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ABSTRACT. Solutions of the planar Kepler problem with fixed energy
h determine geodesics of the corresponding Jacobi-Maupertuis metric.
This is a Riemannian metric on R? if b > 0 or on a disk D C R? if
h < 0. The metric is singular at the origin (the collision singularity)
and also on the boundary of the disk when h < 0. The Kepler problem
and the corresponding metric are invariant under rotations of the plane
and it is natural to wonder whether the metric can be realized as a
surface of revolution in R? or some other simple space. In this note,
we use elementary methods to study the geometry of the Kepler metric
and the embedding problem. Embeddings of the metrics with A > 0
as surfaces of revolution in R® are constructed explicitly but no such
embedding exists for h < 0 due to a problem near the boundary of the
disk. We prove a theorem showing that the same problem occurs for
every analytic central force potential. Returning to the Kepler metric,
we rule out embeddings in the three-sphere or hyperbolic space, but
succeed in constructing an embedding in Minkowski spacetime.

1. THE KEPLER PROBLEM

The Kepler problem concerns the motion of point mass in the plane under
an inverse square central force law. Let ¢ = (x,y) denote the position and
m > 0 its mass. Newton’s equations are

_Gmg
lq|3

where G > 0 is a constant. Since the mass m drops out, we may as well
assume m = 1. Furthermore, if ¢(¢) is a solution of (1) then Q(t) = kq(t), k >
0 solves a similar equation with G replaced by G/k. So we may also assume
that G = 1.

The Kepler problem with m = G = 1 can be viewed as a Hamiltonian
system with Hamiltonian

(1) mij =

2
H(q,p) = K(p) = Ulq) = ’g‘ - |1q,-
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Hamilton’s equations are

. . q
(2) i=r  P=1n
where p = ¢. The total energy H(q,p) = h is a constant of motion. An-
other scaling argument shows that we can restrict attention to energy levels
h =0,1,—1. If (¢(t),p(t)) is a solution of (2) with energy h then consider
(Q(t), P(t)) = (kq(lt),klp(lt)) with k > 0,1 # 0. It is easy to check that
if k312 = 1, (Q(t), P(t)) is another solution of (2) but with energy k2I2h.
Thus, by choosing k,l we can scale the energy by any positive constant to
achieve h = 0,1, —1.

Let H(q,p) = 3|p|*> — U(q) be any planar Hamiltonian system and fix an
energy level H(q,p) = h. The corresponding Jacobi-Mauptertuis metric is a
Riemannian metric on the Hill’s region H(h) = {q = (x,y) : U(x,y)+h > 0}
given by

g =2(U(x,y) + h)(dz* + dy?).
If (q(t), p(t)) is a solution of the Kepler problem with energy h, then accord-
ing to the Maupertuis variational principle, ¢(t) € H(h) is a geodesic of the
metric g [I 2]. Conversely, such a geodesic can always be parametrized to

give a solution (q(t),p(t)) = (q(t),q(t)) of (2) with energy h.
For the Kepler problem we have

3) g¢g=2 (1 + h) (dz? + dy®) = 2 (1 + h) (dz* + dy?)

where r = \/x2 + y2. For h > 0 the Hill’s region is the entire plane, H(h) =
R2. For h < 0 we have a disk, H(h) = {r < |le|} The metric is singular
at the collision singularity, » = 0, and also on boundary of the Hill’s region
when h < 0.

2. GEOMETRY OF THE KEPLER METRIC

In this section we will study the differential geometry of the metric (3)).
For simplicity, we will drop the factor of 2 which does not affect the geodesics.
The resulting metric will be called the Kepler metric. As noted above, we
can restrict attention to the cases h = 0,1,—1. For h = 0,1 we have a
metric on the plane R? while for h = —1, the Hill’s region is the unit disk
D = {r < 1}. We begin by writing the metric in several different coordinate
Systems.

Because of the circular symmetry, it is natural to begin with polar coor-
dinates where we have

W e= (i * h) (dr® + 7 do?) = (i + h) dr? + (1 + hr) d§*

A standard form for a rotationally symmetric metric is

g = ds® + a(s)*do*
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where s is the arclength parameter along a radial line segment. Integrating

/1
ds =\/—+ hdr
r

21 h=0
s=</r(1+7)+sinh '(\/r) h=
r(1—7r)+sin~t(y/r) h=-1

a(r) = /r(1+ hr).

To find a(s) one would have to invert the formulas for s(r). This can be
done explicitly only for the case h = 0 where we find a(s) = s/2 and

gives

2
g=ds’+ d6*  h=o.

It is easy to recognize this as the metric of a circular cone. More details
about this will be given later.

Another popular choice of coordinates in the theory of surfaces is isother-
mal coordinates. If a general, rotation symmetric metric in polar coordinates
is written g = E(u)du? + 2F (u)dudf + G(u)df? then isothermal coordinate
are characterized by requiring that F(u) = 0 and F(u) = G(u). In all cases,
the isothermal coordinate turns out to be given by

u=Inr r=¢"

and the metric becomes
g = e“(h+ e“)(du® + db?).

For h = 0,1 we have —oco < u < oo while for h = —1 we have —oco < u < 0.
Finally, motivated by [5] we can look for symplectic coordinates (7, 6)
such that F'(7) = 0 and E(7)G(7) = 1. When h = 0, polar coordinates are
already symplectic with 7 = r, E(7) = 1/7,G(7) = 7. For h = %1, a short
computation shows that
hr? r?

T:r+7:r:|:§ r=+(/1£27 —1).

The metric takes the form
1
o)
The range of 7 is [0,00) for h = 0,1 and [0, 5] for h = —1.

We close this section with some of the geometric invariants of the Kepler

surface. The arclength of the radial rays is s = oo for h = 0,1 and s = § for
h = —1. The area of the disk of radius r centered at the origin is given by
hr?

A(r) =2n7(r) =2n(r + 7)

g dr? + ¢(1)de? (1) = V1 £27(V1£27r - 1).
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The total surface area is S = co for h = 0,1 and S = 7w for h = —1. Finally,
the Gauss curvature can be calculated using standard formulas in any of the
coordinate systems. The easiest is symplectic coordinates where we have

0 h =
1 L =—=L. hn=1
K = —§¢H(7) = 2(1+2T)% 2(1+r)%
-1 _ 1 _
2(1-2r)2  2(1-r)2
Note that in the case h = 1 we have negative curvature while for h = —1 we

have positive curvature with K (r) — oo as r — 1.

3. EMBEDDING AS A SURFACE OF REVOLUTION IN R3

Since the Kepler metric is rotationally symmetric, it is natural to wonder
if it can be realized as a surface of revolution in Euclidean space R3. For
example, this is given as an exercise in [9, p.254] and is discussed in [8 sec
2.3] but perhaps with insufficient attention to what is under certain square
root signs.

Let (p, 0, z) denote cylindrical coordinates in R?, the Euclidean metric is

9Bue = dp? + d2* + p* db>.

We look for an embedding of the form p = f(r),z = g(r) which gives the
metric

(5) g=(f"(r)*+4'(r)?) dr*+ f(r)*d6*.

Comparing with shows that we must have

F0) = V(b PP +g 0P =S+
When h = 0 we find
p= )=V z=glr)=Vir

which describes a line in the (p, z) plane with slope v/3. Rotating this line
around the z axis gives a circular cone isometric to the corresponding Kepler
surface. The angle between the z axis and the cone is 7/6. Cutting the cone
along a radial curve and flattening gives a perfect half-plane, that is, after
flattening, the angle between the two cut edges is exactly w. The geodesics,
which represent parabolic orbits of the Kepler problem, can be depicted by
drawing straight lines on a sheet of paper and gluing the edges of the paper
to form a cone. For more about this case see [7].
Next suppose h = 1. We find

[ = Vi) g0 = s



KEPLER SURFACE 5

Integrating ¢'(r) gives a solution

/ 3+ 4r / t2dt
1—|—r V3 V(B2 =3)(#2+1)

where t(r) = /3 +4r. This is an elliptic integral which can be evaluated
with some effort to give
3 4r
g(r) = U~ 2E(u, k) + 2dn(u, k) sc(u, k) where nc(u,k)=4/1+ 3

where dn(u, k), sc(u, k),nc(u, k) are Jacobi elliptic function and E(u, k) is
the Jacobi elliptic integral of the second kind with modulus k£ = ; @ p-
60-63]. The generating curve for the surface is given parametrically as
(p,z) = (\/r(14+7r),g9(r)) and the surface is shown in Figure |l along with
some geodesics. The latter correspond to hyperbolic orbits of the Kepler
problem.

FiGURE 1. Embedding of the h = 1 Kepler surface with two geodesics.

Finally, consider the Kepler surface with h = —1. Due to the fact that
the Kepler metric vanishes on the boundary of the Hill’s region, we cannot
expect an embedding valid for 0 < r < 1. Instead we might expect an
embedding valid for 0 < r < 1, perhaps with a cone point or some other
singular point at » = 1. In fact, we will see that this is not possible.

An embedding with p = f(r), z = g(r) must satisfy

1
FO =V PP =
Substituting the first of these equations into the second gives

, 3—4r
Q(T)sz-
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Clearly this can only be valid for 0 < r < % which indicates that an embed-
ding of the whole surface is impossible.
For 0 < r < 2 one can solve for g(r) in terms of elliptic functions and
elliptic integrals to get
4r

1
g(r) =2E(u, k) — §u where cn(u, k) =4/1— 3

where cn(u, k) is the Jacobi elliptic function and E(u, k) is the Jacobi elliptic

integral of the second kind with modulus k& = @ The generating curve for

the surface is given parametrically as (p,z) = (\/r(1 —r),g(r)) and the
surface is shown in Figure

FIGURE 2. Partial embedding of the Kepler surface with h =
—1 and three geodesics.

The surface resembles a vase or an amphora. The singularity of the po-

tential at 7 = 0 maps to the cone point on the surface. Figure [ also shows
several geodesics. The circular orbit of the Kepler problem at r = % maps

to the circular geodesic around the widest part of the vase. Elliptical orbits
with apsis exactly at r = % just touch the edge of the vase. It turns out the
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these are the orbits with eccentricity e = % Elliptical Kepler orbits with
eccentricity e > % pass too close to the zero velocity curve (r > %) and so
cannot be fully represented as geodesics on the surface of revolution.

The lack of a global embedding can be explained in a different way using
different coordinates. Recall that the Kepler metric for h = —1 can be

written as

g = ds® + a(s)*do*
where s = /r(1 —r) +sin"!(y/r) and a(r) = y/7(1 —r) and where s was
found by integrating ds = 4/ % — 1dr. It is a classical result that a metric in

this form can be embedded as a surface of revolution if and only if |a/(s)| < 1
[3, [4]. Here we have
o/ (s) = a'(r) _ 1—2r
s'(r)  2(1—r)
and |a/(s)| < 1 if and only if r < 3.
In symplectic coordinates, the criterion for existence of an embedding as

a surface of revolution is |¢'(7)| < 2 [5]. For the h = —1 Kepler surface we
have ¢(7) = /1 —27(1 — /1 —27) and
1
#r=2-

V=27

We have |¢/(7)| < 2 if and only if 7 < 32, Since 7 = r — r?/2 this again
corresponds to r < %.

It turns out that the lack of an embedding near the Hill boundary is not
special to the Kepler problem, but is a general feature of planar central force
problems. Consider the Jacobi-Maupertuis metric associated to a potential

U(r) with r = \/22 + y2. In polar coordinates we have
(6) g = (U + h)dr® +r*(U + h)do*

where we have dropped the factor of 2 as before. A Hill boundary would be
a curve where U(r) + h = 0 with an open annulus or collar nearby where
U(r) + h > 0. It turns out that it is generally impossible to embed such an
open collar as a surface of revolution.

Theorem 1. Suppose U(r) is an analytic function such that U(r) + h has
a 1solated zero at r = rg > 0. In addition, suppose that there is € > 0 such
that U(r) +h > 0 forrg —e < r < rog or for g < r < 19+ € or both.
Then there is 6 > 0 such that the metric (@ on the part of the Hill region
H(h) ={U(r)+h >0} with 0 < |r —ro| < does not admit an embedding
as a surface of revolution in R3.

Proof. As above, a general embedding takes the from p = f(r),z = g(r) in
cylindrical coordinates in R? where f(r), g(r) must satisfy

fr)y=rVU+h  f(r)?+4 () =VU+h
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This leads to the equation
U'(r)(rU’(r) + 4(U + h))
7 / 2 _ _T
It suffices to show that the right hand side of this equation is always negative

on an interval of the form (rg — d,79) or (rg, 79+ ) such that U(r) + h > 0.
Since U(r) is analytic, 7o is a finite order zero and we can write

U(r) = —h+ c(r —ro)t/d + O(|r — ro|?t1)

for some integer d > 1 and some ¢ # 0. If d is even we must have ¢ > 0 and
we have U(r) 4+ h > 0 on both sides of r¢. If d is odd then U(r) + h changes
sign at ro and we want to look on the side with U(r) + h > 0.

Let G(r) denote the right hand side of (7)) and let 6r = r —rg. The Taylor
series for U(r) gives

Glr) = —%c&rd_Q(drg +O(57))

for or # 0. Note that the quantity in parentheses is positive for |or| suffi-
ciently small.

If d is even, then ¢ > 0 and 0792 > 0 and hence G(r) < 0 for |or|
sufficiently small. So the metric on both sides of rg is not embeddable as a
surface of revolution. If d is odd, there are two cases. If ¢ > 0 then we are
interested in the side of 7y with dr > 0. Then 6742 > 0 and we conclude
G(r) < 0 for or > 0 sufficiently small. If ¢ < 0 we are interested in the side
of rg with 6r < 0. The quantity ¢dr?~2 > 0 and we find G(r) < 0 for or < 0
sufficiently small. O

4. MORE ATTEMPTS TO EMBED THE h = —1 KEPLER SURFACE

Having failed to find a global embedding of the negative energy Kepler
surface as a surface of revolution in R?, we could try to find such and embed-
ding in other familiar spaces such as a three-sphere or a hyperbolic space.
First note that an embedding in a higher dimensional Euclidean space is
also impossible if we keep the requirement that the surface be represented
as a simple kind of surface of revolution. In R¥*2 introduce cylindrical co-
ordinates (p,0,z) where now z € R¥. Consider an embedding of the form
p= f(r),z = g(r) with g : [0,1] — R*. The reasoning above gives

9= o

r(l—r)
and again, we find that embedding the whole surface is impossible. It follows
that it is also impossible to embed the Kepler surface into a round sphere or
any other rotation invariant submanifold of Euclidean space. We call this
kind of surface of revolution simple because in higher dimensions there are
other, more complicated, types of rotations which could be used to rotate a
generating curve.
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Next suppose we try to embed the surface in hyperbolic three-space. A
hyperbolic metric in the half-space model is
dp® + dz? + p? df?
a?z?

Ghyp =

where a > 0. With an embedding of the form p = f(r), z = g(r) we get

/7,2 /7,2 7“2 7“2 2
(8) g= S0 +g(alg)(i)2+f() a6

Define h(r) = f(r)/(ag(r)). Then comparing with (4) gives
h(r)=+/r(1—r)

and a rather complicated differential equation for g(r)
dr(l—rY(r? —r—a ) g (r)? +4r(1 —r)(2r — D)g(r)g'(r) + (3 — 4r)g(r)* = 0.

We will see that this cannot be solved by a real differentiable function defined
for all r < 1. Indeed, it can be viewed as a quadratic equation for the ratio
g'(r)/g(r) and the discriminant of this equation is

167(1 — r)[4(1 — 7)® + a2(3 — 4r)].

No matter which o > 0 is used, the quantity in square brackets will be
negative over some interval 3 < ry < r < 1 which makes g/(r)/g(r) nonreal.

How about an embedding into three-dimensional Minkowski space 7 We
have

IMink = dp® — d2* + p* db>.
and if p = f(r),z = g(r) we get the metric

(9) 9= (f'(r)? =g/ () dr* + f(r)* d6”.
which leads, as above, to f(r) = /r(1 —r) but
, _ 3—4r
Jg(r)?= —m-

This one can only be solved for % < r < 1. Comparing this with the
discussion for Euclidean space suggests trying an embedding in a three-
dimensional semi-Riemannian space whose signature varies from point to
point. However, no natural candidates for such a space come to mind so in

the next section we turn to four-dimensional Minkowski space.

5. EMBEDDING KEPLER IN MINKOWSKI SPACETIME

On the positive side, we will now show that embeddings into four-dimensional
Minkowski space are possible. The Minkowski metric in an appropriate ver-
sion of cylindrical coordinates is

Grrink = dp? + dz% — dt? + p? db>.



10 RICHARD MOECKEL

An embedding as a simple surface of revolution would take the form p =
fr),z=g(r),t = h(r). We have
9= (f'(r)?+d'(r)* =W (r)*)dr* + f(r)* d6°.
which leads, to f(r) = /(1 — r) and
3—4r
4r(l—r)’
This equation has many solutions which can be found by splitting the right-

hand side as the difference of two nonnegative functions. For example sup-
pose we choose

g1 =W () =

, 1 4r
hir)y=2-2V1—-r  KW(r)?= e

Then we get

g (r)?= 47“(1370) g(r) = V/3 arcsin(y/r).

The profile curve

(p,z,t) = (/r(1 —7),V/3 arcsin(y/r),2 — 2v/1 — )

along with its projections is shown in Figures [3] and [ The profile curve
meets the plane p = 0 (shaded in Figure 3) when » = 0,1 and these will
be conical singularities on the surface. Note that the boundary of the Hill’s
region (the unit circle r = 1) is collapsed to a point. This was to be expected
since its length in the Kepler metric is 0. The point with r = % is indicated
in the figures but appears unremarkable. However, one can check that the
slope of projection of the profile curve to the (z,t) plane reaches 1 at this
point. The surface itself is spacelike, but is tangent to the light cone at
r=1.

In view of the nonuniqueness of the embedding, the details of these curves
should not be taken too seriously. Perhaps there is a way to single out a
unique embedding by imposing some further geometrical constraints, but it
is not clear how to proceed.
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