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Highlights 25 

• Soil flux predictions closely matched observations across seasons 26 

• We used a machine learning approach to upscale soil fluxes and estimate uncertainty 27 

• Temperature was positively related to CO2 efflux and CH4 uptake 28 

• CH4 fluxes had bi-directional responses to seasonal precipitation patterns 29 

  30 
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Abstract 31 

 Upscaling soil-atmosphere greenhouse gas (GHG) fluxes across complex landscapes is a 32 

major challenge for environmental scientists and land managers. This study employs a quantile-33 

based digital soil mapping approach for estimating the spatially continuous distributions (2 m 34 

spatial resolution) and uncertainties of seasonal mean mid-day soil CO2 and CH4 fluxes. This 35 

framework was parameterized using manual chamber measurements collected over two years 36 

within a temperate forested headwater watershed. Model accuracy was highest for early (r2 = 37 

0.61) and late summer (r2 = 0.64) for CO2 and CH4 fluxes. Model uncertainty was generally 38 

lower for predicted CO2 fluxes than CH4 fluxes. Within the study area, predicted seasonal mean 39 

CO2 fluxes ranged from 0.17 to 0.58 µmol m-2 s-1 in winter, and 1.4 to 5.1 µmol m-2 s-1 in early 40 

summer. Predicted CH4 fluxes across the study area ranged from -0.52 to 0.02 nmol m-2 s-1 in 41 

winter, and -2.1 to 0.61 nmol m-2 s-1 in early and late summer. The models estimated a per 42 

hectare net GHG potential ranging from 0.44 to 4.7 kg CO2 eq. hr-1 in winter and early summer, 43 

with an estimated 0.4 to 1.5% of emissions offset by CH4 uptake. Flux predictions fell within 44 

ranges reported in other temperate forest systems. Soil CO2 fluxes were more sensitive to 45 

seasonal temperature changes than CH4 fluxes, with significant temperature relationships for soil 46 

CO2 emissions and CH4 uptake in pixels with high slope angles. In contrast, soil CH4 fluxes from 47 

flat low-lying areas near the stream network within the watershed were significantly correlated to 48 

seasonal precipitation.  This study identified key challenges for modeling high spatial resolution 49 

soil CO2 and CH4 fluxes, and suggests a larger spatial heterogeneity and complexity of 50 

underlying processes that govern CH4 fluxes. 51 

Keywords: carbon dioxide, methane, hot-moments, hot-spots, digital soil mapping, topography, 52 

machine learning 53 

54 
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1. Introduction 55 

The increase in atmospheric concentrations of greenhouse gases (GHG) such as CO2 and 56 

CH4 has major implications for the health of humans and ecological systems worldwide.  57 

Although human activities largely contribute to the increases in GHG concentrations, natural 58 

sources and sinks of both CO2 and CH4 account for large portions of their respective budgets 59 

from local to global scales (King et al., 2015; Le Quéré et al., 2018; Saunois et al., 2016). Soils 60 

are a major source of CO2 and may act as both a major source or sink of CH4. Soil CO2 efflux 61 

represents the largest fraction of total terrestrial CO2 emissions (Raich and Potter, 1995). Anoxic 62 

saturated soils such as those found in wetland environments are estimated to represent roughly 63 

20-30% of global CH4 emissions, while well-drained upland soils account for roughly 5-10% of 64 

the CH4 removed from the atmosphere annually (Dlugokencky et al., 2011). 65 

Temperate forests are a major ecosystem type at the global scale, covering much of the 66 

eastern United States, Central and Eastern Europe, and East Asia (Friedl et al., 2002). These 67 

ecosystems store large quantities of carbon in their vegetation biomass and soils (Pan et al., 68 

2011; Post et al., 1982), and these ecosystem components exchange large quantities of carbon 69 

with the atmosphere in the form of CO2 and CH4 (Gough et al., 2007; Warner et al., 2017). Soil-70 

atmosphere CO2 and CH4 fluxes in temperate forests are highly heterogeneous in space, varying 71 

across regional scales with climate, ecoregion, and land use types (Ambus and Christensen, 72 

1995; Raich and Tufekcioglu, 2000; Smith et al., 2000); and at landscape scales with vegetation 73 

cover, hydrologic conditions, and topographic heterogeneity (Atkins et al., 2014; Gomez et al., 74 

2017; Maier et al., 2017; Reyes et al., 2017; Warner et al., 2018). Fluxes also vary temporally 75 

with diel patterns in temperature and plant activity, and with seasonally changing patterns in 76 

temperature, precipitation, and plant phenology (Crill, 1991; Phillips et al., 2010; Vargas and 77 
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Allen, 2008; Wang et al., 2013). Thus, the spatiotemporal heterogeneity of soil-atmosphere CO2 78 

and CH4 fluxes is especially large in topographically complex landscapes that experience 79 

seasonal climates, and accurately quantifying CO2 and CH4 fluxes in these ecosystems is a major 80 

challenge for estimating and managing local to regional carbon budgets (King et al., 2015; 81 

Tonitto et al., 2016).  82 

This scientific challenge has been approached in different ways. Top-down flux 83 

measurement techniques such as eddy covariance can measure fluxes at the ecosystem scale, but 84 

often are not well-suited for use in topographically heterogeneous terrain (Baldocchi, 2003; 85 

Baldocchi et al., 2000). Smaller scale techniques, such as flux chamber measurements employing 86 

portable gas analyzers, can better describe the heterogeneity of fluxes across different sources 87 

and sinks in an ecosystem (Gomez et al., 2017; Leon et al., 2014; Maier et al., 2017; Warner et 88 

al., 2017). However, upscaling manual chamber flux measurements to the ecosystem scale, and 89 

assessing  relative importance of different sources and sinks within an ecosystem, is difficult 90 

because of their small measurement footprint (Phillips et al., 2017, Vargas et al., 2011). An 91 

alternative approach of landform classification and aggregation of mean fluxes from point 92 

measurements within each landform has been employed for estimating watershed scale soil-93 

atmosphere CO2 (Gomez et al., 2016; Riveros-Iregui and McGlynn, 2009; Webster et al., 2008a) 94 

and CH4 fluxes (Gomez et al., 2016) in temperate ecosystems. However, studies incorporating 95 

topographic variability into ecosystem scale predictions of in situ chamber flux measurements of 96 

multiple GHGs are scarce. The aggregation of major landform elements, while useful, assumes 97 

spatial homogeneity of fluxes within each landform and does not reflect the spatially continuous 98 

nature of the land surface and soil processes at fine spatial resolutions. Furthermore, there is a 99 

lack of standardization in defining landforms, which hinders potential comparisons of findings 100 
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across studies and across ecosystem types. A continuous approach to scaling point measurements 101 

across topographically complex landscapes could potentially address both of these issues by 102 

providing continuous, high resolution maps of fluxes describing the functional variability of soils 103 

within and across landform categories.  In the context of this study and the previous studies 104 

mentioned above, topographic or terrain “complexity” and “variability” refer to medium scale 105 

topographic variations that are sufficiently described by a 2-meter resolution digital elevation 106 

model (DEM). This may include landscape features like convergent and divergent slopes, 107 

riparian zones, slope shoulders, and slope orientations, but excludes microtopographic variations 108 

that may be obscured at a 2-meter pixel size, such as small bumps and divots in the land surface. 109 

The field of digital soil mapping has expanded with the rapid acceleration of computer 110 

processing, and has found many novel applications for soil scientists attempting to model the 111 

continuous spatial distributions of soil properties (McBratney et al., 2003). Digital soil mapping 112 

utilizes high-resolution DEMs, remote sensing data, legacy maps, and climate data to represent 113 

the soil forming environment and predict soil properties across landscapes where information is 114 

scarce. Machine learning or hypothesis driven models are used to couple field measurements of 115 

soil properties to spatial covariates derived from these publicly available data sources in order to 116 

generate predicted distributions of soil properties, classes, or functions (Hengl et al., 2017, 2004; 117 

McBratney et al., 2003; Wiesmeier et al., 2011). As soil-atmosphere GHG fluxes are ultimately a 118 

product of soil biogeochemical processes that are influenced by soil properties, we postulated 119 

that digital soil mapping is an alternative, low-cost approach to predict the magnitude and 120 

variability of soil CO2 and CH4 fluxes with high spatial resolution across a piedmont landscape.  121 

Our overarching goals were to develop a framework for “upscaling” manual soil GHG 122 

chamber flux measurements to a continuous spatial distribution across complex terrain that could 123 
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be employed in future and existing soil chamber flux studies, and examine how this continuous 124 

approach may reveal shifting spatial patterns of fluxes across seasons. In this study, we applied a 125 

digital soil mapping approach to upscale two years of existing flux measurements within a 126 

forested, northern piedmont watershed at seasonal scales. The goals of this study were to: 1) 127 

evaluate data-model agreement between chamber CO2 and CH4 flux measurements and terrain 128 

attributes using a digital soil mapping approach, 2) assess the spatial relationships between 129 

predicted soil CO2 and CH4 fluxes and seasonal changes in temperature and precipitation. We 130 

hypothesized that terrain attributes, including slope, aspect, and other terrain attributes, could be 131 

reliable predictors of soil CO2 and CH4 fluxes, given that other soil forming factors like 132 

vegetation and climate were relatively homogeneous in our spatial domain.  133 

 134 

2. Methods 135 

2.1 Study site and sampling design 136 

This study was conducted in a 12-hectare forested headwater watershed at Fair Hill 137 

Natural Resources Management Area, Cecil County, Maryland, USA (39o 42’ N, 75o 50’ W). 138 

Forest vegetation is primarily composed of Fagus grandifolia, Quercus spp., Lirodendron 139 

tulipifera, and Acer spp (Warner et al., 2017). Soils within the study area are coarse-loamy, 140 

mixed, mesic Lithic Dystrudepts belonging to the Manor and Glenelg series loams, which 141 

overlay pelitic gneiss and schist bedrock (Anderson and Matthews, 1973). Annual precipitation 142 

is approximately 1200 mm. Annual mean air temperature is 12 oC, reaching a maximum of 25 oC 143 

and minimum of -0.6 oC (DEOS 2017). The watershed has hilly topography typical of the 144 

Northern Piedmont, with a total elevation change of 31 m. Flux measurement locations had been 145 

distributed 20 sampling locations across four hillslope transects with sampling points that 146 
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spanned valley bottoms, slopes, and upland areas as part of a study examining the influence of 147 

topography on soil properties and fluxes (Warner et al., 2018, Fig 1). A transect design was 148 

chosen for logistical reasons, as it maximized the number of measurements that could be taken 149 

within a mid-day window to avoid confounding diurnal effects (e.g., rapid changes in 150 

temperature and storm fronts) on fluxes (Cueva et al., 2017). Transects varied in length (27 to 70 151 

m), elevation gain (6 to 14 m), and maximum slopes (9 to 25 percent).  152 

 153 

Figure 1. DEM and contour map of the study watershed. Sampling points are denoted by 154 
triangles, the perennial stream network is denoted by a solid white line, and ephemeral channels 155 
are denoted by white dashed lines. 156 
  157 
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 158 
2.2 Flux measurements  159 

Soil-atmosphere CO2 and CH4 fluxes were measured from 10 cm diameter, 9 cm tall 160 

PVC collars inserted 5 cm into the soil at each sampling point along the transects. Fluxes were 161 

calculated based on the change of gas concentration within the chamber over the course of three 162 

minutes, which was measured with an ultraportable greenhouse gas analyzer (Los Gatos 163 

Research, Mountain View, California, USA) as described previously (Warner et al. 2017). 164 

Measurements were taken at mid-day (11:00 – 15:00) two times monthly from September 2014 165 

to November 2016, with additional measurements following precipitation events and during 166 

drought periods, yielding a set of 880 total flux measurements. These measurements were 167 

classified by season based on annual patterns of soil temperature and moisture, which were 168 

measured from 0 to 4 cm with a handheld probe simultaneously with fluxes. Seasons were 169 

defined as winter (cold-wet: Jan 1-Feb 28), spring (warm-wet: Mar 1-May 20), early summer 170 

(hot-wet: May 20-Jul 31), late summer (hot-dry: Aug 1-Sep 30), and fall (warm-dry: Oct 1-Dec 171 

31). Seasonal groupings were determined based on site-specific temperature, precipitation, and 172 

phenological patterns (Warner et al., 2018).  173 

 174 

2.3 Topographic analysis and processing 175 

Topographic data was acquired from a LiDAR (Light Detecting and Ranging)-derived DEM 176 

with 2 meter spatial resolution (NOAA, 2005). The DEM was preprocessed and conditioned for 177 

further topographic and hydrologic analysis (Jenson and Domingue, 1988). Flow direction was 178 

calculated as the maximum triangle slope (Tarboton, 1997). Primary and secondary terrain 179 

attributes were derived from this DEM in SAGA GIS (Conrad et al., 2015), and a full list of 180 

these attributes is provided in Supplementary Table 1. A GPS (Geographical Positioning System) 181 
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survey was conducted to locate each chamber within 1-meter accuracy, allowing us to accurately 182 

identify the corresponding pixels on the terrain attribute grids.  183 

 184 

2.4 Modeling fluxes and prediction uncertainty with quantile regression forests 185 

Our digital soil mapping framework is summarized in Figure 2. Of the 27 topographic 186 

attributes considered, the attributes that were ultimately used in our predictions were selected for 187 

each season using the random forest-based variable selection method proposed by Genuer et al. 188 

(2012). A list of these variables and their descriptions is provided in Table 1, as is a comparison 189 

of summary statistics and distributions of each variable for the whole study watershed and for the 190 

set of sampling points where flux measurements were taken. This method uses a repeated cross 191 

validation procedure to select the most informative variables for model interpretation and model 192 

prediction purposes. The variables are first ranked by importance and eliminated systematically 193 

to reduce model error, ultimately yielding a small set of highly important variables that are 194 

sufficient for making robust predictions (Table 2).  195 

This study employed quantile regression forests (Meinshausen, 2006), a variant of the 196 

random forests algorithm (Breiman, 2001). The random forests algorithm creates an ensemble of 197 

regression trees based on bagging, a statistical sub-setting technique applied to available data and 198 

available predictors. The final prediction is the average of all the regression trees which are 199 

evaluated by an out-of-bag cross-validation form. Alternatively, the quantile regression forests 200 

algorithm estimates the variance of all the ensembled trees (not just the mean as with the original 201 

random forests algorithm), producing a full conditional distribution of the response variable (i.e., 202 

  203 
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Table 1. Selected variables used in quantile regression forests models. Summary statistics for 
each variable are provided for the whole study watershed and the sampling points. The third 
column provides D-statistics and p-values from Kolmogorov-Smirnoff Tests comparing the 
distributions of variables for the whole watershed and set of sampling points.  

ID 
Number 

Attribute Summary 
(Watershed) 

Summary 
(Points) 

K-S 
test 

 
1 

Flow Line Curvature (radians m-1): 
The mean local curvature of pixels from a flow path 
running through a target pixel. 

Min: -3.8e-3 
Max: 3.4e-3 
Mean: -3.4e-6 
SD: 1.7e-4 

Min: -4.3e-4 
Max: 5.6e-4 
Mean: 7.9e-6 
SD: 2.2e-4 

D: 0.20 
p: 0.40 

 
2 

Topographic Wetness Index (SAGA): 
A SAGA modified version of the Topographic 
Wetness Index (Beven and Kirkby, 1979) that also 
accounts for vertical distance to the channel network. 

Min: 2.1 
Max: 12.6 
Mean: 5.8 
SD: 1.8 

Min: 3.5 
Max: 10.4 
Mean: 5.9 
SD: 2.2 

D: 0.23 
p: 0.26 

 
3 

Slope (radians): 
The angle of maximum rise over run at each pixel. 

Min: 2.7e-4 
Max: 0.43 
Mean: 0.11 
SD: 0.07 

Min: 0.04 
Max: 0.35 
Mean: 0.17 
SD: 0.08 

D: 0.47 
p: <0.01 

 
4 

Channel Network Base Level (masl): 
The interpolated elevation of a stream channel 
network. 

Min: 77.1 
Max: 101.4 
Mean: 91.0 
SD: 5.3 

Min: 78.4 
Max: 92.6 
Mean: 85.4 
SD: 3.9 

D: 0.48 
p: <0.01 

 
5 

Vertical Distance to Channel Network (m): 
The difference between surface elevation and Channel 
Network Base Level. 

Min: 0 
Max: 15.4 
Mean: 3.8 
SD: 3.4 

Min: 0 
Max: 9.5 
Mean: 3.0 
SD: 3.0 

D: 0.15 
p: 0.74 

 
6 

Downslope Curvature (radians m-1): 
The mean local curvature of pixels along the 
downslope flow path running from a given pixel. 

Min: -0.59 
Max: 0.22 
Mean: -0.01 
SD: 0.05 

Min: -0.19 
Max: 0.07 
Mean: -0.03 
SD: 0.06 

D: 0.25 
p: 0.16 

 
7 

Upslope Accumulation Area (m2): 
The area of pixels that are routed through a given pixel 
by a flow direction calculation (m2) 

Min: 11 
Max: 47300 
Mean: 945 
SD: 2740 

Min: 54 
Max: 13100 
Mean: 1850 
SD: 3518 

D: 0.24 
p: 0.19 

 
8 

Aspect (radians away from 0 (North)): 
The direction of a slope. In this case, aspect has been 
normalized such that maximum values are south-
facing and minimum values are north facing 

Min: 0 
Max: 3.1 
Mean: 2.1 
SD: 1.4 

Min: 1.2 
Max: 3.1 
Mean: 2.1 
SD: 1.2 

D: 0.20 
p: 0.43 

 
9 

Catchment Slope (radians): 
The mean slope angle of pixels within an Upslope 
Accumulation Area.  

Min: 3.8e-4 
Max: 0.30 
Mean: 0.09 
SD: 0.04 

Min: 0.09 
Max: 0.20 
Mean: 0.14 
SD: 0.03 

D: 0.58 
p: <0.01 

 
10 

Multiresolution Index of Valley Bottom Flatness: 
A quantitative measure of valley bottom topographic 
characteristics based of slope angles of a pixel derived 
at multiple resolutions (Gallant and Dowling, 2003). 

Min: 0 
Max: 4.8 
Mean: 0.55 
SD: 0.60 

Min: 0 
Max: 1.4 
Mean: 0.29 
SD: 0.46 

D: 0.43 
p: <0.01 

 
11 

Multiresolution Index of Ridge Top Flatness: 
A quantitative measure of upland plateau topographic 
characteristics based of slope angles of a pixel derived 
at multiple resolutions (Gallant and Dowling, 2003). 

Min: 0 
Max: 4.0 
Mean: 0.38 
SD: 0.59 

Min: 0 
Max: 0.95 
Mean: 0.09 
SD: 0.21 

D: 0.48 
p: <0.01 

 204 

  205 
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soil GHG flux) as a function of its predictors (i.e., terrain attributes). Therefore, quantile 206 

regression forests provide the means to judge the reliability of predictions, since prediction 207 

intervals can be extracted from the full conditional distribution of both predicted fluxes at each 208 

season for each pixel across the watershed. After variable selection, quantile regression forest 209 

model parameters mtry (the number of predictor variables randomly selected at each node in a 210 

tree) and ntree (the number of “trees” grown in the forest) were tested using leave-one-out cross 211 

validation to minimize model error while maximizing explained variance. The mtry parameter 212 

was tested from 2 to n – 1 (n = number of predictors), and the ntree parameter was tested from 213 

50 to 1000 at increments of 10. The result of the quantile regression forest was a set of 214 

conditional prediction distributions (ntree ranged 90 to 230 for CO2 fluxes and 60 to 230 for CH4 215 

fluxes) of mean mid-day soil CO2 and CH4 fluxes at each pixel (total of 30134) within the study 216 

watershed during each season. As these prediction distributions often were not normally 217 

distributed, medians of the conditional prediction distributions at each pixel were used as final 218 

predictions. The interquartile ranges of the conditional distributions were used as a spatially 219 

explicit measure of prediction uncertainty. This approach allowed us to predict spatially 220 

continuous distributions of seasonal mean mid-day soil-atmosphere CO2 and CH4 fluxes and the 221 

interquartile range of these predictions across the 12 ha watershed for each season.  222 

Variable selection, parameter testing, and quantile regression forest predictions were 223 

performed in packages “VSURF” (Genuer et al. 2016), “e1071” (Meyer et al. 2015), 224 

“randomForest” (Liaw and Wiener 2002), and “quantregForest” (Meinshausen 2016) in the R 225 

software (R Core Team 2015). Model accuracy was evaluated for each soil GHG flux and each 226 

season based on root mean square error (RMSE) and the coefficient of determination (r2). Per  227 



13 
 

hectare fluxes were estimated as the sum of the predicted fluxes at each 2-meter pixel multiplied 228 

by the true surface area (adjusted by slope) of each pixel and normalized to watershed area.  229 

In this study, model performance and soil GHG predictions were evaluated in two ways. 230 

First was “model accuracy” referred to the coefficient of determination (r2) and root mean square 231 

error (RMSE) of our quantile regression forests model fit to our 20 observations of each GHG 232 

flux in each season. Second was “prediction uncertainty”, which referred to the spread of the 233 

conditional prediction distribution (where n = the ntree parameter) generated by the quantile 234 

regression forests model at each pixel. Thus, “model accuracy” was used as an indicator of 235 

overall model fit, while “prediction uncertainty” was used as an indicator of the consistency of 236 

predictions made by individual trees grown within the quantile regression forests model. 237 

Prediction uncertainty was expressed both as a percentage (i.e., interquartile range of the 238 

conditional prediction distribution divided by the median) and as a unit (i.e., µmol m-2 s-1 or nmol 239 

m-2 s-1) value equal to the interquartile range of the conditional prediction distribution. 240 

  241 
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 242 

Figure 2. Flow diagram of modeling approach used in this study. Double outlines indicate 243 
primary data sources, while shaded boxes indicate final products presented in this paper. 244 

245 



15 
 

2.5 Seasonal relationships of fluxes, temperature, and precipitation 246 

 To examine the watershed scale spatial variability of flux responses to seasonal climate 247 

patterns, we fit linear models to mean annual temperature and fluxes at each pixel. Seasonal 248 

meteorological data were taken from a nearby (~1 km) weather station in the Delaware 249 

Environmental Observation System (DEOS 2017). Temperature relationships to CO2 and CH4 250 

fluxes were assessed by fitting pixel-wise linear models of mean seasonal air temperature to 251 

mean seasonal GHG fluxes and extracting the slope for each pixel, yielding a seasonal 252 

temperature relationship in units of µmol CO2 m-2 s-1 or nmol CH4 m-2 s-1 per degree Celsius. We 253 

also examined the potential influence of seasonal precipitation patterns on fluxes. In pixels where 254 

temperature-flux relationships were significant, the residuals of these relationships were related 255 

to mean weekly precipitation for each season. In pixels where temperature-flux relationships 256 

were not significant, predicted flux values were related to mean weekly precipitation in each 257 

season instead. Pixel-wise linear models were also used to examine relationships between CO2 258 

and CH4 fluxes across seasons. 259 

 260 

3. Results 261 

3.1 Selected variables for each season and gas flux 262 

 A total of 10 prediction grids were made (one for each season and each gas), and the 263 

selected predictor variables were different between seasons and between CO2 and CH4 fluxes. 264 

Table 2 lists which variables were selected for each model. A topographic wetness index was 265 

selected as a predictor of CH4 fluxes across all seasons, and as a predictor for CO2 from early 266 

summer to fall. Flow line curvature was selected as a predictor for CO2 fluxes in all seasons, but 267 

never for CH4 fluxes. Slope angle, upslope accumulation area, and the Multiresolution index of  268 

269 
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Valley Bottom Flatness (MRVBF) were also commonly selected as predictors of CH4 fluxes, 270 

while upslope accumulation area and the interpolated channel network base elevation were  271 

selected in three seasons for CO2 fluxes. Other variables, such as aspect, were selected only once 272 

for a specific season and flux (Table 2). 273 

 274 

3.2 Predicted fluxes and model accuracy 275 

 Model predictions of mean mid-day fluxes were close to our observed mean fluxes across 276 

sampling locations in each season (Fig 3). A detailed description of observed fluxes can be found 277 

in Warner et al. (2018). Model accuracy was lowest in spring for both CO2 and CH4 with r2 of 278 

0.1 and 0.35, and RMSE of 0.39 µmol CO2 m-2 s-1 and 0.25 nmol CH4 m-2 s-1, respectively. 279 

Model accuracy was highest in early summer for CO2 (r2 = 0.61, RMSE = 0.90 µmol m-2 s-1) and 280 

in late summer for CH4 (r2 = 0.64, RMSE = 0.47 nmol m-2 s-1). A list of model r2 and RMSE is 281 

provided in Table 2.   282 

  283 
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 284 

Figure 3. Comparisons of observed CO2 and CH4 fluxes and predicted fluxes from the medians 285 
of conditional prediction distributions generated by quantile regression forests. In panels A and 286 
B, seasons are denoted by shapes, and error bars indicate the upper and lower quartiles of the 287 
conditional prediction distributions.  288 
 289 

Table 2. R-squared and Root Mean Square Error values for assessing model accuracy of quantile 290 
regression forests models. Selected variables for each model correspond to the ID Number 291 
column of Table 1. 292 
 CO2 fluxes CH4 fluxes 
Season R2 RMSE (µmol 

m-2 s-1) 
Variables Selected R2 RMSE (nmol 

m-2 s-1) 
Variables Selected 

Winter 0.42 0.09 1, 4, 6, 8, 9 0.57 0.13 2, 7, 10 
Spring 0.10 0.39 1, 5, 11 0.35 0.25 2, 3, 7, 10 
Early Summer 0.61 0.90 1, 2, 4, 7 0.50 0.60 3, 7 
Late Summer 0.40 0.70 1, 2, 3, 4 0.64 0.47 2, 3, 10 
Fall 0.40 0.39 1, 2, 7 0.39 0.46 2, 10 
  293 
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Like the observed GHG fluxes, predicted seasonal mean fluxes varied across the 294 

landscape and across seasons (Fig 4). Predicted CO2 efflux was generally low in winter (range 295 

0.15 to 0.55 µmol m-2 s-1), with the highest fluxes in the steep south-facing slopes near the 296 

watershed outlet, and lowest in low slope pixels near the stream network and in the upper 297 

reaches of the watershed. Winter predictions of net CH4 uptake were highest along convergent 298 

hillslopes (maximum -0.52 nmol m-2 s-1), with neutral to slightly positive net CH4 fluxes 299 

predicted in low lying areas (Fig 4). In spring, predicted CO2 efflux was highest in steeply 300 

sloping and low slope pixels that that were situated high above the stream channel (range 0.60 to 301 

1.6 µmol m-2 s-1). Predicted CH4 uptake was highest on the steepest areas of the catchment in 302 

spring (maximum -0.81 nmol m-2 s-1), with neutral to slightly positive soil CH4 fluxes predicted 303 

in flat, near stream areas of the watershed (Fig 4). Early summer predicted mean CO2 efflux was 304 

the highest of any season (maximum of 5.2 µmol m-2 s-1) in steep sloping pixels near the 305 

watershed outlet, especially in pixels with concave flow line curvature. However, low CO2 efflux 306 

(minimum of 1.4 µmol m-2 s-1) was predicted in low slope pixels near the stream network. Early 307 

summer also had the highest predicted soil CH4 emissions (maximum of 0.6 nmol m-2 s-1), which 308 

corresponded to areas of very low predicted CO2 efflux. Low soil CH4 uptake (~ -0.2 nmol m-2 s-309 

1) was predicted for most of the watershed except in pixels with high slopes and low upslope 310 

area, where predicted soil CH4 uptake was relatively high (maximum of -1.9 nmol m-2 s-1) (Fig 311 

4). In late summer, predicted CO2 efflux was again highest in high slope pixels, but without the 312 

same small areas of relatively high efflux observed in early summer. CO2 efflux was relatively 313 

small across the rest of the watershed (range 1.1 to 3.4 µmol m-2 s-1). Predicted net CH4 uptake 314 

was highest during this season, with the highly negative values concentrated along convergent 315 

hillslopes (maximum of -2.1 nmol m-2 s-1), slightly negative values in low slope areas  316 

317 
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above and below the hillslopes, and slightly positive soil CH4 fluxes in flat areas surrounding the 318 

stream network. Predicted CO2 efflux and CH4 uptake was slightly lower across the watershed in 319 

fall than in late summer, but the spatial patterns of the highest predicted fluxes were similar 320 

between the two seasons. Most notably, positive CH4 fluxes were not predicted in any pixels 321 

during these seasons (Fig 4). 322 

 323 

3.3 Prediction uncertainty 324 

 Percent prediction uncertainty (the interquartile range of the prediction distribution at 325 

each pixel as a percentage of the median of the prediction distribution) of predicted CO2 efflux 326 

was relatively low compared to predicted CH4 fluxes (Fig 5), generally staying below 100% 327 

across all seasons. For CO2 efflux, spatial distributions of areas with relatively high percent 328 

prediction uncertainty varied between seasons. Areas of high percent prediction uncertainty were 329 

focused in low slope pixels high above the stream network (winter and spring), steep near stream 330 

areas (early summer), flat pixels near the watershed outlet (late summer), but were scattered 331 

across the watershed in fall (Fig 5). Predicted CH4 fluxes had very large ranges in percent  332 

uncertainty, but the spatial patterns of this uncertainty were more consistent across seasons than 333 

for CO2 predictions. Percent uncertainty for each prediction was relatively low (< 100%) in high 334 

slope pixels during all seasons, but extremely high percent uncertainty (> 1000%) was observed 335 

for CH4 fluxes in some areas with near-zero predicted net fluxes (Fig 5, 6). In general, percent 336 

prediction uncertainty was highest in pixels where predicted fluxes were nearest to zero, 337 

although low predicted fluxes were often associated with similarly low prediction uncertainty in 338 

units of flux (Fig 6). In exception, soil CH4 flux predictions were highly uncertain in low slope 339 
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pixels in upland areas of the watershed during early summer, resulting in high percent 340 

uncertainty in many of pixels predicted to be moderate sinks or sources of CH4 (Fig 5, 6).  341 

 342 
Figure 4. Predicted seasonal mean mid-day CO2 (top) and CH4 (bottom) fluxes at each pixel in 343 
our study watershed during each season. Predicted values represent the median of the conditional 344 
prediction distribution of seasonal mean fluxes generated for each pixel.   345 
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 346 

 347 

Figure 5. Percent prediction uncertainty for CO2 (top) and CH4 (bottom) fluxes at each pixel in 348 
our study watershed during each season. Percent uncertainty was calculated as the interquartile 349 
range divided by the median of the conditional prediction distribution generated for each pixel. 350 
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  351 

 352 

Figure 6. The relationship between % prediction uncertainty and predicted CH4 fluxes. High % 353 
prediction uncertainty is caused by some of the uncertain model predictions of CH4 fluxes in 354 
early summer, while in other seasons it is due to near-zero predicted CH4 fluxes. 355 
 356 

3.4 Per hectare fluxes and whole watershed means 357 

 We predicted the mean mid-day flux per hectare of both gases as the sum of predicted 358 

fluxes at each pixel divided by watershed area. Per hectare CO2 emissions were greatest in early 359 

summer, with predicted mean mid-day efflux (sum of lower and upper quartiles of prediction 360 

distribution) of 108 (73.1 to 150) mol CO2 hr-1 ha-1.  Early summer predicted CH4 fluxes had the 361 

greatest uncertainties, leading to predicted mean mid-day net flux of -17.1 (-53.8 to 21.8) mmol 362 

CH4 hr-1. Predicted per hectare net CH4 flux was greatest in late summer and fall, with fluxes of -363 

29.5 (-51.8 to -6.3) and -22 (-41.4 to -6.4) mmol CH4 hr-1, respectively.  Fluxes were lowest 364 

during winter months, with estimated per hectare mid-day fluxes of 10.0 (5.6 to 14.8) mol CO2 365 

hr-1 and -5.9 (-11.3 to -0.6) mmol CH4 hr-1 . When comparing CO2 equivalents using a 100-year 366 

global warming potential of 25 for CH4, we estimated that soil CH4 fluxes could offset the global 367 
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warming potential of CO2 efflux by 1.5% (2.8 - 0.5%) in winter, 0.4% (1.3 - +0.5%) in early 368 

summer, and 1.2% (2.1 - 0.3%) in late summer. 369 

 370 

Figure 7. Comparisons of seasonal means (± 1 S.D.) of observed fluxes at sampling locations 371 
(grey triangles, n = 20), predicted fluxes at sampling locations (grey squares, n = 20), and 372 
predicted fluxes across the entire study watershed (black circles, n = 30134).   373 
  374 
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We compared the means of observed fluxes across the 20 sampling sites to means of 375 

predicted fluxes at 20 sampling sites and across the whole study watershed (Fig 7). Observations 376 

and predictions at the 20 sampling sites were generally quite close. Mean predicted CO2 efflux 377 

across the whole watershed was lower than the means of predictions and observations at the 20 378 

sampling locations in spring (Fig 7a).  From early summer to fall, mean predicted CH4 uptake 379 

across the whole watershed was lower than the means of predictions and observations at the 20 380 

sampling locations (Fig 7b).   381 

3.5 Seasonal relationships between fluxes, temperature, and precipitation  382 

 Linear models relating seasonal mean air temperature (explanatory variable) with 383 

predicted seasonal mean CO2 efflux (response variable) were significant (p < 0.05) at every pixel 384 

in the watershed. The slopes of these relationships ranged from 0.2 to 0.6 µmol CO2 m-2 s-1 oC-1 385 

with lower values found in flat near stream areas and higher values found along steep slopes, 386 

with the highest values corresponding to areas of extremely high predicted efflux in early 387 

summer (Fig 4, 8a). Linear models relating seasonal mean soil CH4 fluxes and temperature were 388 

significant (p < 0.05) within pixels on steep sloping areas and in a few scattered pixels in other 389 

parts of the watershed, but were not significant for most pixels with low slope values. Where 390 

significant, slopes of temperature relationships ranged from -0.23 to -0.02 (nmol CH4 m-2 s-1 oC-391 

1), with the greatest relationship for soil CH4 uptake across sloped convergent zones and along 392 

the base of steeply sloping areas (Fig 8b). 393 

 There were no significant relationships between precipitation and the residuals of the 394 

CO2-temperature relationships in any pixel, nor were there any such relationships with CH4-395 

temperature residuals in the pixels where these relationships were significant. However, mean 396 

weekly precipitation was significantly positively correlated to soil CH4 fluxes (higher net  397 

398 
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CH4 emissions in wet seasons) in low slope pixels near the stream network (~ 0.07 nmol CH4 m-2 399 

s-1 mm-1), and negatively correlated in similarly low slope pixels at the perimeter of these areas 400 

(~ -0.07 nmol CH4 m-2 s-1 mm-1), (Fig 8c).  401 

Seasonal CO2 and CH4 fluxes were significantly correlated to each other for a small 402 

portion of the watershed that primarily included the same pixels where significant CH4 – 403 

temperature relationships were observed (Fig 8d). This correlation was generally negative where 404 

it was significant, indicating a seasonal increase in soil CH4 uptake with increasing CO2 efflux. 405 

 406 
Figure 8. Pixel-wise slopes derived from linear models of seasonal (B) CO2 and seasonal mean 407 
temperature, (C) CH4 fluxes and seasonal mean temperature, (C) seasonal CH4 fluxes and 408 
seasonal mean weekly precipitation, (D) seasonal mean CO2 fluxes and CH4 fluxes. Gray areas 409 
indicate pixels with non-significant (n = 5, p > 0.1) relationships.   410 

411 
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4. Discussion 412 

4.1 Continuously distributed flux predictions  413 

This study demonstrates that a digital soil mapping framework can be used to predict 414 

soil-atmosphere CO2 and CH4 fluxes across a forested watershed. Predicted mean fluxes from 415 

quantile regression forests closely represented our observations in all seasons (Fig 3), suggesting 416 

that soil surface GHG flux measurements and DEM-derived terrain attributes can be effectively 417 

used in tandem to estimate soil-atmosphere fluxes across topographically heterogeneous 418 

ecosystems. Unlike approaches that rely on classification and aggregation of fluxes from major 419 

landforms (Gomez et al., 2016; Webster et al., 2008a), this approach allowed us to estimate the 420 

continuous spatial distributions of these fluxes at high spatial resolution (2 m pixel size). Though 421 

both approaches can discern differences in fluxes between major landscape features (i.e., 422 

hillslopes, upland and valley bottom flats), our approach also provided a detailed, continuous 423 

estimate of flux variability within major landscape features that cannot be achieved by only using 424 

landform classification. For example, our approach suggested the elevated CO2 efflux in areas of 425 

concave flow line curvature along transitional hillslopes in early summer, and elevated CH4 426 

uptake along convergence zones along transitional hillslopes in late summer and fall (Fig 4). The 427 

elevated patches of CO2 efflux may be a result of organic carbon accumulation in areas of 428 

concave hillslope curvature (Fissore et al., 2017) coupled with hot, moist conditions in the early 429 

summer season, which would be conducive for high rates of heterotrophic respiration. The 430 

predicted elevated rates of CH4 uptake in convergence zones along hillslopes is noteworthy, as 431 

these were areas with higher topographic wetness indices (representing where water would tend 432 

to accumulate) than other parts of the hillslopes. Soil moisture is generally assumed to inhibit 433 

methanotrophic activity because it limits O2 and CH4 diffusion into the soil (Del Grosso et al. 434 
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2000), but it is possible that these convergence areas remain moist enough to protect soil 435 

microbial communities from drought stress during dry seasons like late summer and fall, 436 

allowing elevated CH4 uptake at these times. 437 

 The ranges of our flux predictions were comparable to fluxes reported in other temperate 438 

forests. Our CO2 efflux predictions fell within the ranges reported in another temperate forest, 439 

which ranged from a median of 0.7 µmol CO2 m-2 s-1 in winter/spring to 4.1 µmol CO2 m-2 s-1 in 440 

summer, with high emissions in along hillslopes and low emissions in flatter, low lying areas 441 

(Creed et al., 2013; Webster et al., 2008b). Our predictions of net CH4 fluxes were also 442 

comparable to observations in a similar temperate forest, that found mean late summer net CH4 443 

fluxes of -2.0 nmol CH4 m-2 s-1 in slopes and flat upland areas, but high emissions of CH4 (some 444 

instantaneous measurements as high as 100 nmol CH4 m-2 s-1) only during early summer in flay, 445 

low lying areas of the watershed (Wang et al., 2013). While our predicted mean CH4 efflux only 446 

reached a maximum of 0.6 nmol CH4 m-2 s-1, we too observed brief “hot moments” of emissions 447 

in early summer (as high as 19 nmol CH4 m-2 s-1) in low lying flat areas near the stream network, 448 

which had near-zero net fluxes during the rest of the year (Warner et al., 2018).  449 

 450 

4.2 Mean flux predictions and uncertainty 451 

 In most seasons, mean predicted CO2 fluxes for the whole study watershed were similar 452 

to mean observed and predicted fluxes for the 20 sampling locations (Fig 7a). This suggests that 453 

the sampling locations in this study were able to represent the general distribution of CO2 fluxes 454 

across the catchment for most seasons except spring, when the 20 sampling points may have 455 

overrepresented areas with high CO2 emissions. Similarly, the 20 sampling points may have 456 

overrepresented areas of high CH4 uptake during the summer and fall (Fig 7b). These results 457 



28 
 

demonstrate how mean fluxes at the watershed or landscape scale may be influenced not only by 458 

spatial variability across the land surface, but by seasonal variability in spatial patterns of fluxes. 459 

The representativeness of a set of chamber measurement locations may inconsistent in time, as 460 

the spatial patterns of fluxes vary with seasons. Our findings suggest that spatially continuous 461 

approaches for scaling flux observations may help reduce such temporally transient biases when 462 

making large scale estimates of flux means and totals based on static chamber measurements 463 

across complex landscapes.  464 

The spatial distributions of prediction uncertainty may also vary from season to season. 465 

This was very clear for predictions of early summer CH4 fluxes. Model estimates of early 466 

summer CH4 flux per hectare ranged from a moderate net source to a moderate net sink. We 467 

attribute this broad range to the large prediction uncertainties of CH4 fluxes in some areas of the 468 

watershed during this season (Fig 5). We found two primary causes of high percent prediction 469 

uncertainty in our models. In some cases (such as in low-lying areas during late summer), the 470 

high percent CH4 prediction uncertainty was a product of a prediction distribution with a median 471 

near zero and an interquartile range that, while small in units of flux, was much larger than the 472 

median prediction (for example, a median and interquartile range of 0.001 and 0.1 nmol m-2 s-1 473 

would have a percent prediction uncertainty of 10000%; Fig 6). In early summer however, high 474 

percent prediction uncertainty was a product of highly variable conditional prediction 475 

distributions in some areas of the watershed (Fig 5, 6, early summer predictions), which led to a 476 

highly uncertain estimate of large scale soil CH4 flux in early summer. It should be noted, 477 

however, that large scale measurement techniques like eddy covariance can face the same 478 

challenges when hotspots form in hot, wet conditions (Hörtnagl et al., 2018; Wang et al., 2013).  479 
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As ecosystem models continue to provide increasingly detailed insights into 480 

biogeochemical processes, communicating their uncertainty, and the underlying implications of 481 

this uncertainty, becomes increasingly important. In the former case described above, percent 482 

prediction uncertainty may be high, but the degree of this uncertainty in units of flux may be too 483 

small to be ecologically relevant. In the latter case, the high level of prediction uncertainty in 484 

flat, high elevation areas has major implications for interpreting the net CH4 source or sink status 485 

of the landscape. Beyond communicating the uncertainty of model estimates, understanding the 486 

causes for this uncertainty may highlight certain processes are challenging to model (i.e. 487 

greenhouse gas fluxes), and help guide future efforts in upscaling chamber measurements.  488 

The high uncertainty of per hectare early summer CH4 fluxes may stem from the large 489 

variability of CH4 fluxes within landscape features that have similar topographic characteristics 490 

(e.g., flat or low slope) in hot, wet environmental conditions. We observed large CH4 emissions 491 

in a few low elevation sampling locations while other pixels with similar terrain attributes had no 492 

net flux, or were weak net sinks of CH4. Studies in other temperate forests have observed brief 493 

early summer “hot moments” of CH4 emissions from small areas of low-lying soils that may 494 

entirely offset or exceed CH4 uptake occurring across most of the watershed (Itoh et al., 2007; 495 

Wang et al., 2013). Furthermore, it is known that anaerobic biogeochemical processes, such as 496 

methane production, can vary significantly in space due to subtle variations in surface 497 

microtopography at scales below the 2 meter scale employed in this study (Frei et al., 2012), 498 

which may help explain why CH4 flux observations from different small-footprint chambers may 499 

vary significantly even within areas with similar DEM-derived terrain attributes. Our variable 500 

selection process selected only terrain attributes of slope and upslope accumulation area as 501 

predictors of CH4 fluxes in early summer (Table 2). Slope was similarly low in pixels in flat 502 
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areas near the stream network and in high elevation areas, while upslope accumulation area was 503 

variable in the former and low in the latter. Thus, in some cases our quantile regression forests 504 

model made predictions based on attributes of topographically similar pixels with distinctly 505 

different CH4 fluxes, which led to highly variable conditional prediction distributions. Low slope 506 

pixels occupy a large portion of this study watershed, the high prediction uncertainty of these 507 

pixels was compounded in our per hectare flux estimates. These findings highlight the 508 

difficulties that “hot spots” and “hot moments” of CH4 fluxes introduce to large scale modeling 509 

efforts (Savage et al., 2014). This could potentially be addressed by more frequent measurements 510 

and the use of larger footprint chambers, or larger numbers of chambers, in areas prone to 511 

forming biogeochemical hot spots (wet, low lying soils). Striking a balance between the 512 

logistical constraints of chamber flux measurement campaigns and the selection of sampling 513 

sites, duplicate measurements within pixels, and chamber size is challenging, and the successes 514 

and setbacks of this and future research efforts will help optimize sampling strategies. 515 

While high variability of fluxes from topographically similar pixels can cause large 516 

prediction uncertainty, the same problem may arise when similar fluxes are observed from 517 

topographically distinct pixels.  This effect may be responsible for the much lower model 518 

accuracy for spring CO2 efflux (r2 = 0.1; Table 2) than for any other season or flux. In this 519 

season, our variable selection process selected flowline curvature, multiresolution index of ridge 520 

top flatness, and vertical distance to channel network as predictors of CO2 efflux. Many pixels 521 

occupying sloping areas of the watershed have high, low, and intermediate values of these 522 

attributes, while flatter, high elevation pixels have low, high, and high values, respectively. 523 

Despite these major differences in selected terrain attributes, many of these pixels had similar 524 
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CO2 fluxes, and consequently the model had challenges relating fluxes with surficial terrain 525 

attributes.  526 

 527 

4.3 Relationships of seasonal CO2 and CH4 fluxes, temperature, and precipitation 528 

 Temporal relationships between seasonal meteorological patterns and fluxes were 529 

different for each gas. The highest temperature-CO2 efflux relationship corresponded to soils 530 

along steep pixel with concave flow line curvature near the catchment outlet, and relatively 531 

lower temperature-CO2 efflux relationships were found in low slope areas lying both near the 532 

stream network and high above it (Fig 8a). The higher temperature-CO2 efflux relationship from 533 

the steep sloping areas indicates the potential importance of these topographic features to 534 

landscape scale CO2 budgets in a warmer future climate. The residuals of the temperature-CO2 535 

efflux relationship were not correlated to mean weekly precipitation in any pixel, suggesting that 536 

the temperature is the dominant regulator of the seasonal variability of soil CO2 efflux across this  537 

 watershed. However, it should be noted that this study was not in an arid or semiarid ecosystem, 538 

and that precipitation variability is a well-known major driver of the seasonal variability of soil 539 

CO2 efflux in many ecosystem types (Riveros-Iregui et al., 2012; Stielstra et al., 2015; Takahashi 540 

et al., 2011, Vargas et al., 2012).  541 

Conversely, pixels with high slopes and low wetness indices (strong net CH4 sinks) were 542 

the only portions of the watershed where significant linear relationships between seasonal 543 

temperature and CH4 fluxes were observed (Fig 8b). Sloping areas, specifically convergent zones 544 

along and at the base of slopes, showed increasing negative CH4 fluxes (i.e., CH4 sinks) in 545 

warmer seasons. Pixels that were consistently net CH4 sources, or pixels with near-zero net CH4 546 

fluxes in most seasons, were not significantly related to seasonal temperature (Fig 8b). However, 547 
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we found significant relationships between mean seasonal CH4 fluxes and weekly precipitation 548 

in low-lying flat areas near the stream network. Notably, the pixels that were closest to the 549 

stream or ephemeral channels showed a positive relationship between seasonal mean 550 

precipitation and CH4 flux (i.e. more CH4 emission in wetter seasons), but opposite relationships 551 

were observed in pixels in the adjacent perimeter areas (Fig 8c). Similar patterns have been 552 

observed during rainy periods in temperate forests (Itoh et al., 2007), which has been explained 553 

by a frequent lateral influx of oxygen-rich water to valley bottom perimeter soils that is rapidly 554 

depleted before it reaches more central soils. This results in sustained saturation and significantly 555 

increased CH4 production in the central areas, but also suppressed CH4 production in the 556 

adjacent perimeter soils (Itoh et al., 2007).  557 

In addition to the relationships between GHG fluxes and seasonal meteorological 558 

patterns, we also examined the potential seasonal correlations among the GHG fluxes  559 

. There has recently been increasing interest in the relationships between soil CO2 and CH4 560 

fluxes across landscapes, which may provide insights into the shared functional controls of 561 

heterogeneous soil types, vegetation, and microbial community structure on multiple soil 562 

greenhouse gas fluxes within an ecosystem (Maier et al., 2017). In general, soils with high CO2 563 

efflux tend to have high CH4 uptake, while soils with low CO2 efflux may have near-zero CH4 564 

fluxes or act as net sources of CH4 (Maier et al., 2017; Warner et al., 2018). We found significant 565 

correlations between predicted seasonal CO2 and CH4 fluxes almost exclusively in steep sloping 566 

pixels (Fig 8d), the same areas where we found significant correlations between predicted CH4 567 

uptake and temperature. These sloped soils are generally well-aerated and well-drained, which 568 

consistently provides conditions conducive for aerobic heterotrophic activity and methane 569 

oxidation even in periods of frequent rain. Flatter and lower elevation areas of the watershed may 570 



33 
 

be less well-drained, creating a soil environment that may be more conducive to CH4 production, 571 

or may have a closer balance between methanogenic and methanotrophic processes. As rates of 572 

both methanogenesis and methanotrophy increase with temperature (Semenov et al., 2004; 573 

Yvon-Durocher et al., 2014), areas containing soils that support both microbial processes may 574 

have no relationship between temperature and the net CH4 flux at the soil surface.  575 

Thus, our findings suggest that warmer mean seasonal temperatures may influence steep 576 

slopes in forested ecosystems to act as relatively greater CO2 sources, but also relatively greater 577 

net CH4 sinks. However, changes in precipitation patterns may have a greater impact on CH4 578 

fluxes in flatter low lying areas than changes in seasonal temperatures, making the combined 579 

(and confounding) effects of temperature and precipitation variability on soil-atmosphere CH4 580 

exchange difficult to predict across topographically complex landscapes.  581 

 582 

5. Conclusions 583 

 This study demonstrates the potential of digital soil mapping for making estimates of 584 

seasonal soil-atmosphere CO2 and CH4 fluxes across a topographically heterogeneous watershed 585 

based on manual soil flux measurements and publicly available topographic data. This approach 586 

worked well for predicting fluxes in most seasons, but predicted CH4 fluxes had relatively higher 587 

uncertainty than predicted CO2 efflux during early summer, when hotspots of CH4 efflux 588 

developed in some areas in the watershed. We found areas with high slopes to have high 589 

relationship between temperature and CO2 efflux and net CH4 uptake, indicating the potential 590 

importance of soils on these landscape features to GHG budgets under future climate regimes. 591 

The well-drained soils of these slopes likely support aerobic soil processes across all seasons, 592 

resulting in a significant spatial correlation between CO2 efflux and net CH4 that was not 593 
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observed in other areas of the watershed. Our approach also identified variability of fluxes within 594 

sloping areas of the landscape based on variations in terrain attributes, particularly in the summer 595 

and fall. The application of this digital soil mapping framework to existing chamber flux data or 596 

to future studies could provide insights about the spatial variability of soil GHG fluxes, the 597 

spatial variability of factors controlling them, and could aid the development of GHG budgets in 598 

complex terrain. We hope that this work encourages modeling efforts in other complex systems, 599 

which may need to incorporate publicly available data on vegetation, land use, and climate 600 

surfaces in addition to terrain attributes. Transparent communication of uncertainty, both in 601 

predictions and predictors, is important for allowing future studies to refine modeling efforts and 602 

estimates of greenhouse gas budgets in complex systems.   603 
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