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so in their tests AJAX is effectively synchronous, meaning that the

AJAX request-response pairs are essentially atomic, without other

events occurring in between. This observation allows us to establish

a notion of łexpectedž event schedules as those where an AJAX

response event handler eresp executes immediately after the event

handler ereq that sent the request. In contrast, any schedule where

another event handler e is scheduled between ereq and eresp can be

regarded as less likely to be exercised during ordinary testing. An

AJAX event race occurs if the effects of e conflict with the effects

of eresp. The idea of adverse execution is to systematically expose

a program to adverse conditions and compare the result with the

normal behavior. In our case, schedules where AJAX is processed

synchronously define the normal expected behavior, and adverse

conditions are situations where the network or server is slow or

unreliable allowing other events to interfere.

Our approach consists of two phases. The first phase dynami-

cally monitors an execution of a web application, with the purpose

of identifying (1) user event handlers that have conflicting AJAX

response event handlers, and (2) information about which event

handlers may be reordered. This initial execution may be driven

by a human user, an automated testing tool, or a pre-existing test

script, similarly to other dynamic race detectors. For each user event

handler u that has been observed, an event graph Gu is generated

that captures relevant information about the events that have been

triggered either directly or indirectly by u. For example, clicking

on a button may create a timer event that leads to an AJAX request

that, in turn, triggers an AJAX response event, which finally up-

dates the UI. The second phase uses these event graphs to plan a

series of tests. Each test simulates two event schedules, one where

AJAX is synchronous and one that simulates adverse conditions

as discussed above, and automatically compares screenshots of the

resulting web pages. Observable differences are reported along with

detailed information about the event schedules that gave rise to

them. To control the scheduling of event handlers when execut-

ing the tests, we use an event controller mechanism inspired by

EventRaceCommander in which nondeterminism is restricted by

selectively postponing the execution of event handlers.

We evaluate AjaxRacer using 20 web pages from 12 large and

widely used web applications. The results show that the approach

is effective in detecting AJAX races in real settings. AjaxRacer

generates 152 tests, of which 65 reveal harmful races among 12

of the web pages, and only seven reports are false positives. We

additionally demonstrate the usefulness of AjaxRacer’s compre-

hensive web-based reports for understanding the detected AJAX

races and diagnosing their root causes.

In summary, this paper makes the following contributions:
• We define a notion of event graphs that captures relevant

information about effects and orderings of event handlers,

relative to a given initial execution.

• We present a two-phased approach for automatically detect-

ing harmful AJAX event races in JavaScript web applications.

The first phase performs a dynamic analysis for computing

event graphs; the second phase executes the generated tests

under different event schedules and determines if observably

different results appear.

• We describe the open-source tool AjaxRacer, which imple-

ments the approach.

1 function fetchJSONFromURL(url, callback) {

2 var xhr = new XMLHttpRequest();

3 xhr.open('GET', url, true);

4 xhr.onreadystatechange = function () {

5 if (xhr.readyState == XMLHttpRequest.DONE && xhr.status == 200) {

6 callback(JSON.parse(xhr.responseText));

7 }

8 };

9 xhr.send(null);

10 }

Figure 1: AJAX example that demonstrates how a web appli-

cation can fetch a JSON object from a server.

• We present experimental results showing AjaxRacer to be

effective at detecting AJAX races in real-world web applica-

tions, that it reports few false positives, and that it provides

insightful explanations that are helpful to developers.

2 BACKGROUND ON AJAX

AJAX (Asynchronous JavaScript and XML) is a technology that

enables web applications to exchange data asynchronously with

a server without imposing page reloads, which enables rich and

responsive client-side web applications.

Figure 1 illustrates how a web application can retrieve a JSON ob-

ject asynchronously from a server using the XMLHttpRequest (XHR)

API.1 To send an XHR request, a web application first needs to

construct an XHR object (line 2) and initialize the object by calling

the open method with the relevant HTTP method and URL (line 3).

The open method takes as optional arguments a boolean that spec-

ifies if the request should be asynchronous (defaults to true) and

credentials for authentication purposes. When the XHR object has

been initialized, the AJAX request can be sent by calling the send

method, optionally with data for the body of the request (line 9).

Each XHR object goes through several phases during the life-

cycle of the corresponding request. The current state of an XHR

object can be accessed at any time by reading its readyState prop-

erty. This state indicates (among others) if the request has been

sent, if the headers and status code have been received from the

server, or if the entire response has been received. Each time the

state of an XHR object changes, a so-called readystatechange event

is triggered. Web applications can react to these events by regis-

tering an event handler for this event type, as in line 4. The event

handler in lines 4ś8 explicitly checks that the response has been

fully received before it accesses the body of the AJAX response

in line 6. XHR involves several other kinds of events, in addition

to readystatechange events. These include a load event when the

resource has been loaded, a timeout event if the response takes too

long, and an error event if, for example, the request is blocked by

the browser’s same-origin policy.

To circumvent the same-origin policy of XHR, many websites

instead implement AJAX using JSONP. To get data from a server

with that approach, the client code dynamically creates a script

element with the URL of a script, which is executed when it has

1 See https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest.
The new Fetch API (https://developer.mozilla.org/en-US/docs/Web/API/
Fetch_API) andWebSockets (https://developer.mozilla.org/en-US/docs/Web/
API/WebSockets_API) provide related functionality. In this paper, we focus on XHR,
which is currently the most widely used AJAX API, but the alternatives may be inter-
esting for future work.

39



Practical AJAX Race Detection for JavaScript Web Applications ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

www.chevronwithtechron.com/findastation.aspx

11 <script src="js/gmap-helper-main-compiled.js"></script>

12 <input id="search" value="Enter Location/ZIP code">

13 <div id="searchBar">

14 <p>FILTER YOUR SEARCH</p>

15 <a onclick="addRemoveFilter('search7');" ...>Car Wash Locations</a>

16 <a onclick="addRemoveFilter('search11');" ...>Diesel Locations</a>

17 </div>

18 <div id="stationResult"></div>

www.chevronwithtechron.com/js/gmap-helper-main-compiled.js

19 var curGeoObj, filters = [];

20 function addRemoveFilter(filterId) {

21 toggleFilter(filterId);

22 $('#stationResult').html('');

23 searchLocationsNearByJSON();

24 }

25 function searchLocationsNearByJSON() {

26 var url = createURL("webservices/GetStationsNearMe.aspx",

27 curGeoObj, filters);

28 $.ajax({ url: url, type: "GET", success: parseStationData });

29 }

30 function parseStationData(data) {

31 if (data.status == "ok") {

32 var htmls = [];

33 for (var i = 0; i < data.stations.length; i++) {

34 var html = ...;

35 htmls.push(html);

36 }

37 $("#stationResult").html(htmls.join("<hr />"));

38 } else ...

39 }

Figure 2: Motivating example.

been retrieved from the server. For this reason we also need to take

dynamically loaded scripts into account.

We distinguish between user events (mouse click events, key-

board events, etc.) and system events (most importantly, AJAX

response events and timer events). After the web page has been

loaded and initialized, every system event is triggered either di-

rectly or indirectly by a user event. Each such system event can thus

be associated uniquely with a user event; we say that the system

event is derived from that user event.

AJAX is one of the key ingredients of modern web applications.

However, it also introduces complexities in the execution of web

applications. In particular, there are no guarantees regarding the

exact timing and order of arrival of AJAX requests at the server, nor

of the corresponding AJAX response events at the client. The user

controls the ordering of user events, but the execution of system

events is to some extent nondeterministic. Borrowing terminology

from concurrency in multi-threaded settings, a schedule fixes the

nondeterministic choices relative to a given sequence of user events.

As a consequence of this nondeterminism, event race errors may

occur in production web applications when the order of events in

the execution differs from the ones observed during testing.

3 MOTIVATING EXAMPLE

Figure 2 shows a snippet of HTML and JavaScript code from www.

chevronwithtechron.com/findastation.aspx. This web page allows

the user to search for gas stations in a given area, and to filter

these gas stations based on various criteria. For example, the user

can search for gas stations that have a car wash by clicking on

the łCar Wash Locationsž button defined in line 15, which causes

click

łCar Wash Loc’sž

click

łCar Wash Loc’sž
click

łDiesel Loc’sž

xhr load

filter = {7}
xhr load

filter = {7, 11}

xhr load

filter = {7}
click

łDiesel Loc’sž

xhr load

filter = {7, 11}

(a) Correct schedules.

click

łCar Wash Loc’sž
click

łDiesel Loc’sž

xhr load

filter = {7, 11}
xhr load

filter = {7}

(b) Erroneous schedules.

u

u v : event v is derived from event u

v : event u arrives before event v

Figure 3: Possible interleavings in the motivating example.

the JavaScript function addRemoveFilter in line 20 to execute. This

function updates the set of filters that have been selected by the user

(line 21), clears the contents of the HTML element that presents

the list of gas stations to the user (line 22), and finally invokes

the function searchLocationsNearByJSON (line 23) to retrieve the

list of gas stations from the server according to the search query

provided by the user (lines 26ś28). By the time the server response

arrives, an AJAX response event fires, causing the event handler

parseStationData (line 30) to execute. This function constructs

a snippet of HTML for each gas station in the server response

(lines 33ś36), and then updates the UI using these snippets (line 37).

The example web page exhibits an AJAX event race when the

user selects more than one criterion. Consider what happens when

the user clicks on the łCar Wash Locationsž button and subse-

quently on the łDiesel Locationsž button. Each of these click events

causes an AJAX request to be sent in line 28. The corresponding

AJAX response events arrive asynchronously and without a pre-

determined order, so either may be processed first. If the AJAX

response corresponding to the click on the łCar Wash Locationsž

button is processed first, then the web page works correctly, since

the subsequent AJAX response event (corresponding to the click

on the łDiesel Locationsž button) simply updates the UI with the

gas stations that have a car wash and diesel. However, if the AJAX

responses arrive in the opposite order, then the AJAX response

event corresponding to the click on łCar Wash Locationsž results in

an inconsistent state: the filters łCar Wash Locationsž and łDiesel

Locationsž are both selected (and highlighted in the UI), but the list

of gas stations in the UI only shows those stations that have a car

wash, but not necessarily diesel.

Figure 3a illustrates two schedules that lead to correct behavior

for the example user event sequence with the two button clicks. (For

simplicity, it only shows a subset of the actual events that occur.)

In one schedule, the AJAX response event derived from the first

button click occurs before the second button click, and vice versa in

the other schedule. In both cases, the AJAX response event derived

from the second button click comes last. Figure 3b shows a third

schedule for the same user event sequence. In this case, the AJAX

response events arrive out of order, which results in the error.

The event handler for the łCar Wash Locationsž button not only

conflicts with the event handler for the łDiesel Locationsž button,

but also conflicts with itself. In particular, it is possible to expose an

error that is similar to the one described above, by triggering two
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simultaneous click events on the łCar Wash Locationsž button. If

the AJAX responses arrive out of order, the markers on the map are

inconsistent with the selected filters. The technique we describe in

the following sections finds both these errors.

For an event race error detection technique to be practical, it is

not sufficient for it to detect errors and produce useful error mes-

sages; it is also important that it does not report too many false pos-

itives. Predictive event race error detectors like EventRacer gen-

erally report many races that are infeasible or harmless [2, 19, 25].

This is particularly problematic when web application program-

mers carefully use ad-hoc synchronization to avoid race errors. For

this reason, our technique is designed so that it only reports event

race errors that can be witnessed by concrete schedules that exhibit

visible differences in the browser.

4 THE AJAXRACER TECHNIQUE

Our technique comprises two phases. Phase 1 generates event

graphs that can be used to identify pairs of user events that are

likely to be involved in an observable AJAX event race. Phase 2 ex-

amines, for each such pair of events, whether or not an observable

AJAX event race actually exists.

4.1 Phase 1: Generating Event Graphs

Phase 1 is seeded by a sequence of user events, similar to other

dynamic race detectors [14, 19, 21]. This sequence can be obtained

by a single manual execution of the web application, or using an

automated crawler [3, 17]. AjaxRacer loads the (instrumented)

web page in the browser and waits until it has been fully initialized

(meaning that the HTML has been parsed, its scripts have been

executed, and there are no pending system events; see Section 5

for details). It then triggers the user events in the sequence one

by one, in each step awaiting a quiescent state where no system

events are pending, until the next user event is triggered. With

such a controlled execution, it is easy to determine from which

user event each system event is derived, and we reduce the risk of

interference.2

For each user event u, AjaxRacer generates a trace τu by moni-

toring the execution of u and its derived system events. A trace is a

sequence of operations of the following kinds:

• fork[v , w , k] models the fact that an event v creates a

new system event w of kind k to be dispatched later. For

example, fork[v , w , XHR load] means that v performs an

XHR request and w is the associated XHR load event, and

fork[v ,w , timeout]means thatv sets a timer using setTimeout

andw is the associated timeout event.

• join[v ,w] specifies that eventw cannot occur before event

v . Every XHR request creates several XHR readystatechange

events and an XHR load event, and we use join to model the

ordering constraints on those events.

• mutate-dom[v,x ,y,w,h] models that eventv has modified

the HTML DOM, where the parameters x ,y,w,h specify the

position and size of the affected bounding box on the screen.3

2As an example, if we did not wait between the user events but triggered them without
any delay, an unfinished XHR interaction initiated by one user event might be aborted
by an XHR interaction initiated by another user event.
3Other effects, for example involving web storage or cookies [19], can be modeled as
variants of this operation.

{(x, y, w, h)}
v1

∅
v2

∅
v3

∅
v4

{(x ′
, y′

, w ′
, h′)}

v5

XHR ready-
statechange (1/3)

XHR readystate-
change (2/3)

XHR ready-
statechange

(3/3) XHR
load

Figure 4: The event graph for a click event on the łCarWash

Locationsž button from Section 3. The click event leads to

three XHR readystatechange events and an XHR load event.

Compared to the notion of event actions in EventRacer [21], the

key differences are that (1) we generate one trace per user event

rather than one global trace, and (2) we use a different model of

memory accesses where we consider the effects of HTML DOM

write operations on the pixels on the screen instead of low-level

read/write operations.

From each trace τu , AjaxRacer now generates an event graph

Gu . An event graph is a directed graph Gu = (N ,E, ℓ) where each

node v ∈ N is an event, which is either u itself or an event derived

from u, and where the edges E represent constraints on the event

order:4 Each operation fork[v , w , k] in τu gives rise to a labeled

edge v
k
−→ w ∈ E, and each operation join[v ,w] in τu gives rise to

an unlabeled edge v −→ w ∈ E. The component ℓ annotates each

node with a set of bounding boxes according to the HTML DOM

modifications: for each operation mutate-dom[v,x ,y,w,h], the

bounding box (x ,y,w,h) is included in ℓ(v). The event graph thus

describes the HTML DOM modifications made by the user event u

and all its derived system events. We will refer to the user event u

as the (unique) root of Gu .

Example. Figure 4 shows a simplified version of the event graph

for a click event on the łCar Wash Locationsž button from Section 3.

The root is the click event itself. Since the addRemoveFilter function

clears the contents of the HTML element with ID #stationResult

(line 22), the node annotation contains its bounding box (x = 280,

y = 1132, w = 1024, h = 334). The bottom-most node represents

the XHR load event, whose event handler updates the same HTML

element, as indicated by the node annotation. □

Our approach targets a scenario in which web application pro-

grammers have tested their code using fast servers and networks,

and with plenty of time between each user event. In such situations,

if a user event u1 is followed by a user event u2, it is to be expected

that all events derived fromu1 appear beforeu2 and all of its derived

events. It is less likely that the programmers have encountered exe-

cutions in which some of the events derived from u2 appear before

some of the events derived from u1. Such executions are exactly

what AjaxRacer aims to explore.

For that purpose, we now define a suitable notion of event

conflicts. Let u1 and u2 be user events with event graphs Gu1 =

(N1,E1, ℓ1) andGu2 = (N2,E2, ℓ2), respectively. The two user events

4Notice that the event graph captures a happens-before relation in the style of Petrov
et al. [20]: v ⪯ w if there is a path from v tow .
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Algorithm 1: Planning AJAX race tests.

foreach (ui ,uj ) where i, j ∈ 1, . . . ,n do

if ui and uj are potentially AJAX conflicting then
test (ui , uj )

end

end

u1 and u2 are potentially AJAX conflicting if there exists an event

v1 ∈ N1 and an event v2 ∈ N2 such that

(1) u1 andv1 are separated by an AJAX event, meaning that Gu1

has a path from u1 to v1 containing an edge
k
−→ where the

label k is XHR load or script load, and

(2) a bounding box in ℓ(v1) overlaps with one in ℓ(v2).

The intuition of the first condition is thatu1 triggers an XHR request

or loads an external script, which subsequently leads to an event

v1, and the second condition checks whether v1 may interfere with

events derived from u2.

We say potentially conflicting, because the criterion does not

guarantee that u1 and u2 are simultaneously enabled. For example,

u1 and u2 may be click events on two different buttons, where

the button for u2 is created by u1 or one of its derived events.

Also, the event handlers may behave differently depending on the

schedule, due to, e.g., ad-hoc synchronization. Phase 2, described

in Section 4.2, examines whether potential conflicts are realizable.

In principle, some AJAX race errors require more than two user

events to manifest. However, in all real-world cases we are aware of,

two user events suffice, so we focus on this more common situation.

Example. As mentioned in Section 3, a łCar Wash Locationsž

button click event not only conflicts with a łDiesel Locationsž but-

ton click event, but also with itself. The event graph for a click on

łCar Wash Locationsž, as shown in Figure 4, indeed satisfies the

conditions for this event to potentially AJAX conflict with itself:

there is a path from v1 to v5 containing an XHR load event, and

the bounding box of v1 overlaps with that of v5 (in fact, they are

identical in this case). This tells us that it may be worthwhile in

Phase 2 to test a user event sequence containing two clicks on łCar

Wash Locationsž, with a schedule where the events derived from

the second click appear before those derived from the first click. □

4.2 Phase 2: Testing Potential Conflicts

From Phase 1, we have a sequence of user events u1, . . . ,un , each

described by an event graph, and we know for each pair of user

events whether or not they are potentially AJAX conflicting. In

principle, AjaxRacer could simply output the resulting pairs of

events as warnings to the user, which would be reminiscent of

how predictive race detectors work [19, 21]. However, to avoid

many false positives and produce more informative error messages,

Phase 2 attempts to provoke actual observable race errors, similar to

other techniques [2, 10, 14, 25], but using a mechanism specifically

designed for AJAX event races.

We perform a set of tests according to Algorithm 1. For each

pair of user events (ui ,uj ), one test is created if the two events are

potentially AJAX conflicting. Note that we consider all ordered

pairs of user events from u1, . . . ,un , including those where i = j,

which is relevant for the previously mentioned example involving

Algorithm 2: Executing an AJAX race test.

// execute ui and uj in ‘synchronous’ mode

1 reload the web page

2 trigger ui
3 wait until the events in Gui have been executed

4 trigger uj
5 wait until the events in Guj have been executed

6 s1 = screenshot

// execute ui and uj in ‘adverse’ mode

7 reload the web page

8 trigger ui , and postpone all its derived AJAX events

9 trigger uj
10 wait until the events in Guj have been executed

11 allow the events derived from ui to execute

12 wait until the events in Gui have been executed

13 s2 = screenshot

// decide outcome

14 if s1 , s2 then emit error message

multiple clicks on łCar Wash Locationsž. In practice, relatively few

of the event pairs are potentially AJAX conflicting, so the total

number of tests performed is usually low (see Section 6).

Algorithm 2 shows how each test is performed. Lines 1ś6 sim-

ulate a user event sequence where ui and uj are performed after

the web page has been loaded, using a schedule where all system

events derived from ui appear before those derived from uj , as if

AJAX communication were synchronous. Next, lines 7ś13 simulate

the same two user events, but this time using an ładversež schedule

where the AJAX events derived from ui are postponed until after

all the events derived from uj have appeared. After each run, we

take a screenshot of the browser contents, and an error is reported

if the two screenshots are not identical (line 14).

When attempting to trigger an event (lines 2, 4, 8, and 9), the

test aborts without emitting any error message if the event is not

enabled because the associated DOM element does not exist or

is not visible. This can happen because other events that appear

in the Phase 1 execution but not in the Phase 2 executions may

have changed the system state, however this is rarely a problem

in practice (see Section 6). One pattern is quite common, though:

In many web pages, an HTML element (e.g., a menu item) only

becomes visible after clicking or hovering over another HTML

element. For this reason, we allow the user of AjaxRacer to group

such low-level events in the initial event sequence into łmacro

eventsž [7], so that AjaxRacer can trigger them together, which

increases the chance of the events being enabled.

Each time the web page is reloaded (lines 1 and 7), we wait until

it is fully initialized, as in Phase 1. Waiting for derived events to be

executed (lines 3, 5, 10, and 12) is also implemented by waiting until

the web page becomes idle. In this way, we do not risk waiting for

derived events that were observed in Phase 1 but do not occur in

this execution, which is reminiscent of the concept of approximate

replay in R4 [14]. Postponing events (line 8) and allowing them to

execute (line 11) is implemented using an approach inspired by

EventRaceCommander [1].
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Example. Continuing the example, an initial user event sequence

that contains a single click event u on łCar Wash Locationsž and

a single click event v on łDiesel Locationsž suffices to find both

errors described earlier. One test being performed is for the event

pair (u,v). This test first executes u followed by v in łsynchro-

nousž mode, and then in ładversež mode. The resulting screenshots

are different, so an error is reported. Another test is performed

for the event pair (u,u), and again an error is reported because

the screenshots differ between the synchronous and the adverse

schedules. □

An important difference between AjaxRacer and other event

race detectors like EventRacer [21], R4 [14], andWAVE [10] is that

AjaxRacer not only explores different schedules for the system

events but also user event sequences that are different from the

seed execution. This allows AjaxRacer to detect errors that are

missed by the other techniques.

Consider for example a web page with two buttons, A and B.

Clicking the A button triggers an XHR request where the XHR

load event adds contents to an HTML element, and clicking the

B button clears the contents of the HTML element. In this case, a

race error appears if the B button is clicked after the A button is

clicked but before the XHR load event occurs. If the initial sequence

of user events consists of a click on A followed by a click on B,

then EventRacer, R4, WAVE, and AjaxRacer will all find the

error. However, if the initial event sequence consists of a click on

B followed by a click on A, then EventRacer, R4, and WAVE do

not find the error (because they treat user events as being happens-

before ordered), but AjaxRacer does find it.

As another example, consider a web page with a single button

C where clicking on C triggers an XHR request, and the XHR load

event handler writes the server response data into the HTML DOM.

A user event sequence that contains a single C click event may

cover all the JavaScript code, but it is not enough for EventRacer,

R4, or WAVE to expose the race error that occurs if C is clicked

twice and the responses arrive out of order. In contrast, AjaxRacer

can find the error, even with a single occurrence of theC click event

in the initial event sequence.

5 IMPLEMENTATION

AjaxRacer is implemented as a command-line JavaScript applica-

tion that takes as input a URL and a user event sequence to analyze,

and is available at http://www.brics.dk/ajaxracer/.

The implementation uses a proxy server, mitmproxy,5 to dy-

namically instrument HTML and JavaScript source files as they are

fetched by the browser. The instrumentation wraps all property

assignments and DOM API functions that involve event handlers

and modifications of the HTML DOM, so that we can intercept

the relevant operations at runtime. Dynamically generated code is

instrumented by wrapping the built-in functions eval and Function.

When the proxy is running, AjaxRacer uses the end-to-end

testing framework Protractor6 to load the given URL in Google

Chrome via the proxy server, trigger a given sequence of user events

(or macro events, as discussed in Section 4.2), store results from

the execution, and optionally take a screenshot of the resulting

5https://mitmproxy.org/
6http://www.protractortest.org/

state. These steps are carried out once for Phase 1 and twice for

each test that has been planned in Phase 2 (recall Algorithm 2).

The screenshots that are captured for each test are compared us-

ing the LooksSame library.7 AjaxRacer ignores a difference at a

pixel (x ,y), if the adverse mode and synchronous mode executions

already differed at (x ,y) when the web page finished loading. This

mechanism helps to prevent false positives in situations where a

server returns slightly different HTML each time. In addition to clas-

sifying the two screenshots as identical or not,AjaxRacer also uses

the LooksSame library to generate an image where the differences

(if any) are highlighted, which is useful for further debugging.

The instrumentation of the web application code allows Ajax-

Racer to generate a trace for each user event. It also makes it

possible to determinewhen theweb application has finished loading

(by waiting for the set of pending events to become empty, as

explained in Section 4.1), and when the web application becomes

idle after a user event has been triggered and processed.

Someweb applications never finish loading, in the sense that they

continuously react to timer events (e.g., to implement a slideshow

that automatically changes every few seconds). AjaxRacer deals

with such situations during page loading by deleting timer events

with a delay above a given threshold, and by stopping a chain of

timer events if the length of the chain reaches some threshold. We

have not found cases where this breaks the main functionality of

the web application. Because we wait until the web application

is entirely idle, the user event handlers triggered by AjaxRacer

cannot interleave with code that has been spawned during the

loading of the web application. This helps prevent false positives

from the screenshot comparison. For example, in the presence of a

slideshow, the screenshots taken by AjaxRacer would otherwise

depend on the exact timing, and be unsuitable for use as an oracle.

GIF animations are another source of nondeterministic results. To

combat this issue,AjaxRacer uses its proxy to intercept the loading

of GIF images and remove animations.

6 EVALUATION

To assess the effectiveness of our approach, we conducted three

experiments to answer the following research questions:

RQ1 (Effectiveness) Does AjaxRacer report AJAX event race er-

rors in real-world web applications? How often do AjaxRacer’s

warnings identify real errors?

RQ2 (Race characteristics) Do the detected AJAX races exhibit

interesting patterns?

RQ3 (Usefulness) Do the generated reports provide informative

explanations of the causes and effects of each AJAX event race?

RQ4 (Performance) Is AjaxRacer’s performance acceptable?

RQ5 (Comparison with state-of-the-art) How effective isAjax-

Racer compared to other tools, most importantly EventRacer?

6.1 Experimental Methodology

To answer the research questions, we consider randomly selected

web pages from a subset of the companies from the Fortune 500

list.8 We manually identified web pages that use AJAX by browsing

the company web sites using the Chrome browser, while enabling

7https://www.npmjs.com/package/looks-same
8http://fortune.com/fortune500/
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Table 1: Summary of results.

Company Tests Avg. runtime (s)

Name Web page Total Failures
False

positives Phase 1 Phase 2

1. Amerisource Bergen Job Openings 25 22 0 33 83

2. Apple Accessibility 4 0 0 14 57

3. Buy MacBook 4 2 0 31 82

4. Customize 4 2 0 18 52

5. Search Jobs 4 0 0 19 59

6. Search Support 4 4 0 19 53

7. Bank of America Search Locations 9 2 0 32 72

8. Berkshire Hathaway Search Listings 12 2 2 77 162

9. Chevron Find a Station 30 21 5 34 71

10. Citigroup News 4 2 0 13 49

11. Exxon Mobil Job Locations 4 2 0 16 47

12. Fannie Mae Search 4 0 0 14 42

13. Grainger Home 4 0 0 36 95

14. McKesson Home 4 0 0 39 100

15. Blog Archive 4 2 0 28 108

16. Event Calendar 4 2 0 21 64

17. Press Releases 16 9 0 27 82

18. Verizon Search Locations 4 0 0 31 80

19. Wells Fargo Home 4 0 0 17 53

20. Search 4 0 0 17 51

Total 152 72 7

Average 7.6 3.6 0.4 25.9 68.4

the łLog XMLHttpRequestsž feature and the łNetworkž panel from

the Chrome DevTools,9 which makes it easy to recognize when

an XHR message is being exchanged or an external script is being

loaded dynamically. We ignored requests that send analytics data.

With this approach, we obtained 20 web pages from 12 different

companies, as shown in the łCompanyž columns of Table 1.

For each of the web pages, we manually create a short user event

sequence that exercises some of the dynamic behavior on the web

page. Each user event sequence consists of two to nine user events

and has been made without any knowledge of the JavaScript code

on the web page or the client-server communication. We then carry

out the following experiments, on an Ubuntu 15.10 desktopmachine

with an Intel Core i7-3770 CPU and 16 GB RAM.

Experiment 1. We run AjaxRacer on each subject application

using the given manual event sequence. To answer RQ1, we in-

spect the AJAX event race errors that it reports, and manually

check whether each of them can be reproduced. To answer RQ2,

we present patterns that we observe in the reported AJAX races.

We answer RQ3 by reporting on our experiences during this study

with the asynchronous code and the generated reports.

Experiment 2. To answer RQ4, we measure the time needed by

AjaxRacer’s two phases. For Phase 1, we separately report the

time spent on loading the web page and on generating traces for

the user events. For Phase 2, we separately measure the time spent

on test planning (Algorithm 1) and test execution (Algorithm 2).

We repeat the experiments three times and report the average and

worst-case running times.

Experiment 3. We run EventRacer on the subject applications

using the manually created user event sequences, and answer RQ5

by investigating the results. EventRacer also detects races during

the loading of a web page. To estimate how many races arise from

the execution of the user event sequence, we analyze the results of

9https://developer.chrome.com/devtools

EventRacer when no user events are triggered. We report average

numbers across three runs. Regrettably, we could not compare to

RClassify [25], as it was not available to us.

6.2 Results and Discussion

In this section, we present the results of our experiments, summa-

rized in Table 1, and elaborate on more interesting findings, while

addressing RQ1śRQ5.

6.2.1 Effectiveness (RQ1). After Phase 1,AjaxRacer created a total

of 152 tests for the web pages in Table 1, which follows from column

łTestsž. Of the 152 tests, four proved to be infeasible (i.e., one of

the user events in these tests was not enabled by the time it was

scheduled to be executed). The number of test failures is reported

in column łFailuresž. Each failure reveals a situation where adverse

mode execution of a pair of user events leads to a state that is

observably different from the corresponding synchronous mode

execution. In total, 72 tests failed. The page from Amerisource

Bergen produced the highest number of failing tests with 22 failures

(row 1). After manually inspecting the results, we found that only

seven of the 72 test failures were false positives (column łFalse

positivesž). This is a significantly smaller false positive rate than that

of existing predictive race detectors such as EventRacer [21]. In

particular, each of the 80 succeeding test cases indicates a situation

where EventRacer would report a race warning, but where the

race is not observable, because ad-hoc synchronization prevents

the harmful effects, or the two events from the race commute (i.e.,

the events have the same effects, irrespective of their arrival order).

Overall, our results show that AjaxRacer is capable of detecting

observable AJAX races in real-world web applications with only few

spurious warnings.

The fact that the web applications of some of the largest com-

panies in the United States suffer from observable AJAX races

demonstrates that this is a widespread problem. Left undetected,

they may render the application in an inconsistent state (as we give

examples of later in this section). As such, they can frustrate end

users and negatively impact their experience. AjaxRacer unveils

such situations semi-automatically, with relatively few tests per

web page. In summary, AjaxRacer generated an average of eight test

cases per web page, of which half exposed an observable AJAX race.

False positives. As mentioned above, we observed only seven spu-

rious warnings among the 72 failing tests. Five false positive arose

for a web page from Chevron (row 9) because live traffic, which was

changing during the execution of the tests (row 9), was being shown

on a map. AjaxRacer also reported two false positives for a web

page from Berkshire Hathaway (row 8), where the user can search

for real estate listings. One test was failing because the screenshot

from synchronous mode showed ł35,537 Results,ž whereas the one

from adverse mode showed ł35,536 Results.ž Presumably, a listing

was removed from the website during the execution of the test.

The other false positive from Berkshire Hathaway was similar. We

confirmed this behavior by rerunning the tests, which lead to suc-

cessful executions. If AjaxRacer did not ignore pixels that were

already different by the time the web page had been loaded (Sec-

tion 5), then 11 additional false positives would have been reported

(for rows 5, 9, 13 and 19). Generally, there may be other sources
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(a) Synchronous mode. (b) Adverse mode.

Figure 6: Nondeterministic search results on Chevron.

6.2.4 Performance (RQ4). The worst case execution time of Ajax-

Racer is shown in the rightmost columns of Table 1. In Phase 1,

on average, AjaxRacer spent 18 seconds waiting for the web ap-

plication to load, and eight seconds executing the input user event

sequence, while monitoring the execution to build a trace. In the

worst case, Phase 1 took 77 seconds (row 8). The test planning

(Algorithm 1) took 0.2 seconds in the worst case, including the

time required for constructing the event graphs from the traces. In

Phase 2, AjaxRacer executed Algorithm 2 for each planned test.

On average, this took 69 seconds per testÐwith 36 seconds spent

waiting for the web application to load, and five seconds spent on

generating the report. The average running time of Phase 2 was

approximately nine minutes, when run sequentially, with a worst

case of 34 minutes. However, all tests could easily be executed in

parallel. Column łPhase 2ž depicts the worst case running time

for Algorithm 2, which reflects the time łPhase 2ž would take if

all tests were executed in parallel. The time required for executing

a test in the worst case was below three minutes (row 8). These

results demonstrate that the overall performance of AjaxRacer is

acceptable for practical use.

6.2.5 Comparison with state-of-the-art (RQ5). When running Event-

Racer on the subject applications, we found that it reports an over-

whelming number of races. As an example, we applied EventRacer

to the web application of Berkshire Hathaway (row 8) with a user

event sequence that searches for real estate listings, by clicking on

the buttons ł4+ Bedsž and ł12+ Bedsž (a subsequence of the one

given to AjaxRacer). On average, across three runs, EventRacer

reported 103,166 races on 37,697 memory locations. 741 of the races

were uncovered.10 The reports contain no information about the

effects of the races. When no user events were triggered, Event-

Racer reported 45,161 races on 28,956 memory locations. This time,

368 of the races were uncovered. Thus, somewhat surprisingly, the

two user events caused the number of reported races to approx-

imately double. This shows that EventRacer would still report

an overwhelming number of races, even if it had a mechanism

for ignoring races that manifest during the loading of web pages.

Inevitably, the majority of these races are harmless. Even after man-

ual investigation of the web page, we were unable to detect any

observable races. We did find examples of ad-hoc synchronization

in the web page, as described below.

10Intuitively, a race is uncovered if it is guaranteed that no ad-hoc synchronization
prevents the two events of the race from being reordered (assuming the happens-before
relation is complete).

6.2.6 Common Development Practices. We encountered several

practices in the subject applications, which prevented AJAX race

errors from manifesting. A simple solution is to avoid the use of

AJAX altogether, by reloading the entire web page upon a user

event. Although offering a less smooth user experience, this ap-

proach was still widespread in practice. Among the applications

that utilized AJAX, it was common practice to circumvent AJAX

races by disabling UI elements while waiting for a pending response.

For example, many applications render a dialog showing a spinner

when an AJAX request is sent, until the corresponding response

arrives, in a manner that prevents the user from interacting with

the web page. While generally offering a better user experience, this

approach reduces the responsiveness of the application. Another

group of applications used ad-hoc synchronization in a way that

did not prevent the user from interacting with the page. For ex-

ample, on McKesson, an autocompletion feature was implemented

in a way that ignored all AJAX response events except the one

corresponding to the last request, as documented in the code:11

40 success: function (data) { // make sure it's the latest request

41 if (__global_counter[container.index] ===

42 requestcounter[container.index]) {

43 ... o.render(container, data, query); ...

The following code from Berkshire Hathaway illustrates one of

the more sophisticated remedies we found, in terms of the logic

and the quality of the user experience.12

44 var jqXHRs = {};

45 $(checkbox).change(submit);

46 function submit() {

47 if (jqXHRs.search) {

48 jqXHRs.search.abort();

49 }

50 jqXHRs.search = $.ajax(...);

51 }

52 jQuery.noop = function() {};

53 jQuery.ajax = function () {

54 var xhr = new XMLHttpRequest();

55 var jqXHR = { ...

56 abort: function () {

57 xhr.onreadystatechange =

58 jQuery.noop;

59 xhr.abort();

60 } ...

When the user clicks on a button labeled ł2+ Bedsž, the function

submit executes (lines 46ś51). This function contacts a web service

and updates the search results (line 50). If an AJAX request is already

active, the function cancels it by calling the function in lines 56ś60,

from jQuery 1.7.2. This is done by replacing the readystatechange

event handler with the empty function in line 52, and calling the

native method abort of the XHR object.

These countermeasures are helpful in their scope and prevent

many AJAX race errors in practice. The mere existence of such

treatments indicate that AJAX races are real problems, and that

professional developers make an effort to prevent them.

6.3 Threats to Validity

We addressed the external threats of representativeness of our

subjects and generality of the investigated scenarios by testing

executable sequences of events within widely-used pages of large

companies. An internal threat arises from selection of pages, partic-

ularly triggering AJAX races as targeted in the scope of this work,

a subset of all potential races. To mitigate this bias, we devised

11http://www.mckesson.com/js/min/adobe.target.targetcomplete.min.js
12The code has been simplified for presentation. It originates from the scripts
f345a312-25b7-4242-8165-6dfc8ce834fa and 91ff98c9-a847-4d7b-8bf0-

ef5c9697c8ba from http://www.bhhsneprime.com/jscss/23.0.1474/js/.
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scenarios for analysis prior to experiment, similar to exploratory

testing. Inspection of races and their severity was performed man-

ually, and was thus labor-intensive, and prone to examiners’ bias

and errors. We alleviated this bias by having two of the authors

carefully examining the code and the reports independently.

7 RELATED WORK

It has long been known that JavaScript applications may experi-

ence nondeterministic failures depending on the order in which

event handlers execute. Steen [23] observed situations where web

applications that rely on setTimeout to modify a page’s DOM repre-

sentation fail in mysterious ways when browsers parse web pages

too quickly or too slowly. Ide et al. [13] point out that these prob-

lems can be viewed as a type of race condition, similar to data races

in programming languages with concurrency (see, e.g., [5, 8, 9]).

One scenario discussed by Ide et al. involves erroneous UI updates

that occur when AJAX requests are processed out of order, similar

to scenarios we consider. The throttling feature in Google’s Chrome

Developer Tools [15] can be viewed as a poor man’s race detec-

tor: by simulating various network conditions, situations can be

identified where event race errors cause nondeterministic failures.

Zheng et al. [26] present an approach based on static analysis

for automatically detecting bugs in web applications where an

asynchronous event handler writes to a global variablev , and a user

event handler reads v . In such cases, serious errors (e.g., deleting

the wrong file on a server) may occur if other event handlers are

interleaved that also write tov . Some of the asynchronous scenarios

studied in our work have similar characteristics.

Petrov et al. [20] define a happens-before relation for commonly

used HTML and JavaScript features and a model of logical memory

locations on which web applications operate. These concepts form

the basis of WebRacer, a dynamic race detector. Raychev et al. [21]

propose a notion of race coverage to eliminate false positives that

are due to synchronization deliberately introduced by program-

mers (ad-hoc synchronization). Intuitively, a race a covers a race b

iff treating a as synchronization eliminates b as a race. Neverthe-

less, predictive race detectors such as WebRacer and EventRacer

have been found to report an overwhelming number of races, the

majority of which are harmless or benign.

Several projects focus on classifying event races as harmful or

harmless. Mutlu et al. [18, 19] apply a dataflow analysis to a trace

in order to detect situations where executing racing event han-

dlers under different schedules results in different values being

written to persistent storage (cookies and local and session storage).

WAVE [10] and R4 [14] explore executions that can be obtained by

reordering events in a sequence of events observed in some initial

execution. These tools classify a race as harmful if reordering a

pair of conflicting events results in a different DOM, heap state, or

uncaught exception. RClassify [25] classifies a race reported by

EventRacer as harmful or harmless by generating two executions

in which the racing events are executed in both orders and deter-

mining if the resulting program states differ in important fields of

the DOM, heap, or environment variables. Our work differs from

these existing approaches by focusing specifically on AJAX races,

by providing detailed explanations for reported issues, and by not

relying on the modification of a JavaScript engine.

InitRacer [2] detects race errors that commonly arise during

page initialization (form-input-overwritten, late event-handler reg-

istration, and access-before-definition errors) using adverse and ap-

proximate execution. AjaxRacer follows a similar instrumentation-

based implementation technique as InitRacer and provides sim-

ilar, detailed explanations. However, unlike InitRacer, we focus

on detecting AJAX-related races that occur after page initializa-

tion. InitRacer’s adverse execution works by injecting new events

whereas AjaxRacer instead delays (AJAX response) events.

Several projects focus on repairing event race errors.ARROW [24]

performs a static analysis to determine happens-before relation-

ships between page elements and record these in a causal graph.

Races are detected by identifying inconsistencies between the causal

graph and def-use relationships inferred from source code order, and

prevented by adding causal edges that preclude undesired execution

orders. EventRaceCommander [1] is an instrumentation-based

tool for repairing event race errors that match patterns that reflect

undesirable interleavings (e.g., AJAX requests that are processed

out of order). EventRaceCommander avoids these errors by drop-

ping or postponing events so that no undesirable patterns can occur.

We use the same mechanism to implement adverse execution.

Several projects focus on detecting event races for other pro-

gramming languages, including Android [4, 11, 12, 16] and C/C++

[22]. While these works are directly inspired by the work on detect-

ing event races in JavaScript applications [21], applications written

in these languages do not rely on AJAX, so the techniques explored

in our work do not apply there.

Brutschy et al. [6] show how a generalization of the notion of

conflict-serializability can be used to detect race errors in applica-

tions that use eventually-consistent data stores.

8 CONCLUSION

We have presented a technique for detecting AJAX event race errors

in JavaScript web applications, and described its implementation,

AjaxRacer. Our technique uses a combination of light-weight

dynamic analysis and controlled execution, and identifies pairs of

user events that are potentially AJAX conflicting. For each pair, it

generates a test that is expected to fail only if the corresponding

AJAX race has observable effects on the screen. Unlike previous

techniques, AjaxRacer has been designed specifically to detect

AJAX races. As a result, AjaxRacer can detect observable AJAX

races in real-world web applications with very few false positives.

In an evaluation on 20 widely used web pages, AjaxRacer de-

tects errors in 12 of them. In total, AjaxRacer generates 152 tests

of which 65 reveal AJAX race errors and only seven are false pos-

itives. We additionally report on the usefulness of AjaxRacer’s

comprehensive web-based reports, from which it was easy to locate

the root cause and effects of AJAX races, although we had no prior

experience with the web pages. In summary, our results show that

AJAX race errors are commonplace in web applications and that

AjaxRacer is an effective tool for detecting them.
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