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A B S T R A C T

Fundamental to all phylogenomic studies is the notion that increasing the amount of data – to entire genomes
when possible – will increase the accuracy of phylogenetic inference. Simply adding more data does not,
however, guarantee phylogenomic inferences will be more accurate. Even genome-scale reconstructions of
species histories can suffer the effects of both incomplete lineage sorting (ILS) and gene tree estimation error
(GTEE). Weighted statistical binning was originally proposed as a technique to assist the avian phylogenomics
project in solving the bird tree of life, which has long eluded resolution as a result of both ILS and GTEE. These
so-called “statistical binning procedures” seek to overcome GTEE by concatenating loci into longer multi-locus
“supergenes” that are used to reconstruct a species tree under the assumption that the supergene tree set is an
accurate estimate of the true underlying gene tree distribution. Here we evaluate the performance of the method
using the original avian phylogenomics dataset. Our results suggest that statistical binning constructs false su-
pergenes that concatenate loci with different coalescent histories more often than not:> 92% of supergenes
comprise discordant loci. Our results underscore a major logical inconsistency: GTEE – the sole justification for
using statistical binning instead of standard concatenation – also makes these methods unreliable. These findings
underscore the need for developing new robust frameworks for phylogenomic inference that more appropriately
accommodate GTEE and ILS at a genome-wide scale.

1. Introduction

Much of our understanding and practice of evolutionary biology
relies on knowledge of the species-level relationships of organisms (i.e.,
species trees). Two major sources of phylogenetic conflict can pose
serious challenges for species tree reconstruction: incomplete lineage
sorting (ILS) and gene tree estimation error (GTEE). Standard phylo-
genetic analysis of concatenated loci, for example, will be statistically
inconsistent in the presence of ILS and yield highly-supported but in-
correct species trees (Edwards et al., 2007; Kubatko and Degnan, 2007).
To address this, coalescent-based methods have been developed that are
statistically consistent under ILS and will return the true species-level
phylogeny with high confidence given sufficient information (Degnan
and Rosenberg, 2009; Heled and Drummond, 2010; Knowles, 2009; Liu,
2008; Liu et al., 2010, 2015b). While ILS is an inherent property of the
demographic processes of speciation and divergence, GTEE is a fun-
damentally different source of conflict that represents statistical sam-
pling error and variation between the true tree and one estimated from
a dataset of finite size and information content. Although modern
phylogenomic datasets often consist of millions to billions of base pairs

(bp), any one aligned locus is often limited to<3 kbp of aligned or-
thologous sequence data, and thus individual gene trees may entail
substantial error that can permeate to the level of species tree inference
(Jarvis et al., 2014; Mirarab et al., 2014). Researchers thus face a
gauntlet of challenges when analyzing phylogenomic data: concatenate
loci and suffer the consequences of ILS, or do not concatenate loci and
suffer the consequences of GTEE. Both sources of conflict can have
major debilitating effects on the accuracy of species tree estimates, and
it is not immediately clear whether one should prioritize either.

The avian Tree of Life is a prime example of an important vertebrate
phylogeny that has long eluded resolution because of both ILS and
GTEE (Jarvis et al., 2015; Mirarab et al., 2014; Prum et al., 2015). In
light of the challenges facing phylogenomic analyses, a new method
(“weighted statistical binning”; referred to as “statistical binning”
hereafter) was originally developed to enable the avian phylogenomics
project in resolving the relationships of modern birds (Bayzid et al.,
2015; Jarvis et al., 2015; Mirarab et al., 2014). The method has since
been used to infer the evolutionary relationships of placental mammals
(Tarver et al., 2016), teleost fishes (Malmstrøm et al., 2016), and many
other major radiations (i.e.., Blaimer et al., 2016; Branstetter et al.,
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2017; JeŠovnik et al., 2017; Platt et al., 2018). The core justification
behind this approach is to infer a set of “supergenes” that attempt to
overcome GTEE by concatenating smaller sets of individual loci into
longer supergene alignments comprising multiple loci that contain
more information for inferring supergene trees. In practice, supergenes
inferred via statistical binning are often used to obtain a set of super-
gene trees for downstream species tree estimation under the assumption
that that they are 100% accurate. Importantly, gene tree estimates and
associated bootstrap support values are used as input data for the sta-
tistical binning pipeline as the sole criteria for deciding whether the
respective loci within a putative supergene evolved under the same tree
(Bayzid et al., 2015). Using a compatibility graph based on these esti-
mates, the pipeline effectively conducts a hypothesis test to decide
whether several individual loci can be concatenated to form a super-
gene (i.e., they share a common topology) or not (i.e., do not share a
topology; Mirarab et al., 2014; Bayzid et al., 2015). Accordingly, the
fundamental purpose of statistical binning is to infer which phyloge-
netic conflicts among estimated gene trees are simply a result of GTEE
(result: concatenate to form a supergene), and which conflicts represent
true differences in coalescent history due to ILS (result: do not con-
catenate and estimate distinct trees).

Following publication of the avian phylogenomics project, sub-
stantial debate and contention has arisen over the use of statistical
binning and similar methods (Bayzid et al., 2015; Jarvis et al., 2015; Liu
and Edwards, 2015; Mirarab et al., 2015; Roch and Warnow, 2015;
Warnow, 2015). Authors have continued to argue both for and against
these methods, and disagree over the statistical consistency (or lack of)
of these approaches in the context of species tree estimation (Liu and
Edwards, 2015; Mirarab et al., 2015; Roch and Warnow, 2015;
Warnow, 2015). A follow-up study revealed that statistical binning
distorted supergene tree distributions and likely biased species tree
estimates (Liu and Edwards, 2015). Further studies corroborated this
assertion: species trees reconstructed using supergenes obtained via
statistical binning were likely to be highly inaccurate yet highly sup-
ported (Streicher et al., 2018). Subsequent response papers rejected the
assertion that the method was statistically inconsistent, and instead
argued for statistically consistency when the number of loci and the

length of loci are both infinite (Bayzid et al., 2015; Mirarab et al.,
2015). However, recent theoretical work has demonstrated the incon-
sistency of species tree methods that use supergenes inferred via sta-
tistical binning when the number of loci is unbounded but the length of
each locus is bounded to a constant (Roch et al., 2018). These findings
raise important questions about the nature of species tree inference
under best-case scenarios (i.e., when the number and/or length of loci is
infinite), and yet, we currently have relatively little understanding of
the empirical performance of the statistical binning pipeline itself when
both the number and length of loci are bounded.

When considering the properties of the method, it is imperative to
acknowledge that the statistical binning pipeline itself only infers a set
of supergene alignments, not a species tree. Statistical binning is
therefore not a species tree estimation method per se, it is a supergene
estimation method that uses gene tree estimates to infer topology
congruency among loci. Distinguishing between species tree estimation
and supergene estimation is critical, because both are fundamentally
different statistical problems: species tree estimation seeks a single
species-level topology and set of parameters (i.e., divergence times,
effective population sizes), while supergene inference involves deciding
whether individual loci share the same gene tree or not. In this sense,
statistical binning represents the first “cog in the wheel” of the phylo-
genomic analysis pipeline, which is followed by supergene tree esti-
mation using standard phylogenetic techniques, such as maximum
likelihood (ML) analysis, and species tree estimation using coalescent-
based summary methods. Understanding whether the statistical binning
pipeline provides reliable supergene alignments is therefore paramount
to assessing the performance of the method. At the end of a statistical
binning analysis, ML-analysis of each supergene is conducted under the
assumptions of the standard phylogenetic model. While different su-
pergenes can have different topologies, ML-analysis of the individual
supergene alignments assumes that each gene placed within a super-
gene shares the same coalescent history. Under these conditions (i.e., a
“true supergene” containing only congruent genes), standard ML-ana-
lysis – which assumes all sites share the same tree (Felsenstein, 1981) –
will converge with increasing probability to the single, true gene tree as
the length of each congruent locus in the supergene increase (Fig. 1,

Fig. 1. Statistical binning is a supergene estimation
method, not a species tree estimation method. Based
on similarities (or lack of) among gene tree estimates
and bootstrap support values, the core function of the
method is to infer whether individual genes share a
common genealogy, and if so, concatenate congruent
genes to construct longer supergenes. Example in-
dicating loci sampled from two different chromo-
somes and three distinct gene trees (red, blue, and
purple). If statistical binning is accurate, inferred
supergenes will only concatenate loci that share the
same topology (i.e., left example showing a “true
supergene” comprised entirely of red loci). ML-ana-
lyses of “true supergenes” (MLE indicated as gray
tree) will converge to the true topology as the length
of each congruent locus increases, because all sites in
the alignment evolved under the same red topology.
However, if statistical binning is not accurate, in-
congruent loci that do not share a common topology
may be incorrectly concatenated to form “false su-
pergenes”. In the right example, a false supergene has
been constructed from three genes with three dif-
ferent topologies (blue, red, and purple). False su-

pergenes represent profound phylogenetic model misspecification, because standard ML-analysis assumes that all sites within an alignment evolved under the same
tree, and thus, only one tree will be estimated when there should be three (right example). Regardless of whether this ML topology is the blue, red, purple, or some
other topology, the answer is the same: ML-analysis cannot be statistically consistent because it cannot estimate three unique trees. False supergene trees are likely to
reflect an amalgamation of conflicting phylogenetic signal (here three distinct trees), such that the gene tree with the most support (i.e., highest number of
informative sites) may have disproportionate influence (see Fig. 4). The relevant questions is thus whether statistical binning tends to infer true supergenes (left) or
false supergenes (right), and although the method does not directly estimate a species tree, clearly supergene accuracy is likely to influence downstream species tree
accuracy. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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left).
In contrast, if a supergene incorrectly concatenates genes from

multiple distinct topologies, standard ML-analysis of this “false super-
gene” will not converge to the true gene tree set (i.e., one tree for each
distinct gene) as the length of each discordant gene increases, because it
is restricted to inferring a single best-fit tree. In the right example
shown in Fig. 1, a false supergene has been constructed by con-
catenating three genes with conflicting genealogies (red, purple, green).
Even if the length of each of the three genes is infinite, standard ML-
analysis will infer only a single supergene tree – instead of the “true”
gene tree set comprised of three distinct topologies. Violation of this
fundamental assumption of the phylogenetic model (i.e., all sites share
the same tree) is of major consequence because it is the underlying
cause of the failure of ML-analysis in the presence of ILS (Mendes and
Hahn, 2017), and can also cause other modeling pathologies and biases,
such as SPILS (“substitutions produced by ILS”; Mendes and Hahn,
2016). False supergene trees inferred using standard ML-analysis are
likely to reflect an amalgamation of phylogenetic signal, such that the
gene tree with the most support (i.e., highest number of informative
sites) may have disproportionate influence. The overall supergene tree
distribution will also likely be distorted as distinct gene trees are ef-
fectively “hidden” within false supergenes and may be poorly re-
presented or absent in the set of supergene trees. False supergenes
therefore represent profound phylogenetic model misspecification, and
the hope is that methods such as statistical binning are able to avoid
such sources of systematic bias by inferring accurate supergenes (i.e.,
Fig. 1 left vs. right).

A critical question therefore remains: how well does statistical
binning infer topological congruency (or lack of) from gene tree esti-
mates when attempting to construct true supergenes? Here we evaluate
the performance of the method at this core function, and while previous
studies have primarily focused on the theoretical properties of the
method for species tree inference when aspects of the data are infinite
(i.e., number of genes and/or gene lengths are unbounded), we take a
decidedly different, model-based approach to understand whether sta-
tistical binning provides accurate supergenes or not. We conducted a
post-hoc likelihood-based model assessment of statistical binning ac-
curacy using the 14,446 alignments (8,251 exons, 2,516 introns, and
3,679 UCEs) and the corresponding set of 2,021 supergenes inferred for
the original avian phylogenomic analyses (Jarvis et al., 2015, 2014).
We specifically applied two different likelihood-based tests to char-
acterize the accuracy of supergenes inferred via statistical binning:
likelihood ratio tests (LRTs implemented in ConcatePillar; Leigh et al.,
2008) and SH tests (Shimodaira and Hasegawa, 1999). The first ap-
proach conducts a series of likelihood-based model tests to evaluate
whether the data (i.e., site patterns) of each respective supergene
support a single topology or multiple, discordant topologies (Fig. 2, top
box). The second method applies Shimodaira-Hasegawa tests (SH test;
Shimodaira and Hasegawa, 1999) to evaluate whether individual loci
placed within a supergene reject the overall supergene tree in favor of a
distinct, locus-specific topology (Fig. 2, bottom box). We used the re-
sults of the SH-tests to quantify the number of genes with evidence of
significant topological congruency within each supergene alignment
(i.e., genes that reject the supergene tree likely support a distinct to-
pology). Unlike the statistical binning pipeline, which uses gene tree
estimates to infer topological congruency, these two model-based ap-
proaches make direct use of the phylogenetic likelihood function by
summing over site likelihoods for alternative tree models to validate
supergene inferences by testing whether a single tree (i.e., “true posi-
tive”, Fig. 1, left path) or multiple, distinct trees (i.e., “false positive”)
are a better explanation of the data (Fig. 1, right path).

2. Methods

2.1. Avian phylogenomic data

We downloaded the 14,446 alignments (8,251 exons, 2,516 introns,
and 3,679 UCEs), the inferred supergene assignments for the 14,446
loci (i.e., assignment of each locus to a respective supergene), and the
2,021 ML supergene trees inferred via statistical binning for the avian
phylogenomic analyses (Jarvis et al., 2015, 2014). For our simulation-
based assessments of statistical binning accuracy, we downloaded the
simulated gene tree sets and their associated inferred supergene as-
signments that were used in the original avian phylogenomic studies
and were based on the estimated avian species tree (Jarvis et al., 2014;
Mirarab et al., 2014).

2.2. Likelihood-based tests of statistical binning accuracy

We evaluated the accuracy of each inferred supergene using like-
lihood ratio tests (LRTs) implemented in ConcatePillar (Leigh et al.,
2008) and SH-tests (Shimodaira and Hasegawa, 1999) implemented in
RAxML v8.0.0 (Stamatakis, 2014). First, we used Concatepillar to
conduct LRTs to test whether a model consisting of a single topology or
a model of multiple distinct topologies was better supported by the
sequence data of each supergene based on the difference in log-like-
lihood scores between models (Fig. 2, top box). This approach effec-
tively tests how many distinct topologies are supported by the data of
each supergene and corrects for multiple comparisons throughout the
process. If only a single topology best fits the data, this provides evi-
dence that the supergene is likely to be accurate (i.e., Fig. 1, left).
Conversely, if the data support multiple topologies, then the supergene
likely violates the phylogenetic model because it exhibits evidence of
incorrectly concatenated loci originating from distinct topologies (i.e.,
Fig. 1, right).

We used SH-tests in a similar fashion to test whether the difference
in log-likelihood scores between the ML topology of each individual
gene placed within a supergene and the overall ML supergene tree was
statistically significant (Fig. 2, lower box). In other words, for each gene
placed within an inferred supergene, we used SH-tests to compare the
likelihood of the individual gene-specific ML topology with the overall
supergene ML topology (Fig. 2, colored vs. gray trees in lower box). If
the individual gene-specific ML tree was a statistically significant better
fit than the supergene topology (i.e., P < 0.05), then that supergene
was likely falsely constructed by statistical binning (i.e., concatenated
loci with different phylogenetic histories, i.e., Fig. 1 right). The number
of genes that reject the overall supergene tree in favor of a locus-specific
tree provide an indication of the number of discordant genealogies
present within a supergene alignment. SH-tests were conducted in
RAxML 8.0.0 (Stamatakis, 2014) using the default GTR+ I+ Γ nu-
cleotide substitution model independently for each locus.

In light of widespread evidence of supergene error (i.e., Fig. 3), we
were interested in characterizing the degree to which supergene trees
reflected the topologies of their constituent genes. A critical concern of
concatenating genes into a single supergene is that, if genes do not
share the same tree, the gene with the most informative sites will
dominate and overwhelm gene tree signals from shorter or less in-
formative genes. In such cases, the supergene tree may only reflect the
relationships supported by the dominant genealogy, while conflicting
topologies of shorter loci will be effectively “hidden” and likely absent
from the supergene tree distribution. To examine whether supergenes
tend to be biased towards their longest constituent gene (and therefore
capable of masking hidden gene trees from shorter gene constituents),
we computed normalized Robinson-Foulds distance between each of
the 14,446 gene trees and their associated supergene topology using the
R package phangorn (Schliep, 2011).
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2.3. Simulation-based assessment of statistical binning accuracy

We also evaluated the accuracy of statistical binning on the simu-
lated gene tree sets provided in the original study (Jarvis et al., 2015;
Mirarab et al., 2014), by testing whether supergenes inferred via the
method included only simulated genes that share a common gene tree.

For each inferred supergene, we computed pairwise Robinson-Foulds
distances (Robinson and Foulds, 1979) between each simulated gene
tree that statistical binning inferred to share a single supergene tree; all
of the individual gene trees should be identical if statistical binning
provided a correct supergene. An RF-distance of 0 between two trees
means that the topologies are identical and an RF-distance > 0 means
the topologies are different. If all gene trees placed within a supergene
have an RF-distance of 0, then the supergene was accurately inferred
(i.e., Fig. 1, left). If there is at least one RF-distance that is greater than
0, the supergene was inaccurate because it incorrectly concatenated loci
that evolved along distinct, conflicting gene trees (i.e., Fig. 1, right). We
computed unrooted RF-distances using the “multiRF” function provided
in the phytools (Revell, 2012) package in R, and used these values to
compute the mean RF-distance among gene trees across all inferred
supergenes in each replicate simulation analysis (rightmost column of
Supplementary Table 1). For reference, these supergenes were inferred
in the original study using a bootstrap threshold of 75% (Jarvis et al.,
2014).

2.4. Quantifying the impacts of statistical binning on gene tree distributions
and species tree support

Considering evidence for spurious supergenes, we explored the
impacts of statistical binning on both gene tree distributions and species
tree support. To visualize differences in the underlying topological
distributions due to statistical binning, we generated Densitree
(Bouckaert, 2010) plots and summary consensus trees using TreeAn-
notator (Rambaut and Drummond, 2016) of the unbinned gene tree and
binned supergene tree distributions. We also quantified shifts in species
tree support by measuring the difference in multispecies coalescent
likelihoods of the unbinned gene trees and binned supergene trees using
(1) the “unbinned” species tree (UST) estimated using the unbinned
gene trees and (2) the “binned” species tree that was estimated using
the binned supergene trees. For each of the 14,667 unbinned gene trees
for the avian dataset, we measured the difference between the multi-
species coalescent likelihood given the “binned” species tree and se-
parately, the likelihood of the gene tree given the “unbinned” species
tree: ΔGeneTreeLnL= LnL(GeneTree|Binned Species Tree)= LnL
(GeneTree|Unbinned Species Tree). We also conducted this same ana-
lysis for the 2,021 supergenes inferred via statistical binning:
ΔSupergeneTreeLnL= LnL(SupergeneTree|Binned Species Tree)= LnL
(SupergeneTree|Unbinned Species Tree). To visualize the impacts of

Fig. 2. Model-based assessment of statistical
binning accuracy. We tested the accuracy of
each of the 2,021 supergenes inferred from the
Avian phylogenomics project using Likelihood
Ratio Tests (LRTs, implemented in
Concatepillar, top box) and Shimodaira-
Hasegawa (SH-tests, bottom box). The LRTs ap-
proach tests how many distinct topologies are
present in a supergene inferred via statistical
binning. For example, the likelihood of a model
consisting of three distinct trees (red, blue and
purple in top box) is compared to single-tree
model (gray alignment and tree in top box).
Similarly, the SH-tests approach evaluates whe-
ther individual loci placed within a supergene
reject the overall supergene topology in favor of
a locus-specific topology (i.e., red vs. gray su-
pergene topology shown in lower box). A “true
supergene” and its associated supergene tree are
considered accurate if only a single topology is
supported by the data (i.e., Fig. 1 left), while a

“false supergene” occurs when multiple trees are supported by the data (i.e., Fig. 1 right). For both methods, we quantified the number and fraction of “true
supergenes” (blue bar in right histogram) and “false supergenes” that incorrectly concatenate multiple trees (2–8 in this case, black bars and red area). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. More than 92% of supergenes inferred via statistical binning appear to
be false positives. Histograms showing the number of distinct topologies in-
ferred with (a) likelihood ratio tests (LRTs with Concatepillar) and (b)
Shimodaira-Hasegawa (SH-tests) across the 2,021 supergenes inferred for the
Avian phylogenomic analyses. LRTs (a) and SH-tests (b) indicate that over 96%
(1,934/2,021) and 92% (1,866/2,021) of supergenes are false positives, re-
spectively (black bars and red area). In other words, only 4% (81/2,021) of
supergenes appear to be “true supergenes” based on LRTs (blue bar), and only
7.7% (155/2, 021) based on SH-tests (blue bar). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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statistical binning on species tree support, we compared the distribu-
tions of the 14,667ΔGeneTreeLnLs and the 2,021 ΔSupergeneTreeLnLs.

3. Results and discussion

3.1. Evidence of widespread model misspecification due to statistical binning

Model-based evaluation of the performance of statistical binning on
the avian phylogenomic data indicate that it does not provide reliable
supergenes because it is highly prone to constructing “false supergenes”
from loci with different coalescent histories – leading to profound and
widespread phylogenetic model violation (Fig. 4). Both likelihood-
based methods we employed indicate widespread error: 96.0% (1,940/
2,021) and 92.3% (1,866/2,021) of supergenes concatenated multiple,
conflicting topologies using the LRTs and SH-tests, respectively (Fig. 3a
and b). Our results therefore indicate that the vast majority (> 92%) of
inferred supergenes represent false positives. We further evaluated the
accuracy of statistical binning on the simulated datasets provided in the
original avian study (Jarvis et al., 2015). Surprisingly, we found that
100% of multilocus supergenes (i.e., supergenes with at least 2 loci)
across all simulation models and replicates were falsely constructed by

statistical binning (Supplementary Table 1) and represent the right
example shown in Fig. 2. In other words, we found that the false po-
sitive rate of these methods for the avian dataset is ∼92.3% at best.

Our analyses collectively suggest that statistical binning fails to
overcome GTEE because it, like the methods it was designed to out-
perform, is based on unreliable gene tree and bootstrap support esti-
mates that themselves suffer from high error, leading to false inferences
of topological congruency. In other words, the core hypothesis test
implemented in statistical binning, which uses bootstrap thresholds to
determine gene tree congruence, does not appear to provide accurate
supergene based upon our likelihood-based evaluations. Instead, our
results indicate that genes incorrectly placed within these false super-
genes exhibit surprisingly high gene tree incongruence, as indicated by
mean Robinson-Foulds distances (RF-distance) within supergenes ran-
ging from ∼25 to 49 (Supplementary Table 1). ML-analysis of con-
catenated data predicts that supergene tree inference should be domi-
nated by the gene with the most informative sites, which was observed
in our analysis (Fig. 4). Considering our evidence of widespread su-
pergene error (Fig. 3), evidence of the dominance of the longest gene
driving supergene tree estimates suggests that alternative topologies of
other, shorter genes within supergenes are likely under-represented or
even absent from false supergene trees. At best, this scenario would
result in the massive loss of genealogical information due to binning
genes into supergenes (i.e., only the topology from the longest gene is
represented). A potential and worse scenario would be that this amal-
gamation of signal from genes with different genealogies may instead
led to totally spurious supergene estimates that do not overlap with any
of the true gene trees underlying the data (i.e., unnatural products of
signal averaging). These findings also further clarify the underlying
reason for the reported distortion of supergene tree distributions re-
sulting from statistical binning (Liu and Edwards, 2015), and corrobo-
rate recent theoretical work that has shown the inconsistency of sta-
tistical binning when the length of each locus is finite (Roch et al.,
2018).

To characterize the impacts of statistical binning and potential
biases it introduces in gene tree distributions, we compared the dis-
tribution of supergene trees with the distribution of locus-specific gene
trees. Overlays of gene trees using Densitree illustrate that binning
leads to major shifts in the gene tree distributions, including several
major decreases in conflict (and increases in gene tree resolution),
particularly for more ancient nodes (Fig. 5a and b), consistent with
previous evidence that binning ‘flattens’ gene tree distributions (Liu
et al., 2015a). Similarly, comparison of consensus trees between binned
and unbinned gene tree sets highlight major differences in gene tree
topology and broad increases in bipartition agreement based on binned
supergene trees (Fig. 5c and d). Comparisons of likelihood support for
alternative species trees indicates that statistical binning introduces
major changes in the shape and magnitude of variation of species tree
likelihoods (Fig. 5e and f). For example, the number of supergene trees
that strongly support one species tree over another increases compared
to the unbinned gene trees. Considering evidence that a large propor-
tion of supergenes may be false (e.g., Fig. 3), our results collectively
suggest that statistical binning strongly biases gene tree distributions
that do not reflect the true gene tree variation, and thereby provide
high support for an incorrect species tree.

Although we have primarily presented the problem of “false su-
pergenes” as a dichotomous phenomenon (i.e., ether all genes are
congruent or not), their impacts on species tree estimation may be more
complex depending on the particular evolutionary parameters (i.e.,
species tree shape, divergence times, population sizes), and/or experi-
mental conditions (i.e., number and length of loci). For example, “false
supergenes” comprised of only two distinct trees may be less proble-
matic then if they contain loci from three distinct trees. It also seems
possible that particular branches and subclades may be more or less
accurately estimated than others. This could occur, for example, if most
genes within a false supergene agree on the placement of a particular

Fig. 4. Robinson-Foulds (RF) distances between an individual gene topology
and its associated supergene topology decrease with relative gene length, such
that supergenes inferred via statistical binning tend to be biased towards the
topology of its longest gene. Boxplots indicate the distribution of RF distances
between each gene-specific ML topology and its respective supergene ML to-
pology ranked from shortest to longest relative gene length. Results shown for
supergenes comprised of 7 genes (a) and 8 genes (b), respectively.
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Fig. 5. The impacts of statistical binning on gene tree distributions and species tree support. Densitree plots showing the gene tree topology distribution for (a) the
individual gene trees (“unbinned”) and (b) the supergene trees. Plot of consensus trees with bipartition frequencies estimated using the individual, unbinned gene
trees (c) and (d) the supergene trees constructed with statistical binning (d). Node circles are labeled and colored by the bipartition frequencies observed in their
respective gene tree distributions. Histograms showing the distributions of multispecies coalescent likelihoods for the unbinned gene trees (ΔGeneTreeLnLs; e) and
binned supergene trees (ΔSupergeneTreeLnLs; f).
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clade. Deeper nodes may be more accurately estimated than more re-
cent species splits – perhaps because individual genes may exhibit little
conflict in the placement of more ancient lineages (i.e., most ancient
lineages are completely sorted). Nonetheless, ML-analysis of false su-
pergenes will be a forced comprise of the conflicting signal exhibited
across incongruent loci and thus, will likely suffer large-scale systematic
error in topology, branch length estimates, and other parameters.

4. Conclusions

Perhaps surprisingly, genome-scale datasets do not yet equate to
straight-forward and robust resolution of phylogeny. Instead, both
biology and methodology continue to pose serious challenges for phy-
logenomic analyses. There is certainly logical merit in approaches that
are designed – at least in theory – to tractably address these issues, such
as statistical binning. Our results, however, suggest that nearly every
supergene tree inferred via this approach and used to reconstruct the
avian species tree is likely to suffer extensive systematic error at the
hands of pervasive phylogenetic model misspecification, such that
statistical binning is more likely to suffer the effects of GTEE and ILS
than overcome them. Instead, the effects of ILS will be rampant in the
set of ML supergenes trees used to estimate a species tree when statis-
tical binning is applied. Because these methods only infer topological
congruency and do not estimate a species tree, we also argue that
model-based supergene validation of statistical binning inferences (i.e.,
LRT tests) provides a far more direct assessment of the method at its
core function and brings clarity to previous arguments, which primarily
evaluated the performance of downstream species tree estimation
methods that use supergenes as input data.

These findings raise the question of what alternative strategies
would be useful for avoiding these issues? One solution is to simply
collect more genetically linked data per locus (i.e., longer orthologus
loci) to obtain higher quality gene trees without the need for con-
catenation. In practice, however, “simply collecting more data” is not
always a simple or even viable option, particularly given that the ori-
ginal avian analyses sampled whole-genomes and still faced these is-
sues, in part due to the difficulties in aligning long orthologous regions
across deep evolutionary time. Increasing the length of individual loci
also has the downside of increasing the probability of intra-locus re-
combination, which may pose additional complications and violations
of the phylogenetic model analogous to those introduced by erroneous
supergenes. Indeed, false supergenes exemplify the most “extreme”
form of this violation whereby recombination occurs freely between
genes with non-congruent histories incorrectly placed within a super-
gene. Unlike binning approaches that “agnostically” infer supergenes
using only gene tree estimates without taking into account genome
structure, it may prove fruitful to make effective use of known genetic
linkage among loci to propose the combinability of nearby putatively
linked loci and test this inference using model-based approaches. Above
all, our findings highlight the critical need for the continued develop-
ment of more accurate phylogenomic methods that can tractably and
reliably deliver more reliable gene trees, and ultimately, better species
tree estimates
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