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Abstract—With the explosive rate of data growth, the limited
scalability of the DRAM technology defies the performance
potentials for in-memory applications. Fortunately, emerging
non-volatile memory (NVM) technologies, such as Phase-Change
Memory (PCM) and Memristor, are promising candidates for
replacing DRAM. Emerging NVMs are very dense, hence promise
large capacities. Additionally, NVMs are non-volatile, thus enable
persistent applications and byte-addressable files. Both density
and persistency are key enablers for in-memory applications.
On the other side, emerging NVMs are slower than DRAM, thus
optimizing for locality and avoiding contentions are key aspects
to unlock the NVM performance.

In this paper, we study the impact of memory contentions and
architecture-oblivious implementations on the performance of
sampling based in-memory approximation. Sampling has become
an imperative technique used to accelerate big data processing,
especially in today’s emerging in-memory computing. However,
we observe multiple times slow-down for nave and default
implementations of in-memory data sampling. Accordingly, we
propose ArchSampler, an architecture-aware sampling library.
The main idea is to exploits the free choice of data samples
to dynamically select which bank as a host to serve memory
requests. Hence, ArchSampler enables efficient and high per-
forming sampling through employing its knowledge of the NVM
architectural details to maximize data locality and avoiding inter-
thread contentions. Our evaluation shows that ArchSampler can
achieve up to 1.62 speed up (1.20 on average) for different in-
memory applications.

I. INTRODUCTION

Emerging Non-Volatile Memory (NVM) technologies, such

as Phase-Change Memory (PCM)[1], [2] and Memristor[3],

are promising candidates for building future memory

systems[1]. Compared to DRAM, emerging NVMs promise

high densities, near-zero idle power, and persistent applica-

tions. While orders of magnitude faster, similar to flash-based

Solid-State Drives (SSDs), emerging NVMs enable persistent

data storage, hence allow hosting filesystems and persistent

data applications. Accordingly, applications that process a

large number of persistent files, such as in-memory database

systems and big data applications, are expected to benefit

heavily from the deployment of emerging NVMs. Given the

high density of emerging NVMs, it is possible to completely

host the filesystem, hence all the files, instead of having them

frequently swapped in and out between the memory and a

much slower storage device, e.g., SSDs.

In many cases, instead of completely processing all data, it

is sufficient to do sampling to infer key characteristics about

the data. Sampling has been proven to be an efficient yet accu-

rate way to solve real-world problems[4], [5]. For instance, in

a recent work [5], the authors find that sampling only 10% of

the original data set can be done with less than 5% accuracy

loss for major data analytics applications. We expect sampling

applications to become more common with emerging NVMs,

given the huge amount of data NVMs can host. With SSDs,

sampling is typically done through obtaining samples from

a huge file, copy them to main memory (e.g., DRAM), and

finally process them.The sampling process involves accessing

slow SSD drives, and copying the data to DRAM. A process

that can waste tens of microseconds for each sample.

Future systems with NVM-based main memories can di-

rectly host huge files, hence enable in-place sampling and

processing of files’ data. Recent Linux implementations of

filesystems started to support Direct-Access for Files (DAX)

to facilitate direct accesses to NVM-hosted filesystems [6].

Figure 1 depicts sampling and processing data in future NVM-

based main memory systems. As mentioned earlier, given the

huge amount of data NVMs can store, processing all the data

of the files can be replaced with fast NVM sampling. On the

other side, since emerging NVMs have small latencies, the

contention of accesses on the memory can incur significant

overheads. The contentions could result from unbalanced

accesses to the NVM memory banks and row buffer conflicts.

Compared to DRAM, this overhead is much more significant;

the actual NVM access latency incurred due to row buffer

conflicts is multiple of times higher than DRAM, however,

row buffer hits are as fast as DRAM. Moreover, the data

sampling on NVM will generate more random memory request

which in turn reduces row buffer hits. Our evaluation shows

that the performance overhead of internal NVM contentions

can reach up to 39%. Fortunately, we observe that sampling

applications can exploit their inherent data choice liberty to

more efficiently utilize the internal architecture of emerging

NVM technologies.

In this paper, we propose ArchSampler, a software frame-

work library that enables architecture-aware data sampling.

We discuss the design, challenges, and potentials for this type

of abstractions. ArchSampler primarily achieves two main

objectives. First, reducing the unbalanced load on different

NVM banks. Second, maximizing the row buffer locality on

each bank by reducing bank conflicts. Unfortunately, there is

a lack of work that aims for architecture-awareness in data
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Fig. 1: Data sampling on systems with NVM-based main

memories.

sampling applications. To the best of our knowledge, this is the

first work to propose architecture-aware sampling framework

for emerging NVM technologies. We strongly believe that this

work serves as a first step towards hardware-awareness in big

data applications.

To evaluate ArchSampler, we use the Structural Simulation

Toolkit (SST)[7], a widely-used detailed architectural simu-

lator. We run several data sampling algorithms derived from

real-world applications. Our results show that ArchSampler

can improve the performance of the default implementations

by up to 1.62 (1.20 on average).

The rest of the paper is organized as follows. First, in

Section II, we present an overview of the architecture of

emerging NVM technologies and briefly introduce the state-

of-the-art sampling techniques. We additionally quantify the

overhead of architecture-oblivious implementations. Section

III details the design and implementation of ArchSampler.

Later, in Section IV, we start with discussing our evaluation

methodology and the workloads. Later, we evaluate Arch-

Sampler, discuss its potentials and compare with architecture-

oblivious implementations. Finally, we conclude our work in

Section V.

II. MOTIVATION AND ANALYSIS

In this section, we motivate our bank-aware data approx-

imation approach by showing how applications sampling on

NVMs will cause more interference than other applications,

and how leveraging the “inherent data choices” of data sam-

pling in bank selection can ameliorate this problem.

To enable scale-out data analysis, the data analysis frame-

works usually slice the data into multiple splits and use shared-

nothing threads to process that data in parallel [8].Complex

data analytics jobs or queries are then translated into multiple

iterations of the map, reduce and join operations. In addition,

data sampling techniques are nowadays widely adopted to

shrink the input data and generate fast and approximate results.

Because of this, the improved processing performance of

sampling plays a key role in responsive analytics jobs.

NVM-Based memories are logically organized as groups of

banks within single or multiple ranks. NVM banks can service

memory requests in parallel. Bank-level Parallelism (BLP) is

used to mask the latency of accessing memory through servic-

ing memory requests in parallel. However, suboptimal access

patterns can result in contention and unbalanced loads among
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Fig. 2: Conventional Random Sampling.
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Sampling.

banks. Therefore, the performance of NVMs is sensitive to the

data access pattern.

Data analytics applications retrieve and process results from

large sets of data. Thus, the overall load imbalance issue

between banks is usually not significant in these applications.

This relies on the fact that larger datasets can be more

easily stripped out to banks evenly. However, as shown in

Figure 2, in the case of sampling, it is more likely that the

workloads data will be skewed among the banks because of

the randomness in memory requests. Moreover, when doing

parallel data processing, multiple threads may compete for

the same bank, resulting in performance degradation. Figure 3

shows a conceptual example that applications submit all the

data to ArchSampler. The ArchSampler then leverage the

multiple choices in sampling and the architecture information

to balance the workloads in each bank and avoid thread stall.

In the following, we will analyze the problem of conventional

random sampling when NVMs are involved.

Load Balancing: In the scope of our paper, load balancing

can be defined as the ability to evenly distribute concurrent

memory requests among memory banks. The amount of load

imbalance depends heavily on the type of application:

Content-independent applications: In these applications, the

access to data usually has nothing to do with the content. The
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MIN, COUNT, AVG, SUM, PERCENTILES, and MAX are

the most popular functions [4]. These functions traverse all

the selected data to deliver an aggregated result. Thus, the

size of the input data plays a key role in determining the

workloads. In Figure 4, we perform random data sampling

while fixing the maximum number of rows sampled from one

bank and the average number of rows need to be sampled. The

results show that, as the sampling ratio goes smaller, the load

imbalance issue will become more severe. Unfortunately, it is

common for sampling based data analysis to use a sampling

ratio smaller than 2% [9], [10].
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Fig. 4: Workload imbalance issue (Skew factor = max/avg

NVM rows requested from banks).
Content-dependent applications: In these applications, such

as sorting and graph-processing, the access to data are greatly

determined by the content to be processed. As a result, even

processing the same size of the input data may requires a

different amount of time. Among these, perfectly balancing

the load is usually impractical. Data sampling technique is

used to get a fast estimation of the content distribution, e.g.

sampling sorting and graph sampling [11]. Then, a relatively

more balanced data partition strategy can be performed.
Contention: In order to leverage multi-core CPUs, shared-

nothing software architectures are widely used, with the expec-

tation that no contention or data racing will occur among the

threads. However, when multiple threads compete on accessing

data on similar banks, banks’ row buffers become less efficient

and many requests are serialized due to bank conflicts. Accord-

ingly, the overall performance can be significantly degraded

when contentions occur frequently. In Figure 5, we did the

computational analysis for the possibility of contention issue.

The results show that, when the sampling ratio is lower than

10%, up to 60% of the memory request will be blocked.

(a) Sampling Ratio 100%. (b) Sampling Ratio 10%.
Fig. 5: Percentage of tasks been blocked due to bank-level

I/O contentions.

In summary, our key strategy in this work is to perform 1

load balanced data sampling where samples are picked from

specific banks 2 contention-free task scheduling where each

thread accesses only a specific set of banks.

III. DESIGN AND OPTIMIZATIONS

In this section, we discuss our design of ArchSampler

along with the challenges, requirements and the potential

optimizations.

A. Load-balanced Sampling

In order to leverage the parallelism among banks, applica-

tions need to distribute the requests to the memory as evenly

as possible, especially for the more time-consuming write

requests. In this way, each bank is equally busy as others.

Therefore, we need to create a bank-aware data selection and

memory allocation scheme that balances the load distribution

and achieves efficient resource usage.

As explained earlier in Section II, balancing the load

among banks is highly dependent on the type of application.

Accordingly, ArchSampler implements key sampling function-

alities that can be used for various types of applications. In

the following, we describe how each of such key sampling

functionalities is designed and implemented for approximative

query.

To balance the load of a simple approximative query, an

equal amount of data from each bank should be selected.

The sampling-based approximation is flexible on which data

should be selected as samples. While doing uniform random

sampling is the most obvious way to do the approximation,

there is no guarantee that the load will be evenly distributed

across banks. To optimally balance the load, we restrict the

amount of data to be selected from each bank. At first glance,

such biased sampling is expected to affect the accuracy of

approximation; however, we find that ArchSampler’s ability to

freely choose data within banks can achieve sufficient coverage

and selection diversity. In fact, in most of our experiments,

ArchSampler provides similar accuracy to uniform sampling,

and even slightly better accuracy in some cases due to the

increased diversity of samples.

To enable balanced sampling, we do the following. 1 We

split the input data into partitions, each equal to the size of the

memory row. 2 We group these partitions according to their

bank IDs. 3 A sampling function is initiated for each bank

and an equal number of partitions is then selected randomly.

As a result, the potential hot spots on banks can be avoided. In

a heterogeneous system, i.e., a system with multiple memory

technologies, the number of sampled partitions can also be

weighted by the performance of banks.

B. Contention-free Threading

Shared-nothing architecture is widely used in data parallel

analysis frameworks. The parallel threads execute tasks that

are assigned to them without any locking requirements to avoid

data races. The communication between threads is explicitly

done at the synchronization step, typically wrapped by a

reduce or a join functions. Thus, each data partition is accessed

by no more than one thread. However, in contemporary design,

applications have no way to get the bank information of the

allocated memory. The data to be accessed by the threads will

span multiple banks. Because of this, multiple threads may
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Fig. 6: Overview of ArchSampler framework.

have contention if they request data on the same bank at the

same time.

To mitigate the contention issue, we restrict the partitions

assigned to one thread to span only one bank. In case we

have T threads and N banks (both T and N are in power

of 2). The strategy is straightforward if T is equal to N .

However, in case T is less than N , each thread is assigned

data from N/T banks. In contrast, if T is larger than N , there

is no way to completely avoid the bank contentions between

threads; however, we minimize the contention by restricting

the maximum number of threads map to each bank to only

T/N threads. Given that modern DIMMs come typically with

32 banks, while modern processor sockets have only 8-16

cores, the latest case is rare. In the case of multi-socket

systems, it is typical to attach DIMMs to each processor

socket, thus ArchSampler can assign the threads of each socket

to the banks of the local (close) memory.

C. Bootstrap Error Estimation

The results of sampling-based approximation are affected

by noise and sampling errors. To address this issue, the

least efficient way would be through collecting more samples.

However, this can hinder the responsiveness of the analysis

tasks and is not always practical. To assess the quality of the

estimation and give error bars with confidence, we need to de-

termine how the results are distributed. Bootstrap resampling

is one of the most common methods to draw the empirical

distribution for data to be sampled by using the data itself [12].

Because of its simplicity and effectiveness, it can be used in

almost any type of data and application [13], [4].

To get the approximation and the error bar with x%

confidence interval, the process of bootstrap resampling is

generally as follows. First, resample the data set several times

to obtain different approximate results. Second, trim 1−x
2 % of

the approximate results from the lower and upper ends. For

example, when sampling data 10 times to obtain approximate

results with 80% confidence, we trim the most and least

significant results. Finally, after excluding the results from

the previous step, we find the summary of the statistics by

calculating the mean, minimum and maximum values.

D. IMPLEMENTATION: PUTTING IT ALL TOGETHER

To better understand how ArchSampler can be used by

applications, Figure 6 depicts the flow of an application using

ArchSampler. ArchSampler framework takes an architecture

specification file as an input. The ArchSampler library can

be provided with the specifications file path. The architectural

specifications can include information such as the number of

banks, the number of ranks, row buffer size and the number

of NUMA domains. Note that such architecture specification

files are common in state-of-the-art frameworks and libraries.

For instance, the Message Passing Interface (MPI) library

maintains a system configuration file that is used to optimize

the processes’ assignment to cores. Typically, the memory con-

figurations are recognized at the time of boot up. For instance,

in the BIOS setup wizard, the user can specify the memory

mapping, interleaving and read the different memory controller

timing parameters. However, another approach will be through

micro-benchmarks to quickly identify the configurations.

The memory specification file is used by ArchSampler

to identify the data partitioning scheme that achieves load

balancing and minimizes threads contention. An application

can directly call the ArchSampler framework to do sampling

functionalities, such as approximative query and graph sam-

pling. ArchSampler is a multi-threaded library that abstracts

the complexity of bank-aware load-balanced and contention-

free sampling from the programmer. Modern data analytics

applications can be ported to use ArchSampler to do efficient

sampling.

Applications can repeatedly call ArchSampler to re-sample

the dataset in case the original dataset is being frequently

updated, or repeatedly do re-sampling until an acceptable error

is achieved.

IV. EVALUATION

In this section, we first introduce our experimental method-

ology, including the workloads and the simulator assumptions.

We then present the evaluation and analysis.

A. Methodology

To evaluate our design, we use the Structural Simulation

Toolkit (SST) [7], a widely-used detailed architectural simu-

lator. SST provides detailed timing models for the memory

system and other major architectural components (processors,

caches, memory). Most importantly, SST has an integrated

detailed model for modern NVM-Based DIMMs, Messier [14],

that we use as our main memory. In our evaluation, we use

SST’s Ariel component for emulating an x86 processor. We
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model a three-level cache hierarchy with 32KB L1, 256KB L2

and a 2MB shared L3 cache. For the main memory, we model

a 16GB PCM-based DIMM (Messier component). Messier

models in detail the asymmetric PCM read/write latencies, row

buffers, write buffers’ threshold-based flushing, and power-

constrained writes to PCM banks. We use a typical 8KB row

buffer size. We vary the number of banks for most of the

experiments. However, we use 32 banks by default. For the

PCM read latency, similar to recent studies [15], [16], we use

150ns as our default latency. For PCM write latency, similar

to [17], we use 500ns write latency of PCM cells. Table I

shows the detailed configuration of the simulator. Our choice

of using SST allows us to run simulations with reasonable

speed while modeling all important aspects with sufficient

details. Accordingly, we could run all of our benchmarks from

start until completion.

Parameter and Configuration

Processor 8 cores

Core 2GHz, 3 issue/cycle
16 max. outstanding memory requests

Clock 2GHz

I/D L1 cache 32KiB, 4 cycles latency

L2 cache 256KiB, 6 cycles latency

L3 cache 2MB 12 cycles latency

Memory Size 16GB

Number of banks 4, 8, 16, 32

Read latency (tRCD) 50ns, 150ns, 250ns, 350ns, 450ns
(100, 300, 500, 700, 900 cycles)

Row buffer hit (tCL) 15ns

Write latency 500 ns (1000 cycles)

Scheduler FR-FCFS prioritizing row buffer hits

TABLE I: Simulated system configuration.

To mimic real-world sampling applications, we devel-

oped standalone multi-threaded microbenchmarks. Our im-

plemented microbenchmarks resemble real-world workloads,

such as word-count, calculate the average rating and finding

the elements with the highest average rating on Amazon

reviews and rating datasets[18], [19]. We also study two syn-

thetic reads and write workloads. A complete list of workloads

and the corresponding algorithm and dataset are shown in

Table II.

At the beginning of each application, a large memory space

is allocated (using malloc) and used to mimic a memory-

mapped region from a directly-accessible file, i.e., DAX-based

file. In future NVM-based systems, files’ data can be accessed

directly through the memory bus through a simple mmap call at

the beginning of the application. The only difference between

the behavior of malloc (what we use) and DAX-based mmap

(what NVM-based files use) is the behavior of the initial page

faults of the pages; DAX faults will be handled partially by

the filesystem layer. To avoid the impact of such variance,

we exclude the page initialization stage from the execution

time through starting simulation after initializing the malloc’ed

region.

The addresses allocated by malloc are virtual addresses

as seen by the program. As our algorithms work in close

coordination with the banks’ information, we use the vir-

tual addresses returned by malloc requests to produce the

banks’ information; since we have 64B cachelines and the

smallest page size is 4KB, the bits used for indexing maps

(bits 6 to 10) falls within the page offset that is similar to

the physical address. Note that this is the case for page-

aligned allocations typical in filesystems’ files. Note that our

assumption of the sufficiency of virtual address holds upon two

key requirements: page-aligned files and having a number of

banks that can be indexed through the remaining bits of the

page offset, i.e., up to 64 banks. If any of those conditions are

not met, ArchSampler needs to be exposed explicitly to the

virtual-to-physical mappings to efficiently allow bank-aware

placement of samples. Such information can be furnished to

ArchSampler through a system call; however, given the current

trends of using 16-32 memory banks, we do not expect to have

more than 64 banks. Furthermore, given the trend of using

huge pages (2MB or 1GB) with NVM systems, we expect a

negligible overhead to retrieve such mappings.

Application Algorithm Datasets
Word Count Sum Review text

Average Rating Average Review rating

Synthetic read Synthetic NONE

Synthetic write Synthetic NONE

TABLE II: List of evaluated applications.

The main memory (PCM) is logically divided into rows,

with each row is equal to the size of the row buffer (typically

8KB). These rows are mapped to the banks to exploit row

buffer locality for the accesses of open row/page. ArchSam-

pler logically splits the allocated memory into rows, and

later assigns each row a unique number, starting from 0 to

(memorysize/rowsize)−1. The rows are mapped to banks in

a round-robin fashion. Thus, in order to get the corresponding

bank from a row number, we use row%numberofbanks.

Before the test algorithm of the benchmark application is

triggered, ArchSampler is called to spawn threads in which

each thread is assigned a set of rows to work on. We have

implemented different ways in which these rows are assigned

to threads:

Bank-aware contention-free sampling (ArchSampler): In

this assignment, each thread is assigned a set of rows that

belong to the same bank. For example, if we have a 4 banks,

4 threads and 16 rows scenario, thread-0 will be assigned rows

0, 4, 8 and 12, whereas thread-1 will be assigned rows 1, 5,

9 and 13 and so on. Meanwhile, thread-2 will be assigned

the rows 2, 6, 10 and 14, while thread-3 will be assigned the

rows 3, 7, 11 and 15. Therefore, due to this arrangement, no

thread conflicts with other threads on requesting data from the

same bank, i.e., thread-0 generates requests pertain to bank-0

only, thread-1 to bank-1, thread-2 to bank-2 and so on. Thus,

achieving true parallelism. We consider this the best case.

Load-balanced sampling: In this scheme, each sampling

task is assigned an equal number of rows from each bank,

hence balancing the loads across memory banks. Although

this scheme can accomplish a fairly equal distribution of rows

across threads, the sampling tasks from different threads can

compete on the same bank resulting severe contentions.
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Random sampling: The rows are selected and assigned to

the threads in a random fashion without considering banks

information and maintaining equal bank distributions. We

consider this as the average case scenario and its performance

can vary widely.

Bank-aware contended sampling (Synthetic Worst): In

contrast with the other schemes, this scheme is synthetically

designed to generate the worst-case scenario. This scheme has

all the threads competing to access the same bank at the same

time, thus resulting in a heavy contention.

Once the threads are assigned the rows work on, we choose

a sample size to work on and the benchmark algorithm is

executed. All of our experiments are conducted on a 6-core

Xeon server with 64GB memory. For the simulated PCM

memory, the size configured to be 16GB and the number of

banks is varied from 4 to 32.

B. Analysis and Discussion

To quantify the performance improvements ArchSampler

can achieve, we start with analyzing the content-independent

applications, such as estimating the WordCount and Average

Rating for the Amazon review dataset. We then show the

results for the synthetic read and write workloads and study the

load imbalance issue. Finally, we study the content-dependent

applications, such as graph processing.
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Fig. 7: Results of WordCount under different sampling ratio.

(L. S.: Load-balanced sampling with estimated error bound, R.

S.: random sampling with estimated error bound, L. S. Error:

error rate of load-balanced sampling, R. S. Error: error rate of

random sampling.)

1) Approximate Accuracy: In this subsection, we focus

on investigating the impact of bank-aware sampling on the

accuracy of the used approximative sampling techniques. In

the baseline approach, we use a uniform random sample

strategy where the data is randomly selected regardless of

its position. In contrast, the bank-aware sampling explicitly

selects equal amount of data from each bank. We study

two real word applications: WordCount and average rating.

In the WordCount application, we count the appearance of

a given word in the Amazon review text file, whereas, in

the Average Rating application, we calculate the average

rating of the Amazon movie rating dataset. At first glance,

we would expect biased bank-aware sampling to negatively

impact the accuracy of estimated results. However, in Figure 7

and Figure 8, the results show that the bank-aware sampling
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Fig. 8: Results of Average Rating under different sampling

ratio.

achieves approximative results that are within a smaller error

bound. Specifically, the error rate from the result of bank-

aware sampling to the accurate result is 33 − 43% smaller

compared to the random sampling when the sampling ratio

is 2%. This is due to ArchSampler’s segmented sampling

increased diversity of samples [20].

2) Performance of Approximate Query: To quantify the

potentials of ArchSampler, we study its impact on the per-

formance of approximate queries. The approximate query

includes a variety of applications, such as SUM, COUNT,

MAX, MIN, AVERAGE. In this part, we select 2 typical

applications: WordCount for unstructured Amazon review text

file and getting Average Rating for structured Amazon rating

dataset. To investigate the impact of the number of banks on

ArchSampler, we also vary the number of banks from 4 to

32, increasing by multiples of 2. Moreover, since different

applications and datasets can tolerate varying levels of error,

we vary the sampling ratio from 2� to 32�, increasing by

multiples of 2.

In our experiments, we compare the four sampling and task

scheduling schemes previously discussed in Section IV-A. In

ArchSampler, we use bank-aware sampling and contention-

free task scheduling scheme. To study the effect of contention-

free threading, we then use a random task assignment scheme

after doing the bank-aware sampling. In the random sampling,

we select the data and schedule the tasks randomly. Be-

cause the performance of random sampling has high variance

compared to other schemes, we repeat its runs for 10 times

and collect the average, minimum and maximum values. In

the synthetic worst-case study, we managed to make all the

requests go to the same bank so that in theory we get the

worst performance. For all of our experiments, we report the

execution time and total memory latency as shown in Figures

9, 10 and 11. In order to place the data in one chart, we plot

the execution time using normalized data and plot the total

memory latency using a logarithmic scale.

Figure 9 shows the normalized execution time for Word-

Count. The results show that ArchSampler can reduce the

execution time by up to 38.4%, with the potential for an

average of 16.9%, compared to the synthetic worst-case. When

compared to the random sampling, ArchSampler can reduce

the execution time by up to 15.1%, with the potential for an

average of 6.2%. Figure 10 shows the latency summation of

263



b4
-s

2

b4
-s

4

b4
-s

8

b4
-s

16

b4
-s

32

b8
-s

2

b8
-s

4

b8
-s

8

b8
-s

16

b8
-s

32

b1
6-

s2

b1
6-

s4

b1
6-

s8

b1
6-

s1
6

b1
6-

s3
2

b3
2-

s2

b3
2-

s4

b3
2-

s8

b3
2-

s1
6

b3
2-

s3
2

0.6
0.7
0.8
0.9
1

R
u
n
ti

m
e

ArchSampler Load-balanced Random (MIN) Random (AVG) Random (MAX) Synthetic Worst

Fig. 9: Normalized Runtime performance of WordCount. Note the performance is normalized to the synthetic worst case. bn[n

= 4, 8, 16, 32] represent n number of banks. sm[m= 2, 4, 8, 16, 32] represent m� sampling ratio.
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Fig. 10: Latency of WordCount. Note the Latency is in logarithmic scale. bn[n = 4, 8, 16, 32] represent n number of banks.

sm[m= 2, 4, 8, 16, 32] represent m� sampling ratio.
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Fig. 11: Normalized Runtime performance of Avg. Rating. Note the performance is normalized to the synthetic worst case.

bn[n = 4, 8, 16, 32] represent n number of banks. sm[m= 2, 4, 8, 16, 32] represent m� sampling ratio.
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Fig. 12: Latency of Avg. Rating. Note the Latency is in logarithmic scale. bn[n = 4, 8, 16, 32] represent n number of banks.

sm[m= 2, 4, 8, 16, 32] represent m� sampling ratio.

the memory accesses for WordCount. The results show that

ArchSampler can reduce the total memory latency by up to

97.4%, with the potential for an average of 76.5%, compared

to the synthetic worst case. Compared to the random sampling,

ArchSampler can reduce the memory latency by up to 60.5%,

with the potential for an average of 40.7%.

For Average Rating, we also study the impact of ArchSam-

pler on the execution time and memory latency. Figure 11

shows the normalized execution time for the different sampling

schemes. The results show that ArchSampler can reduce the

execution time by up to 28.9%, with the potential for an

average of 14.1%, comparing to the synthetic worst case.

While comparing to the random sampling, ArchSampler can

reduce the execution time by up to 13.4%, with the potential

for an average of 6.8%. Figure 12 shows the sum of the

memory latency for Average Rating. The results show that

ArchSampler can reduce the total memory latency by up to

83.9%, with the potential for an average of 80.6%, comparing

to the synthetic worst case. While comparing to the random

sampling, ArchSampler can reduce the total memory latency

by up to 47.2%, with the potential for an average of 22.3%.

3) Load-balance Issues: To study the load imbalance issue,

we have developed and tested synthetic read/write workloads.

The synthetic workloads perform read/write operations on all

the sampled memory rows. Figure 13 shows the execution

time of the synthetic workloads. We collect the results by

calculating the average performance of 10 complete runs. As

we can observe from Figure 13, ArchSampler can achieve up

to 1.59 speed up (1.32 on average) for read workloads and

up to 1.67 speed up (1.38 on average) for write workloads
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at various sampling ratios. Figure 14 shows the number of

memory requests served by each bank while using 4% sam-

pling ratio for various synthetic workloads. The results show

that ArchSampling can reduce the maximum load of banks

by 21.1% to 32.4% compared to random sampling (26.4% on

average).

V. CONCLUSION

We have presented ArchSampler, a sampling-based par-

allel data approximate framework for future systems that

are equipped with NVM-based main memories. ArchSampler

leverages the in-memory data layout to reduce the potential

imbalance in accessing to the memory banks and contentions

on memory banks, i.e., bank conflicts., and thus reduces the

overall memory access latency and speed up the performance.

First, ArchSampler takes the data to banks mapping into

consideration while selecting samples. Because the sampling-

based approximation is flexible on which data should be

selected as samples, ArchSampler can effectively balance the

workload among banks without reducing the approximate

accuracy. Second, to remove the bank-level contentions, Arch-

Sampler embraces the concept of shared-nothing threads by

restricting the data assigned to one thread to span only one

bank (or unique set of banks). Our evaluation shows that

ArchSampler outperforms the random sampling by up to 1.62
(1.20 on average).
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