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Let F be a local field with residue field k. The classifying space of GLn(F)
comes canonically equipped with a map to the delooping of the K-theory space
of k. Passing to loop spaces, such a map abstractly encodes a homotopy coher-
ently associative map of A∞-spaces GLn(F)→ Kk . Using a generalized Wald-
hausen construction, we construct an explicit model built for the A∞-structure
of this map, built from nested systems of lattices in Fn . More generally, we
construct this model in the framework of Tate objects in exact categories, with
finite dimensional vector spaces over local fields as a motivating example.

1. Introduction

Let F be a local field with residue field k, e.g., F =Qp and k = Fp, or F = Fp((t))
and k = Fp. Let O ⊂ F be the ring of integers, m ⊂ O the maximal ideal, and
denote by Torm, f (O) the category of finitely generated torsion O-modules. Let S•
denote Waldhausen’s S-construction. For any finite dimensional vector space V
over F , the authors constructed in [Braunling et al. 2018] an “index” map, i.e., a
map of spaces

BGL(V )
Index
−−−→ |S•(Torm, f (O))×|

'
−−→ BKk

from the classifying space of GL(V ), a group which we shall always tacitly view
as equipped with the discrete topology, to Waldhausen’s delooping of the K-theory
space of k.1
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To sketch the bigger picture, for an equicharacteristic local field F with residue
field k, Quillen’s localization sequence gives a boundary map

�KF −→ Kk, (1.1)

where KF is the algebraic K-theory of the category of finite dimensional F-vector
spaces. On the other hand, by a general procedure a finite dimensional F-vector
space V can be written as an ind-pro limit of finite dimensional k-vector spaces.
The “index map” has the property that (the classifying space of) the group of au-
tomorphisms of V as such an ind-pro limit can also be mapped to the K-theory
Kk of the residue field. Restricting to those automorphisms which genuinely come
from F-vector space automorphisms, [Braunling et al. 2018] shows that, suitably
restricted to a common source, this map agrees with the one coming from (1.1).

Let Vect f denote the category of finite dimensional vector spaces. The index
map encodes, after passing to loop spaces, a homotopy coherently associative map
of loop spaces

GL(V )
'
−−→�BGL(V )→�|S•(Vect f (k))×|

'
−−→ Kk,

which in turn amounts to a coherent collection of homotopies

Index(g1)+ Index(g2)' Index(g1g2). (1.2)

In applications, e.g., [Braunling et al. 2014], one would like to be able to manipulate
these homotopies in detail. The goal of the present paper is to construct a map of
reduced Segal spaces

B•GL(V )→ KS•(Vect f (k)),

whose geometric realization is the index map.2 Our main tool for this construction
is a generalized Waldhausen construction, developed in Section 3A. Our model for
this construction follows from an analogy with index theory. Given an invertible
element f ∈ F× such that f ·O⊂O , the linear map O

f
−→O has finite dimensional

cokernel, and the assignment f 7→ O/ f · O extends to a map of spaces

GL1(F)→ Kk .

To extend this to a full map of simplicial spaces (and to handle the case where
k is not a subfield of F , or when dim V > 1), we employ the framework of Tate
objects in an exact category C, as developed in [Braunling et al. 2016]. Tate objects
provide a setting for working with “locally compact” objects modeled on C. For
example, a finite dimensional vector space over Qp is canonically a locally com-
pact topological abelian group (with the p-adic topology), and also an elementary
Tate object in the category Abp, f of finite abelian p-groups. A key advantage of

2Here B•G denotes the bar construction (or nerve) of the group G. This is a reduced Segal space
with |B•G| ' BG.
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working with Tate objects is that the category Tate(C) of Tate objects in C is itself
an exact category, and can be treated on the same footing as C (without requiring
any topological constructions).

To define Tate objects, we rely on the notion of “admissible Ind-objects”. Recall
that an admissible Ind-object in C is a left exact presheaf X̂ of abelian groups on
C such that X̂ can be written as the colimit of a filtering diagram X : I → C

in which all maps X i → X j are admissible monics. The category of admissible
Ind-objects Inda(C) is a full subcategory of the category Lex(C) of all left exact
presheaves of abelian groups, and it inherits an exact structure from Lex(C); see
[Braunling et al. 2016, Section 3]. We define the category of admissible Pro-objects
by Proa(C) := Inda(Cop)op. Since Proa(C) is an exact category, we can consider
the exact category Inda(Proa(C)), and we define Tateel(C) to be the smallest full
subcategory of Inda(Proa(C)) which contains Inda(C) and Proa(C) and is closed
under extensions.

The key feature of Tate objects is that they have “lattices”, i.e., admissible sub-
objects L ⊂ V such that L ∈ Proa(C) and V/L ∈ Inda(C). For example, the ring of
integers Zp ⊂Qp is canonically an object in Proa(Abp, f ), and Qp/Zp is a discrete
abelian p-group, or equivalently, an object of Inda(Abp, f ). In the above analogy
with index theory, any Tate object V can play the role of F , any lattice L ⊂ V the
role of O , and any automorphism g ∈ GL(V ) the role of f ∈ F×. Following this
analogy, coherent homotopies as in (1.2) should correspond to choices of nested
systems of lattices in V . In the present paper, we make this precise by using a gen-
eralized Waldhausen construction to exhibit, for a Tate object V in an idempotent
complete exact category C, a map of reduced Segal objects

B•GL(V )→ KS•(C) (1.3)

whose geometric realization is the index map. The present construction is inde-
pendent of our approach in [Braunling et al. 2018]. In Section 3C, we exhibit
a homotopy between the geometric realization of (1.3) and the “index map” of
[Braunling et al. 2018].

2. Preliminaries

Throughout this paper we work in the∞-categories of spaces and spectra. We take
[Lurie 2009; 2017] as standard references for∞-categories.

2A. Exact categories and Tate objects. We follow the notation of [Braunling et al.
2018] throughout. We consider exact categories C, i.e., additive categories equipped
with a collection of distinguished kernel-cokernel pairs

X ↪→ Y � Z
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called exact sequences which satisfy axioms modeled on the behavior of exact
sequences of abelian groups or of projective modules. See [Bühler 2010] for an
excellent exposition. An exact category C is idempotent complete if every idempo-
tent splits, i.e., if for all p : X→ X in C with p2

= p, there exists an isomorphism
X ∼= Y ⊕ Z which takes p to 1Y ⊕ 0. Fixing language, we refer to maps which
arise as kernels of exact sequences as admissible monics, and those which arise as
cokernels of exact sequences as admissible epics.

Given an exact category C, there are associated exact categories Inda(C) and
Proa(C) of admissible Ind-objects and admissible Pro-objects and also exact cate-
gories Tateel(C) and Tate(C) of elementary Tate objects and Tate objects in C. We
quickly recall the definitions here, and refer the reader to [Braunling et al. 2016]
for full details.

Denote by Lex(C) the abelian category of left exact presheaves of abelian groups
on C. The Yoneda embedding allows us to view C as a fully exact subcategory of
Lex(C) which is closed under extensions; see, e.g., [Keller 1990, Appendix A].

Definition 2.1. Let C be an exact category. An admissible Ind-object in C is an
object X̂ ∈ Lex(C) such that X̂ is the colimit (in Lex(C)) of a filtering diagram
X : I → C in which all maps X i → X j are admissible monics in C. Define the
category of admissible Ind-objects Inda(C) as a full subcategory of Lex(C). Define
the category of admissible Pro-objects Proa(C) by Proa(C) := Inda(Cop)op.

Following [Keller 1990, Appendix A], we show in [Braunling et al. 2016, Theo-
rem 3.7] that Inda(C) is closed under extensions in Lex(C), and thus has a canonical
structure as an exact category.

Remark 2.2. Unpacking the definitions, one can also realize Proa(C) as a local-
ization of the category Inva(C) of cofiltering systems of admissible epimorphisms,
where one localizes at all morphisms of diagrams which are invertible on a cofinal
subdiagram. Equivalently, one localizes at all morphisms which become invertible
under the evaluation map Inva(C)→ Lex(Cop)op.

Definition 2.3. Let C be an exact category. Define the category of elementary
Tate objects Tateel(C) to be the smallest full subcategory of Inda(Proa(C)) which
contains Inda(C) and Proa(C) and which is closed under extensions. Define the
category of Tate objects Tate(C) to be the idempotent completion of Tateel(C).

By [Braunling et al. 2016, Theorem 5.6], the category of elementary Tate objects
is well-defined, and thus inherits a canonical exact structure from Inda(Proa(C)).

Example 2.4. Let Abp, f be the category of finitely generated abelian p-groups.
There exists an exact functor

Vect f (Qp)→ Tateel(Abp, f )
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from the category of finite dimensional vector spaces over Qp to the category of
elementary Tate objects in Abp, f .

For the present, we need the following.

Definition 2.5. Let V be an elementary Tate object in C.

(1) A lattice L ↪→V is an admissible subobject, with L ∈Proa
κ(C) and the cokernel

V/L ∈ Inda
κ(C).

(2) The Sato Grassmannian Gr(V ) is the partially ordered set of lattices in V ,
where L0 ≤ L1 if there exists a commuting triangle of admissible monics

L0
� � //
� p

  

L1� _

��

V

Lattices and the Sato Grassmannian play a key role in our study of Tate objects.
We view (c) in the theorem below as the main result of [Braunling et al. 2016].

Theorem 2.6 [Braunling et al. 2016, Proposition 6.6, Theorem 6.7]. Let C be an
exact category.

(a) Every elementary Tate object in C has a lattice.

(b) The quotient of a lattice by a sublattice is an object of C.

(c) If C is idempotent complete, and L0 ↪→ V and L1 ↪→ V are two lattices in an
elementary Tate object V , then there exists a lattice N ↪→ V with L0, L1 ≤ N
in Gr(V ). Similarly, L0 and L1 have a common sublattice M ≤ L0, L1.

2B. Algebraic K-theory. Following [Quillen 1973], one associates to every exact
category C its K-theory space KC. The space KC is an infinite loop space which
serves as a universal target for additive invariants of C. Waldhausen [1985] gave
an alternate construction of KC, and proved his fundamental “additivity theorem”.
Waldhausen’s treatment of algebraic K-theory hinges on two simplicial exact cate-
gories, denoted by S•(C), and Sr

•
( f ), where C is an exact category and f : C→ D

is an exact functor. The simplicial object S•(C) associates to every finite nonempty
totally ordered set [k] the exact category Sk(C), which consists of functors [k]→ C,
sending every arrow in [k] to an admissible monic. Likewise, the simplicial object
Sr
•
( f ) associates to [k] the exact category Sk(C) consisting of functors [k] → D,

sending every arrow in [k] to an admissible monic in D with cokernel in C. Given a
category C, denote by C× the groupoid of all isomorphism in C. With this notation,
Waldhausen’s definition can be given as

KC :=�|S•(C)×|.
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See [Braunling et al. 2018, Section 2] for a discussion of Waldhausen’s approach
to K-theory tailored to the present setting. As discussed there, the fundamental
property of algebraic K-theory is the following “additivity theorem”. The results of
this paper and [Braunling et al. 2018] can be seen as consequences of the additivity
theorem combined with Theorem 2.6.

Theorem 2.7 (Waldhausen’s additivity theorem [Waldhausen 1985, Theorem 1.4.2,
Proposition 1.3.2(4)]). Let F1 ↪→F2�F3 be an exact sequence of functors C1→C2.
Then the map

|S•F2| : |S•(C1)
×
| → |S•(C2)

×
|

is naturally homotopic to

|S•F1⊕ S•F3| : |S•(C1)
×
| → |S•(C2)

×
|.

Several equivalent reformulations exist. We need the following.

Definition 2.8 (Waldhausen). Let D be an exact category, and let C1 and C2 be
full subcategories of D which are closed under extensions. Define E(C1,D,C2) to
be the full subcategory of E D consisting of the exact sequences X1 ↪→ Y � X2

with X i ∈ Ci .

Note that, because C1 and C2 are closed under extensions in D, E(C1,D,C2) is
closed under extensions in E D; in particular, it is an exact category.

Theorem 2.9. Let A
i
−→ B

p
−→ C be a composable pair of exact functors such

that i is fully faithful and induces an equivalence with the full subcategory of B

annihilated by p. Moreover, assume that p has a left adjoint

s : C→ B,

such that ps ∼= 1C and such that, for every object Y ∈ B, the co-unit sp(Y )→ Y is
an admissible monic with cokernel in A. Then, the map

i × s : KA× KC
'
−→ KB

is an equivalence of spaces.

While this theorem is, without doubt, well-known, we have chosen a less con-
ventional statement which is convenient for our applications. Therefore, we now
give a proof.

Proof. We have a well-defined map of spaces i× s : KA×KC→ KB. By the White-
head lemma it suffices to show that it establishes an equivalence on all homotopy
groups.

The admissible monic of functors

sp ↪→ 1B : B→ B,
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given by the co-unit of the adjunction (p, s), extends to a short exact sequence

sp ↪→ 1B � f : B→ B .

By construction, p f = 0, and therefore f can be expressed as ir , where r : B→ A

is an exact functor. By the additivity theorem (Theorem 2.7), we have

πi (K (ir)⊕ K (sp))= πi (K (1B)).

Moreover, the relations ps = 1C and ri = 1A imply that we also have

πi (KB)∼= πi (KA)×πi (KC).

The Whitehead lemma concludes the proof. �

2C. Segal objects. Segal [1974] introduced a definition which, in the hands of
May and Thomason [May and Thomason 1978; Thomason 1979], Rezk [2001],
Lurie [2017] and many others, has become fundamental to the study of A∞-objects
(also known as E1-objects or homotopy coherent associative monoids) in a homo-
topical setting.

Definition 2.10. Let C be an∞-category with finite products. For each n, consider
the collection of maps{

[1] = {0< 1}
∼=
−−→ {i − 1< i} ⊂ [n]

}n
i=1.

A Segal object in C is a simplicial object X• ∈ Fun(1op,C) such that, for n ≥ 2,
the map

Xn→ X1×X0 · · · ×X0 X1︸ ︷︷ ︸
n

induced by the above collection is an equivalence. A reduced Segal object X• is
a Segal object with X0 ' ∗. Segal objects form a full subcategory of simplicial
objects in C.

For a basic example, the bar construction associates to a group G a simplicial
space B•G with n-simplices the discrete space Gn . A standard exercise shows
that B•G is a reduced Segal space, and the Segal structure is just a rewriting of
the group law. For a richer example, given an exact category C, we can consider
the simplicial exact category S•C given by Waldhausen’s S•-construction. Wald-
hausen’s additivity theorem (Theorem 2.7) implies that the simplicial space KS•C

obtained by taking the K-theory space of each category of n-simplices is a reduced
Segal object in the∞-category of spaces. The Segal space structure encodes the
homotopy coherent addition of elements in KC.
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2D. The index map. We now recall the index map. For n ≥ 0, denote by [n] the
partially ordered set {0 < · · · < n} viewed as a category, and, for a category C,
denote by Fun([n],C) the category of functors from [n] to C.

Definition 2.11. Let C be an exact category. Define the Sato complex Gr≤
•
(C) to

be the simplicial diagram of exact categories with

(1) n-simplices Gr≤n (C) given by the full subcategory of Fun([n+ 1],Tateel(C))

consisting of sequences of admissible monics

L0 ↪→ · · · ↪→ Ln ↪→ V

where, for all i , L i ↪→ V is the inclusion of a lattice,

(2) face maps are given by the functors

di (L0 ↪→ · · · ↪→ Ln ↪→ V ) := (L0 ↪→ · · · ↪→ L i−1 ↪→ L i+1 ↪→ · · · ↪→ Ln ↪→ V ),

(3) and degeneracy maps are given by the functors

si (L0 ↪→ · · · ↪→ Ln ↪→ V ) := (L0 ↪→ · · · ↪→ L i ↪→ L i ↪→ · · · ↪→ Ln ↪→ V ).

The simplicial object Gr≤
•
(C) allows us to introduce the index map.

Definition 2.12. Let C be an exact category. The categorical index map is the span
of simplicial maps

Tateel(C)←− Gr≤
•
(C)

Index
−−−→ S•(C), (2.13)

where the left-facing arrow is given on n-simplices by the assignment

(L0 ↪→ · · · ↪→ Ln ↪→ V ) 7→ V,

and Index is given on n-simplices by the assignment

(L0 ↪→ · · · ↪→ Ln ↪→ V ) 7→ (L1/L0 ↪→ · · · ↪→ Ln/L0).

Recall the following.

Proposition 2.14 [Braunling et al. 2018, Proposition 3.3]. Let C be an idempotent
complete exact category. Then the map Gr≤

•
(C)→ Tateel(C) of (2.13) induces an

equivalence
|Gr≤

•
(C)×|

'
−→ |Tateel(C)×|. (2.15)

Remark 2.16. The proposition follows from the fact that if C is idempotent com-
plete, then the Sato Grassmannian Gr(V ) of every elementary Tate object is a
directed and codirected poset [Braunling et al. 2016, Theorem 6.7]. The nerve of
this poset is therefore contractible, and the geometric realizations of these nerves
are the fibres of the map (2.15).
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Following the proposition, we obtain the K-theoretic index map by restricting
the categorical index map (2.13) to the groupoids of all isomorphisms, geometri-
cally realizing, and picking a homotopy inverse to (2.15) to obtain the map

Index : |Tateel(C)×|
'
−−→ |Gr≤

•
(C)×| → |S•(C)×| =: BKC. (2.17)

Our goal is to construct an explicit map of Segal objects B•Aut(V )→ KS•(C), for
any elementary Tate object V , whose geometric realization is equivalent to the
restriction of (2.17) along the map | ∗ //Aut(V )| → |Tateel(C)×|.3

3. The A∞-structure of the index map

3A. A generalized Waldhausen construction. Let C be an exact category, and
f : C→ D an exact functor. Waldhausen’s approach to algebraic K-theory [1985]
hinges on the simplicial exact categories S•(C) and Sr

•
( f ) recalled above. We now

extend the functors
S•(C), Sr

•
( f ) :1op

→ Catex

from the ordinal category, i.e., the category of finite nonempty linearly ordered
sets, to the category of filtered finite partially ordered sets. We refer to the resulting
functors as the “generalized Waldhausen construction”. In Section 3B we then use
the generalized Waldhausen construction to give a treatment of the A∞-structure
of the index map.

Partially ordered sets and related structures. The current subsection contains sev-
eral definitions of a combinatorial nature.

Definition 3.1. Let I be a partially ordered set. We denote by 0(I ) the directed
graph given by the set underlying I as set of vertices, and intervals a < b as edges.
We denote the set of directed edges of 0(I ) by E(I ).

Example 3.2. For the ordinal [2] we obtain

•
OO aa

•
OO

•

for the oriented graph 0([2]). While this graph is more traditionally drawn as the
boundary of a 2-simplex, the present depiction is chosen to highlight the maximal
tree.

3Here ∗//G denotes the one object groupoid with automorphisms G, and the map ∗//Aut(V )→
Tateel(C)× is given on objects by ∗ 7→ V and is the identity map on automorphisms.



590 OLIVER BRAUNLING, MICHAEL GROECHENIG AND JESSE WOLFSON

We work with finite, filtered, partially ordered sets with basepoints (which are
chosen to be minimal elements).

Definition 3.3. A based, finite, filtered, partially ordered set is a pair (I ; x0, . . . , xk),
where I is a finite partially ordered set with a final element, and (x0, . . . , xk) is a
tuple of minimal elements in I .4 A morphism of based partially ordered sets is a
map of pairs

( f, σ ) : (I ; x0, . . . , xk)→ (I ′; y0, . . . , ym),

where f : I → I ′ is a map of partially ordered sets, σ : [m] → [k] is a map of
finite ordinals, and f (xi )= yσ(i). The category of based, finite, filtered, partially
ordered sets is denoted by poSetfilt

f .

The assumption of finiteness is crucial for the inductive proofs that are given
later, but could eventually be relaxed.

Some arguments require choosing a maximal tree in 0(I ) with good properties.

Definition 3.4. Let 0 be an oriented graph. A maximal tree T ⊂ 0 is said to be
admissible if for every pair of vertices (x, y), there exists a vertex z and unique
oriented paths from x to z and from y to z within T .

The following examples help to clarify this definition.

Example 3.5. Consider the trees below:

• •

•

OO

•

•

??

•

__

•

GG

•

__

WW

The tree on the left is admissible, while the one on the right is not (there is no
common vertex that receives an oriented path from the two upper vertices).

Example 3.6. Let I be a finite, filtered, partially ordered set. An admissible tree
T ⊂ 0(I ) always exists. Indeed, let m ∈ I denote the final element. Then the tree
T given by the union of all edges (x,m) for x ∈ I is admissible.

The definition below introduces the concept of a framing of a based partially
ordered set.

Definition 3.7. A framed partially ordered set is a triple (I, E(T ), x0, . . . , xk),
where E(T ) ⊂ E(I ) is the set of edges of an admissible maximal tree, and the
pair (I ; x0, . . . , xk) is a based, finite, filtered, partially ordered set. The category

4It is important to note that the basepoints are not assumed to be pairwise distinct.
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of framed, partially ordered sets poSetfr,filt
f is the category with framed, partially

ordered sets as objects, and morphisms

φ : (I, E(T ), x0)→ (I ′, E(T ′), x ′0),

where φ : I → I ′ is a map of partially ordered sets, mapping the basepoints bijec-
tively onto each other, and satisfying φ(T )⊂ φ(T ′). We denote by

φ] : E(T )→ E(T ′)+ = E(T )∪ {?},

the map which sends e ∈ E(T ) either to its image φ(e)∈ E(T ′), or, if φ(e) consists
of a single point, to the basepoint ?.

Pairs of exact categories and diagrams. We define the generalized Waldhausen
construction in the context of extension closed subcategories of exact categories.

Definition 3.8. We denote by Cat
pair
ex the 2-category of pairs of exact categories

C⊂ D such that C is an extension-closed subcategory of D. Objects in this category
are also referred to using the notation (D,C).

For every partially ordered set I we have an associated category. For notational
convenience, we do not distinguish between these.

Definition 3.9. Let (D,C)∈Catpair
ex be a pair of exact categories. Let I be a partially

ordered set. An admissible I -diagram in (D,C) is a functor I → D, sending each
arrow in I to an admissible monic in D with cokernel an object of C. We denote
the exact category of such functors by FunC(I,D).

The following example serves as a motivation for this definition.

Example 3.10. We observe that FunC([n],D)= Sr
n(C⊂ D) (see Section 2B).

In Definition 3.7 we introduced the concept of framed partially ordered sets.
Recall the map φ] : E(T )→ E(T ′)+. By abuse of notation we also use the symbol
φ] to denote the unique map of pointed sets

E(T )+→ E(T ′)+.

Note that, for every object X in a pointed∞-category C with finite coproducts, we
have a natural functor ∐

?

X : (Setfin
∗
)op
→ C.

An inductive argument allows us to establish the following lemma. The choice of
a maximal tree T ⊂ 0(I ) should be understood as analogous to choosing a basis
for a vector space.
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Lemma 3.11. Let (I ; E(T ), x0, . . . , xk) be a framed, partially ordered set. We
denote by T ⊂ 0(I ) an admissible maximal tree of 0(I ). Then there exists an
equivalence

φ(T ) : KFunC(I,D)
∼= KD× K×E(T )

C .

Moreover, this equivalence can be seen as a natural equivalence of functors

KFun−( – , – ) ' K−× K×E(–)
− : Catpair

ex × (poSetfr,filt
f )op

→ Spaces.

Although the lemma is stated for a framed partially ordered set with basepoints
x0, . . . , xk , we actually only need the zeroth basepoint x0. An inspection of the
proof below shows that all the other basepoints could be discarded.

Proof of Lemma 3.11. For every e = (yi ≤ yi+1) ∈ E(T ) we denote by Xe the
quotient F(yi+1)/F(yi ). We have an exact functor

FunC(I,D)→ D×CE(T ),

which sends F : I → D to (F(x0), (Xe)e∈E(T )). This map defines a natural trans-
formation between the functors

Fun−( – , – ), ( – )× ( – )E(–)
: Catpair

ex × (poSetfr,filt
f )op

→ Catex.

Applying the functor K− : Catex → Spaces, we obtain the natural transforma-
tion φ(T ). It remains to show that φ(T ) is an equivalence for each triple (I,D,C).
We use induction on the cardinality of I to show this. As a warmup, we begin with
the case that I is a totally ordered set. Without loss of generality we may identify it
with {0< · · ·< n}. Moreover, in the totally ordered case, there is only one possible
choice for the framing (T, x0). The induction is anchored to the case n = 0, i.e.,
the case of the singleton set, which is evidently true.

Assume that φ(T ) has been shown to be an equivalence for totally ordered sets
of cardinality < n. We denote by I ′ the framed partially ordered set defined by the
subset {0< · · ·< n− 1}. The restriction functor FunC(I,D)→ FunC(I ′,D) sits in
a short exact sequence of exact categories

C ↪→ FunC(I,D)� FunC(I ′,D),

where we send X ∈ C to (0 ↪→ · · · ↪→ 0 ↪→ X) ∈ FunC(I,D). We also have a
splitting, given by

FunC(I ′,D)→ FunC(I,D),

which sends (Y0 ↪→ · · · ↪→ Yn−1) to (Y0 ↪→ · · · ↪→ Yn−1 ↪→ Yn−1). By means of
the additivity theorem (Theorem 2.9), we conclude

KFunC(I,D)
∼= KFunC(I ′,D)× KC.
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Applying the inductive hypothesis to FunC(I ′,D), we conclude the assertion for
totally ordered sets.

The proof for general I also works by induction on the number of elements. If
I is not totally ordered, but of cardinality n+ 1, we may decompose our framed
partially ordered set

(I, T )= (I ′, T ′)∪ (I ′′, T ′′),

where I ′′ is totally ordered, I ′ ∩ I ′′ = {max I ′′}, and x0 ∈ I ′. Consider for example
the graph

•

•

• •

• •

where edges belonging to I ′′ have been drawn as squiggly lines.
There exists a positive integer 1 ≤ k ≤ n such that I ′′ ∼= {0< · · ·< k}. The re-

striction functor from I -diagrams to I ′-diagrams belongs to a short exact sequence
of exact categories

FunC(I ′′ \ {max I ′′},C) ↪→ FunC(I,D)� FunC(I ′,D),

where the left-hand side is seen as the exact category of morphisms

(Y0 ↪→ Y1 ↪→ · · · ↪→ Yk−1),

which extends to an I -diagram by sending the object Yk−1 to every vertex in I ′.
This short exact sequence is split by the functor

FunC(I ′,D)→ FunC(I,D),

which extends an I ′-diagram to an I -diagram, by sending each vertex y of I ′′ to the
object max I ′′ ∈ I ′ ∩ I ′′ (with the identity morphisms as admissible epimorphisms
between them). The additivity from Theorem 2.9 yields

KFunC(I,D)
∼= KFunC(I ′,D)× KSk(C).

Using the induction hypothesis, we see that the first component is equivalent to
KD× K×E(T ′)

C , and the second component to K×E(T ′′)
C , proving the assertion. �

The index space. Let (I ; x0, . . . , xk) be a based, finite, filtered, partially ordered
set (Definition 3.3). Together with a pair of exact categories C ⊂ D such that C
is extension-closed in D, we define the index space, which is the recipient of a
map from KFunC(I,D). It can be thought of as measuring the difference between the
basepoints.
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Definition 3.12. (a) For a based, finite, filtered, partially ordered set (I; x0, . . . , xk)

we denote by I1 the partially ordered set obtained by identifying the base-
points. Cofunctoriality of FunC( – ,C) yields a forgetful functor

FunC(I1,D)→ FunC(I,D).

(b) For an exact category D, let KD be the connective K-theory spectrum. We
denote by IdxC,I D the space underlying (i.e., �∞ of) the cofibre of the mor-
phism5

KFunC(I1,D)→ KFunC(I,D) .

By functoriality of cofibres, this gives rise to a functor

Idx : Catpair
ex × (poSetfilt

f )
op
→ Spaces.

We refer to IdxC,I D as the index-space of (D,C) relative to (I ; x0, . . . , xk).

(c) We refer to the map of spaces

|FunC(I,D)×| → KFunC (I,D)→ IdxC,I (D)

as the pre-index map of the pair (D,C) relative to (I ; x0, . . . , xk).

The index space is to a large extent independent of I , as guaranteed by its functo-
rial nature in Definition 3.12(b). We record this observation in the next two results.
In Proposition 3.22 we further refine this statement.

Lemma 3.13. Let C ↪→ D be an extension-closed exact subcategory of an exact
category D. We consider an injective morphism of finite, based, filtered, partially
ordered sets, in the sense of Definition 3.3,

(I ; x0, . . . , xk)→ (I ′; y0, . . . , yk),

which induces a bijection of basepoints (i.e., on basepoints, it corresponds to the
identity map [k] → [k]). Then the induced morphism of index spaces

IdxC,I D→ IdxC,I ′ D

is an equivalence.

Proof. By virtue of Lemma 3.11, the choice of an admissible maximal tree T in I
induces an equivalence of K-theory spaces

KFunC(I,D)
∼= KD× K×E(T )

C .

Recall from Definition 3.12 that I1 denotes the finite, based, filtered, partially
ordered set obtained by identifying all basepoints. We can choose T in a way,
such that its image T1 in I1 is also an admissible tree. For instance, we could

5The long exact sequence of homotopy groups implies that this cofibre is again a connective
spectrum.



THE A∞-STRUCTURE OF THE INDEX MAP 595

take the tree given by the edges (x,m), where m =max I and x runs through the
elements of I \ {m}. We denote by ei the (unique) edge of T which contains xi . By
construction, the edges ei map to the same edge in T1, and we denote this edge
by e. We can apply the functoriality of Lemma 3.11 to obtain the commutative
square of connective K-theory spectra

KFunC(I1,D)
//

∼=
��

KFunC(I,D)

∼=

��

KD⊕K⊕E(T1)
C

α
// KD⊕K⊕E(T )

C

where the morphism α is given by the identity 1KC for edges in E(T )\{e0, . . . , ek},
and given by the diagonal map

1KC : KC→ K⊕(k+1)
C

for the component e. In particular, we see that cofib(α)∼= cofib(1KC).
The same analysis applies to I ′. Because we can choose an admissible maximal

tree T in I which extends to an admissible maximal tree T ′ in I ′, we see that
cofib(KFunC(I1,D)→ KFunC(I,D)) is equivalent to

cofib(1KC : KC→ Kk+1
C )∼= cofib(KFun1C (I ′,D)

→ KFunC(I ′,D)).

The restriction functor IdxC,I D→ IdxC,I ′ D is defined independently of any choices.
The admissible maximal trees T and T ′ only play a role in verifying that this map
is an equivalence. We therefore see that we have a canonical equivalence between
IdxC,I D and IdxC,I ′ D. �

Definition 3.14. For every positive integer k we have an object

B[k] = (B[k]; b0, . . . , bk) ∈ poSetfilt
f ,

given by the set of nonempty intervals in the ordinal [k]. An interval is understood
to be a subset J ⊂ [k] with the property that x ≤ y ≤ z and x, z ∈ J implies that
y ∈ J . The basepoints (bi )i=0,...,k are given by the singletons {i}.

We have drawn the filtered partially ordered set B[2] below:

•

• •

• • •

Definition 3.15. For an arbitrary I = (I ; x0, . . . , xk) in poSetfilt
f , we denote by I B

=

(I B
; x0, . . . , xk) the based, finite, filtered, partially ordered set given by I ∪ B[k],
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where we identify the basepoints bi = xi and extend the inductive ordering of I to
I B by demanding x ≤ y, for all x ∈ B[k] and y ∈ I \ {x0, . . . , xk}. To summarize
the previous construction, we obtain I B from I by gluing on a copy of B[k] to I ,
with all new elements being ≤ than elements in I . This process is functorial in I ;
we denote the resulting functor by

( – )B
: poSetfilt

f → poSetfilt
f .

The inclusion I ⊂ I B gives rise to a natural transformation of functors

1poSetfilt
f
⇒ ( – )B .

The category poSetfilt
f satisfies the property that for two objects (I ; x0, . . . , xk)

and (I ′; y0, . . . , yk) we can find an (I ′′, z1, . . . , zk), containing subobjects isomor-
phic to I and I ′ (respecting basepoints). Combining this observation with the
lemma proven above, we obtain a complete description of index spaces.

Corollary 3.16. Let (I ; x0, . . . , xk) be a based, finite, filtered, partially ordered
set with pairwise distinct basepoints. Then the index space of the pair (D,C) is
equivalent to

KSk(C)
∼= K×k

C .

This equivalence is functorial in the pair C⊂ D, where C is extension-closed in D,
and it is contravariantly functorial in the based filtered partially ordered set I .
Moreover, if M• is a simplicial object in poSetfilt

f such that, for every nonnegative
integer k, Mk has k+ 1 pairwise distinct basepoints, then we have an equivalence
of simplicial spaces

IdxC,M• D
∼= KS•(C).

Proof. Lemma 3.13 implies that we have a canonical equivalence

IdxC,I D∼= IdxC,I B D∼= IdxC,B[k] D .

To conclude the argument, we have to show that IdxC,B[k] D∼= KSk(C). This equiv-
alence will be shown to be induced by the exact functor

Sk(C)→ FunC(B[k],D), (3.17)

sending (0 ↪→ X1 ↪→ · · · ↪→ Xk) to the functor F in FunC(B[k],D), which maps
the interval [i, j] to the object X j . We draw the resulting diagram for k = 2 to
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illustrate the idea behind the definition:

X2

X1

==

X2

aa

0

??

X1

==aa

X2

aa

Alluding to Lemma 3.11, one can prove with the help of the right choice of ad-
missible maximal tree in B[k] that the induced map of index spaces is indeed an
equivalence. We choose to work with the naive admissible maximal tree T in B[k],
uniquely defined by the property that for every nonmaximal element there is a
unique edge in T connecting it with the maximum. The image of T in B[k]1,
i.e., the partially ordered set obtained by identifying the basepoints b0, . . . , bk

(see Definition 3.12), is also an admissible maximal tree. We can therefore apply
Lemma 3.11 to analyze the map of spaces

KFunC(B[k]1,D)→ KFunC(B[k],D).

Doing so, we obtain a commutative diagram of connective K-theory spectra (as in
the proof of Lemma 3.13)

KFunC(B[k]1,D)
//

∼=
��

KFunC(B[k],D)

∼=

��

KD⊕K⊕E(T1)
C

α
// KD⊕K⊕E(T )

C

(3.18)

where the morphism α agrees with the identity 1KC for edges in E(T )\{e0, . . . , ek},
and with the diagonal map

1KC : KC→ K⊕(k+1)
C

for the component e. This is the same map arising in the proof of Lemma 3.13,
and we have

IdxC,B[k] D∼=�
∞ cofib

(
KC

1KC
−−→ K{b0,...,bk}

C

)
∼= K×k

C ,

where the last equivalence is defined as the inverse to the composition

K×k
C

i
−→ K {b0,...,bk}

C →�∞ cofib
(
KC

1KC
−−→ K{b0,...,bk}

C

)
, (3.19)

where the map i is the inclusion of K×k
C into K {b0,...,bk}

C , which misses the K {b0}
C -

factor. In particular, we see that i corresponds to the map of K-theory spaces
induced by the functor C×k

→ C{b0,...,bk} given by the inclusion of the last k factors.
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Recall that we have KSk(C)
∼= K×k

C , with respect to the map induced by the exact
functor

C×k
→ Sk(C) (3.20)

sending

(X1, . . . , Xk) 7→ (0 ↪→ X1 ↪→ X1⊕ X2 ↪→ · · · ↪→ X1⊕ · · ·⊕ Xk).

Composing the functors

K×k
C → KSk(C)→ KFunC(B[k],D)→ IdxC,B[k] D→ K×k

C ,

we obtain the identity, as can be checked on the level of exact categories: we have
a commutative diagram of exact functors

D×C{b1,...,bk}

C×k //

44

Sk(C) // FunC(B[k],D)

OO

where the right vertical functor sends

F 7→ (F(b0), F([1])/F(b0), . . . , F([k])/F(bk−1)).

The composition of exact functors represented by the diagonal arrow is given on
objects by

(X1, . . . , Xk) 7→ (0 ↪→ X1 ↪→ X1⊕ X2 ↪→ · · · X1⊕ · · ·⊕ Xk)

7→ ([i, j] 7→ X1⊕ · · ·⊕ X j )

7→ (0, X1, X2, . . . , Xk),

i.e., it is equivalent to the inclusion of the last k factors in C×k+1. Applying K-
theory, and juxtaposing with (3.18), we obtain a commutative diagram of spaces

KD× K {b0,...,bk}
C

// �∞ cofib
(
KC

1KC
−−→ K{b0,...,bk}

C

)

K×k
C

//

55

KSk(C)
// KFunC(B[k],D)

OO

// IdxC,B[k] D

∼=

OO

As we observed in (3.19), the composition of the arrows on the top agrees with the
equivalence IdxC,B[k] D∼= K×k

C .
To conclude the argument it suffices to establish the last claim. The functoriality

of the index space construction guarantees that IdxC,M• D is a well-defined simpli-
cial space. Since the construction I 7→ I B is functorial, we obtain a well-defined
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simplicial object M B
•

, which acts as a bridge between IdxC,M• D and IdxC,B[•] D,
i.e., according to Lemma 3.13 we have equivalences

IdxC,M• D
∼= IdxC,M B

•
D∼= IdxC,B[•] D .

It therefore suffices to show that IdxC,B[•] D∼= KS•(C) as simplicial spaces. Since
the map (3.17) is clearly a map of simplicial objects in exact categories, and a
map of simplicial objects is an equivalence if it is a levelwise equivalence, we may
conclude the proof. �

Rigidity of the pre-index map. We now record a consequence of Lemma 3.13,
which we refer to as the rigidity of the pre-index map. In order to formulate the
result, we have to introduce a localization of the category poSetfilt

f .

Lemma 3.21. Consider the class of morphisms W in the category poSetfilt
f which

consists of maps
(
I → I ′, [k] φ

−→ [k ′]
)

such that φ : [k] → [k ′] is an isomorphism.
We denote by poSetfilt

f [W
−1
] the∞-category obtained by localization at W . This

localization is canonically equivalent to the category 1 of finite nonempty ordinals,
by means of the functor

base : poSetfilt
f →1,

which sends the pair (I, (x0, . . . , xk)) to [k]. The functor B[•] : 1 → poSetfilt
f

(Definition 3.14) is an inverse equivalence

1→ poSetfilt
f [W

−1
].

Proof. Note that we have base ◦B[•]
∼=
−−→ id1.

The universal property of localization of∞-categories implies that the functor
base induces a functor

b̃ase : poSetfilt
f [W

−1
] →1.

In particular, we obtain a natural equivalence

b̃ase ◦ B[•]
∼=
−−→ id1 .

Similarly, we recall from the proof of Corollary 3.16 that we have a natural trans-
formation

idpoSetfilt
f
→ ( – )B

: poSetfilt
f → poSetfilt

f ,

as well as B[•] ◦ base→ ( – )B . Putting these two natural transformations together,
we obtain a zigzag

idpoSetfilt
f
→ ( – )B

← B[•] ◦ base,

which induces a natural equivalence of functors

idpoSetfilt
f [W

−1]

∼=
−−→ B[•] ◦ b̃ase.
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We conclude that the functors B[•] and b̃ase are mutually inverse equivalences of
∞-categories (in fact, this shows that the∞-category poSetfilt

f [W
−1
] is equivalent

to a category). �

We use this localization to get the below porism from the proof of Corollary 3.16.

Proposition 3.22. The functor Idx :Catpair
ex ×poSetfilt

f
op
→Spaces of Definition 3.12

descends along the localization poSetfilt
f → poSetfilt

f [W
−1
] of Lemma 3.21. In par-

ticular, by virtue of the equivalence

poSetfilt
f [W

−1
] ∼=1,

we see that Idx induces a functor

Catpair
ex ×1

op
→ Spaces.

Remark 3.23. The above implies that the functor Idx gives rise to a simplicial
object Idx• in the∞-category of functors Fun(Catpair

ex , Spaces). Corollary 3.16 can
be restated as

IdxC,• D∼= KS•(C).

Proof of Proposition 3.22. We have seen, in Lemma 3.13, that every inclusion
I ⊂ I ′ which restricts to a bijection on basepoints induces an equivalence of index
spaces

IdxC,I D∼= IdxC,I ′ D .

As in the proof of Corollary 3.16 we observe that the zigzag of inclusions

I ⊂ I B
⊃ B[base(I )]

yields a zigzag of equivalences of index spaces. In particular, we see that the
functor Idx is equivalent to Idx ◦B[•] ◦ base. In particular, it factors through the
map base : poSetfilt

f →1. �

In Section 3B we sketch a construction of index spaces for infinite filtered sets,
using the rigidity property as main ingredient.

Three examples for the structure of the pre-index map. In order to shed some light
on the abstract constructions introduced above, we take a look at a few concrete
examples. This serves a purely expository purpose, and we only refer to the results
of this paragraph to illustrate the theory. The first example is a simple lemma
illustrating that the ostensible complexity of the definitions above can be avoided
if C= D.

Example 3.24. Let C be an exact category. Then for every based, filtered, partially
ordered set (I ; x0, . . . , xk), the pre-index map

|FunC(I,C)×| → IdxC,I C∼= K×k
C
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is equivalent to the map

F 7→ (F(x1)− F(x0), . . . , F(xk)− F(xk−1)),

where we view F(xi ) as a point in the K-theory space KC and we use the subtrac-
tion operation stemming from the infinite loop space structure of K-theory spaces
(which is well-defined, up to a contractible space of choices).

This follows directly from the next example, by setting D= C and using the fact
that for every diagram F ∈ FunC(I,C) the maps F(m)/F(xi )−F(m)/F(xi+1) and
F(xi+1)− F(xi ) are naturally homotopic (this follows from the basic properties of
algebraic K-theory).

Example 3.25. Let I be a based, finite, filtered, partially ordered set such that the
k basepoints are pairwise distinct. We denote the unique maximal element of I
by m. Then the pre-index map

|FunC(I,D)×| → K×k
C

can be expressed as

(F(m)/F(x0)− F(m)/F(x1), . . . , F(m)/F(xk−1)− F(m)/F(xk)).

Proof. For the proof we recall the description of the index space IdxC,I given in
terms of admissible trees (see the proof of Lemma 3.13). Let T be the admissible
tree in 0(I ), consisting precisely of the set of edges {ex}x∈I , where ex connects
the point x with the maximal element m. As observed in the proof of Lemma 3.13,
the infinite loop space underlying IdxC,I D, is equivalent to the cofibre of the map
of connective spectra

KE(T1)
C

α
−→ KE(T )

C .

In the homotopy category of spectra this morphism belongs to a distinguished
triangle which can be written as a sum of two distinguished triangles: the first
summand is given by

K
E(T )\{eb0 ,...,ebk }

C → K
E(T )\{eb0 ,...,ebk }

E → 0→6K
E(T )\{eb0 ,...,ebk }

C

and corresponds to the edges in T which do not contain a base point. The second
summand is

KC
1
−−→ Kk+1

C

β
−→ Kk

C→6KC,

where 1 denotes the diagonal inclusion, and β is given by

(x0, . . . , xk) 7→ (x0− x1, . . . , xm−1− xm).

The claim now follows from the definition of the exact functor

FunC(I,D)→ D×C×E(T ) as F 7→ (F(b0), (F(m)/F(x))x∈I\{m}),

where we use the identification E(T )= I \ {m}. �
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Example 3.26. Let I be B[2] with its three basepoints b0, b1, and b2. It contains
three copies of B[1], indexed by the set of unordered pairs of distinct elements
in {b0, b1, b2}. We denote these inclusions by φi j : B[1] → B[2]. For every
F ∈ FunC(I,D), we have a contractible space of homotopies

φ∗01 F +φ∗12 F ' φ∗02 F

in KC
∼= KS1(C)

∼= IdxC,B[1] D.

Proof. We construct these homotopies as homotopies of loops in KC
∼=�|KS•(C)|.

By Corollary 3.16, for every simplicial object M• in poSetfilt
f with k+ 1 basepoints

in level k, we have a map of simplicial spaces

(FunC(M•,D))
×
→ KS•(C).

We apply this observation to the degenerate simplicial object M•, which agrees
with B[k] for k ≤ 2, and satisfies Mk = B[2] for k ≥ 2, with the last basepoint x2

repeated k− 2 times in Mk . In particular, a diagram F gives rise to a 2-simplex of
the left-hand side

•

F

•

φ∗01 F

φ∗02 F
•

φ∗12 F

with boundary faces φ∗01 F , φ∗12 F , and φ∗02 F . Since KS0(C)
∼= 0, every 1-simplex

induces an element of �|KS•(C)|. The geometric realization of this triangle yields
a contractible space of homotopies between the loops φ∗01 F ·φ∗12 F and φ∗02 F . �

The existence of such a homotopy is not surprising. Indeed, passing to K0, this
statement amounts to the simple observation that we have the identity

F(x01)/F(x0)− F(x01)/F(x1)+ F(x12)/F(x1)− F(x12)/F(x2)

= F(x02)/F(x0)− F(x02)/F(x2).

The pre-index provides a natural contractible space of choices for this homotopy.
We return to this at the end of this section.

3B. The index map for Tate objects revisited. We now apply the generalized Wald-
hausen construction to produce a simplicial map

N• Tateel(C)×→ KS•(C) (3.27)
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whose geometric realization is equivalent to the index map. For any elementary
Tate object V , by precomposing (3.27) with the map

B•Aut(V )→ N• Tateel(C)×

we obtain a map of reduced Segal objects in Spaces

B•Aut(V )→ KS•(C)

which encodes the A∞-structure of the index map.
Let poSetfilt denote the category of (possibly infinite) filtered posets I , together

with a choice of basepoints (x0, . . . , xk) ∈ I [k]. Note that we do not impose the
condition that the basepoints are minimal in I .

Definition 3.28. For (I ; x0, . . . , xk) ∈ poSetfilt, and (D,C) ∈ Catpair
ex , we define:

(a) FunC(I,D) is the exact category of functors I → D such that x ≤ y in I is
sent to an admissible monomorphism in C with cokernel in D.

(b) Fun∗C(I,D) as the colimit of exact categories lim
−−→I ′ FunC(I ′,D).

(c) IdxC,I D as the colimit of spaces lim
−−→I ′ IdxC,I ′ D.

Here I ′ ranges over the filtered category of finite based sets (I ′; x0, . . . , xk) together
with a map of based sets (I ′; x0, . . . , xk)→ (I ; x0, . . . , xk) corresponding to id[k].

Just as in the case of finite based sets, these constructions are sufficiently natural
in the pair (D,C) and the based set I . This follows from Lurie’s functoriality of
(co)limits result [2009, Proposition 4.2.2.7], applied to the following setup: Let
S be (the nerve of) the category poSetfilt, and Y → S the constant cartesian fibra-
tion with fibre given by the ∞-category Fun(Catpair

ex , Spaces). Consider the dia-
gram K → S given by (the nerve of) the category poSetfilt

f / poSetfilt together with
the obvious functor to poSetfilt. The functor poSetfilt

f → Fun(Catpair
ex , Spaces) of

Definition 3.12 gives rise to a functor K → Y belonging to a commutative diagram

K //

��

Y

��

S

According to [Lurie 2009, Proposition 4.2.2.7] there exists a functor

S = poSetfilt Idx
−−→ Fun(Catpair

ex , Spaces),

such that for every I∈poSetfilt we have an equivalence IdxI (D,C)∼= lim
−−→I ′/I IdxC,I ′ D,

where I ′∈ poSetfilt
f . We record these observations in the lemma below.
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Lemma 3.29. There exist functors

Fun : poSetfiltop
×Catpair

ex → Catpair
ex ,

Fun∗ : poSetfiltop
×Catpair

ex → Catpair
ex ,

Idx : poSetfiltop
×Catpair

ex → Spaces,

which are compatible with Definition 3.28. Moreover there are natural transforma-
tions

Fun×→ (Fun∗)×→ Idx

extending the canonical one for finite based sets.

Since the category we are taking the colimit over in Definition 3.28 is cofiltered,
and for a morphism I ′→ I ′′ (inducing the identity on base points) the induced
map of index spaces

IdxC,I ′′ D→ IdxC,I ′ D

is an equivalence by Lemma 3.13, we are taking an inverse limit over a cofil-
tered system of equivalences. Hence, we have a canonical equivalence of in-
dex spaces IdxC,I D ∼= IdxC,I ′ D. This implies at once that the rigidity property
(Proposition 3.22) holds as well for objects in poSetfilt.

Definition 3.30. Let Gr•(C)× denote the Grothendieck construction of the functor
Tateel(C)×→ sSet, which sends V ∈Tateel(C)× to the simplicial set of (unordered)
tuples of lattices in Gr(V ), i.e., an n-simplex in Gr•(C)× is given by the data
(V ; L0, . . . , Ln), where V ∈ Tateel(C)×, and each L i denotes a lattice in V .

We construct a morphism

Gr•(C)×• → KS•(C)

which, informally stated, sends (V ; L0, . . . , Lk) to (Gr(V ); L0, . . . , Lk)∈ poSetfilt,
and then computes the index of the tautological diagram Gr(V )→ Proa(C), which
sends L ∈ Gr(V ) to the corresponding Pro-object. To make this rigorous we begin
with a technical observation.

Remark 3.31. The Grothendieck construction (for simplicial sets) turns a simpli-
cial set M• into a category M̃•→1op over the opposite category of finite nonempty
ordinals. We have a canonical equivalence

M•
∼= lim
−−→

M̃•/1op

{•},

where we take a fibrewise colimit (in the∞-category of spaces [Lurie 2009, Section
4.3.1]) on the left-hand side over the constant, singleton-valued diagram indexed
by M̃ .
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We apply this remark to the simplicial set Gr•(V ), where V is a Tate object, in
order to define the following morphism.

Definition 3.32. For V ∈ Tateel(C)×, consider the canonical map

{FunC(Gr(V )×,Proa(C))×}G̃r•(V )→ IdxC,• Pro
a(C)∼= KS•(C).

Precomposing it with the map

Gr•(V )→ FunC(Gr(V ),D)×

which sends (L0, . . . , Lk)∈Grk(V ) to the tautological C-diagram Gr(V )→Proa(C)

of the based set (Gr(V ), L0, . . . , Lk), we obtain a natural transformation of dia-
grams indexed by Tateel(C)×:

{Gr•(V )}Tateel(C)×→ {KS•(C)}.

By virtue of the universal property of colimits (since the right-hand side is a con-
stant diagram), we obtain a morphism

Gr•(C)×→ KS•(C).

3C. Comparison. It remains to verify compatibility of Definition 3.32 with the
index map.

Proposition 3.33. There exists a commutative diagram

Gr≤
•
(C)×

Index ''

// Gr×
•

��

KS•(C)

in the∞-category of simplicial diagrams of spaces.

The proof rests on the following technical lemma.

Lemma 3.34. Let S ∈ poSetfilt be a based filtered set with basepoints (x0, . . . , xn).
We assume that

(a) we have x0 ≤ · · · ≤ xn ,

(b) for s ∈ S we have that if s ≤ xi for i = 0, . . . , n then s = y j for some j with
0≤ j ≤ i ,

(c) there exists y ∈ S such that y ≥ xi for i = 0, . . . , n,

(d) there is a surjective morphism S
φ
−→ S′ of based filtered sets, which contracts

the elements (x0, . . . , xn) to a single point x ∈ S′, and is an equivalence on
S \ {x0, . . . , xn}.

Then the functor φ∗ : FunC(S′,D)→ FunC(S,D) is a left s-filtering embedding (in
the sense of [Schlichting 2004, Definition 1.5]).
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Proof. Let S′→ S be the unique section to φ sending x to xn . There is a natu-
ral transformation φ∗s∗ ↪→ id, which is objectwise an admissible monomorphism.
Moreover, we have a natural isomorphism s∗φ∗ ' (φ ◦ s)∗ ' id. We therefore
conclude that s∗ is the left adjoint to φ∗, and that φ∗ is fully faithful.

If we are given an admissible short exact sequence X ↪→ Y � φ(Z) with
Z ∈ φ∗(FunC(S′,D)) then we may apply the exact functor φ∗s∗ to obtain a short
exact sequence φ∗s∗X ↪→ φ∗s∗Y � φ(Z) in the essential image of φ. The natural
transformation φ∗s∗→ id yields that φ∗ is left special.

It remains to show that φ∗ is left special, by noting that every morphism φ(X)→ Z
factors through an admissible monomorphism φ(X)→ φ(Y ) ↪→ Z . This is pos-
sible since one can define Y = s∗Z , and consider the admissible monomorphism
φ∗s∗(Z) ↪→ Z . �

Theorem 2.10 in [Schlichting 2004] implies the following.

Corollary 3.35. For S and S′ as in Lemma 3.34, there is a natural morphism

KFunC(S,D)/φ∗ FunC(S′,D)→ IdxS,C D,

and in particular we have a commutative diagram of spaces

FunC(S,D)× //

**

(FunC(S,D)/φ∗ FunC(S′,D))×

��

IdxS,C D

Proof of Proposition 3.33. By Definition 3.32, the composition

Gr≤
•
(C)×

•
→ Gr•(C)×• → KS•(C)

is equivalent to the levelwise colimit of the map of constant diagrams

{∗}
G̃r≤• (V )/1op

→{FunC(Gr(V ),Proa(C))×}
G̃r≤• (V )/1op

→{IdxC,Gr• Pro
a(C)}

G̃r≤• (V )/1op
,

where ∗ is sent to the canonical admissible diagram Gr(V )→ Proa(C) sending
L ∈ Gr(V ) to the Pro-object L .

Next we introduce a variant of the construction SB . Let A[n] be the filtered
poset {(x, y) ∈ [n] × [n] | x ≤ y}, ordered lexicographically. It is clear that this
defines a cosimplicial object in the category of filtered posets. For a based poset
(S; x0, . . . , xn), we define S A to be the pushout of posets

S A
= S ∪[n] A[n]

along the map [n] → S given by i 7→ xi , and [n] → A[n] given by the diagonal.
As basepoints we choose ai = (i, 0) ∈ A[n] for 0≤ i ≤ n.
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In the following we use the notation L0 ⊂ · · · ⊂ Lk to denote an element
in Gr≤k (V ). The tautological Gr(V )-diagram extends to Gr(V )A, by sending the
interval (x, y) to L x . For the resulting A[n]-subdiagram, we have an admissible
epimorphism in FunC(A[n],Proa(C)), to the admissible A[n]-diagram obtained by
restricting the admissible [n]-diagram

0 ↪→ L1/L0 ↪→ · · · ↪→ Ln/L0 (3.36)

to the morphism of filtered posets A[n] → [n] given by the projection to the first
component.

The kernel of the admissible epimorphism relating the two diagrams lies in
FunC(A([n])′,Proa(C)). By Corollary 3.35 the above colimit is therefore equiv-
alent to the colimit of constant diagrams

{∗}
G̃r≤• (V )/1op

→ S•C×→ {FunC(A[•],Proa(C))×}
G̃r≤• (V )/1op

→ {IdxC,A[•] Pro
a(C)}

G̃r≤• (V )/1op
.

This shows that the resulting A[n]-subdiagram lies in the image of the functor

S•(C)→ FunC(A[n],Proa(C)).

Assuming this functor is compatible with the equivalence IdxC,• Pro
a(C)∼= KS•(C),

we use the fact that the morphism

Gr≤
•
(V )×→ KS•(C)

factors through the canonical map Gr≤
•
→ S•(C)× to conclude the proof.

In order to establish the required compatibility, we denote by T [n] the based
filtered set, given by n+ 1 basepoints x0, . . . , xn and a unique maximal point m.
There are natural maps T [n]→ A[n] and T [n]→ B[n]. The commutative diagram

FunC(B[•],D)

**

S•C

55

))

FunC(T [•],D)

FunC(A[•],D)

44

of exact categories commutes. It induces a commutative diagram

IdxC,B[•] D
'

))

S•C

' 66

((

IdxC,T [•] D

IdxC,A[•] D
'

55

of equivalences by virtue of rigidity (Proposition 3.22). �
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Choose a representative V for every isomorphism class of elementary Tate ob-
jects, and select a lattice L ∈ Gr(V ). This allows one to define a pseudosimplicial
map of simplicial groupoids

N• Tateel(C)× '
⊔

V∈Tateel(C)/iso

B•Aut(V )
L
−→ Gr•(C)×,

where we view B•Aut(V ) as a discrete simplicial groupoid (i.e., having no non-
trivial morphisms), and where L sends an n-simplex (g1, . . . , gn) ∈ Bn Aut(V )
to (L , g1L , . . . , gn · · · g1L). Note that this map is simplicial away from d0, i.e.,
diL= Ldi for i > 0, and siL= Lsi for all i . The component at ḡ := (g1, . . . , gn)

of the natural isomorphism Ld0
α
−→ d0L is given by

αḡ = (g1, g2g1g−1
2 , . . . , gn · · · g1g−1

2 · · · g
−1
n ) :

(L , g2L , . . . , gn · · · g2L)→ (g1L , g2g1L , . . . , gn · · · g1L).

One can check directly that d0αḡ ◦ αd0 ḡ = αd1 ḡ as required for (L, α) to give a
pseudosimplicial map.

Postcomposing this map with Gr•(C)×→ KS•C of Definition 3.32 we obtain a
morphism of Segal objects

N• Tateel(C)×→ KS•C. (3.37)

Theorem 3.38. The map of A∞-objects Aut(V )→ KC encoded by (3.37) agrees
with the natural A∞-structure obtained by applying� to the map BAut(V )→ BKC.

Proof. We have a morphism of simplicial objects B•Aut(V )→ Gr•(C)×→ KS•C.
We claim that the forgetful map Gr•(C)× → Tateel(C)× is an equivalence after
geometrically realizing. Indeed, by its definition as a Grothendieck construction,
we have an equivalence of spaces

|Gr•(C)×| ' lim
−−→

Tateel(C)×

|Gr•(V )|,

where the colimit on the right-hand side is the colimit in the∞-category of spaces
of the functor

Gr•( – ) : Tateel(C)×→ sSet, V 7→ Gr•(V ).

Let {•} denote the constant diagram

{•} : Tateel(C)×→ sSet, V 7→10

and consider the map to the constant diagram Gr•( – ) → {•}. After geometri-
cally realizing, this gives a pointwise equivalence of diagrams; indeed, for any
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V ∈ Tateel(C)×, the simplicial set Gr•(V ) is 0-coskeletal, which implies that the
map Gr•(V )→10 is a trivial fibration. Therefore,

|Gr•(C)×| ' lim
−−→

Tateel(C)×

|Gr•(V )| ' lim
−−→

Tateel(C)×

{•}' |Tateel(C)×|

as claimed.
We now show that the geometric realization of the map L is homotopy inverse

to this map. Denote by Bcss
•

Tateel(C)× the complete Segal space associated to the
groupoid Tateel(C)×, i.e.,

Bcss
n Tateel(C)× := Fun([n],Tateel(C)×)×.

Recall the adjunctions
p∗j : sSet� ssSet : ι∗j

for j = 1, 2 (see the Appendix). Observe that the inclusion of horizontal and
vertical 0-simplices give canonical maps

p∗j N• Tateel(C)×→ Bcss
•

Tateel(C)×

for j = 1, 2. For j = 1, this is an equivalence of complete Segal spaces by [Joyal and
Tierney 2007, Theorem 4.11] (it is the co-unit for the Quillen equivalence p∗1 a ι

∗

1;
see the Appendix). By Lemma A.3, these two inclusions become equivalent after
applying the functor

t! : ssSet→ sSet

(see again the Appendix). By [Joyal and Tierney 2007, Theorem 4.12], t! is a
Quillen equivalence from the model structure for complete Segal spaces to the
model structure for quasicategories. By Corollary A.4, we conclude that the two
inclusions, viewed as a zigzag from Tateel(C)× to itself, are canonically equal to
the identity.

The pseudosimplicial map L extends (along the inclusion of vertical 0-simplices
N• Tateel(C)×→ Bcss

•
Tateel(C)×) to a pseudosimplicial map of simplicial groupoids

Bcss
•

Tateel(C)×
L
−→ Gr•(C)×

where concretely, L is given on objects by the formula above. On morphisms, L
is given by

L((g1, . . . , gn)
(h0,...,hn)
−−−−−−→ (h1g1h−1

0 , . . . , hngnh−1
n−1))= (L , g1L , . . . , gn · · · g1L)

(1,h1g1h−1
0 g−1

1 ,...,hn(gn ···g1)h−1
0 (gn ···g1)

−1)
−−−−−−−−−−−−−−−−−−−−−−−−−→ (L , h1g1h−1

0 L , . . . , hngn · · · g1h−1
0 L).
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One can check that α as above defines a natural transformation α : d0L→ Ld0. By
inspection, the composition

p∗2 N• Tateel(C)×→ Bcss
•

Tateel(C)×
L
−→ Gr•(C)×→ Tateel(C)×

is the identity. By the above, the maps

p∗j N• Tateel(C)×→ Bcss
•

Tateel(C)×
L
−→ Gr•(C)×

are canonically equivalent for j = 1, 2; in particular, the map

L : N• Tateel(C)×→ Gr•(C)×

is canonically inverse to the equivalence

Gr•(C)×→ Tateel(C)×

as claimed.
According to Proposition 3.33, the geometric realization of the chain of maps

N•Aut(V )
L
−→ Gr•(C)×→ KS•(C)

is therefore equivalent to the index map

BAut(V )
Index
−−−→ BKC.

Theorem 5.2.6.15 of [Lurie 2017] implies that geometric realization induces an
equivalence between the∞-category of Segal objects X• with X0 contractible, and
the∞-category of connected pointed spaces. This shows that the A∞-structure we
defined above agrees with the one which naturally lives on the index map. �

Appendix

In this appendix, we recall basic facts about complete Segal spaces and groupoids.
Let C be a category. Let Bcss

•
C be the associated complete Segal space, i.e.,

Bcss
n C= | Fun([n],C)×|.

For definiteness of notation, we view a complete Segal space as a bisimplicial set,
with the simplicial direction horizontal, and the spaces given by the columns, e.g.,

(Bcss
•

C)m,n := Nn Fun([m],C)×.

Recall the Quillen equivalence

t! : ssSet� sSet : t !

of [Joyal and Tierney 2007, Section 2 and Theorem 4.12] from the Rezk model
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structure (for complete Segal spaces) on ssSet to the Joyal model structure (for
quasicategories) on sSet. By definition,

t!([m]× [n]) :=1m
×1′[n],

where 1′[n] denotes the nerve of the groupoid freely generated by the category [n].
In general, t! is the left Kan extension of t! along the Yoneda embedding, while t !

is the functor
(t !X)m,n := homsSet(1

m
×1′[n], X).

Recall also the projections and inclusions

ι j :1→1×1 : p j ,

where 1 is the ordinal category and j = 1, 2. We denote the associated functors

p∗j : sSet→ ssSet : ι∗j .

Then p∗j a ι
∗

j for j = 1, 2. By [Joyal and Tierney 2007, Theorem 4.11], p∗1 a ι
∗

1
is also a Quillen equivalence from the Rezk model structure (for complete Segal
spaces) on ssSet to the Joyal model structure (for quasicategories) on sSet.

Lemma A.1. For a category C, with nerve NC, there is a natural isomorphism of
bisimplicial sets

Bcss
•

C∼= t !NC.

Proof. By definition,

(Bcss
•

C)m,n := Nn Fun([m],C)× = ob Fun([m]×1′[n],C).

Further, because the nerve preserves products and gives a fully faithful embedding
of the category of categories into the category of simplicial sets, the right-hand side
is naturally isomorphic to

homsSet(1
m
×1′[n], NC)= (t !NC). �

Lemma A.2. For a category C with core C×, there exist natural isomorphisms

NC∼= ι∗1t !NC, NC× ∼= ι∗2t !NC, NC× ∼= t! p∗2 NC×.

Proof. The first statement is immediate from the definitions, and in fact holds for
any simplicial set X . For the second, by definition,

(ι∗2t !NC)n = homsSet(1[0]×1′[n], NC)

∼= homsSet(1
′
[n], NC)

∼= homsSet(1
′
[n], NC×)

∼= homsSet(1
n, NC×)= NnC

×.
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The second claim follows from the first by the uniqueness of adjoints. Concretely,
we restrict the adjunction

t! p∗2 a ι
∗

2t !

to the full subcategories of (nerves of) groupoids in sSet and (Rezk nerves of)
groupoids in ssSet. Then the above shows that after restricting to groupoids, ι∗2t !∼= 1;
therefore, the left adjoints, i.e., t! p∗2 and 1, are also isomorphic. �

Let εt : t!t !⇒ 1 denote the co-unit of the adjunction t! a t !. For a bisimplicial set
X•,•, let ε2 : p∗2 ι

∗

2 X ↪→ X denote the inclusion of horizontal 0-simplices, i.e., the
co-unit of the adjunction p∗2 a ι

∗

2.

Lemma A.3. Let G be a groupoid. Then the compositions

NG
∼=
−→ t! p∗2 NG

∼=
−→ t! p∗2 ι

∗

2t !NG t!ε2
−−→ t!t !NG = t!Bcss

•
G εt
−→ NG

and

NG
∼=
−→ t! p∗1 NG

∼=
−→ t! p∗1 ι

∗

1t !NG t!ε1
−−→ t!t !NG = t!Bcss

•
G εt
−→ NG

are the identity. In particular, the two maps

NG
∼=
−→ t! p∗j NG

∼=
−→ t! p∗j ι

∗

j t
!NG

t!ε j
−−→ t!t !NG

for j = 1, 2 are canonically equivalent.

Proof. For the first, by the adjunction t! a t !, it suffices to prove that

p∗2 NG
∼=
−−→ p∗2 ι

∗

2t !NG
ε2,t !
−−−→ t !NG 1

−→ t !NG

is the inclusion of horizontal 0-simplices. But this follows immediately from
Lemma A.2. Similarly, for the second, it suffices to prove that

p∗1 NG
∼=
−−→ p∗1 ι

∗

1t !NG ε!
−→ t !NG 1

−→ t !NG

is the inclusion of vertical 0-simplices. But this follows by inspection. For the last
claim, the two maps are each (strict) inverses of the weak equivalence εt ; the claim
follows. �

Corollary A.4. Let G be a groupoid. Then t! takes the zigzag of weak equivalences

p∗2 NG→ t !NG← p∗1 NG

to the identity.

Proof. By Lemma A.3, t! applied to both maps gives ε−1
t . This is equivalent to the

identity via the map of spans
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NG
ε−1

t
//

1
��

t!t !NG

εt

��

NG
ε−1

t
oo

1
��

NG 1
// NG NG1

oo

and the result follows. �
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