) and (12b) as the first terms in x 1+
(equation (11a)) and x 1- (equation (12b)). In contrast to the
primary responses, secondary responses are governed by the
nonlinear parameters g1 and g2. Therefore, a secondary
response with shifted phase can be considered as a direct
consequence of the nonlinear particle–particle interaction.

3. Experiment

The experiment discussed here was conducted in a modified
gaseous electronics conference RF reference cell shown in
figure 2. The lower electrode was powered at 13.56MHz
while the upper electrode was grounded. A 20 mm×
18 mm×18 mm (height×length×width) glass box was
placed on the lower electrode in order to provide the hor-
izontal confinement required to form vertical chain structures.
Melamine Formaldehyde particles with diameter of 8.89±
0.09 μm were dropped into the plasma through a shaker
mounted above the upper electrode, and levitated inside the
glass box. Initially, a long chain structure inside the box was

Figure 2. Scheme of the modified GEC RF reference cell with a glass
box placed between the upper and lower electrodes employed in this
research.
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formed at a plasma power of 1.96 W. By carefully reducing
the plasma power, dust particles were dropped to the bottom
electrode until only two were left in the box. Once a paired
structure was formed, the plasma power was increased to its
experimental value, 9.82 W, where the small inter-particle
distance results in a strongly coupled pair structure.

A function generator coupled to the lower electrode
through an 20 dB attenuator was employed to provide a
sinusoidal driving force to the particle pair. During the
experiment, the driving frequency of the lower electrode was
increased from 1 to 50 Hz in steps of 0.1 Hz under a constant
driving amplitude of 1 V. The trajectories of the vertically
aligned particles at each step were recorded from the side
using a high speed CCD camera at 500 frames per second to
collect a total of 5000 frames. Throughout the experiment, the
gas pressure was held at 40 mTorr, ensuring detection of
particle thermal motion, while the plasma power was main-
tained at 9.82W.

3.1. Mode decoupling in the sloshing and breathing coordinate

Since the particle pair is driven vertically, all the analysis here
is based on the particles’ vertical motion. Typically the ana-
lysis is done using the coordinate of the center of mass and
positions relative to the center of mass. The motion of the
center of mass is commonly related to the sloshing mode of
the particle oscillation, while the relative coordinate is related
to the breathing mode. However, fast Fourier transformation
(FFT) of the time series of particles’ thermal center of mass
motion and relative motion, figures 3(a) and (c) show that
there is considerable response at the sloshing frequency for
the relative coordinate, and considerable response at the
breathing frequency for the center of mass coordinate. The
non-reciprocal property of the particle–particle interaction
(i.e. k k1 2¹ ) causes the center of mass mode basis set to no
longer be orthogonal to the relative mode basis set. It is
reasonable to observe both sloshing and breathing compo-
nents in the center of mass and the relative coordinates, since
they characterize the ‘pure’ sloshing mode (i.e. where the
particles are oscillating in phase with the same amplitude of
motion) and the ‘pure’ breathing mode (i.e. where the parti-
cles are oscillating 180° out of phase with the same amplitude
of motion), respectively.

To separate the different modes in the linear regime for
dust particles with nonreciprocal interaction, it is necessary to
apply the sloshing and breathing coordinates introduced in
section 2. Figure 4 shows the SMS obtained from the particle
thermal motion [45]. The mode frequencies ,w w+ - and
decoupling parameters a+ and a- (i.e. the oscillation ampl-
itude ratio) for the two modes were directly measured from
the maxima in the SMS at the higher (w+) and lower (w-)
frequencies. The oscillation amplitude ratios 0.35a =-+( )
and 0.81a =-( ) can now be used to transform the recorded
time series of trajectories x t1( ) and x2(t) for the upstream and
downstream particles into decoupled coordinates x t =+( )
x t x t1 2a- -( ) ( ) ( ) and x t x t x t1 2a= -- +( ) ( ) ( ) ( ). The FFTs
of the particles’ thermal motion in the sloshing and breathing

coordinates are shown in figures 3(b) and (d), where the the
undesired component (i.e. the breathing component in the
sloshing coordinate and the sloshing component in the
breathing coordinate) is elimated from each mode. It is
important to note that the frequency appearing around 30 Hz
is due to intrinsic system noise and should be distinguished
from the breathing component observed at approximately
32 Hz. From the experimentally measured values of

, ,w w a+ - + and a-, the linear coefficients and vertical

Figure 3. Fast Fourier transform (FFT) of the thermal motion of a
particle pair for (a) the conventional center of mass coordinate
(x1+x2), (b) the sloshing coordinate (x x1 2a- + ), (c) the relative
coordinate (x x1 2- ) and (d) the breathing coordinate (x x1 2a- - ).

Figure 4. Scanning mode spectra for the particles’ thermal motion.
The sloshing mode frequency w- is approximately 18.5 Hz with
polarization 0.89f =- [45]. The breathing mode frequency w+ is
approximately 32 Hz with polarization 1.91f =+ . Decoupling
parameters can be determined by taking the cotangent of the
polarizations, cota f=- -( ) and cota f=+ +( ).
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confinements in equation (1) are calculated to be k1=
6733 s 2- and k2=22 368 s 2- , 19.2 Hz1w = and 2w =
16.2 Hz.

3.2. Experimental measurement of response curves

Primary and secondary responses can be determined experi-
mentally by driving the particle pair at a frequency Ω and then
calculating the FFT of the particles’ motion in the decoupled
coordinates x t-( ) and x t+( ). A representive example is shown
in figure 5, where FFT’s for both the sloshing coordinate
(figure 5(a)) and breathing coordinate (figure 5(b)) are shown
for a particle pair driven at 8.5 Hz. Strong peaks, the primary
response, appear at 8.5 Hz (Ω) in both coordinates, accom-
panied by relatively weak peaks at the secondary response at
17 Hz (2Ω). Designating the amplitude of the peaks
corresponding to the primary and secondary response at
varying driving frequencies as P(Ω) and S(Ω), the primary
and secondary response curves as a function of Ω can be
obtained experimentally.

It is important to note that there appears to be a contradiction
between the analytical solutions given in equations (9)–(12) and
the experimental observations. For the analytical solutions, the
responses at the natural frequencies w+ and w- are transient terms
which decay as time increases. However, in experimental
observations, these transient components remain throughout
(figure 5). This contradiction is reconciled by noting that under
actual experimental conditions, there are always thermal excita-
tions (kicks) such that the response reaches a steady state.

4. Results

4.1. Determination of the particle–particle interaction to the
nonlinear regime

The obtained experimental primary response curves can be
fitted by the theoretical primary responses (as given by
equations (9)–(10)). Figure 6 shows fits to the primary
responses in sloshing (figure 6(a)) and breathing (figure 6(b))
coordinates under these conditions. Since the parameters w+
and w- have already been determined from the SMS, there are

only two parameters, μ and f+ ( f-), left to be determined from
each fit. As such, these fits yield a drag coefficient [47] of
μ=7.7 s−1 within the primary sloshing region and
μ=9.0 s−1 for the primary breathing region, in agreement
with the value of μ=8.5±0.9 s−1 as measured employing a
free fall technique [48, 49]. This allows values for f+ and f-
to be determined from the fit as f =+ 0.67×105 μm s−2 and
f−= 3.34×105 μm s−2, respectively.

Before these fits can be employed to determine the sec-
ondary responses, the relative phase of the decoupled driving
forces f texp i1 W( ) and f texp i2 W( ) must first be identified, i.e.
whether f1 and f2 are of the same or opposite sign. This
clarification can be made by taking advantage of the fol-
lowing experimental observation: at lower driving frequencies
the magnitude of the oscillation of the upstream particle is
larger than that of the downstream particle, while at higher
frequencies the situation is reversed. Figure 7 shows experi-
mentally measured oscillation amplitudes for both the
upstream and downstream particles. The blue line corre-
sponds to the upstream particle x1(t) while the dashed red line
corresponds to the downstream particle x2(t). A transition
point can be observed at a driving frequency of approxi-
mately 34 Hz.

This phenomenon can be explained theoretically by
solving the equations of motion for two linear forced coupled
oscillators (see equation (1) without the nonlinear interaction

Figure 5. Dust particle pair driven at 8.5 Hz. (a) FFT of the sloshing
coordinate. (b) FFT for the breathing coordinate.

Figure 6. Primary response curves for (a) sloshing coordinate and
(b) breathing coordinate. The points are experimental data while the
lines are fits to the analytical solution (i.e. first terms in
equations (9a) and (10b)).

Figure 7. Experimental measurement of the oscillation amplitudes
(primary responses) for both the upstream (blue solid line) and
downstream particle (red dashed line).
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terms k x x1 1 2
2¢ -( ) and k x x2 1 2

2¢ -( ) ). The nonlinear terms
have little effect on the primary responses observed under
small excitation amplitudes as discussed in the discussion
section. The ratio R between the response amplitudes of the
upstream and downstream particle can thus be derived from
the linear equations of motion as

For simplification we drop the damping terms in
equation (13). This can be justified since the damping is of the
same order of magnitude as the nonlinear force contribution.
Therefore, neglecting the damping does not qualitatively affect
the result. By doing so, the amplitude ratio now reduces to

R
k k

k k
, 14
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2 2
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2
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2
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h w
w h
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where F
F
1

2
h = is defined as the ratio between the amplitudes of

the excitation forces. Once f+ and f- are determined from
fitting the measured primary response (as shown in figure 6),
F1 and F2 are found using equation (3c). For the response fits
shown in figure 6, this allows η to be calculated to be 0.62
when f+ and f- are of the opposite sign (i.e. out of phase case)
and 1.1 when f+ and f- are of the same sign (i.e. in phase
case). Based on the parameters k1, k2, ω1 and ω2 determined by
employing the SMS method, the frequency ranges where the
oscillation amplitude for the upstream particle is larger than
that for the downstream particle (i.e. R>1) can now be cal-
culated from equation (14). This frequency range takes dif-
ferent form depending on the value of η, and it is also
conditional on whether 1

2
2
2w w- is greater or less than

k k1
1 2h+h

h
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For the situation η>1 (i.e. in-phase driving), 1
2

2
2w w-

is found to be greater than k k1
1 2h+h

h
- ( ) based on the

experimental parameters derived for k1, k2, ω1, and ω2.
The corresponding frequency range that the oscillation of the
upstream particle is larger than that for the downstream
particle (R>1) is predicted by equation (15a) to be
Ω > 34 Hz, while for the situation 0<η<1 (i.e. out of
phase driving), 1

2
2
2w w- is less than k k1

1 2h+h
h
- ( ) leading

to a frequency range described in equation (15b) as
24 Hz�Ω� 30 Hz. Thus the predicted result for in-phase
driving agrees with the observed experimental response

shown in figure 7, and we can conclude that f+ and f- are of
the same sign. As a side result, it is determined that the
driving force on the upstream particle is greater than that
acting on the downstream particle, F1>F2, in agreement
with results reported by Carstensen et al [10].

With f+ and f- now determined, the experimentally
determined secondary response curve can be compared to the
theoretically derived secondary response (equations (11) and
(12)). The fits with experiment are shown for the sloshing
coordinate with 1

2
wW » - in figure 8(a), while the fit for the

breathing coordinate with 1
2
wW » + is shown in figure 8(b).

Since the secondary responses are smaller than our camera
resolution of 9.0 μm per pixel, the errorbar caused by this
uncertainty in measurement is shown in figure 8. It is noticed
that the measurements below 1 μm will be considered as less
reliable than those above 1 μm due to the nonlinearity of the
measurement (see appendix B). Here the free parameters in each
fit are g1 and g2, which are determined to be g1= 31.1 μm−1 s−2

and g2=283.2μm−1 s−2 respectively. The nonlinear coeffi-
cients k1¢ and k2¢ are then in turn calculated to be
−253.4μm−1 s−2 and −364.6 μm−1 s−2 from equation (3a).

4.2. Numerical results

Additional simulations were conducted to validate the cal-
culated values for k1¢ and k2¢ above. In this case, particle
motions were simulated using a velocity Verlet algorithm
based on the parameters k, ,1 2 1w w and k2 measured from the
SMS technique and F F k, , ,1 2 1m ¢ and k2¢ calulated from the
response fits. The particle motion was simulated for for purely
linear interactions (k k 01 2¢ = ¢ = ) as well as nonlinear inter-
actions. The resulting time series for the particle positions was
then processed using the same approach as for the exper-
imental data to obtain simulated response functions. The
primary responses for the x1(t) and x2(t) coordinates are
shown in figure 9. As can be seen, the simulation agrees well
with experiment (figure 7) and successfully reproduces the
transition phenomenon at around 34 Hz. The primary
responses with nonlinear interactions exhibit only slight
deviations from those with only linear interactions. This
supports the previous argument that for small excitation
amplitudes, the primary response is only minimally affected
by the nonlinear interaction.

Secondary responses obtained from simulations with
nonlinear interaction are indicated by the dashed line in
figure 10, for wW » - (figure 10(a)) and wW » +
(figure 10(b)) for both the breathing (x t+( ), red curves) and

R
F k k F F k k F F F
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i . 13

1
2

2 2
2

1 2 2
2

1 1
2

2 1
2 2

1 2

2
2

1 1
2

2 1
2

2
2

1 2
2

1 1
2

2 1 2 1
2

2 2
2

1 2

2
2

1 1
2

2 1
2

2
2

w w m
w m

m
w w

w m

=
-W + + + -W + + + + W

-W + + + + W

+ W
-W + + + - -W + + +

-W + + + + W

{[ ( ) ][ ( ) ] }
[ ( ) ] ( )

{ [ ( ) ] [ ( ) ]}
[ ( ) ] ( )

( )

7

Plasma Phys. Control. Fusion 61 (2019) 055004 Z Ding et al



sloshing (x-(t), blue curves) coordinates. The consistency of
the simulation with experimental measurement (solid curves)
confirms our calculation of the nonlinear coefficients k1¢ and k2¢.
Figure 10(d) shows the simulation without considering non-
linear interaction, i.e. k 01¢ = and k 02¢ = . As can be seen,
when nonlinear interactions are not considered, there is no
secondary response excited, indicating that secondary respon-
ses are purely caused by the nonlinear interactions. It is also
interesting to note that both experiment and simulation show a
secondary response in the breathing coordinate when the
excitation frequency is around 18.5 Hz (the sloshing frequency
w-) as shown in figure 10(c). Therefore, the breathing coor-
dinate responds to the sloshing excitation. This is most likely a
consequence of mode coupling in the nonlinear regime.

5. Discussion

In this research, the restoring force due to the sheath potential
is considered to be linear, leaving the source of nonlinearity to

be attributed to the particle–particle interaction (k x x1 1 2
2¢ -( )

and k x x2 2 1
2¢ -( ) ) only. This assumption can be justified

based on the findings of Tomme et al [50, 51], which showed
that particle motion can be extremely well modeled by a
damped harmonic oscillator for amplitudes approaching 20%
of the sheath width. In this research, small particle vibration
amplitudes are ensured through application of a low driving
amplitude (1 V) through an attenuator. This provides a max-
imum vibration amplitude (appearing at the sloshing reso-
nance) of less than 250 μm, which is estimated to be
approximately 2% of the total sheath width. (The sheath edge
is estimated to be at the plasma glow maxima.) As such, it is
safe to assume a parabolic sheath potential (i.e. a linear
electric field) and to ignore the effect of charge fluctuations.

Additionally, the maximum vibration amplitude in the
breathing coordinate is less than 40 μm, which is small
compared to the equilibrium interparticle spacing which is
approximately 140 μm. Therefore, in theory, nonlinear effects
in the particle–particle interaction beyond the quadratic term
can be ignored. With this approximation both the theory
(equations (9) and (10)) and simulation (figure 9) show that
the primary response in both sloshing and breathing

Figure 9. Simulated response of upstream (blue) and downstream
(red) particles. Solid lines show the results including the nonlinear
interaction terms, while the dashed lines show the response using
only linear interaction terms.

Figure 10. Simulated secondary responses for (a) the secondary
sloshing region near 1

2
w- (around 9.5 Hz), (b) the secondary

breathing region near 1
2
w+ (around 16 Hz) and (c) the primary

sloshing region near w- (around 18.5 Hz). Simulations including
nonlinear interactions are plotted as dashed lines while experimental
measurements are plotted as solid lines. Simulations which do not
include nonlinear interactions (k k0, 01 2¢ = ¢ = ) are plotted in
figure 10 (d). Lines plotted in blue represent sloshing coordinates
and those plotted in red represent breathing coordinates.

Figure 8. Fits for the measured secondary responses (a) in the
sloshing coordinate at 1

2
w- and (b) breathing coordinate at 1

2
w+ to the

analytical response curves. The points show experimental data while
the solid lines are fits using the theoretical solutions (i.e. first terms in
equations (11a) and (12b)). The errorbars are due to the
measurement uncertainty caused by the resolution of the camera
which is 9 μm per pixel.
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coordinates very weakly depends on the nonlinear coefficients
k1¢ and k2¢. Experimental results are in agreement with this
conclusion, validiating the choice of neglecting higher order
nonlinear terms.

Further increasing the excitation amplitude produces
‘spring hardening’ in the breathing coordinate, i.e. the reso-
nance frequency shifts towards higher frequencies. This
occurs as a consequence of a cubic nonlinearity. In fact, even
under small excitations (e.g. the excitation in the presented
experiment), the breathing mode is still slightly affected by
these cubic nonlinearities, which is the reason that the primary
breathing fit (figure 6(b)) is not as accurate as the primary
sloshing fit (figure 6(a)). Interestingly, the spring hardening
effect only appears in the breathing coordinate, while in the
sloshing coordinate there is no obvious frequency shift. Since
the breathing coordinate characterizes the particles’ relative
motion, this also confirms that the nonlinearity of the system
arises from the particle–particle interaction rather than from
the sheath, as discussed above. The situation of large exci-
tation (significant spring hardening in the breathing coordi-
nate created by the cubic nonlinearity) will be examined in
future experiments.

Although the excitation (vibration amplitude) observed in
the current research is small, secondary responses in both the
sloshing and breathing coordinates are clearly seen. Since
both theory and simulation show that these vanish for purly
linear interactions, they serve as a signature of nonlinear
particle–particle interactions.

It may be helpful here to compare our results to the case of
a reciprocal particle–particle interaction and identical back-
ground confinement for both particles. Considering a reciprocal
interaction (k k k k k k,1 2 1 2= = ¢ = - ¢ = ¢) and identical con-
finement ( 1 2w w= ) in equation (1), the modes are now
orthogonal and 1a = -+ while 1a =- . For the ideal situation
where both particles are driven identically, i.e. F1=F2=F,
the external driving term disappears in the breathing coordinate
while the driving magnitude equals F2 in the sloshing coor-
dinate (equation (3c)). In this case, the breathing mode cannot
be excited. However, in an actual experimental situation, any
difference in the driving force or nonreciprocity in the particle–
particle interaction can cause the breathing mode to become
excited, in contrast to the result reported by Prior et al [52]. As
seen in equation (3c), even when a a+ - deviates from −1 /1
(as is the case in the actual experiment), the effective driving
force f- is still much larger than f+, explaining the much
stronger primary response in the sloshing coordinate than in the
breathing coordinate (see figure 6).

For F F1 2¹ , excitations of the two modes for a system
with reciprocal interaction and an identical symmetric back-
ground confinement obey

x x x k x F F t

x x x F F t

¨ 2 exp i ,

¨ exp i . 16

2 2
1 2

2
1 2

m w

m w

+ + + ¢ = - W

+ + = + W
+ + + + +

- - - -

˙ ( ) ( )
˙ ( ) ( ) ( )

In this case, nonlinear terms only appear for the breathing
coordinate, while the equation of motion for the sloshing
coordinate remains linear. Comparing equation (16) to (2), we

can conclude that it is the non-reciprocal interaction and
the non-identical background confinement that couples the
sloshing and breathing modes in a nonlinear manner. The
secondary excitation observed in the sloshing coordinate is
thus purely a consequence of this nonlinear coupling.

The ion wake causes the particle–particle interaction to
be non-reciprocal. The wake effect (in the direction of the ion
flow) can be determined by examining the interaction force
near the particle equilibrium positions. Since the deviation
from the equilibrium separation is small, the interaction force
can be approximated by a Taylor series expansion whose first
and second derivatives are characterized by k1(2) and k1 2¢( ) . We

define the nonlinearity length L k
k1
1

1
= ¢ and L

k
k2
2

2
= ¢ as the ratio

of the linear coefficients k1, k2 to the second order nonlinear
coefficients k k,1 2¢ ¢. This nonlinearity length L can be used as a
measurement of nonlinearity scale for the particle–particle
interaction. In this case, for the upstream force L k

k1
1

1
= =¢

28- μm and for the downstream force L 65k
k2
2

2
= = -¢ μm.

Previously, no particular force model was assumed to deter-
mine the coupling coefficients k k k, ,1 2 1¢ and k2¢. Now we
consider the force between two particles which interact
through a Yukawa potential expkQ

r r
DF = l( ). We calculate L

for a Yukawa interaction as a function of the Debye length
λD:

L
d d d

d d d

2 2
6 6 3

, 17Yukawa
D
3 2

D
2 3

D

D
3

D
2 2

D
3

l l l
l l l

= -
+ +

+ + +
( )

where d is the inter-particle spacing at equilibrium (approxi-
mately 140 μm for this experiment). This LYukawa approaches
an asymptotic value of L d

3
= - for large Debye length, which

coresponds to the Coulomb interaction potential (i.e.
L d
Coulomb 3

= - ). Figure 11 shows nonlinearity length LYukawa
for a particle separation d=140 μm as a function of λD. It
can be seen that the value for the upstream particle,
L1=−28 μm falls in the range where the Debye length λD
equals approximately 1/3 of the inter-particle spacing, while
the value for downstream nonlinearity length L2=−65 μm
exceeds the asymptotic value L=−47 μm (corresponding to

Figure 11. The dependence of LYukawa on the Debye length Dl for a
Yukawa force with interparticle spacing d=140 μm. As the Debye
length increases, LYukawa asymptotically approaches the value for a
Coulomb interaction with L 47Coulomb = - μm.
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the Coulomb interaction). Thus, due to the ion wake, the
downstream force is no longer a simple Yukawa or Coulomb
interaction, even though the upstream force can still be
described as an effective Yukawa interaction, in agreement
with results reported in [25, 26, 53, 54]. Furthermore, since
L L1 2<∣ ∣ ∣ ∣, it appears that the downstream interaction is more
linear than the upstream. This implies that when the paired
particles are at their equillibrium positions, the more linear
restoring field for the downstream particle (effectively from
the particle–particle interaction), results in more stable oscil-
lations for the downstream particle.

6. Conclusions

A method to analyze nonlinear particle–particle interactions
for a paired particle structure aligned with the ion flow in a
complex plasma by experimentally measuring the nonlinear
amplitude-frequency response curves has been presented. The
method relies on examining the particle motion in a new
coordinate system, the ‘breathing’ and ‘sloshing’ coordinates.
Rewriting the system of equations for two coupled, forced
oscillators in terms of these coordinates allows the sloshing
and breathing modes to be linearly decoupled, as shown in
equation (2) and illustrated in figure 3. The coupling in the
nonlinear term is determined to result from the non-reciprocal
particle interaction caused by the ion wake.

Multiple-scale analysis is used to solve the system of
nonlinear coupled equations, and the motion is investigated
for the primary response region (frequency near the driving
frequency Ω) and the secondary response (frequency near
2Ω). The primary response in the breathing and sloshing
coordinates are found to be independent of the nonlinear
parameters (equations (9a) and (10b)), which only appear in
the equations for the secondary response (equations (11a)
and (12b)).

Amplitude-frequency response curves are obtained
experimentally by applying a sinusoidally varying voltage to
the lower electrode to drive the particles in the vertical
direction. Fitting the primary response curve, determined
from the amplitude of the FFT of the motion in the breathing
and sloshing coordinates at the driving frequency Ω, with the
analytical expression for the primary response allows the
magnitude of the driving force and the damping parameter to
be determined (figure 6). In turn, fitting the experimentally
measured secondary response curves (figure 8) allows the
coefficients of the nonlinear coupling to be found.

Simulations of the particle motion using these measured
parameters confirmed that the nonlinear terms contribute very
little to the primary response of the system (figure 9), whereas
excluding the nonlinear terms from the interaction completely
eliminates the secondary response (figure 10). Thus, the
existence of the secondary response can be taken as a sig-
nature of the nonlinearity present in the system. Non-
reciprocal interactions or differences in the background con-
finement, as would be expected for a particle pair with the
interaction mediated by the ion wake, results in equations of
motion which are similar to the coupled driven oscillators (see

equations (2) and (16)). In this case, the coupling in the
nonlinear term is determined to result from the apparent non-
reciprocal particle–particle interaction caused by the ion
wake. Further analysis shows that the nonlinear length scale,
defined as the ratio of the coefficients of the linear and non-
linear terms, is greater for the downstream particle. Thus the
restoring force acting on the downstream particle is more
linear than that acting on the upstream particle, stabilizing the
oscillations of the downstream particle.
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Appendix A. Full derivation of the solutions at the
primary breathing region

Consider the driving frequency near w+, i.e. �w dW = ++ .
Writting out the drag force and the driving force at resonance
to the same order in the nonliner terms (i.e. ,�m m= ¢
f f f f,2� �= ¢ = ¢+ + - -), the equations of motion take the fol-
lowing form
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By substituting in the test solution
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where t0=t and t1=òt0, the equations of motion to second
order in ò are given by

t t t t
x x

t t
x x

x x g c x x

c x x f t

2

exp i c.c., A5

2

0
2

2

0 1

2
2

1
2 1

2
2

0 1
1

2
2

2
1

2
2 1 1 1

2
2

2 1
2

2
2 2

0

� � � �

� � � �

� � � �
� � �

m

w

¶
¶

+
¶

¶ ¶
+

¶
¶

+

+ ¢
¶
¶

+
¶
¶

+

+ + + +

- + = ¢ W +

+ +

+ +

+ + + + +

- - +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( ) [ ( )
( )] ( ) ( )

t t t t
x x

t t
x x

x x g c x x

c x x f t

2

exp i c.c. A6

2

0
2

2

0 1

2
2

1
2 1

2
2

0 1
1

2
2

2
1

2
2 1 1 1

2
2

2 1
2

2
2

0

� � � �

� � � �

� � � �
� � �

m

w

¶
¶

+
¶

¶ ¶
+

¶
¶

+

+ ¢
¶
¶

+
¶
¶

+

+ + + +

- + = ¢ W +

- -

+ +

- - - + +

- - -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( ) [ ( )
( )] ( ) ( )

The equations of motion are separated at different orders of ò,
by equating all the terms of order of ò and ò2.
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To first order in ò, the equations of motion are
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with the solution to the first order
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Equating the terms which are second order in ò yields
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Substituting x+1 and x 1- given by (A9) and (A10) into (A11)
and (A12)
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To ensure that there are no secular terms in the equations of
motion for x 2+ (A15) and x 2- (A16), the resonant terms on
the right hand side of (A15) and (A16) are forced to be ‘zero’,
allowing the coefficients A and B to be determined from
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where C and C¢ are constants depending on the initial con-
ditions and ‘cc’ stands for the complex conjugate. The

solutions for the other frequency regions are derived in a
similar manner.

Appendix B. Linearity of the measurement

To validate the linearity of the measurement for small
responses (e.g. secondary responses are measured in the sub-
pixel resolution), a calibration has been conducted between
measured responses and real signal amplitudes. As shown in
figure B1(a), measured secondary responses above 1 μm
(solid circles) show a good linear dependence on real signal
amplitude, while those below 1 μm (hollow circles), this
dependency becomes less linear especially when the mea-
sured value is below 0.3 μm. Thus, measurement of the sec-
ondary response below 1 μm should be considered as less
reliable due to nonlinearity of the measurement. Figure B1(b)
shows the calibration of the primary responses where the
measurement is verified to be linear.
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