

22 **ABSTRACT**

23 *Babesia microti* and *Babesia duncani* are the main causative agents of human babesiosis
24 in the United States. While significant knowledge about *B. microti* has been gained over the past
25 few years, nothing is known about *B. duncani* biology, pathogenesis, mode of transmission or
26 sensitivity to currently recommended therapies. Studies in immunocompetent wild type mice and
27 hamsters have shown that unlike *B. microti*, infection with *B. duncani* results in severe pathology
28 and ultimately death. The parasite factors involved in *B. duncani* virulence remain unknown.
29 Here we report the first known completed sequence and annotation of the apicoplast and
30 mitochondrial genomes of *B. duncani*. We found that the apicoplast genome of this parasite
31 consists of a 34 kb monocistronic circular molecule encoding functions that are important for
32 apicoplast gene transcription as well as translation and maturation of the organelle's proteins.
33 The mitochondrial genome of *B. duncani* consists of a 5.9 kb monocistronic linear molecule with
34 two inverted repeats of 48 bp at both ends. Using the conserved cytochrome b (Lemieux) and
35 cytochrome c oxidase subunit I (*coxI*) proteins encoded by the mitochondrial genome,
36 phylogenetic analysis revealed that *B. duncani* defines a new lineage among apicomplexan
37 parasites distinct from *B. microti*, *Babesia bovis*, *Theileria* spp. and *Plasmodium* spp. Annotation
38 of the apicoplast and mitochondrial genomes of *B. duncani* identified targets for development of
39 effective therapies. Our studies set the stage for evaluation of the efficacy of these drugs alone or
40 in combination against *B. duncani* in culture as well as in animal models.

41 *Keywords:* Babesiosis, Genome, Mitochondria, Apicoplast, Sequencing, Annotation, Drug
42 targets

43

44

45 **1. Introduction**

46 Human babesiosis is a global infectious disease transmitted by ticks, blood transfusion or
47 congenitally (reviewed in Vannier and Krause (2012); Vannier et al. (2015)). The disease is
48 caused by intraerythocytic parasites of the genus *Babesia*. Immunocompromised and asplenic
49 individuals are at greatest risk of developing babesiosis symptoms, which include fever and
50 headache and can advance to multi-system organ failure and death (Vannier et al., 2015). Most
51 cases of babesiosis occur in the northeastern and midwestern regions of the United States and are
52 caused by *Babesia microti* and transmitted by *Ixodes scapularis*, the same tick species that
53 transmits the agents of Lyme disease, anaplasmosis and Powassan virus disease (Burgdorfer et
54 al., 1982; Spielman et al., 1985). Beside these cases, several clinical reports from Washington
55 State, USA and California, USA were linked to another *Babesia* sp, *Babesia duncani* (Kjemtrup
56 and Conrad, 2000). The first case of human babesiosis reported to be caused by a new *Babesia*
57 sp., named *WA1*, was of a 41-year-old man from Washington State (Quick et al., 1993). Since
58 then 11 more cases of human babesiosis attributable to *WA1* and *WA1*-like organisms have been
59 reported in California and Washington State, and the etiological agent later identified as *B.*
60 *duncani* (reviewed in Kjemtrup and Conrad (2000)). Two other cases preceding these 12 *B.*
61 *duncani* cases were reported in California and were presumed to be caused by this pathogen
62 (Scholtens et al., 1968; Bredt et al., 1981). Studies in hamsters and mice following infection with
63 the parasite showed that *B. duncani* pathogenesis is different from that caused by *B. microti*.
64 Infection with *B. microti* is characterized by an initial phase of high parasitemia, anemia and
65 splenomegaly followed by rapid decline in parasitemia to undetectable levels, leaving animals
66 surviving infection with little to no detectable symptoms (Cullen and Levine, 1987; Wozniak et
67 al., 1996). In contrast, *B. duncani* infection of mice and hamsters results in both a rapid increase

68 in parasitemia and severe pathology with mortality rates of more than 95% in C3H, A/J, AKR/N
69 and DBA/1J mice, between 40 to 50% in BALB/cJ, CBAJ and 129/J mice and less than 10% in
70 C57BL/6 and C57BL/10 mice (Dao and Eberhard, 1996; Moro et al., 1998).

71 While significant knowledge has been gained over the past several years about *B. microti*,
72 nothing is known about the biology, genome composition and structure, or pathogenesis of *B.*
73 *duncani*. Furthermore, recommended therapies have not been evaluated directly against this
74 parasite in vitro or in animal models. Recent studies by Swei and colleagues (in press) suggest
75 that the enzootic tick vector of *B. duncani* is *Dermacentor albipictus* and the reservoir host is
76 likely the mule deer.

77 The data described in this study represent, to our knowledge, the first report of the
78 completed sequence, assembly, and annotation of the apicoplast and mitochondrial genomes of
79 *B. duncani*. Phylogenetic analysis using mitochondrial genes shows that *B. duncani* defines a
80 new lineage in the Apicomplexa phylum distinct from *B. microti*. Our analysis further predicts
81 potential therapeutic targets and new strategies to develop effective strategies to treat babesiosis
82 resulting from infection by *B. duncani*.

83

84 **2. Materials and methods**

85 *2.1. Animal ethics statement*

86 All animal experimental protocols followed Yale University institutional guidelines for care and
87 use of laboratory animals and were approved by the Institutional Animal Care and Use
88 Committees (IACUC) at Yale University. Rules for ending experiments were to be enacted if
89 animals showed any signs of distress or appeared moribund.

90

91 2.2. Sequencing assembly

92 The *B. duncani* WA1 isolate was obtained from BEI Resources (www.beiresources.org)
93 Number: NR-12311). This parasite was isolated from the blood of the first reported case of
94 babesiosis acquired in Washington State (Quick et al., 1993). The strain was injected into
95 hamsters and infected red blood cells (RBCs) were purified and used to isolate *B. duncani* total
96 DNA. This DNA was sequenced using both Illumina Hi-Seq 2500 paired-end 75 bp short-read
97 sequencing and PacBio single molecule long-reads (>10kb) sequencing. Assembly was
98 performed using the following steps: i) raw sequence reads were mapped using BWA-MEM (Li
99 and Durbin, 2009) and BLASR (Chaisson and Tesler, 2012) against the host genome sequence
100 (Golden Hamster *MesAur1.0* genome, https://www.ncbi.nlm.nih.gov/assembly/GCF_000349665.1/) to remove host DNA
101 contamination; ii) potential sequencing errors in PacBio reads were corrected using ectools
102 (preprint at <http://www.biorxiv.org/content/early/2014/06/18/006395>) and then the corrected
103 long reads were assembled using Celera Assembler v7 (Berlin et al., 2015); iii) samtools (Li et
104 al., 2009) was used to extract only unmapped reads, and bedtools (Quinlan and Hall, 2010)
105 bam2fastq to convert those back to fastq; iv) spades (Bankevich et al., 2012), with default
106 parameters, was used to assemble the remaining reads into scaffolds. Two of the assembled
107 contigs encompassed the entire apicoplast and mitochondrial genomes. The sequence of the
108 mitochondrial genome was further validated using long-range PCRs and Sanger sequencing.

111 2.3. Annotation of the apicoplast and mitochondrial genomes

112 Annotation of the apicoplast and mitochondrial genomes was performed using Artemis
113 (<http://www.sanger.ac.uk/science/tools/artemis>) (Rutherford et al., 2000) to identify all open

114 reading frames, and BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) (Altschul et al., 1990) to
115 identify homologous proteins in other organisms in the GenBank database. The prediction of
116 tRNAs in both genomes was accomplished using tRNAscanSE version 1.21 and version 2.0
117 (<http://lowelab.ucsc.edu/tRNAscan-SE/>) with the search mode set to “default” and the source set
118 to “Mito/Chloroplast” (Lowe and Eddy, 1997; Schattner et al., 2005; Lowe and Chan, 2016).
119 Only tRNAs with a score above 30% were annotated on the genome. rRNA genes, large subunit
120 (LSU) and small subunit (SSU), were determined by searching for their counterparts in *Babesia*
121 *bovis*, *Babesia orientalis*, *B. microti* and *Theileria parva*. The circular genetic map for the
122 apicoplast genome was designed using CGView (http://stothard.afns.ualberta.ca/cgview_server/)
123 (Stothard and Wishart, 2005).

124

125 2.4. Phylogenetic analysis

126 A phylogenetic relationship was established using concatenated sequences of the *cob* and
127 *cox1* mitochondrial genes. The sequences were first added consecutively in MEGA7 (Molecular
128 Evolutionary Genetics Analysis version 7.0) (Kumar et al., 2016) before they were aligned using
129 MUSCLE (Edgar, 2004). A Neighbor-Joining tree (Saitou and Nei, 1987) was then constructed
130 using bootstrap analysis inferred from 1000 replicates (Felsenstein, 1985). The bootstrap
131 consensus tree inferred from 1000 replicates was taken to represent the evolutionary history of
132 the taxa analyzed (Felsenstein, 1985). The evolutionary distances were computed using the JTT
133 matrix-based method and are in the units of the number of amino acid substitutions per site
134 (Jones et al., 1992). Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016).

135

136 3. Results and Discussion

137 3.1. Identification of the *B. duncani* apicoplast and mitochondrial genomes

138 In order to obtain the genome sequence of the apicoplast and mitochondrial genomes of
139 *B. duncani*, the WA1 clinical isolate was first propagated in hamsters and DNA isolated from
140 infected RBCs. Search for coding sequences known to be encoded by the apicoplast and
141 mitochondrial genomes of other apicomplexan parasites identified two contigs of ~34 kb
142 (GenBank Accession no. **MH107388**) and ~6 kb (GenBank Accession no. **MH107387**) in
143 length, respectively.

144

145 *3.2. Annotation of the apicoplast genome of B. duncani*

146 The apicoplast, a non-photosynthetic plastid organelle, is the result of a secondary
147 endosymbiotic event and is a key characteristic of apicomplexan parasites (McFadden, 2011).
148 Several metabolic processes have been shown to be active or are predicted to take place within
149 this organelle (Lim and McFadden, 2010; Seeber and Soldati-Favre, 2010). The most well-
150 characterized of these is the 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway for the synthesis
151 of isoprenoid precursors (Jomaa et al., 1999; Ralph et al., 2004). Parasite proteins involved in
152 these metabolic machineries are all encoded by the nuclear genome and contain an N-terminal
153 targeting motif required for their localization to the apicoplast. Some of these functions have
154 been targeted by different classes of compounds including the antibiotic fosmidomycin (Jomaa et
155 al., 1999). On the other hand, proteins encoded by the apicoplast genome are involved primarily
156 in housekeeping functions (DNA replication, transcription and translation) and could be targeted
157 by various antibiotics such as ciprofloxacin, rifampicin and thiostrepton, respectively (Gardner et
158 al., 1991; Fichera and Roos, 1997; Chaubey et al., 2005). These antibiotics showed a remarkable
159 inhibitory effect on the in vitro growth of *B. bovis*, *Babesia bigemina*, *Babesia caballi* and
160 *Babesia equi* (AbouLaila et al., 2012). Additionally, thiostrepton inhibited the growth of *B.*

161 *microti* *in vivo* (AbouLaila et al., 2012). Our analysis of the *B. duncani* apicoplast genome
162 revealed a circular molecule of 34,142 bp in size. Its size and structure are similar to those of *B.*
163 *orientalis* (33.2 kb) and *B. bovis* (33 kb) (Brayton et al., 2007; Huang et al., 2015). The *B.*
164 *duncani* apicoplast genome is 15.2% G+C rich and comprises 38 open reading frames (ORFs)
165 encoding 17 ribosomal proteins, four subunits of RNA polymerase, one translation elongation
166 factor Tu (EF-Tu), two copies of the ClpProtease and 14 hypothetical proteins (HypA-N) ranging
167 in size between 103 and 305 amino acids (Table 1 and Fig. 1). All genes are oriented in the same
168 direction and are monocistronic (Fig. 1). The genome also encodes one large (23S), and one
169 small (16S) subunit RNA and a set of 21 tRNAs that facilitate translation of these genes. Our
170 analysis revealed that all genes encoded by the apicoplast genome of *B. duncani* initiate with an
171 AUG codon. This contrasts with *B. microti* where 18 of the 31 CDSs encoded by the apicoplast
172 genome start with an AUG codon whereas the remaining genes start with an AUA codon
173 (Cornillot et al., 2012). In both organisms, an A-rich region is found immediately upstream of
174 the initiation codon and may play a role in the recruitment of the translation machinery (Garg et
175 al., 2014). Translation in the *Plasmodium falciparum* apicoplast has been shown to initiate with
176 the formation of the initiation complex involving two initiation factors, IF1 and IF3, and an
177 unknown factor facilitating entry of initiator tRNA which could be the charged apicoplast-
178 encoded tRNA^{fMet} (Haider et al., 2015). Similar to *P. falciparum*, no initiation factors are
179 encoded by the apicoplast genome and therefore are likely to be encoded by the nuclear genome
180 and then recruited to the apicoplast (Haider et al., 2015). Translation termination is achieved by a
181 single release factor, PfRF2_{Api}, which displays specific recognition of both UAA and UGA, the
182 only two stop codons found in apicoplast ORFs (Vaishya et al., 2016). Interestingly, of the 38
183 ORFs encoded by the apicoplast genome of *B. duncani*, 35 carry a UAA stop codon, two (*rps3*

184 and the *rpl36*) carry a UGA stop codon, and one (*HypN*) ends with the UAG stop codon. This
185 suggests that either the nuclear-encoded *B. duncani* ortholog of PfRF2Api recognizes all three
186 stops codons or that translation termination in the apicoplast of this parasite requires more than
187 one release factor (RF). While the majority of the apicoplast-encoded CDSs do not overlap,
188 seven gene pairs were found to overlap. Among these, *rpl36* and *HypF* overlap by 44 bases and
189 *CLpProtease2* and *HypJ* overlap by 65 bases, a feature unique to *B. duncani*.

190 Most hypothetical proteins identified in the apicoplast genome of *B. duncani* share no
191 homologs with any other protein or contain no recognizable functional domains in available
192 genome databases (Supplementary Table S1). Others such as HypF have orthologs in other
193 parasites but their functions remain unknown. A noticeable hypothetical protein, HypJ, is one of
194 the largest proteins encoded by the *B. duncani* apicoplast genome and is 305 amino acids in
195 length. This protein, however, has no homologs in other organisms and its function remains to be
196 determined.

197 Using tRNA-SE Scan to identify tRNAs in the apicoplast genome of *B. duncani*, 21
198 tRNAs were identified. Our analysis further identified 17 ribosomal proteins encoded by the *B.*
199 *duncani* apicoplast genome. These include seven rpl (large) proteins and 10 rps (small) proteins
200 and share high sequence similarity with apicoplast-encoded ribosomal proteins from other
201 apicomplexan parasites (Huang et al., 2015). Therefore, any additional components needed for
202 protein translation in the apicoplast are likely encoded by the nuclear genome and targeted to the
203 apicoplast. For example, the *rff* gene encoding 5S rRNA in the chloroplast genome of *Chromera*,
204 a distant ancestor of the apicoplast, was not detected in the apicoplast genome of *B. duncani*.
205 Therefore, the 5S rRNA is either imported from the cytoplasm (shown to occur in mammalian
206 mitochondria) or *B. duncani* encodes a highly divergent *rff* gene (Magalhães et al., 1998).

207 Interestingly, the apicoplast genome of *B. duncani* lacks the *rpl11* ribosomal gene, a gene also
208 not found in *B. bovis*, *B. microti*, *T. parva* or *P. falciparum*. This suggests that *B. duncani* might
209 have evolved a protein synthesis mechanism that is independent of the L11 protein.
210 Alternatively, the *rpl11* protein might be encoded by the nuclear genome and then translocated to
211 the apicoplast or another L11 protein is encoded by another *rpl11-like* gene which is radically
212 divergent from the one found in other prokaryotes.

213

214 *3.3. Comparison of the apicoplast genome of B. duncani to that of other apicomplexan species*

215 The apicoplast genome of *B. duncani* was found to have four clusters in synteny with the
216 original chloroplast genome of *Chomera* algae and other apicomplexan species (Fig. 1). Cluster
217 1 comprises the genes encoding ribosomal proteins, one hypothetical protein (HypF) and the
218 elongation factor EF-Tu in an organization similar to that found in *Babesia* spp., *P. falciparum*,
219 *Toxoplasma gondii* and *Chomerida* sp. (Fig. 2). Both *P. falciparum* and *Chomera* algae have
220 retained the *rpl23* gene, whereas this gene is lacking in the apicoplast genome of *B. duncani* as
221 well as all *Babesia* spp. sequenced to date. Whereas in *Chomera* sp. the *rps13* gene is found
222 between *rps5* and *rpl36*, in the *B. duncani* apicoplast genome this locus contains the *HypF* gene.
223 No tRNAs were found in Cluster 1 of *B. duncani* (Fig. 2).

224 Cluster 1 of the *B. duncani* genome is flanked by 11 tRNAs in Cluster 4 (Fig. 3). The
225 tRNAs in *B. duncani* are clustered together with short nucleotide sequences separating them,
226 whereas in *B. bovis*, *B. microti* and *T. parva* long non-coding nucleotide sequences are found
227 between the tRNAs in this cluster (Supplementary Fig. S1). Four of the 11 tRNAs are conserved
228 in *B. microti*, *T. parva* and *B. bovis*. On the other side of Cluster 1, closest to Cluster 2 and
229 between *tufA* and CLp protease genes, only one conserved tRNA-Gln was found between *HypK*

230 and *HypJ* (Supplementary Fig. S1). Additionally, multiple hypothetical CDSs, more than those
231 found in *B. microti*, *B. bovis* and *T. parva*, were found in the *B. duncani* apicoplast genome.
232 Lastly, unlike most apicomplexan parasites, the *CLpProtease 2* of *B. duncani* is located
233 downstream of *CLpProtease 1*. Overall, these data suggest that the regions on both ends of
234 Cluster 1 may represent sites of frequent recombination events.

235 Cluster 2 in *B. duncani* consists of 13 hypothetical proteins, two *ClpC* genes and one
236 tRNA-Gln (conserved in *B. bovis*, *T. parva* and *B. microti*) (Fig. 1). Both *ClpC* proteins of *B.*
237 *duncani* (*CLpProtease 1* and *CLpProtease 2*) contain a AAA_2 ATPase domain (Fig. 1 and
238 Supplementary Fig. S1). However, the tRNA-Ser (UGA) and tRNA-Trp (CCA), a key feature of
239 this region of Cluster 2, conserved in *B. microti* and *B. bovis* (Brayton et al., 2007; Cornillot et
240 al., 2012), is missing from *B. duncani* and was not found anywhere else in the apicoplast
241 genome. No other known or so far sequenced apicoplast genomes show this arrangement of
242 hypothetical proteins in this cluster, resulting in *B. duncani* having one of the largest Cluster 2
243 regions of the apicoplast genome.

244 Cluster 3 consists of four RNA polymerase genes (*rpoB*, *rpoC1*, *rpoC2a* and *rpoC2b*)
245 and the *rps2* gene, which encodes an S2 ribosomal protein (Fig. 1). The content and arrangement
246 of Cluster 3 mimics that in *B. orientalis*, *B. bovis*, *T. parva* and *B. microti* (Gardner et al., 2005;
247 Brayton et al., 2007; Cornillot et al., 2012; Garg et al., 2014; Huang et al., 2015). The opposite
248 orientation is found in *P. falciparum* and *T. gondii*, suggesting that perhaps an inversion took
249 place during the evolution of piroplasmida, possibly even resulting in the loss of the *sufB* gene
250 (Foth and McFadden, 2003).

251 Finally, Cluster 4 of the apicoplast genome of *B. duncani* contains a single set of *lsu* and
252 *ssu* genes transcribed in the same direction (Fig. 3). Nine tRNAs are organized together at the

253 start of Cluster 4. Not only are there no large gaps between them, most apicomplexans have only
254 eight tRNA genes, a difference that may have been created by simple recombination events.
255 Similar to Cluster 3, the gene order and copy number vary between different species. In
256 *Chromera*, a CDS separates the *ssu* and the *lsu* genes in both copies of the genes (Cornillot et al.,
257 2012; Huang et al., 2015). Meanwhile, in *Toxoplasma* and *Plasmodium*, the *ssu* and the *lsu* genes
258 are in opposite directions (Cornillot et al., 2012). In contrast, *B. duncani*, *B. bovis* and *T. parva*
259 all have only one copy of the two ribosomal genes, both of which were transcribed in the same
260 direction. Interestingly, *B. duncani* does not encode a tRNA upstream of the *ssu* and the *lsu*
261 genes but it has preserved the tRNA-Thr (UGU) gene upstream of the *rps4* gene (Fig. 3).

262

263 3.4. Annotation of the mitochondrial genome of *B. duncani*

264 Mitochondria are vital organelles present in almost all eukaryotic organisms (Frederick
265 and Shaw, 2007; Hikosaka et al., 2010; Kaczanowski et al., 2011; Taylor-Brown and Hurd,
266 2013). Their functions include energy generation, metabolism and cell growth (Kaczanowski et
267 al., 2011; Taylor-Brown and Hurd, 2013). The mitochondrial genome varies in size, structure
268 and organization between organisms and species (Feagin, 2000; Hikosaka et al., 2010).
269 Structurally, two forms of the mitochondrial genome exist: a linear form and a circular form. The
270 circular form is present in animals, at a size ranging between 15 and 20 kb, whereas the linear
271 form has been reported in numerous apicomplexan parasites at a size of ~ 6 kb (Boore, 1999;
272 Hikosaka et al., 2010; Hikosaka et al., 2012; Garg et al., 2014). Unlike animal mitochondrial
273 genomes, the apicomplexan mitochondrial genomes encodes three proteins: *coxI*, cytochrome c
274 oxidase subunit III (*coxIII*) and *cob* (Preiser et al., 1996). In the *P. falciparum* mitochondria,
275 protein translation initiates with the formation of an initiation complex involving the ribosome,

276 initiation factor (IF)3, and IF2 which carries the initiator tRNA-Met. Termination of the peptide
277 chain in mitochondria of apicomplexan parasites occurs due to the action of release factor RF1
278 that identifies the UAA stop codon in the mRNA from all three mitochondrial ORFs (Habib et
279 al., 2016). tRNAs and other critical translation factors in *P. falciparum* are imported from the
280 cytosol (Rusconi and Cech, 1996; Esseiva et al., 2004). The assembly of the mitochondrial
281 genome of *Babesia duncani* identified a monocistronic linear genome of 5893 bp encoding three
282 genes, *cob* (*Cytb*), *coxI* and *coxIII*, and six large rRNAs (Fig. 4 and Supplementary Table S2).
283 All mitochondrial CDSs start with an ATG codon and end with a TAA codon. Similar to the
284 mitochondrial genomes of other apicomplexan parasites, the *B. duncani* mitochondrial genome
285 lacks tRNAs and translation factors, suggesting that they are encoded by the nuclear genome and
286 imported into the mitochondria from the cytosol.

287 Most apicomplexan mitochondrial genomes contain a terminal inverted repeat sequence
288 of approximately 440-450 bp (Hikosaka et al., 2010). However, in *B. duncani*, a TIR region of
289 48 bp was located at opposite ends of the genome (Fig. 4). Given that TIR can often lead to
290 recombination of the genome, their position and sequence relative to the rest of the genome was
291 validated using long-range PCRs and Sanger sequencing. A short CDS was found upstream of
292 the 5' TIR sequence. A novel mitochondrial genome structure of *B. microti* and *B. rodhaini* was
293 reported by (Hikosaka et al., 2012) with a dual flip-flop inversion system that generates four
294 distinct linear genome structures. Since only one pair of inverted repeats was found at the
295 terminal ends of the linear mitochondrial genome of *B. duncani* and no inverted repeats were
296 found inside the molecule, we believe that the mitochondrial genome configuration in *B. microti*
297 does not exist in *B. duncani*. Lastly, *cob* and *coxIII* are encoded on the forward strand while the
298 rest of the features are on the reverse strand.

299

300 3.5. Phylogenetic analysis reveals that *B. duncani* defines a distinct lineage among
301 Apicomplexan

302 Mitochondrial proteins are routinely used to probe the evolutionary and phylogenetic
303 history of apicomplexan parasites due to their conserved nature (Hikosaka et al., 2011; Lin et al.,
304 2011; He et al., 2014; Alday et al., 2017). In this study, we used a concatenated sequence of *Cob*
305 and *CoxI* to determine the phylogenetic position of *B. duncani* (Table 2) (Hikosaka et al., 2011;
306 Lin et al., 2011). The *coxIII* gene was excluded from the concatenation and analysis because no
307 full-length sequence of the gene from *T. gondii*, *B. orientalis* or *P. falciparum* could be found in
308 the available genome databases. Additionally, *coxIII* has been identified in the nuclear genome
309 instead of the mitochondrial genome in some species such as *Tetrahymena thermophile* and *T.*
310 *gondii* (He et al., 2014). A neighbor-joining tree showed that *B. duncani* is a defining member of
311 a new clade compared with other apicomplexan parasites (Fig. 5). This finding confirms
312 previous analysis using 18S rRNA (Conrad et al., 2006). The 18S rRNA tree also showed that
313 *Babesia conradae*, a known canine pathogen that causes babesiosis in dogs, may fall in the same
314 clade as *B. duncani*. However, because the *cob* and *coxI* genes of *B. conradae* have not yet been
315 identified, this species was not included in our analysis. It is highly likely that both *B. duncani*
316 and *B. conradae* strains belong to the same distinct lineage recently referred to as “Western
317 *Babesia* group” (Schreeg et al., 2016).

318

319 3.6. Therapeutic targets in the apicoplast and the mitochondrial genome

320 A wide range of therapeutic drugs have been previously reported to show efficacy against
321 *Babesia* spp. by specifically targeting the apicoplast or mitochondria (Ralph et al., 2001;

322 AbouLaila et al., 2012). A thorough sequence analysis of the target proteins and rRNAs of these
323 drugs was performed to predict the sensitivity of *B. duncani* to those drugs (Table 3).

324 The apicoplast of *B. duncani* encodes an LSU sequence of 2726 bp. The GTPase
325 associated center of the 50S ribosome subunit can be targeted by thiostrepton, a thiazolyl peptide
326 antibiotic (Clough et al., 1997). Thiostrepton binds within a cleft between the 43rd and 44th
327 helices, and results in the perturbation of the binding of the elongation factor to ribosomes
328 (McConkey et al., 1997; Gupta et al., 2014). In the presence of the nucleotide adenine at position
329 1067 in the LSU gene of *P. falciparum* and *Escherichia coli*, thiostrepton is able to bind with a
330 high affinity (Clough et al., 1997). When this nucleotide is changed to a uracil or a guanine, 14%
331 and 35% of wild type *Plasmodium* showed reduced binding to thiostrepton, respectively (Table
332 3) (Clough et al., 1997). Sequence alignment revealed that nucleotide A-1067 in the LSU gene of
333 *P. falciparum* (Edgar, 2004) corresponds to nucleotide A-974 in the LSU gene of *B. duncani*,
334 suggesting that thiostrepton could inhibit the growth of *B. duncani*. It is predicted, however, that
335 the nucleotide sequence of 23S rRNA also has a crucial role in the binding of thiostrepton which
336 explains why a mutation at site 1067 of the apicoplast gene does not confer 100% resistance
337 (Clough et al., 1997). An alternative mode of action of thiostrepton was proposed by Aminake
338 and colleagues (Aminake et al., 2011). In their study, the compound was suggested to target the
339 proteasome, leading to rapid elimination of parasites prior to DNA replication (Aminake et al.,
340 2011). Whether thiostrepton has activity against *B. duncani* and whether it targets one or
341 multiple targets remain to be elucidated. Another LSU targeting drug is clindamycin, a
342 lincosamide that most protozoan parasites are uniquely sensitive to due to the presence of an
343 apicoplast. Clindamycin blocks the transpeptidation reaction of the apicoplast (Camps et al.,
344 2002). A point mutation in domain V of the apicoplast rRNA alters its predicted binding site

345 (Camps et al., 2002). As demonstrated in *T. gondii*, clones with strong and stable clindamycin
346 resistance displayed a uracil at position 1857 of the *lsu* gene instead of a guanine (Table 3)
347 (Camps et al., 2002). We can infer that *B. duncani* would also be sensitive to clindamycin since a
348 guanine residue is present at the homologous position (1877). The binding site of
349 chloramphenicol overlaps with the binding site of clindamycin (Gupta et al., 2014), suggesting
350 that this drug may also be considered as a potential inhibitor of *B. duncani*.

351 Azithromycin (AZ) is a broad-spectrum antibiotic that acts as an apicoplast-targeting
352 drug. Presently on the recommended list of drugs to treat human babesiosis, it inhibits protein
353 synthesis in the apicoplast by blocking the exit tunnel of the 50S ribosome polypeptide (Krause
354 et al., 2000; Sidhu et al., 2007). A mutation in the highly conserved ribosomal-protein *rpl4* of *P.*
355 *falciparum* (*pfrpl4*) resulted in AZ-resistant lines (Sidhu et al., 2007). All strains were found to
356 harbor a U438C (G76V) mutation (Sidhu et al., 2007). Upon close inspection of the RPL4
357 protein of *B. duncani* and alignment with *Pfrpl4*, a conserved glycine residue at position 68 was
358 found, suggesting that *B. duncani* may also be sensitive to AZ (Table 3). Similarly, a conversion
359 of a glycine residue to aspartic acid at position 91 in the *pfrpl4* gene is also associated with a 57-
360 fold loss of sensitivity to AZ (Wilson et al., 2015). The corresponding region (position 83) in the
361 *B. duncani* *Bdrpl4* also has a glycine residue. AZ has also been shown to target other apicoplast-
362 encoding proteins such as the large ribosomal subunit (23S) and the L22 protein. AZ resistance
363 has also been associated with mutation in the LSU rRNA. In *P. falciparum*, C to T mutation at
364 base 2409 of the apicoplast 23S rRNA resulted in significant resistance (>10-fold) to prolonged
365 exposure to AZ (Goodman et al., 2013). Analysis of the *B. duncani* LSU rRNA showed the
366 presence of a cytosine residue at the equivalent base 2424. Other potential targets of

367 azithromycin described in *E. coli* include the L22. However no *rpl22* was found in the *B.*
368 *duncani* apicoplast genome (Gupta et al., 2014).

369 Our analysis also suggests that rifampicin, a potent inhibitor of the β subunit of the RNA
370 polymerases, encoded by the *rpoB* gene, may be considered as a possible inhibitor of *B. duncani*.
371 In bacteria, multiple mutations in an 81 bp hotspot region, called the “rifampicin resistance
372 determining region”, alter sensitivity to the drug (Aubry-Damon et al., 1998). Moreover, trials
373 with rifampicin against *Plasmodium vivax* infected patients showed that the drug, when given
374 alone, lowered the fever and parasitemia but was not curative (Pukrittayakamee et al., 1994). The
375 use of rifampicin in combination with other drugs also showed poor and slow therapeutic
376 responses (Pukrittayakamee et al., 1994). Although rifampicin may act by inhibiting apicoplast
377 transcription, a recent study in *P. falciparum* has shown that addition of isopyropentyl
378 pyrophosphate (Berlin et al., 2015) does not rescue parasite inhibition (Uddin et al., 2018),
379 suggesting that an alternative mode of inhibition may exist in these parasites and could take
380 place outside the apicoplast.

381 Redox regulation in the mitochondria are central to energy metabolism of apicomplexan
382 parasites (Kehr et al., 2010). Compounds that impede this function include atovaquone (ATV)
383 and endochin-like quionlones (ELQ). ATV, a drug used clinically for treatment of human
384 babesiosis, acts on the Q_o site of the cytochrome bc_1 complex in the parasite’s mitochondrial
385 membrane (Kessl et al., 2003; Birth et al., 2014). Similarly, ELQs inhibit the same complex as
386 ATV but at the Q_i site (Stickles et al., 2015). Both compounds have been shown to be effective
387 against apicomplexan parasites but when used alone, resistance rapidly emerges and results in
388 treatment failure (Doggett et al., 2012; Stickles et al., 2015). In combination however, ATV and
389 ELQ act synergistically, a direct result of their effect on the same enzyme complex (Lawres et

390 al., 2016). Together, these two drugs have been shown to eliminate *B. microti* parasites
391 completely from immunosuppressed SCID mice, with a low dose of up to 5mg/kg, and prevent
392 recrudescence of the parasite (Lawres et al., 2016). To predict the possible efficacy of these two
393 drugs on *B. duncani*, we analyzed the sequence of the *cob* gene and identified residues associated
394 with sensitivity to ATV and ELQs (Table 3). Although a phenylalanine exists at position 244
395 instead of an alanine in *B. duncani*, a similar residue is also found in *Saccharomyces cerevisiae*,
396 which is also sensitive to specific classes of ELQ analogs (Stickles et al., 2015). Based on these
397 analyses we predict that a combination of ATV and an endochin-like quinolone is likely to be
398 effective against *B. duncani*.

399 In summary, our sequencing, assembly and annotation of the apicoplast and
400 mitochondrial genomes of *B. duncani* revealed the unique nature of this parasite with respect to
401 other *Babesia* spp. Furthermore, we show that *B. duncani* defines a new lineage in the
402 apicomplexan phylum. Based on our analysis of the sequences of the apicoplast and
403 mitochondrial genomes of *B. duncani*, we predict that this parasite may exhibit sensitivity to a
404 wide range of antiparasitic drugs including thiostrepton, clindamycin, AZ, ATV and ELQs. Our
405 analysis also showed that a large number of hypothetical proteins are encoded by the apicoplast
406 and mitochondrial genes. Analysis of their functions could open new avenues for future studies
407 aiming to characterize *B. duncani* biology, pathogenesis and therapy.

408 **Acknowledgements**

409 We thank Dr. Robert Molestina (BEI Resources, USA) for providing the *B. duncani*
410 WA1 isolate. We thank members of the Yale Center for Genome Analysis, USA for help with
411 Pac Bio and Illumina sequencing. Assistance with the analysis of the apicoplast and the
412 mitochondrial genomes was provided by Dr. Emmanuel Cornillot. AV's research was supported
413 by the Science, Technology and Research Scholars Program collectively funded by the Howard
414 Hughes Medical Institute, USA and Yale College Dean's Office, USA. C.B.M.'s research is
415 supported by grants from the National Institutes of Health, USA (AI097218, GM110506,
416 AI123321 and R43AI136118) and the Bill and Melinda Gates Foundation, USA, grants
417 (OPP1021571).

418

419 **References**

420 AbouLaila, M., Munkhjargal, T., Sivakumar, T., Ueno, A., Nakano, Y., Yokoyama, M.,
421 Yoshinari, T., Nagano, D., Katayama, K., El-Bahy, N., 2012. Apicoplast-targeting
422 antibiotics inhibit the growth of *Babesia* parasites. *Antimicrob Agents Chemother* 56,
423 3196-3206.

424 Alday, P.H., Bruzual, I., Nilsen, A., Pou, S., Winter, R., Ben Mamoun, C., Riscoe, M.K.,
425 Doggett, J.S., 2017. Genetic Evidence for Cytochrome b Qi Site Inhibition by 4(1H)-
426 Quinolone-3-Diarylethers and Antimycin in *Toxoplasma gondii*. *Antimicrob Agents
427 Chemother* 61, pii: e01866-01816.

428 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment
429 search tool. *J Mol Biol* 215, 403-410.

430 Aminake, M.N., Schoof, S., Sologub, L., Leubner, M., Kirschner, M., Arndt, H.D., Pradel, G.,
431 2011. Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by
432 dually targeting parasite proteasome and apicoplast. *Antimicrob Agents Chemother* 55,
433 1338-1348.

434 Aubry-Damon, H., Soussy, C.-J., Courvalin, P., 1998. Characterization of mutations in therpob
435 gene that confer rifampin resistance in *Staphylococcus aureus*. *Antimicrob Agents
436 Chemother* 42, 2590-2594.

437 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
438 Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N.,
439 Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly
440 algorithm and its applications to single-cell sequencing. *J Comput Biol* 19, 455-477.

441 Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M., Phillippy, A.M., 2015. Assembling
442 large genomes with single-molecule sequencing and locality-sensitive hashing. *Nat*
443 *Biotechnol* 33, 623-630.

444 Birth, D., Kao, W.-c., Hunte, C., 2014. Structural analysis of mitochondrial cytochrome bc1
445 complex with atovaquone bound reveals the molecular basis of antimalarial drug action.
446 *Malar J* 13, P103.

447 Boore, J.L., 1999. Animal mitochondrial genomes. *Nucleic Acids Res* 27, 1767-1780.

448 Brayton, K.A., Lau, A.O., Herndon, D.R., Hannick, L., Kappmeyer, L.S., Berens, S.J., Bidwell,
449 S.L., Brown, W.C., Crabtree, J., Fadrosh, D., 2007. Genome sequence of *Babesia bovis*
450 and comparative analysis of apicomplexan hemoprotozoa. *PLoS Pathog* 3, e148.

451 Bredt, A.B., Weinstein, W.M., Cohen, S., 1981. Treatment of babesiosis in asplenic patients.
452 *JAMA* 245, 1938-1939.

453 Burgdorfer, W., Barbour, A.G., Hayes, S.F., Benach, J.L., Grunwaldt, E., Davis, J.P., 1982.
454 Lyme disease-a tick-borne spirochosis? *Science* 216, 1317-1319.

455 Camps, M., Arrizabalaga, G., Boothroyd, J., 2002. An rRNA mutation identifies the apicoplast
456 as the target for clindamycin in *Toxoplasma gondii*. *Mol Microbiol* 43, 1309-1318.

457 Chaisson, M.J., Tesler, G., 2012. Mapping single molecule sequencing reads using basic local
458 alignment with successive refinement (BLASR): application and theory. *BMC Bioinform*
459 13, 238.

460 Chaubey, S., Kumar, A., Singh, D., Habib, S., 2005. The apicoplast of *Plasmodium falciparum* is
461 translationally active. *Mol Microbiol* 56, 81-89.

462 Clough, B., Strath, M., Preiser, P., Denny, P., Wilson, I.R., 1997. Thiomodron binds to malarial
463 plastid rRNA. *FEBS letters* 406, 123-125.

464 Conrad, P.A., Kjemtrup, A.M., Carreno, R.A., Thomford, J., Wainwright, K., Eberhard, M.,
465 Quick, R., Telford Iii, S.R., Herwaldt, B.L., 2006. Description of *Babesia duncani* n.
466 sp.(Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms.
467 Int J Parasitol 36, 779-789.

468 Cornillot, E., Hadj-Kaddour, K., Dassouli, A., Noel, B., Ranwez, V., Vacherie, B., Augagneur,
469 Y., Bres, V., Duclos, A., Randazzo, S., 2012. Sequencing of the smallest Apicomplexan
470 genome from the human pathogen *Babesia microti*. Nucleic Acids Res 40, 9102-9114.

471 Cullen, J.M., Levine, J.F., 1987. Pathology of experimental *Babesia microti* infection in the
472 Syrian hamster. Lab Anim Sci 37, 640-643.

473 Dao, A.H., Eberhard, M.L., 1996. Pathology of acute fatal babesiosis in hamsters experimentally
474 infected with the WA-1 strain of *Babesia*. Lab Investigation 74, 853-859.

475 Doggett, J.S., Nilsen, A., Forquer, I., Wegmann, K.W., Jones-Brando, L., Yolken, R.H., Bordón,
476 C., Charman, S.A., Katneni, K., Schultz, T., 2012. Endochin-like quinolones are highly
477 efficacious against acute and latent experimental toxoplasmosis. Proc Natl Acad Sci U S
478 A 109, 15936-15941.

479 Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high
480 throughput. Nucleic Acids Res 32, 1792-1797.

481 Esseiva, A.C., Naguleswaran, A., Hemphill, A., Schneider, A., 2004. Mitochondrial tRNA
482 import in *Toxoplasma gondii*. J Biol Chem 279, 42363-42368.

483 Feagin, J.E., 2000. Mitochondrial genome diversity in parasites. Int J Parasitol 30, 371-390.

484 Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap.
485 Evolution, 783-791.

486 Fichera, M.E., Roos, D.S., 1997. A plastid organelle as a drug target in apicomplexan parasites.

487 Nature 390, 407-409.

488 Foth, B.J., McFadden, G.I., 2003. The apicoplast: a plastid in *Plasmodium falciparum* and other

489 Apicomplexan parasites. Int Review Cytol 224, 57-110.

490 Frederick, R.L., Shaw, J.M., 2007. Moving mitochondria: establishing distribution of an essential

491 organelle. Traffic 8, 1668-1675.

492 Gardner, M.J., Williamson, D.H., Wilson, R.J., 1991. A circular DNA in malaria parasites

493 encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem

494 Parasitol 44, 115-123.

495 Garg, A., Stein, A., Zhao, W., Dwivedi, A., Frutos, R., Cornillot, E., Ben Mamoun, C., 2014.

496 Sequence and annotation of the apicoplast genome of the human pathogen *Babesia*

497 *microti*. PLoS One 9, e107939.

498 Goodman, C.D., Useglio, M., Peiru, S., Labadie, G.R., McFadden, G.I., Rodriguez, E., Gramajo,

499 H., 2013. Chemobiosynthesis of new antimalarial macrolides. Antimicrob Agents

500 Chemother 57, 907-913.

501 Grant, J.R., Stothard, P., 2008. The CGView Server: a comparative genomics tool for circular

502 genomes. Nucleic Acids Res 36, W181-W184.

503 Gupta, A., Shah, P., Haider, A., Gupta, K., Siddiqi, M.I., Ralph, S.A., Habib, S., 2014. Reduced

504 ribosomes of the apicoplast and mitochondrion of *Plasmodium* spp. and predicted

505 interactions with antibiotics. Open Biol 4, 140045.

506 Habib, S., Vaishya, S., Gupta, K., 2016. Translation in Organelles of Apicomplexan Parasites.

507 Trends Parasitol 32, 939-952.

508 Haider, A., Allen, S.M., Jackson, K.E., Ralph, S.A., Habib, S., 2015. Targeting and function of
509 proteins mediating translation initiation in organelles of *Plasmodium falciparum*. *Mol*
510 *Microbiol* 96, 796-814.

511 He, L., Zhang, Y., Zhang, Q.-L., Zhang, W.-J., Feng, H.-H., Khan, M.K., Hu, M., Zhou, Y.-Q.,
512 Zhao, J.-L., 2014. Mitochondrial genome of *Babesia orientalis*, apicomplexan parasite of
513 water buffalo (*Bubalus bubalis*, Linnaeus, 1758) endemic in China. *Parasit Vectors* 7, 82.

514 Hikosaka, K., Nakai, Y., Watanabe, Y.-i., Tachibana, S.-I., Arisue, N., Palacpac, N.M.Q.,
515 Toyama, T., Honma, H., Horii, T., Kita, K., 2011. Concatenated mitochondrial DNA of
516 the coccidian parasite *Eimeria tenella*. *Mitochondrion* 11, 273-278.

517 Hikosaka, K., Tsuji, N., Watanabe, Y.-i., Kishine, H., Horii, T., Igarashi, I., Kita, K., Tanabe, K.,
518 2012. Novel type of linear mitochondrial genomes with dual flip-flop inversion system in
519 apicomplexan parasites, *Babesia microti* and *Babesia rodhaini*. *BMC Genomics* 13, 622.

520 Hikosaka, K., Watanabe, Y.-i., Tsuji, N., Kita, K., Kishine, H., Arisue, N., Palacpac, N.M.Q.,
521 Kawazu, S.-i., Sawai, H., Horii, T., 2010. Divergence of the mitochondrial genome
522 structure in the apicomplexan parasites, *Babesia* and *Theileria*. *Mol Biol Evol* 27, 1107-
523 1116.

524 Huang, Y., He, L., Hu, J., He, P., He, J., Yu, L., Malobi, N., Zhou, Y., Shen, B., Zhao, J., 2015.
525 Characterization and annotation of *Babesia orientalis* apicoplast genome. *Parasit Vectors*
526 8, 543.

527 Janouskovec, J., Horak, A., Obornik, M., Lukes, J., Keeling, P.J., 2010. A common red algal
528 origin of the apicomplexan, dinoflagellate, and heterokont plastids. *Proc Natl Acad Sci U*
529 *S A* 107, 10949-10954.

530 Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Turbachova,
531 I., Eberl, M., Zeidler, J., Lichtenthaler, H.K., Soldati, D., Beck, E., 1999. Inhibitors of the
532 nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. *Science* 285,
533 1573-1576.

534 Jones, D.T., Taylor, W.R., Thornton, J.M., 1992. The rapid generation of mutation data matrices
535 from protein sequences. *Computer applications in the biosciences: CABIOS* 8, 275-282.

536 Kaczanowski, S., Sajid, M., Reece, S.E., 2011. Evolution of apoptosis-like programmed cell
537 death in unicellular protozoan parasites. *Parasit Vectors* 4, 44.

538 Kehr, S., Sturm, N., Rahlfs, S., Przyborski, J.M., Becker, K., 2010. Compartmentation of redox
539 metabolism in malaria parasites. *PLoS Pathog* 6, e1001242.

540 Kessl, J.J., Lange, B.B., Merbitz-Zahradnik, T., Zwicker, K., Hill, P., Meunier, B., Pálsdóttir, H.,
541 Hunte, C., Meshnick, S., Trumpower, B.L., 2003. Molecular basis for atovaquone
542 binding to the cytochrome bc1 complex. *J Biol Chem* 278, 31312-31318.

543 Kjemtrup, A., Conrad, P.A., 2000. Human babesiosis: an emerging tick-borne disease. *Int J
544 Parasitol* 30, 1323-1337.

545 Krause, P.J., Lepore, T., Sikand, V.K., Gadbaw Jr, J., Burke, G., Telford, S.R., Brassard, P.,
546 Pearl, D., Azlanzadeh, J., Christianson, D., 2000. Atovaquone and azithromycin for the
547 treatment of babesiosis. *N Engl J Med* 343, 1454-1458.

548 Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis
549 version 7.0 for bigger datasets. *Mol Biol Evol*, msw054.

550 Lawres, L.A., Garg, A., Kumar, V., Bruzual, I., Forquer, I.P., Renard, I., Virji, A.Z., Boulard, P.,
551 Rodriguez, E.X., Allen, A.J., Pou, S., Wegmann, K.W., Winter, R.W., Nilsen, A., Mao,
552 J., Preston, D.A., Belperron, A.A., Bockenstedt, L.K., Hinrichs, D.J., Riscoe, M.K.,

553 Doggett, J.S., Ben Mamoun, C., 2016. Radical cure of experimental babesiosis in
554 immunodeficient mice using a combination of an endochin-like quinolone and
555 atovaquone. *J Exp Med* 213, 1307-1318.

556 Lemieux, J., 2015. Genomic Analysis of Evolution in *Plasmodium falciparum* and *Babesia*
557 *microti*.

558 Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler
559 transform. *Bioinformatics* 25, 1754-1760.

560 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
561 Durbin, R., Genome Project Data Processing, S., 2009. The Sequence Alignment/Map
562 format and SAMtools. *Bioinformatics* 25, 2078-2079.

563 Lim, L., McFadden, G.I., 2010. The evolution, metabolism and functions of the apicoplast.
564 *Philos Trans R Soc Lond B Biol Sci* 365, 749-763.

565 Lin, R.-Q., Qiu, L.-L., Liu, G.-H., Wu, X.-Y., Weng, Y.-B., Xie, W.-Q., Hou, J., Pan, H., Yuan,
566 Z.-G., Zou, F.-C., 2011. Characterization of the complete mitochondrial genomes of five
567 *Eimeria* species from domestic chickens. *Gene* 480, 28-33.

568 Lowe, T.M., Chan, P.P., 2016. tRNAscan-SE On-line: integrating search and context for analysis
569 of transfer RNA genes. *Nucleic Acids Res* 44, W54-W57.

570 Lowe, T.M., Eddy, S.R., 1997. tRNAscan-SE: a program for improved detection of transfer
571 RNA genes in genomic sequence. *Nucleic Acids Res* 25, 955-964.

572 Magalhães, P.J., Andreu, A.L., Schon, E.A., 1998. Evidence for the presence of 5S rRNA in
573 mammalian mitochondria. *Mol Biol Cell* 9, 2375-2382.

574 McConkey, G.A., Rogers, M.J., McCutchan, T.F., 1997. Inhibition of *Plasmodium falciparum*
575 protein synthesis Targeting the plastid-like organelle with thiostrepton. *J Biol Chem* 272,
576 2046-2049.

577 McFadden, G.I., 2011. The apicoplast. *Protoplasma* 248, 641-650.

578 Moro, M.H., David, C.S., Magera, J.M., Wettstein, P.J., Barthold, S.W., Persing, D.H., 1998.
579 Differential Effects of Infection with a *Babesia*-Like Piroplasm, WA1, in Inbred Mice.
580 *Infect Immun* 66, 492-498.

581 Preiser, P., Wilson, R., Moore, P., McCready, S., Hajibagheri, M., Blight, K., Strath, M.,
582 Williamson, D., 1996. Recombination associated with replication of malarial
583 mitochondrial DNA. *EMBO J* 15, 684.

584 Pukrittayakamee, S., Viravan, C., Charoenlarp, P., Yeamput, C., Wilson, R.J., White, N.J., 1994.
585 Antimalarial effects of rifampin in *Plasmodium vivax* malaria. *Antimicrob Agents
586 Chemother* 38, 511-514.

587 Quick, R.E., Herwaldt, B.L., Thomford, J.W., Garnett, M.E., Eberhard, M.L., Wilson, M., Spach,
588 D.H., Dickerson, J.W., Telford, S.R., Steingart, K.R., 1993. Babesiosis in Washington
589 State: a new species of *Babesia*? *Ann Intern Med* 119, 284-290.

590 Quinlan, A.R., Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing genomic
591 features. *Bioinformatics* 26, 841-842.

592 Ralph, S.A., D'Ombrain, M.C., McFadden, G.I., 2001. The apicoplast as an antimalarial drug
593 target. *Drug Resist Updat* 4, 145-151.

594 Ralph, S.A., van Dooren, G.G., Waller, R.F., Crawford, M.J., Fraunholz, M.J., Foth, B.J.,
595 Tonkin, C.J., Roos, D.S., McFadden, G.I., 2004. Tropical infectious diseases: metabolic

596 maps and functions of the *Plasmodium falciparum* apicoplast. *Nat Rev Microbiol* 2, 203-
597 216.

598 Rusconi, C.P., Cech, T.R., 1996. Mitochondrial import of only one of three nuclear-encoded
599 glutamine tRNAs in *Tetrahymena thermophila*. *EMBO J* 15, 3286-3295.

600 Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.-A., Barrell, B.,
601 2000. Artemis: sequence visualization and annotation. *Bioinformatics* 16, 944-945.

602 Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing
603 phylogenetic trees. *Mol Biol Evol* 4, 406-425.

604 Schattner, P., Brooks, A.N., Lowe, T.M., 2005. The tRNAscan-SE, snoScan and snoGPS web
605 servers for the detection of tRNAs and snoRNAs. *Nucleic Acids Res* 33, W686-W689.

606 Scholtens, R.G., Braff, E.H., Healey, G.A., Gleason, N., 1968. A case of babesiosis in man in the
607 United States. *Am J Trop Med Hyg* 17, 810-813.

608 Schreeg, M.E., Marr, H.S., Tarigo, J.L., Cohn, L.A., Bird, D.M., Scholl, E.H., Levy, M.G.,
609 Wiegmann, B.M., Birkenheuer, A.J., 2016. Mitochondrial Genome Sequences and
610 Structures Aid in the Resolution of Piroplasmida phylogeny. *PloS one* 11, e0165702.

611 Seeber, F., Soldati-Favre, D., 2010. Metabolic pathways in the apicoplast of apicomplexa. *Int
612 Rev Cell Mol Biol* 281, 161-228.

613 Sidhu, A.B.S., Sun, Q., Nkrumah, L.J., Dunne, M.W., Sacchettini, J.C., Fidock, D.A., 2007. In
614 vitro efficacy, resistance selection, and structural modeling studies implicate the malarial
615 parasite apicoplast as the target of azithromycin. *J Biol Chem* 282, 2494-2504.

616 Spielman, A., Wilson, M.L., Levine, J.F., Piesman, J., 1985. Ecology of *Ixodes dammini*-borne
617 human babesiosis and Lyme disease. *Annu Rev Entomol* 30, 439-460.

618 Stickles, A.M., De Almeida, M.J., Morrisey, J.M., Sheridan, K.A., Forquer, I.P., Nilsen, A.,
619 Winter, R.W., Burrows, J.N., Fidock, D.A., Vaidya, A.B., 2015. Subtle changes in
620 endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1
621 complex of *Plasmodium falciparum*. *Antimicrob Agents Chemother* 59, 1977-1982.

622 Stothard, P., Wishart, D.S., 2005. Circular genome visualization and exploration using CGView.
623 *Bioinformatics* 21, 537-539.

624 Taylor-Brown, E., Hurd, H., 2013. The first suicides: a legacy inherited by parasitic protozoans
625 from prokaryote ancestors. *Parasit Vectors* 6, 108.

626 Uddin, T., McFadden, G.I., Goodman, C.D., 2018. Validation of Putative Apicoplast-Targeting
627 Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites.
628 *Antimicrob Agents Chemother* 62.

629 Vaishya, S., Kumar, V., Gupta, A., Siddiqi, M.I., Habib, S., 2016. Polypeptide release factors
630 and stop codon recognition in the apicoplast and mitochondrion of *Plasmodium*
631 *falciparum*. *Mol Microbiol* 100, 1080-1095.

632 Vannier, E., Krause, P.J., 2012. Human babesiosis. *N Engl J Med* 366, 2397-2407.

633 Vannier, E.G., Diuk-Wasser, M.A., Ben Mamoun, C., Krause, P.J., 2015. Babesiosis. *Infect Dis*
634 *Clin North Am* 29, 357-370.

635 Wilson, D.W., Goodman, C.D., Sleebs, B.E., Weiss, G.E., de Jong, N.W., Angrisano, F., Langer,
636 C., Baum, J., Crabb, B.S., Gilson, P.R., McFadden, G.I., Beeson, J.G., 2015. Macrolides
637 rapidly inhibit red blood cell invasion by the human malaria parasite, *Plasmodium*
638 *falciparum*. *BMC Biol* 13, 52.

639 Wozniak, E.J., Lowenstine, L.J., Hemmer, R., Robinson, T., Conrad, P.A., 1996. Comparative
640 pathogenesis of human WA1 and *Babesia microti* isolates in a Syrian hamster model. Lab
641 Anim Sci 46, 507-515.

642

643

644 **Figure legends**

645

646 **Fig. 1.** Graphical circular map of the apicoplast genome of *Babesia duncani*. The map was
647 designed using the CGView Server - an online platform to generate circular genome maps (Grant
648 and Stothard, 2008). From outside to center: 1) coding sequence (CDS), tRNAs, rRNAs and
649 introns, 2) % G+C, 3) GC skew and 4) base coordinates. *HypA-N* refers to 14 hypothetical
650 protein-encoding genes found in the apicoplast genome of *B. duncani*. The different clusters in *B*
651 *duncani* were labelled using the identities of each cluster described in *Babesia microti* (Garg et
652 al., 2014). Cluster 1 was identified based on the presence of ribosomal proteins and the EF-Tu
653 elongation factor. Clusters 2 and 3 were labelled based on the presence of the ClpC chaperones
654 and the “RNA Pol cluster”, respectively. Cluster 4 consisted of the region with rDNA and a
655 single set of *lsu* and *ssu* genes. Each cluster demonstrates synteny with other apicomplexan
656 parasites as well as the *Chomera* genome (Janouskovec et al., 2010).

657

658 **Fig. 2.** Gene organization of Cluster 1 in the apicoplast genome of *Babesia duncani*. For
659 comparison, Cluster 1 of *Babesia bovis* (T2Bo), *Babesia orientalis* (Wuhan), *Babesia microti*
660 (R1), *Theileria parva* (Mugaga), *Plasmodium falciparum* (3D7), *Toxoplasma gondii* and the
661 chloroplast genome of *Chomera* sp. (CCMP3155) is also provided. The black arrow at the top
662 of the figure indicates the direction of transcription. Light grey boxes indicate highly divergent
663 genes and white boxes correspond to genes restricted to one species.

664

665 **Fig. 3.** Organization of the ribosomal DNA region (Cluster 4 in the apicoplast genome) of
666 *Babesia duncani* alongside the same region in other apicomplexan parasites. The tRNA genes
667 that are present in all apicomplexan genomes are in bold.

668

669 **Fig. 4.** Linear map of the mitochondrial genome of *Babesia duncani*. White boxes represent
670 genes encoding proteins involved in the electron transport chain. Grey boxes indicate rRNA
671 subunits. TIR at the start and end of the genome depicts terminal inverted repeat regions.

672

673 **Fig. 5.** Evolutionary relationships of taxa. The evolutionary history was inferred using the
674 Neighbor-Joining method (Saitou and Nei, 1987). The analysis involved 13 different
675 apicomplexan species. All positions containing gaps and missing data were eliminated.
676 Following concatenation and alignment with MUSCLE of the *cob* and *cox1* genes, a total of 806
677 bases were used to generate the evolutionary tree. The evolutionary distances were computed
678 using the JTT matrix-based method (Jones et al., 1992) and are in the units of the number of
679 amino acid substitutions per site. The optimal tree with the sum of branch length = 2. 82680194
680 is shown. The percentage of replicate trees in which the associated taxa clustered together in the
681 bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). The tree is
682 drawn to scale, with branch lengths in the same units as those of the evolutionary distances used
683 to infer the phylogenetic tree.

684

685

686

687 **Supplementary figure legend**

688

689 **Supplementary Fig. S1.** A schematic representation of the DNA regions surrounding Cluster 1
690 in *Babesia duncani*, *Babesia microti*, *Theileria parva* and *Babesia bovis*. A line connecting the
691 two ends of Cluster 1 indicate possible recombination events. The tRNA genes that are present in
692 all apicomplexan genomes are highlighted in bold. *rps4* is the gene coding for the ribosomal
693 protein RPS4 while *clpC1* and *clpC2* are genes coding for the Clp chaperone proteins.

694

695

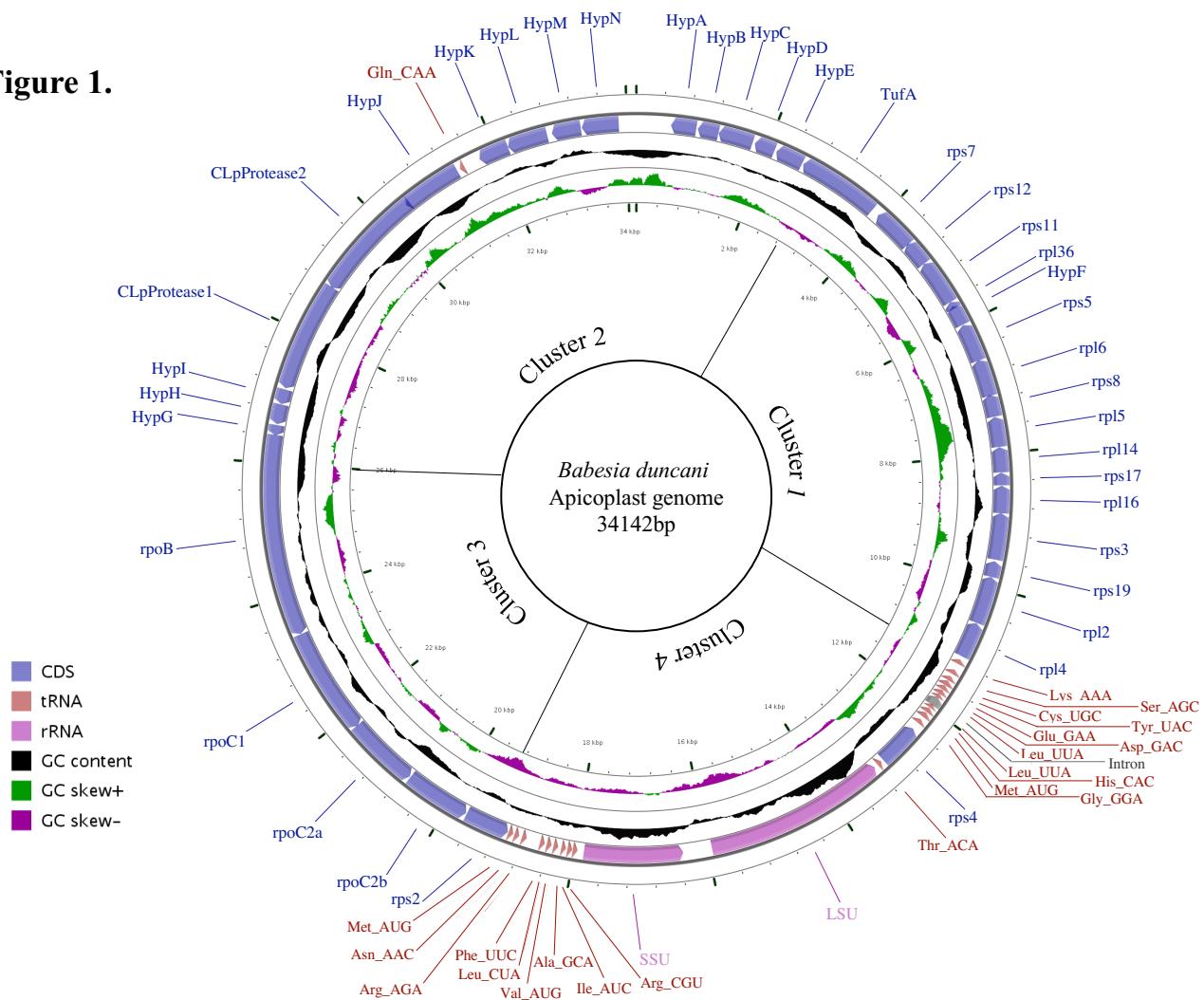
696

697

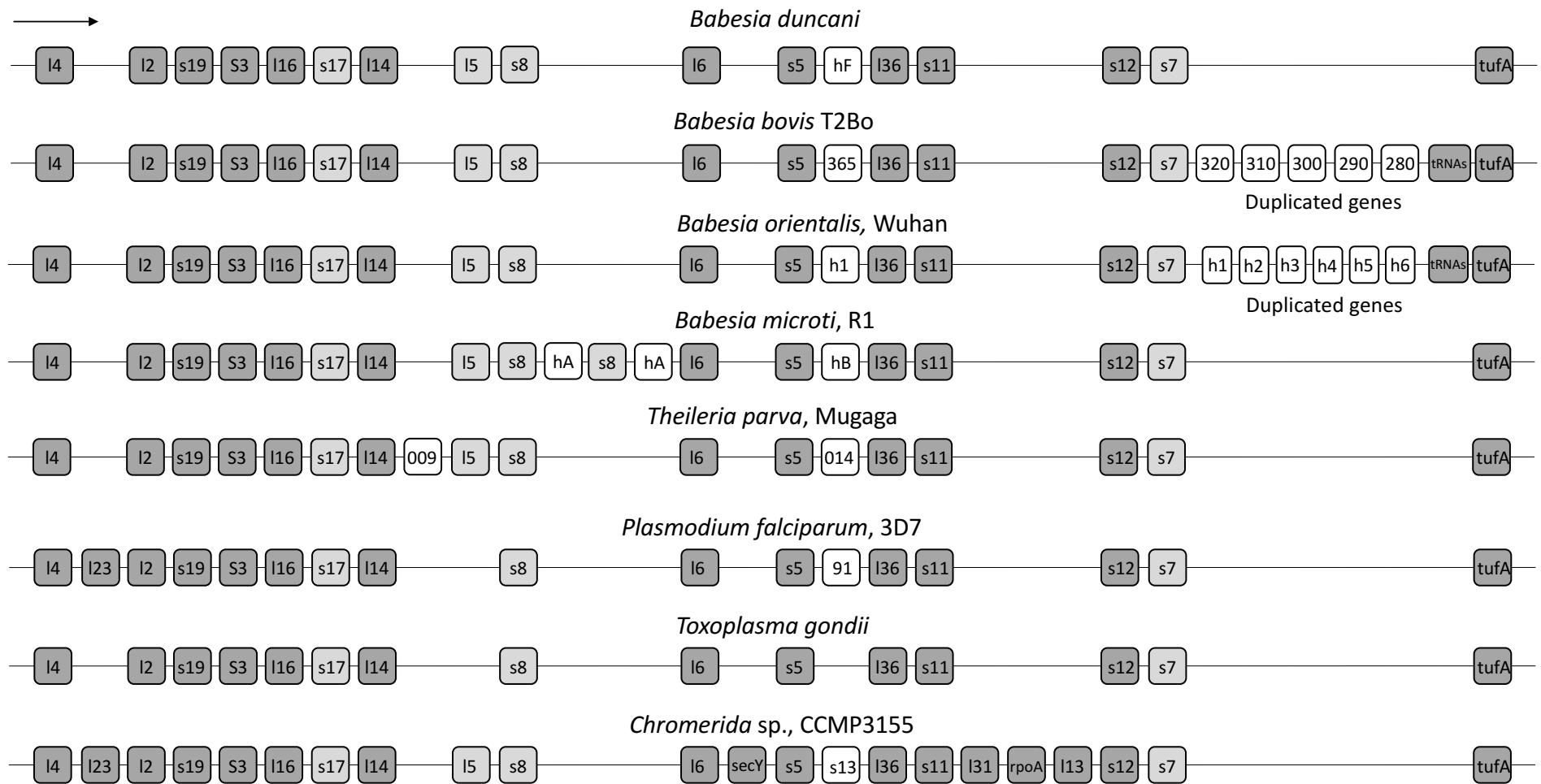
Table 1. A summary of all the features found in the apicoplast genome of *Babesia duncani*

Category	Genes
CDS	38 ORF Genes
Ribosomal Proteins (17)	rps2, 3, 4, 5, 7, 8, 11, 12, 17, 19 rpl2, 4, 5, 6, 14, 16, 36
Transfer RNAs ^a (21)	Lys ^{AAA} , Ser ^{AGC} , Cys ^{UGC} , Tyr ^{UAC} , Glu ^{GAA} , Asp ^{GAC} , Leu ^{UU} , His ^{CAC} , Met ^{AUG} , Gly ^{GG} , Thr ^{ACA} , Arg ^{CGU} , Ile ^{AUC} , Ala ^{GCA} , Val ^{GUA} , Leu ^{CUA} , Phe ^{UUC} , Arg ^{AGA} , Asn ^{AAC} , Met ^{AUG} , Gln ^{CAA}
Ribosomal RNAs (2)	1 small subunit (SSU), 1 large subunit (LSU)
RNA Polymerase (4)	RNA Pol 1,2,3,4
Other Proteins (3)	CLpProtease 1, CLpProtease 2, TufA
Hypothetical proteins (14)	HypA-N

^atRNAs represented with three letter amino acid code and anticodon


Table 2. GenBank accession numbers of cytochrome b (*cob*) and cytochrome c oxidase subunit I (*coxI*) genes from species included in the evolutionary tree.

Organism	Cytb/Cob	CoxI
<i>Babesia bigemina</i>	BAI66164	BAI66162
<i>Babesia bovis</i>	BAI66173	BAI66171
<i>Babesia caballi</i>	BAI66167	BAI66165
<i>Babesia canis canis</i>	AGF95352	AGF95350
<i>Babesia duncani</i>	MH107387	MH107387
<i>Babesia gibsoni</i>	BAE94852	BAL72992
<i>Babesia microti</i>	BAM68222	BAM68223
<i>Babesia orientalis</i>	AHB82181	AHB82180
<i>Babesia rodhaini</i>	BAM68237	BAM68238
<i>Plasmodium falciparum</i>	AEK05566	AEK05565
<i>Theileria orientalis</i>	BAI66179	BAI66177
<i>Theileria parva</i>	YP001994287	BAI66174
<i>Toxoplasma gondii</i>	AFQ31674	AFQ31675


Table 3. Sequence-based target identification and predicted drug susceptibility.

Drug	Target protein	Residue that confers resistance	<i>Babesia duncani</i> residues
Thiostrepton	LSU rRNA (Apicoplast) ^a	A ₁₀₆₇ →U/G	A ₉₇₄
Clindamycin	LSU rRNA (Apicoplast) ^a	G ₁₈₅₇ →U	G ₁₈₇₇
Azithromycin	Ribosomal protein L4 (Apicoplast)	GLY ₇₆ →VAL GLY ₉₁ →ASP	GLY ₆₈ GLY ₈₃
Atovaquone	Qo site of Cytochrome bc1 complex (mitochondria)	MET ₁₃₈ →ILE	MET ₁₆₀
ELQ 334	Qi site of Cytochrome bc1 complex (mitochondria)	ASN ₃₂ →SER/TYR ALA ₂₂₂ →VAL	ASN ₅₄ PHE ₂₄₄

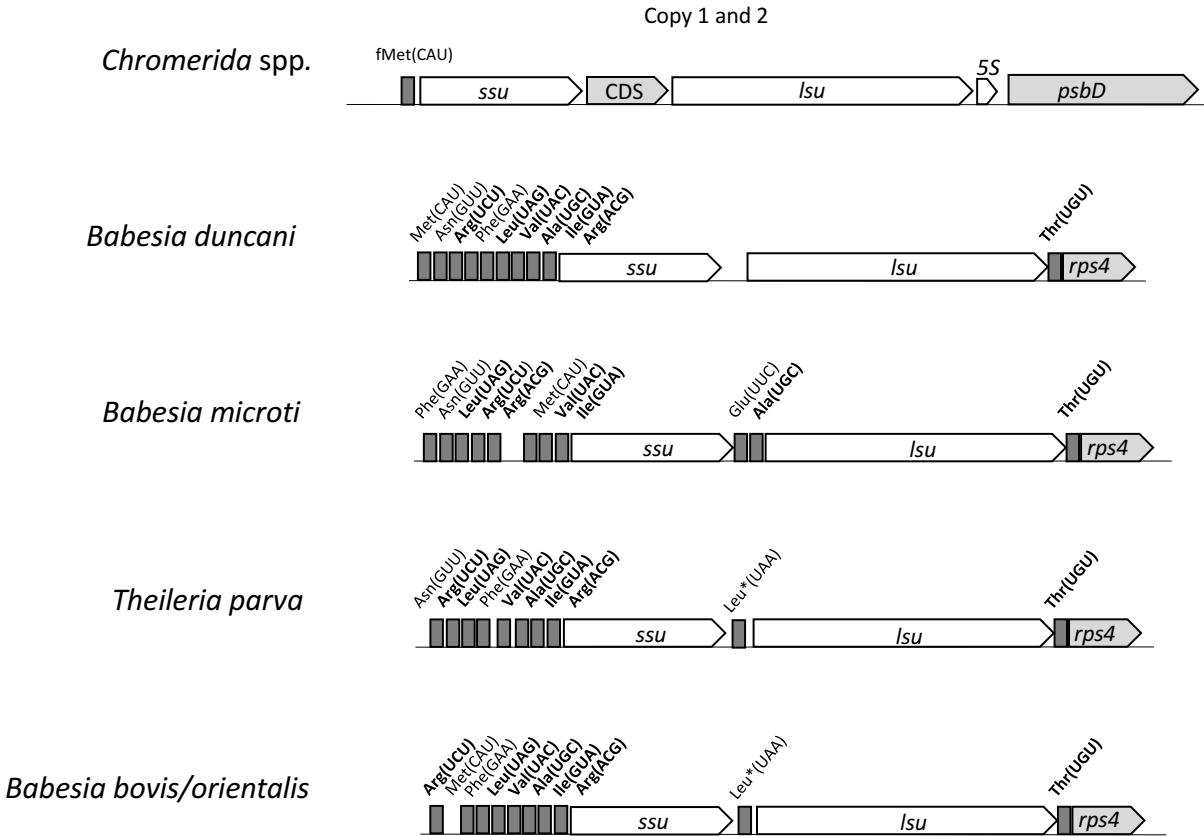

^a LSU refers to the large subunit rRNA

Figure 1.

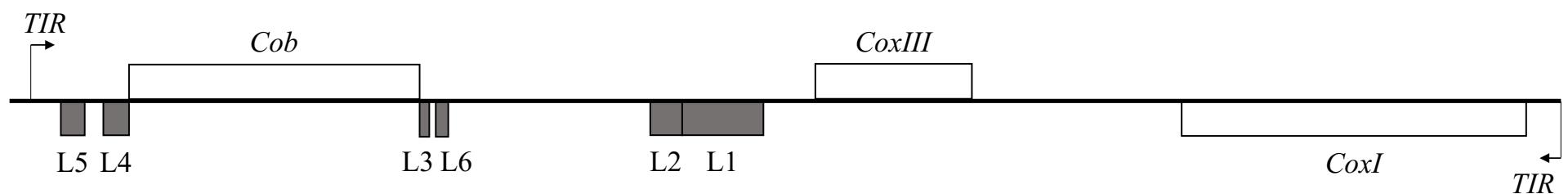

Figure 2.

Figure 3.

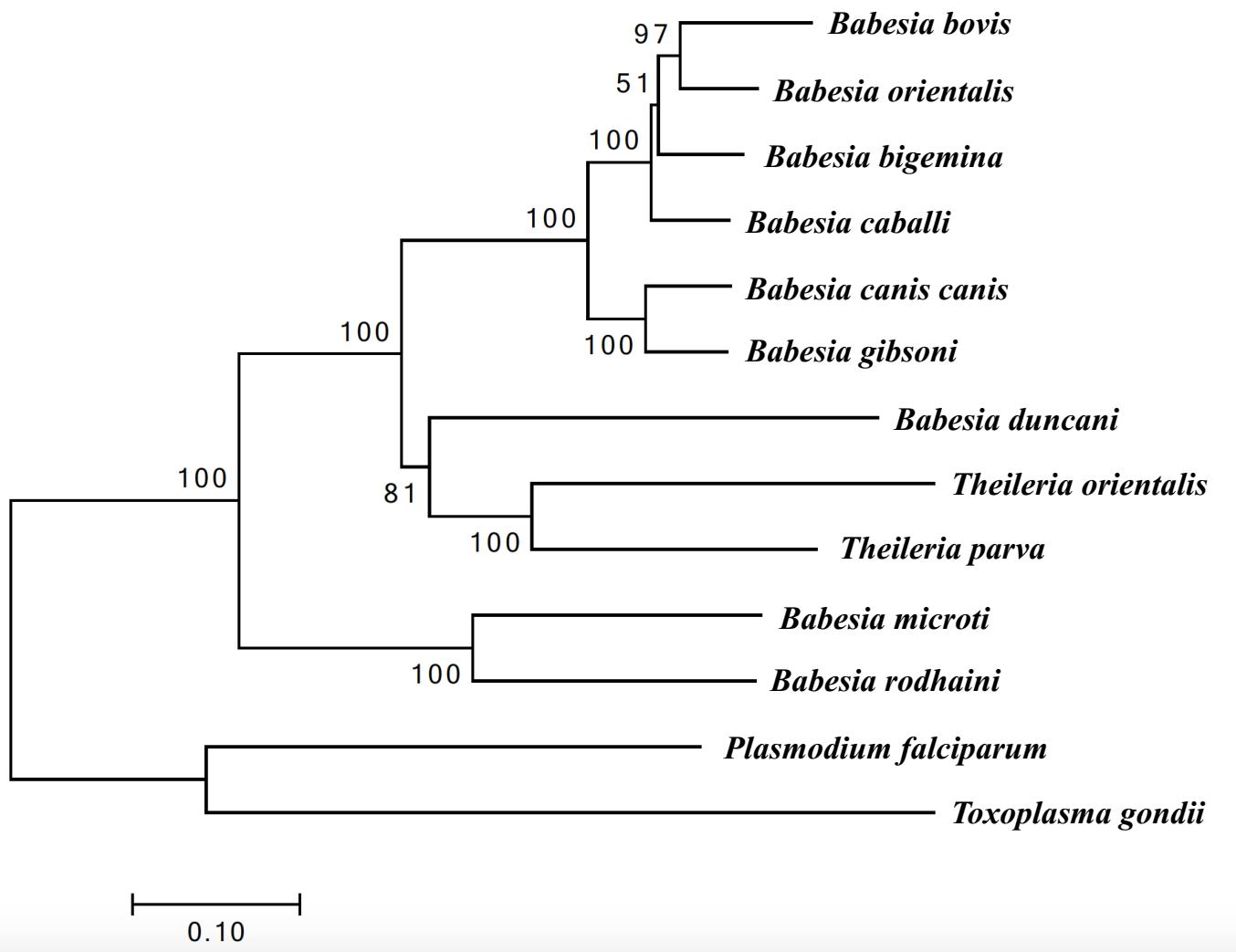


Figure 4.

Babesia duncani
Mitochondrial genome
5893 bp

Figure 5.

