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ABSTRACT

This paper is on an Eulerian-Eulerian (EE) approach that

utilizes Godunov’s scheme to deal with a running shock that in-

teracts with a cloud of particles. The EE approach treats both

carrier phase (fluid phase) and dispersed phase (particle phase)

in the Eulerian frame. In this work, the fluid equations are the

Euler equations for the compressible gas while the particle equa-

tions are based on a recently developed model to solve for the

number density, velocity, temperature, particle sub-grid scale

stresses, and particle sub-grid scale heat fluxes. The carrier and

dispersed phases exchange momentum and heat, which are mod-

eled through incorporating source terms in their equations. Car-

rier and dispersed phase equation form a hyperbolic set of differ-

ential equations, which are numerically solved with Godunov’s

scheme. The numerical solutions are obtained in this work for a

two-dimensional normal running shock interacting with a rect-

angular cloud of particles. The results generated by the EE ap-

proach were compared against the results that were generated by

a well-stablished Eulerian-Lagragian (EL) approach that treats

the carrier phase in an Eulerian frame, while does the dispersed

phase in a Lagrangian framework where individuals particles

are traced and solved. For the considered configuration, the EE

approach reproduced the EL results with a very good accuracy.
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NOMENCLATURE

mp Mass of a particle

Pr Prandtl number

t Time variable

Q Solution

F Flux in x-direction

G Flux in y-direction

S Source term

u, ui, u Fluid velocity

p Pressure

T Temperature of fluid

E Total Energy

x, xi, x Position

v, vi, v Particle velocity

qi j Particle sub-grid scale heat

Greek symbols

ρ∗
f Reference density

β Ratio of particle heat capacity to fluid heat capacity

at constant pressure

γ Ratio of gas heat capacities

θ Particle temperature

λ Eigenvalues of Jacobian matrix

µ Fluid viscosity

ρ Fluid density

τp Particle relaxation time constant

τT Particle thermal relaxation time constant
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φ Particle number density

ṽiv j Second moment of particle velocity

θ̃vi Second moment of particle temperature and velocity

σi j Particle sub-grid scale stress

Superscripts

T Matrix Transpose

Subcripts

p Particle, or Particle variable in the Lagrangian frame

f Fluid

x x-component

y y-component

INTRODUCTION

A particle-laden flow belongs to a class of two-phase flows,

in which a fluid (carrier phase) carries a very large number of

small solid or liquid particles (dispersed phase). Such a flow can

be seen in many areas including aerosol transport [1], fluidization

[2] and volcanic eruption [3].

The carrier phase is typically modeled by conservation laws

of mass, momentum and energy in the Eulerian frame while par-

ticles are individually traced in the Lagrangian frame. This is

the Eulerian-Lagrangian approach (EL) to deal with the particle-

laden flows. In the EL model, each particle is traced through

solving for its position and velocities. In case the interaction

of particles with the fluid is non isothermal, the temperature of

the particle is also solved. The influence of particles on the car-

rier phase is taken into account by interpolating their properties

from their locations to neighboring computational cells, and cou-

pling to the carrier phase equations through source terms. This

coupling Particle-Source-In-Cell (PSIC) model was pioneered by

Crowe et al [4]. Jacobs et al. [5, 6] present a third and fifth order

(WENO-Z) accurate scheme to solve the PSIC EL model. Jacobs

and Don [5] solved a one and two dimensional particle-laden

flow problem, where a shock wave encounters a cloud of parti-

cles. The benefit of the EL model is reduced computational time

by grouping small particles into a larger particle [6–8]. More-

over, the EL model shows higher accuracy because it calculates

the particles’ properties without averaging. The main drawback

of the EL is when one requires to get insight into the particle

concentration (or equivalently the particle number density) as a

very large number of particles need to be traced to have enough

samples for calculating this quantity through averaging.

In the Eulerian-Eulerian (EE) approach, particles are col-

lectively modeled as continuum in the Eulerian frame similar to

the carrier phase. The main advantage of the EE model is that

it readily provides the information about the number density of

particles as it is one of the dependent variables for which the

partial differential equations are solved for. Other statistical in-

formation about the other properties of the particles such as their

averaged velocity and temperature can be calculated as they are

also dependent variables in the set of PDEs. A complete review

on two-fluid models is beyond the scope of this work; however,

interested readers are referred to Refs. 9–14.

The current work is concerned with an EE approach which

is applied to study a running shock that interacts with a cloud

of particles in a two-dimensional configuration. The approach is

originated in an EE model [15] developed for the numerical sim-

ulation of isothermal particle-laden flows. Recently, Ortiz [16]

extended this model to include non-isothermal cases. Further-

more, he utilized the model to study the interaction of a com-

pressible flow with a cloud of particles in a one-dimensional con-

figuration. Ortiz [16] used a first order Godunov scheme with

Roe’s averaging in his EE study. He tested the EE results against

an EL model based on the WENO-Z PSIC scheme [5, 6] in a

one-dimensional flow. A good agreement between EE and EL

results was observed. For the supersonic case, the discrepancies

between two models are higher than the subsonic case.

GOVERNING EQUATIONS

In this section, the equations that are solved in the consid-

ered two-phase particle-laden flows are presented.

Carrier Phase Equations

We assume that the carrier phase is governed by the Eu-

ler equations, a set of equations for inviscid flows represent-

ing conservation of mass, momentum, and energy. The Euler

equations for the carrier phase are coupled to dispersed phase

through source terms. We consider convection dominated flows,

for which the viscous forces are relatively small. Thus, the vis-

cous Navier-Stokes equations reduce to the following inviscid

Euler equations expressed in dimensionless form:

∂Q f

∂t
+

∂F f

∂x
+

∂G f

∂y
= S f (1)

where

Q f =
[
ρ, ρu1, ρu2, E

]T
, (2)

F f =
[
ρu1, ρu1

2 + p, ρu1u2, (E + p)u1

]T
, (3)

G f =
[
ρu2, ρu1u2, ρu2

2 + p, (E + p)u2

]T
, (4)
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S f =




0
mpφ
τp

(v1 −u1)
mpφ
τp

(v2 −u2)

βmpφ(θ−T )
(γ−1)τT

+
mpφ(σ11+v2

1−u1v1+σ22+v2
2−u2v2)

τp



, (5)

E =
p

γ−1
+

1

2
ρ
(
u1

2 +u2
2
)
. (6)

The fluid is assumed an ideal gas therefore:

p =
ρT

γ
. (7)

Particle Phase Equations

The Lagrangian equations for the displacement, velocity,

and temperature of a particle, respectively, are:

dxp

dt
= vp, (8)

dvp

dt
=

1

τp

(u f −vp), (9)

dθp

dt
=

1

τT

(Tf −θp). (10)

Eq. (9) is based on the assumption that the particle is only under

the influence of the Stokes drag force. Eq. (10) is based on the as-

sumption the the temperature within the solid particle is uniform

and heat transfer to the particle from the surrounding gas-phase

is modeled through Newton’s heat convection law.

In order to develop the particle Eulerian equations, a Liou-

ville equation, which governs the fine-grain density function in

the phase (state) space, is first formulated, using the Lagrangian

equations. Then, using a spatial filtering operator, the Liouville

equation is filtered and a transport equation is obtained for the fil-

tered density function. Averaging and obtaining the first and sec-

ond moments of this equation with respect to velocities and tem-

perature, results in a coupled system of Eulerian equations for

the particle number density, velocity and temperature and their

second moments in the physical space, i.e., φ, vi, θ, ṽiv j, and

θ̃vi, which are the number density, Eulerian velocity at i direc-

tion, Eulerian temperature of the particles, and second moments,

respectively. The details of the particle-phase Eulerian formu-

lation can be found in Ref. 15 for the isothermal case (without

temperature) and in Ref. 16, for the non-isothermal case

Defining the sub-grid-scale particle stress σi j, and the sub-

grid-scale particle heat flux qi by:

σi j = ṽiv j − viv j, (11)

qi = θ̃vi −θvi, (12)

the particle-phase Eulerian equations can be shown in the follow-

ing conservative form:

∂Qp

∂t
+

∂Fp

∂x
+

∂Gp

∂y
= Sp, (13)

where

Qp =




φ
φv1

φv2

φθ
φ(σ11 + v2

1)
φ(σ12 + v1v2)
φ(σ22 + v2

2)
φ(q1 +θv1)
φ(q2 +θv2)




=




Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9




, (14)

Fp =




Q2

Q5

Q6

Q8

−(2Q3
2)/Q2

1 − (3Q2Q5)/Q1

(2Q2Q6 +Q3Q5)/Q1 − (2Q2
2Q3)/Q2

1

(Q2Q7 +2Q3Q6)/Q1 − (2Q2Q2
3)/Q2

1

(Q4Q5 +2Q2Q8)/Q1 − (2Q2
2Q4)/Q2

1

(Q4Q6 +Q2Q9 +Q3Q8)/Q1 − (2Q2Q3Q4)/Q2
1




, (15)

Gp =




Q3

Q6

Q7

Q9

(2Q2Q6 +Q3Q5)/Q1 − (2Q2
2Q3)/Q2

1

(Q2Q7 +2Q3Q6)/Q1 − (2Q2Q2
3)/Q2

1

−(2Q3
3)/Q3

1 − (3Q3Q7)/Q2
1

(Q4Q6 +Q2Q9 +Q3Q8)/Q1 − (2Q2Q3Q4)/Q2
1

(Q4Q7 +2Q3Q9)/Q1 − (2Q2
3Q4)/Q2

1




, (16)
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Sp =




0
φ
τp
(u1 − v1)

φ
τp
(u2 − v2)

φ
τT
(T −θ)

−2
φ
τp
(v1

2 −u1v1 +σ11)

− φ
τp
(2σ12 −u1v2 −u2v1 +2v1v2)

−2
φ
τp
(v2

2 −u2v2 +σ22)

− φ
τT
(q1 −T v1 +θv1 +θv2)−

φ
τp
(q1 −θu1 +θv1 +θv2)

− φ
τT
(q2 −T v2 +θv1 +θv2)−

φ
τp
(q2 −θu2 +θv1 +θv2)




.

(17)

NUMERICAL METHODS

In this work, the flux terms, i.e., F f and G f in equation

(1) and Fp and Gp in eq. (13), will be handled with Godunov’s

method [18]. It is borne in mind that these equations are hy-

perbolic partial differential equations in a conservative form for

which Godunov’s method is an efficient method to employ.

Let us assume that the domain is rectangular and discretized

with a uniform Cartesian grid, defined by xi = i∆x and y j = j∆y,

where i, j = 0,1,2, . . . ,N (number of grid points in each direc-

tion). The value Qn
(i, j) represents average of a cell with bound-

aries at xi−1/2, xi+1/2, yi−1/2, and yi+1/2. For a two dimensional

hyperbolic equation in the general form of

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
= S. (18)

fluxes F and G in Godunov’s scheme are obtained by flux-vector

splitting [18]

Fi−1/2, j = f (Q↓
i−1/2, j) = A+

i−1, jQi−1, j +A−
i, jQi, j, (19)

Gi, j−1/2 = f (Q↓
i, j−1/2

) = B+
i, j−1Qi, j−1 +B−

i, jQi, j, (20)

where A = ∂F/∂Q and B = ∂G/∂Q are the Jacobian matrices.

In these equations, superscripts + and − indicate the respective

decomposed positive- and negative-definite matrices.

In eq. (18), the source term S is decomposed into x and y

components:

S = Sx +Sy, (21)

The x-direction component of the source term, Sx, is similar to

the one dimensional source term, with the y-direction compo-

nents being 0. Here, Sy is determined from equation (21). Simi-

larly, the particle source term from equation (17) are split.

In the x-direction, we solve one dimensional problem with j

fixed, updating Qn
i, j to Q∗

i, j:

Q∗
i, j = Qn

i, j −
∆t

∆x
(Fn

i+1/2, j −Fn
i−1/2, j)+∆tSx(i, j), (22)

while in the y-direction, we use Q∗
i, j for solving one dimensional

problem with i fixed, to obtain Qn+1
i, j :

Qn+1
i, j = Q∗

i, j −
∆t

∆y
(Gn

i, j+1/2 −Gn
i, j−1/2)+∆tSy(i, j), (23)

This scheme will introduce a splitting error; however, it is often

no more critical than the errors by the numerical methods in each

sweep [18]. Also, dimensional splitting is only at best second

order accurate; if a very high order method is applied, it is crucial

to overcome this dimensional splitting error.

The CFL condition is a necessary condition for stability and

convergence of a finite volume method for a PDE [18]. For the

two dimensional case, we have two stability conditions, in the

x-direction and in the y-direction. To ensure stability in both

directions, the CFL condition becomes

∆t = CFL
min(∆x,∆y)

max(|λF
p |, |λ

G
p |)

. (24)

RESULTS AND DISCUSSIONS

We initialize a moving shock with MS = 3.0 at xS = 0.175 in

a rectangular domain of [0,1]× [−0.2,0.2]. The fluid pre-shock

properties are ρ = 1, u = 0, v = 0, and p = 1. In our simu-

lations 40,000 particles with density ρp = 1000, diameter d =

5.7693× 10−3, and zero velocity, are uniformly distributed in-

side a rectangular cloud located at [0.175,0.352]× [−0.05,0.05].
The particle relaxation and thermal time constants are set to τp

= τT = 1. Tables 1 through 3 summarize the initial conditions of

the problem. The computational mesh used is 600×200. For the

same configuration, EL simulations are also conducted, employ-

ing the method of Ref. 5, to validate the EE results.

Fig. 1 shows a grid resolution study for the EE results based

on the variation of the fluid density along the line of symmetry.

It is seen that the improvement of the results of the resolutions

600×200 and 300×200 are fairly close. At y = 0 and x = 0.45,

the local error between grid size of 400×200 and 600×200 are

2.343%. The use of grid size of 600×200 is justified.

In Figure 2, the particle number density φ is plotted versus x

at time t = 0.1. At this early state, the leading edge of the cloud is
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pushed downstream by the moving shock. The cloud of particles

experiences the moving shock first at its leading edge, causing a

raise in particle velocity v1 at that area. The bow shock created

by interaction between fluid and the particle cloud increases v1

even higher at the two corners of the leading edge. Behind the

cloud, the flow separates; the trailing edge of the cloud does not

interact with the fluid, causing a difference in velocity v1 between

the two end corners and the trailing edge of the cloud. Therefore,

the leading edge of the cloud moves to the right and spreads out-

ward to both sides in the y-direction while only the corners of the

trailing edge move inward and downstream. The deformation of

the particle cloud can be explained through the examination of

the particle velocity v1, which is plotted in Figure 3. It is seen

that v1 has higher values where the cloud contacts with the fluid.

The higher v1 is, the more likely the particles tend to travel away,

and vice versa.

In Figure 4, the contour plots of the fluid density are seen. At

time t = 0.1, the moving shock has run through the rectangular

cloud. The area where the normal shock and the cloud come into

contact creates a rise in fluid density, causing a bow shock at the

front end, curving symmetrically in the y-direction. At the rear

end of the moving shock when the curved shocks have passed

the symmetry line, a Mach reflection is created. There is also

a circulation created behind the particle cloud, similar to a flow

over a blunt body. Even though at the same number of grid points

as EE models, the WENO-5 EL shows more detail of the fluid,

especially in the circulation and reflection area behind the cloud.

The first order EE presents a very smooth plot of the fluid density.

In Figure 5, the fluid variables ρ, u1, p, T , and Mach number,

M are plotted against x on the symmetry line y = 0 at t = 0.1. In

order to gain an insight into the accuracy of the EL simulation,

the third order (WENO-3) plotted along with WENO-5. It is

seen that their results are slightly different. Since the y-direction

velocity v is relatively small, the local Mach number is plotted

instead. At the front end of the cloud cloud, a sudden rise is seen

for the fluid density, pressure, and temperature whereas a drop is

seen for velocity and Mach number. The discrepancies between

EE and EL are higher at the tailing edge the cloud. It is also seen

that the shockwave in WENO-Z EL models travels slightly fur-

ther distance when compared to that in the EE model. Moreover,

based on fluid density and temperature plots, the differences be-

tween the EE and WENO-3 models are smaller compared to the

differences between the EE and WENO-5 models. That means

those discrepancies between three models behind the cloud might

be caused by the difference in order of accuracy.

The particle velocity component in the x direction v1 and

temperature θ for both EE and EL models are displayed in Fig. 6.

For both of these quantities, the models agree fairly well with

each other. At this early time of t = 0.1, the trailing edge of the

cloud contacts with the moving shock from left to right, causing

higher velocity and temperature on the left, and lowering values

as we move downstream.

SUMMARY AND CONCLUSIONS

A recently developed Eulerian-Eulerian (EE) model was uti-

lized for the numerical study of a running shock interacting with

a cloud of particles in a two-dimensional configuration. The EE

model couples the inviscid Euler equations to a new set of Eu-

lerian equations for the dispersed phase. The transport equa-

tions are for the particle number density, velocity, temperature,

subgrid-scale stress, and sub-scales heat flux. The current study

was the extension of the previous study from a one-dimensional

configuration to a two-dimensional configuration.

The EE model is in the form of two sets of hyperbolic differ-

ential equations for the carrier and dispersed phase. The phases

are coupled through source terms which account for the momen-

tum and heat exchanges. The equations were discretized based

on a finite volume method, and Godunov’s scheme. The results

obtained by the EE model was compared against the results ob-

tained by a recently developed Eulerian-Langrangian (EL) model

in which particles are dealt with in the Lagrangian frame, and

good agreement were observed between them.
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Table 1: Initial Conditions of the Domain in the 2-D Case

x1 x2 y1 y2 xp1 xp2 yp1 yp2

0 1 -0.2 0.2 0 0.2981 0.175 0.352

Table 2: Initial Conditions of the Carrier Phase in the 2-D Case

Ms γ Pr β St p ρ u1 u2

3.0 1.4 1.67 0.4 1 1 1 0 0

Table 3: Initial Conditions of the Particle Phase in the 2-D Case

Np dp ρp φ

40000 5.7693E-3 1000 2.2599E6

v1 v2 θ σ11 σ12 σ22 q1 q2

0 0 Tf 0 0 0 0 0

Figure 1: Carrier phase density ρ versus x on the symmetry line y = 0,

at t = 0.1 of the EE model at different grid size. Parameters used in the

simulation are given in Tables 2 and 3.

Figure 2: Contour plot of the particle number density φ at t = 0.1 of the

EE model. Parameters used in the simulation are given in Tables 2 and

3.
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Figure 3: Contour plot the particle x-component velocity v1 at t = 0.1
of the EE model. Parameters used in the simulation are given in Tables

2 and 3.

Figure 4: Contour plot of fluid density ρ at t = 0.1 computed by (a) EL

model (WENO-5); and (b) EE model.
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Figure 5: Fluid properties versus x on the symmetry line y= 0 at t = 0.1: (a) density; (b) velocity component at x direction; (c) pressure; (d) temperature;

and (e) Mach number.

Figure 6: Fluid properties versus x on the symmetry line y = 0 at t = 0.1: (a) particle velocity; (b) particle temperature.
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