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ABSTRACT

Closing timing using clock tree optimization (CTO) is a tremen-
dously challenging problem that may require designer intervention.
CTO is performed by specifying and realizing delay adjustments in
an initially constructed clock tree. Delay adjustments are typically
realized by inserting delay buffers or detour wires. In this paper, we
propose a latency constraint guided buffer sizing and layer assign-
ment framework for clock trees with useful skew, called the (BLU)
framework. The BLU framework realizes delay adjustments dur-
ing CTO by performing buffer sizing and layer assignment. Given
an initial clock tree, the BLU framework first predicts the final
timing quality and specifies a set of delay adjustments, which are
translated into latency constraints. Next, buffer sizing and layer
assignment is performed with respect to the latency constraints
using an extension of van Ginneken’s algorithm. Moreover, the
framework includes a feature of reducing the power consumption
by relaxing the latency constraints and a method of improving
the timing performance by tightening the latency constraints. The
experimental results demonstrate that the proposed framework is
capable of reducing the capacitive cost with 13% on the average.
The total negative slack (TNS) and worst negative slack (WNS) are
reduced with up to 58% and 20%, respectively.

1 INTRODUCTION

Power consumption has become a primary design constraint in
advanced technology nodes. A large portion of the power consump-
tion of each VLSI circuit is consumed by the clock tree used to
synchronize the sequential elements. Clock trees must satisfy strict
timing, or skew, constraints to guarantee the functional correctness
of each circuit. Clock skew is the difference in the arrival time of the
clock signal between a pair of sequential elements, or clock sinks.
There is a skew constraint between each pair of clock sinks that are
only separated by combinational logic in the data and control paths.
The timing constraint must be satisfied even while the circuit is
subject to on-chip variations (OCV). To meet both skew and power
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Figure 1: (a) A specified delay adjustment. (b) Delay adjust-
ment realized by buffer insertion. (c) Proposed realization of
delay adjustments using buffer sizing and layer assignment.

constraints under variations, it has become necessary to utilize
every available timing margin by exploiting useful skew.

The construction of useful skew trees (USTs) has been explored
in [4, 7]. USTs can be constructed by first specifying a set of latency
constraints. Next, a clock tree satisfying the latency constraints
is constructed. Latency constraints consist of a lower and upper
bound on the arrival time of the clock signal to each clock sink
with respect to the clock source. Latency constraints in the form of
points were specified in [5]. The point constraints were extended
into latency ranges in [1].

After an initial clock tree has been constructed, clock tree opti-
mization (CTO) is applied to remove timing violations by specifying
and realizing delay adjustments [3, 11, 12]. Note that the use of
delay adjustments is equivalent to specifying latency constraints
in the form of points [11, 12] or ranges [3]. A delay adjustment is
a change of the propagation delay through a branch in the clock
tree, which is illustrated in Figure 1(a). Delay adjustments are tra-
ditionally realized by inserting delay buffers, which is shown in
Figure 1(b). In contrast, this paper proposes to realize delay adjust-
ments using buffer sizing and layer assignment, which is illustrated
in Figure 1(c). Compared with buffer insertion, layer assignment
is a more gentle method of realizing delay adjustments that may
result in lower power consumption.

Buffer sizing (or gate sizing) and layer assignment can be per-
formed to save power while meeting constraints on the maximum
latency (or propagation delay). Van Ginneken’s algorithm is a well
known technique based on dynamic programming [9, 17]. Buffer
sizing and layer assignment for zero skew and bounded skew clock
trees has been studied in [2, 10, 15, 18]. Buffer sizing for USTs was
performed using a Taylor expansion and sequential linear program-
ming in [6, 18]. Nevertheless, it is difficult to handle discrete buffer
sizes and layer assignments using linearization.

In this paper, we present a latency constraint guided buffer siz-
ing and layer assignment framework for clock trees with useful
skew, called the (BLU) framework. The framework is applied after
an initial clock tree has been constructed and before traditional



CTO is applied. The key idea is to perform CTO by realizing delay
adjustments using buffer sizing and layer assignment.

The BLU framework specifies a set of delay adjustments and pre-
dicts the final timing quality (P;ns, Pwns) that would be achieved
using traditional CTO. P;ps and Py are respectively the predicted
total negative slack (TNS) and worst negative slack (WNS). Next, the
delay adjustments are translated into latency constraints without
degrading P;ns and P,,ps. Using the specified latency constraints,
buffer sizing and layer assignment is conducted using an extension
of van Ginneken’s algorithm, i.e., delay adjustments are realized
while reducing the total capacitive cost. To further reduce power
consumption, the BLU framework attempts to relax each point
constraints into a latency range without degrading P;ps and Pyyps.
Moreover, a method of improving Psns and Pyyns by specifying
tight latency constraints using negative delay adjustments is pro-
posed. Lastly, traditional CTO is applied to realize remaining delay
adjustments such that TNS and WNS are reduced to P;ps and Pyyps.

Compared with in [6, 18], the BLU framework allows buffer siz-
ing and layer assignment to be performed while utilizing discrete
buffer and interconnect libraries. We consider the BLU framework
to be orthogonal to the techniques of realizing negative delay ad-
justments by reconstructing the topology of a clock tree in [12, 16].

The experimental results demonstrate that the BLU framework is
capable of reducing total capacitance, total negative slack (TNS) and
worst negative slack (WNS) with 13%, 58%, and 20%, respectively.

2 PRELIMINARIES

Every sequential circuit requires the clock signal to be delivered to

the sequential elements, or flip flops (FFs), meeting setup and hold

time constraints. There is a setup and hold time constraint between

each pair of FFs that are only separated by combinational logic in

the data and control paths. After a clock tree has been constructed,

the slack in the constraints can be computed, as follows:
setup_slackij =ti—ti+ T - tJ“-S‘ - tSQ - t;;mx -8 — 5j, (1)
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where setup_slack;;j and hold_slack;; are the slacks in the respec-
tive constraints. A negative slack implies a violation of a timing
constraint. t; and ¢; are the arrival times of the clock signal to
FF; and FF}, respectively. tl.';.”” (tl.';.mx ) is the minimum (maximum)
propagation delay through the combinational logic between FF;
and FFj. tl.cQ is the clock to output of FF;; T is the clock period; t}g

and th are respectively the setup and hold time of FF;. §; and J;
are timing deteriorates introduced by OCV.

The timing deteriorates §; and §; are dependent on the distance
between FF; and FF; in the clock tree topology. Let the closest
common ancestor (CCA) between FF; and FF; in the clock tree be
denoted CCA(i,j) [8]. Based on the model in [12], §; and J; are equal
t0 Coco - tCCA(, j),i A Coco * ECCA(, j),j» Tespectively. teca, j), i
and tcca(i, j),j are the propagation delays from the CCA(i,j) to FF;
and FFj, respectively. The cocy parameter is set to 0.085.

The slack in the timing constraints can be captured in a slack
graph (SG) [3]. In an SG G = (V,E), the vertices V represent
clock sinks and the edge weights E represent the slack in the tim-
ing constraints. An edge e;; with weight w;; = setup_slack;; is

added for each setup time constraint. An edge ej; with weight
wj; = hold_slack;; is added for each hold time constraint. The tim-
ing quality of a clock tree is measured in TNS and WNS, i.e., the
sum and the maximum of the negative timing slacks in Eq (1) and
Eq (2). The objective of this paper is to minimize TNS and WNS.

3 PREVIOUS WORK

In this section, we first review techniques for CTO and an exten-
sion of van Ginneken’s algorithm. Next, we outline how the two
algorithms are combined in the proposed framework.

3.1 Predicted timing quality and CTO

Timing violations in constructed clock trees are typically eliminated
by realizing non-negative delay adjustments [3, 11, 12]. A delay
adjustment is a change of the propagation delay through a branch
in the clock tree. Let A > 0 be a delay adjustment at a location k in
a clock tree. Delay adjustments are typically restricted to locations
where buffers are placed in the topology to avoid disrupting the
overall timing [12]. Next, the final timing quality is predicted by
specifying a set of delay adjustments using an LP formulation, as
follows [3, 12]:

min ¢y Z Ak + cwnsPwns + ¢tnsPins (3
keB

Z(l - Cocv)Ah = Sij < wij,
hepath(CCA(i,j)).Jj)

s.t. Z(1+Cocv)Ak -
kepath(CCA(i,).i)

(i,)) € E,
sij < Pyns, (i,j) € E,
Z Sij = Pins,
(i,j)eE

where path(i, CCA(i, j)) and path(j, CCA(i, j)) respectively denote
the buffers on the paths from CCA(i, j) to FF; and FF;. wj; is the
weight of an edge in the SG. s;; > 0 is a timing violation that is not
eliminated by realizing the specified delay adjustments. P;,s and
Pyyns are respectively the predicted TNS and WNS that is achieved
by realizing the specified delay adjustments. The c;, ciyyns and csns
parameters are used to balance the different terms in the objective
function. The (1+c¢g¢) and (1—cocp ) factors account for the timing
deteriorates introduced by the specified delay adjustments.

3.2 Van Ginneken’s algorithm [17]

Van Ginneken’s algorithm is well known dynamic programming
algorithm that minimizes the latency of an RC tree using buffer siz-
ing and layer assignment under the Elmore delay model [17]. In [9],
the algorithm was extended to find all Pareto optimal solutions in
terms of power consumption and latency while considering slew
propagation. Moreover, it is straightforward to set different latency
constraints for different clock sinks.

The algorithm solves the problem of selecting a buffer size for
each buffer and a layer assignment for each wire in a clock tree by
propagating candidate solutions from the leaf nodes to the source
node, which is illustrated in Figure 2. Each candidate cj stores
the maximal downstream delay dj., non-shielded downstream ca-
pacitance capy, and cost in terms of total capacitance costy, i.e.,



¢k = (dg, capy, costy) [9]. First, a candidate solution with zero max-
imum downstream delay is created at each clock sink. Both the
non-shielded capacitance and the cost are set equal to the sink
capacitance, which is illustrated in the bottom-left of Figure 2.
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Figure 2: Extension of van Ginneken’s algorithm [9].

The candidate solutions at the sinks are then propagated up to-
wards the root of the tree. When a candidate solution is propagated
through an edge (buffer or wire), all possible realizations (buffer
sizes or layer assignments) are enumerated as candidates to realize
the edge, shown in bottom-right of Figure 2. New candidates are
also formed when two branches in the clock tree are joined. Prun-
ing is applied to eliminate non-Pareto optimal solutions, which is
shown in the top-right of Figure 2. Next, the minimum cost candi-
date solution that meets a defined latency requirement is selected
at the root. Lastly, the size for each buffer and the layer assignment
for each wire is determined based on the selected candidate.

3.3 Proposed framework

Non-negative delay adjustments are realized by inserting buffers
and detour wires during CTO, which translates into overhead in
terms of total capacitance. In contrast, van Ginneken’s algorithm
(with the extension in [9]) is capable of trading-off maximum delay
for total capacitive cost. The key idea of the BLU framework is to
use buffer sizing and layer assignment to realize delay adjustments.
Consequently, the proposed framework has the potential to improve
power consumption while reducing TNS and WNS to P;ns and
Piyns, respectively. Extensions to further improve performance are
presented in Section 4.

Van Ginneken’s algorithm requires maximum delay (or latency)
constraints. The latency constraints are obtained from the delay
adjustments specified using Eq (3). The obtained constraints are in
the form of points. Therefore, each delay adjustment is required
to be realized exactly. Let /; denote the upper bound of the latency
constraint to sink i. The constraints requires each arrival time t;
to be equal to the latency constraint /;. However, van Ginneken’s
algorithm only ensures that t; < [;. Nevertheless, it is expected that
the arrival times ¢; will be close to [;, as increasing the arrival time
(or delay) typically results in a reduction of total capacitive cost.
Moreover, the difference between t; and I; can be realized through
traditional CTO after the proposed framework has been applied.

4 THE BLU FRAMEWORK

The baseline of the BLU framework is presented in Section 4.1. In
Section 4.2, point constraints are relaxed into range constraints
to save capacitive cost. In Section 4.3, the latency constraints are
tightened to improve P;ps and Pyyps.

4.1 Baseline of the BLU framework
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Figure 3: (a) SG. (b) P;ns and Py, and delay adjustments. (c)
latency constraints. (d) offsets. (e) van Ginneken’s algorithm.
(f) selected candidate solution.

The BLU framework is illustrated with an example in Figure 3.
First, an SG is formed based on the timing and the topology of
the initial clock tree, as illustrated in Figure 3(a). Next, the LP
formulation in Eq (3) is solved to specify delay adjustments and
to predict Psps and Pyps, which is illustrated in Figure 3(b). The
latency constraint I; for each clock sink i is obtained by floating
down each delay adjustments to the clock sinks and combining the
adjustments with the current arrival time of the clock signal, which
is shown in Figure 3(c). The maximum latency constraint is denoted
Imax- Next, an offset of f; equal to, I, qx — I;, is introduced for each
clock sink, as illustrated in Figure 3(d). A candidate solution ¢; (in
van Ginneken'’s algorithm) is created at each clock sink i with a
maximum downstream delay equal to of f;, which is illustrated in
Figure 3(e). Subsequently, van Ginneken’s algorithm is applied and
the minimum cost candidate solution that satisfies [, is selected
at the root. The latency constraint /45 at the root ensures that
each arrival time t; is smaller than /;. Moreover, it is guaranteed
that at least one candidate solution will satisty ;45 at the root of
the clock tree, i.e., the initial clock tree. Figure 3(f) shows the clock
tree after buffer sizing and layer assignment has been performed
with respect to the selected candidate solution. Compared with the
clock tree in 3(a), the clock tree in Figure 3(f) will have the same
predicted timing quality but smaller capacitive cost.

4.2 Relaxing the latency constraints

In this section, the BLU framework is extended to enable further
savings in capacitive cost by relaxing the point constraints into
latency range constraints. The latency constraints specified by Eq (3)
are shown in Figure 4(a). The relaxed latency range constraints
are shown in Figure 4(b). The BLU framework specifies the range
constraints while guaranteeing that P; s and P,, s are not degraded
if every arrival time ¢; is within the respective latency range. I is
the relaxed latency constraint for clock sink i and [; < I

The method used to find the latency range constraint is illus-
trated in Figure 4(c). First, a predicted slack graph (pSG) is formed [16].
A pSG, captures the predicted slacks in the timing constraints after
the delay adjustments specified by Eq (3) are realized. Moreover,
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Figure 4: (a) Latency constraints. (b) Relaxed latency con-
straints. (c) Method to find I].

the predicted slack violations s;; are added to the respective edges
in the pSG such that all edges in the pSG are non-negative. Next, a
relaxed latency constraint [} is found, as follows:
L
ll B ll " (1 + COC’U), (4)
]'C"ii" is the edge with the minimum weight of all the fan-in
edges of node i in the pSG, i.e., ex; € E. The (1 + coco) factor used
to compensate for the increased timing deteriorates §; and ;.

where w

4.3 Tightening the latency constraints

In this section, the BLU framework is extended by allowing negative
delay adjustments to be specified in the clock tree, which may
improve Py,ns and Py, as illustrated in Figure 5.
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Figure 5: (a) Delay adjustments specified by Eq (3). (b) Clock
tree after van Ginneken’s algorithm. [, is violated by the
path marked with a red dashed line. (c) Generation of a delay
adjustment constraint.

Compared with non-negative delay adjustments that are rela-
tively easy to realize, it may be impossible to physically realize
negative adjustments [12]. Consequently, it may be impossible to
satisfy the latency constraint /45 using Van Ginneken’s algorithm,
which results in that TNS and WNS cannot be reduced to the pre-
dicted P;ps and P,y ps using traditional CTO. The BLU framework
solves this challenge by generating delay adjustment constraints
to the LP formulation in Eq (3), which ensures that only negative
delay adjustments that can be realized are specified.

First, Eq (3) is solved while allowing both non-negative and
negative delay adjustments, which is shown in Figure 5(a). Nega-
tive delay adjustments are facilitated by replacing the expression
¢t Xkep Ak withep Ypep At —cn Ykep A7 inEq(3), where AT > 0
and A~ > 0 are non-negative and negative delay adjustments, re-
spectively. ¢, and ¢, are user defined parameters. Next, the remain-
der of the BLU framework is applied and the resulting clock tree is
shown in Figure 5(b). If any candidate solution satisfies the latency

constraint [, qx at the root, the same flow as for non-negative delay
adjustments is applied (see Section 4.1).

If no candidate solution meets the latency constraint l;,4, the
BLU framework selects the candidate solution that is closest to satis-
fying the latency constraint. Let [, ;o be the violation of the latency
constraint and let path(s, k) be the path from the source to clock
sink k that created the largest latency violation, which is illustrated
with a dashed red line in Figure 5(b). It is straightforward to find
the path based on backtracking the candidate solutions generated
by van Ginneken’s algorithm. Next, a delay adjustment constraint
is generated to force the delay adjustments on the path(s, k) to be
lyio larger than currently specified, as follows:

Ap = Lo + lyios (5)
hepath(s,k)

where L is the sum of the delay adjustments on the path from the
source to sink k in the current solution of Eq (3). Aj, are variables
in Eq (3).

A new set of latency constraints are specified by solving the LP
formulation in Eq (3) in combination with the delay adjustment
constraints in Eq (5), which is shown in Figure 5(c). The process
is iteratively repeated until the latency constraint /4y is satisfied.
Pyns and P,, s are increased in each iteration as additional con-
straints are introduced to the LP formulation. Latency constraints
are also introduced at internal nodes to speed up the convergence
process. Violations of latency constraints at internal nodes are ac-
counted for by modifying the costy. of a candidate to be equal to
cost; = cap'®t + ¢y - lzt)‘l?g, where lf)% is the sum of the violations
in the downstream subtree and cy ;o is a user specified parameter.

5 METHODOLOGY

The flow of the framework is illustrated in Figure 6. First, an initial
clock tree is constructed using CTS [3, 7], which is the input to
the BLU framework. Next, the BLU framework is performed, as
described in Section 4. Lastly, CTO is performed to reduce TNS and
WNS to P;ps and Pyyps using the techniques in [3].The high level
flow for the BLU framework is outlined below.

A specify latency point constraints step is performed to predict
Pins and P, s and to specify a set of latency constraints in the form
of points. The point constraints are extended into latency ranges in
a specify latency range constraints step. Next, buffer sizing and layer
assignment step is performed using an extension of van Ginneken’s
algorithm that utilizes three-dimensional sampling and transition
time constraints [14]. If the latency constraints are satisfied, buffer
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Figure 6: Proposed flow.



Table 1: Evaluation of various tree structures in terms of total capacitance and run-time.

Circuit Cap (pF) Run-Time (ps)

(name) | UST [4] | UST-CTO [4] | UST-P | UST-P-CTO | UST-R | UST-R-CTO || UST [4] | UST-CTO [4] | UST-P | UST-P-CTO | UST-R | UST-R-CTO
51423 343 3.43 3.02 3.02 2.96 2.96 0.0 0.1 0.0 0.1 0.1 0.1
s5378 5.65 5.65 5.04 5.04 4.87 4.87 0.0 0.1 0.1 0.1 0.1 0.1

515850 18.09 18.85 15.84 16.86 15.77 16.62 0.2 2.3 0.3 14.7 0.2 2.0
msp 1.41 1.41 1.35 1.35 1.20 1.20 0.0 0.0 0.5 0.0 3.7 0.1
fpu 1.60 1.60 1.52 1.52 1.35 1.35 0.0 0.2 0.7 0.0 1.2 0.0
usbf 4.55 4.55 4.14 4.14 4.07 4.07 1.0 0.2 0.4 0.2 2.4 0.2
dma 5.06 5.17 4.49 4.65 4.44 4.56 1.0 2.1 1.1 2.5 10.3 2.1
pci 7.65 7.65 7.02 7.06 6.71 6.71 2.0 0.2 2.3 0.8 15.8 0.2
ecg 23.44 23.66 20.39 20.96 20.54 20.84 8.0 11.3 1.7 15.5 5.0 12.8
des 18.82 18.84 16.58 16.62 16.62 16.64 4.0 1.1 1.3 0.9 3.9 0.4
eht 20.14 20.14 17.85 17.85 17.62 17.62 8.0 0.6 28.6 0.4 107.2 0.4
aes 151.70 152.91 | 132.91 135.28 | 132.91 135.60 45.0 110.5 7.2 65.7 15.4 84.3

Norm. 0.99 1.00 0.89 0.90 0.87 0.87 0.30 1.00 0.60 1.10 1.20 1.70

sizing and layer assignment is performed. If the latency constraints
are not satisfied, a generation of delay adjustment constraints step
is performed to introduce delay adjustment constraints. Next, the
framework returns to the specify point constraints step. The process
is iteratively repeated until all the latency constraints are satisfied.

6 EXPERIMENTAL EVALUATION

The experimental evaluation is performed on a quad core 3.4 GHz
Linux machine with 32GB of memory. The proposed algorithms
are implemented in C++. IBM ILOG CPLEX is used to solve the LP
formulations in the framework.
The evaluation is performed
using the framework proposed

Table 2: Circuits in [4].

. S . Circuit | Sinks | Sk traint
in [4], which is an extension of (n';;‘:) (n';';f) ew(;‘:‘ni)m'" s
the problem formulation used in s1423 74 78
$5378 179 175

the ISPD 2010 contest [13]. The o850 so7 s18
properties of the buffers and the msp 683 44990
. . fpu 715 16263
wires are obtained from the 45 nm webf 1765 23498
technology used in the ISPD 2010 dma 2092 132834
test. Th i k pei bridge32 | 3578 141074
contest. The non-uniform skew ccg 7674 §3440
constraints and the sink locations despeft | 8308 17152
. eht 10544 450762

are generated using Synopsys DC as 13216 53382

and ICC. Moreover, there is a tran-

sition time constraint at each buffer and clock sink. A summary of
the circuits is shown in Table 2. We construct and compare eight
different tree structures to evaluate the BLU framework.

(1) The UST structure is a clock tree constructed using the CTS
engine provided by the authors in [4]. (2) The UST-CTO structure
is the structure obtained by applying the CTO in [3] to the UST
structure. (3) The UST-P structure is obtained by applying the BLU
framework to the UST structure using point constraints, i.e., the
framework presented in Section 4.1. (4) The UST-P-CTO is the
structure obtained by applying CTO to the UST-P structure. (5) The
UST-R structure is the UST-P structure obtained by relaxing the
point constraints into latency ranges, i.e., the method described in
Section 4.2. (6) The UST-R-CTO structure is the structure obtained
by applying CTO to the UST-R structure. (7) The UST-RT structure is
the UST-R structure combined with the technique of tightening the
constraints proposed in Section 4.3. (8) The UST-RT-CTO structure
is obtained by applying CTO to the UST-RT structure.

We evaluate the tree structures in terms of total capacitance,
timing performance and run-time. It is well known that the power
consumption of a clock tree is highly correlated with the total
capacitance. The timing quality is evaluated using TNS and WNS,
which are computed using Eq (1) and Eq (2); Prps and Pyps are

obtained from solving the Eq (3). The arrival times t; and t; are
obtained using NGSPICE simulations. All tree structures in the
experimental results satisfy the same transition time constraints as
in [4]. In Section 6.1, we evaluate the BLU framework on the clock
trees in [4], which only requires non-negative delay adjustments.
In Section 6.2, we evaluate the BLU framework on the clock trees
with strict timing constraints, which utilizes both non-negative and
negative delay adjustments.

6.1

In Table 2, the total capacitance and run-time are shown in the
columns labeled as ‘Cap’ and ‘Run-time’, respectively. The nor-
malized performances with respect to the UST-CTO structures are
shown in the row labeled as ‘Norm’. The run-times in the table
are the run-times of individual synthesis steps. The normalized
run-times are the cumulative run-times. The timing performance
is not shown because there are no timing violations after CTO.
First, we apply traditional CTO to the UST structures. All timing
violations are eliminated at the expense of an average 1% increase
in capacitive cost. Compared with the UST structures, the UST-P
structures have 10% lower capacitance. The capacitance reduction
stems from that van Ginneken’s algorithm assigns interconnects
to lower metal layers and that buffers are downsized while still
meeting the transition time constraints. Next, CTO is applied to
the UST-P structures. The UST-P-CTO structures have 10% lower
capacitance than the UST-CTO structures, as the CTO phase only
resulted in a small increase in total capacitance. The capacitive
improvements come at an expense of a 10% increase in run-time.
Next, we compare UST-R structures with UST-P structures. The
table shows that the UST-R structures have 2% lower capacitance
than the UST-P structures. The improvement in capacitance is a
result of the relaxation of point constraints into range constraints.
Ideally, the UST-R structures should have better capacitive per-
formance than the UST-P structures on all circuits. However, the
sampling in van Ginneken’s algorithm may result in minor capaci-
tance fluctuations (see circuits des and aes). After CTO is applied, it
can be observed that the UST-R-CTO structures have 3% lower total
capacitance than the UST-P-CTO structures. The average run-time
of the UST-R-CTO structures is 1.5X higher than the UST-P-CTO
structures. The UST-R structures demonstrate that the BLU frame-
work is capable of performing buffer sizing and layer assignment to
reduce capacitive cost without degrading timing performance. The
improvements are achieved at the expense of overhead in run-time.

Evaluation of positive delay adjustments



Table 3: Evaluation of negative delay adjustments.

Circuit | M Structure TNS | WNS | Ptps | Pwns | Cap | Run-time
(name) | (ps) | (name) | (ps) | (ps) | (ps) | (pS) | (o) | (min)

UST [4] 643 18 0 0] 234 3.0

UST-CTO [4] 0 0 0 0| 237 11.3

30 UST-R 352 18 0 0 20.5 5.0

UST-R-CTO 0 0 0 0 20.8 12.8

UST-RT 414 15 0 0 20.5 8.0

UST-RT-CTO 0 0 0 0 20.8 7.1

UST [4] 2218 19 50 2 19.7 9.2

UST-CTO [4] 929 3 709 2 213 23.4

ecg 15 UST-R 4286 24 23 1 17.7 6.1

UST-R-CTO 150 4 86 3 19.5 17.6

UST-RT 1544 18 0 0 18.7 29.9

UST-RT-CTO 18 1 0 0 20.1 16.8

UST [4] 15059 33 | 5299 22 17.6 4.5

UST-CTO [4] | 6259 25 | 5919 23| 206 429

0 UST-R 14865 41 | 6121 25 15.0 5.0

UST-R-CTO 7136 28 | 6615 26 17.9 213

UST-RT 16553 35 | 2882 19 17.4 213

UST-RT-CTO 3332 20 | 3928 19 20.6 354

UST [4] 1315 22 0 0| 151.7 45.0

UST-CTO [4] 0 0 0 0| 152.9 172.5

50 UST-R 3045 26 0 0| 132.9 15.4

UST-R-CTO 0 0 0 0 | 135.6 84.3

UST-RT 3028 26 0 0| 1329 19.0

UST-RT-CTO 0 0 0 0| 1355 86.4

UST [4] 9897 33 | 2604 12 | 135.6 12.1

UST-CTO [4] 3208 16 | 3064 14 | 1458 110.6

aes 40 UST-R 25873 44 | 2200 11 | 1191 21.6

UST-R-CTO 2972 17 | 2500 14 | 128.9 143.4

UST-RT 14118 36 | 2151 11 | 1235 51.2

UST-RT-CTO 2498 14 | 2413 13 | 132.8 19.2

UST [4] 16041 32 | 7095 14 | 1121 249

UST-CTO [4] | 8448 18 | 7950 15 | 121.6 139.0

30 UST-R 36367 47 | 4478 13 97.8 9.2

UST-R-CTO 5697 19 | 5186 15 | 111.8 73.5

UST-RT 15685 36 | 2636 11 | 102.2 56.5

UST-RT-CTO 3569 16 | 3330 14 | 1134 189.2

UST [4] 3.56 3.04 | 1.00 | 1.00 0.91 0.13

UST-CTO [4] | 1.00 | 1.00 | - - 1.00 1.00

Norm. - UST-R 6.33 3.84 | 0.77 0.88 0.79 0.26

UST-R-CTO 0.71 1.13 - - 0.90 0.95

UST-RT 4.24 319 | 0.44 | 0.63 0.85 0.60

UST-RT-CTO 0.42 | 0.80 - - 0.95 1.21

6.2 Evaluation of negative delay adjustments

In this section, we focus on how the BLU framework performs on
clock trees with non-zero Ps,s and P,yns. The TNS, WNS, P;js,
Pyyns, are respectively labeled “TNS’, ‘WNS’, ‘P;,s” and ‘Pyyps” in
Table 3. The evaluation is performed on the circuits ecg and aes. The
synthesis tool in [4] is used to generate clock trees with different
guard bands (labeled ‘M’), which regulates a trade-off between total
capacitance and timing performance.

First, traditional CTO is applied to the UST structures. The UST-
CTO structures have 72%, 67% lower TNS and WNS than the UST
structures, respectively. It can be observed that TNS and WNS after
CTO is strongly correlated with P;,s and Py, s before CTO. On
the other hand, the timing improvement result in a 10% increase in
total capacitance, which stems from the insertion of delay buffers.

Compared with the UST structure, the UST-R structures have 13%,
23%, 12%, lower total capacitance, Pyys, and Py s, respectively. The
Ptns, and Py improvements stem from that the layer assignment
of interconnects under the bottom most buffers. The TNS and WNS
may be improved or degraded. However, the timing performance is
expected to be recovered after CTO, as Py and P, s are improved.

Compared with the UST-CTO structures, the UST-R-CTO struc-
tures have 10% lower capacitance and 5% shorter run-time. The TNS
is 29% lower and WNS is 13% higher. Compared with the UST-R

structures, the UST-RT structures have 43% and 28% lower P;,s and
Pyyns, respectively. The timing improvements come from realizing
negative delay adjustments. The total capacitance of the UST-RT
structures are 8% higher than the UST-R structures. The increase in
total capacitance stems from realizing negative delay adjustments
using large buffers. It is expected that the UST-RT structures and
UST-R structures have similar performances on the clock trees with
zero Pips and Py, ps, as no negative delay adjustments are specified.
Compared with the UST-R-CTO structures, the UST-RT-CTO struc-
tures have 41%, 29%, lower TNS and WNS, respectively. The timing
improvements of the UST-RT-CTO structures come at an expense
of a 6% increase in total capacitance and a 27% increase in run-time.

The UST-R-CTO structures and UST-RT-CTO structures demon-
strate that the BLU framework is capable of exploring a trade-off
between timing quality and capacitive cost using negative delay
adjustments. Moreover, the results of the UST-R-CTO structures
and UST-RT-CTO structures are notably better than the UST-CTO
structures in [4].

7 SUMMARY AND FUTURE WORK

In this paper, a latency constraint guided buffer sizing and layer
assignment framework is proposed. The framework is capable of
handling discrete buffer sizes and layer assignments while utiliz-
ing useful skew. In the future, we plan to integrate topological
modifications into the proposed framework.
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