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Highlights
e Soil flux predictions closely matched observations across seasons
e We used a machine learning approach to upscale soil fluxes and estimate uncertainty
e Temperature was positively related to CO» efflux and CH4 uptake

e (CHy fluxes had bi-directional responses to seasonal precipitation patterns
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Abstract

Upscaling soil-atmosphere greenhouse gas (GHG) fluxes across complex landscapes is a
major challenge for environmental scientists and land managers. This study employs a quantile-
based digital soil mapping approach for estimating the spatially continuous distributions (2 m
spatial resolution) and uncertainties of seasonal mean mid-day soil CO2 and CHj4 fluxes. This
framework was parameterized using manual chamber measurements collected over two years
within a temperate forested headwater watershed. Model accuracy was highest for early (r* =
0.61) and late summer (r> = 0.64) for CO» and CH4 fluxes. Model uncertainty was generally
lower for predicted CO; fluxes than CH4 fluxes. Within the study area, predicted seasonal mean
CO; fluxes ranged from 0.17 to 0.58 umol m s™! in winter, and 1.4 to 5.1 pmol m? s! in early
summer. Predicted CHs fluxes across the study area ranged from -0.52 to 0.02 nmol m? s! in
winter, and -2.1 to 0.61 nmol m s’ in early and late summer. The models estimated a per
hectare net GHG potential ranging from 0.44 to 4.7 kg CO» eq. hr! in winter and early summer,
with an estimated 0.4 to 1.5% of emissions offset by CH4 uptake. Flux predictions fell within
ranges reported in other temperate forest systems. Soil CO> fluxes were more sensitive to
seasonal temperature changes than CHj4 fluxes, with significant temperature relationships for soil
CO; emissions and CH4 uptake in pixels with high slope angles. In contrast, soil CHy4 fluxes from
flat low-lying areas near the stream network within the watershed were significantly correlated to
seasonal precipitation. This study identified key challenges for modeling high spatial resolution
soil CO2 and CHj4 fluxes, and suggests a larger spatial heterogeneity and complexity of
underlying processes that govern CHy fluxes.
Keywords: carbon dioxide, methane, hot-moments, hot-spots, digital soil mapping, topography,

machine learning
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1. Introduction

The increase in atmospheric concentrations of greenhouse gases (GHG) such as CO; and
CHa4 has major implications for the health of humans and ecological systems worldwide.
Although human activities largely contribute to the increases in GHG concentrations, natural
sources and sinks of both CO; and CH4 account for large portions of their respective budgets
from local to global scales (King et al., 2015; Le Quéré et al., 2018; Saunois et al., 2016). Soils
are a major source of CO> and may act as both a major source or sink of CHy. Soil CO» efflux
represents the largest fraction of total terrestrial CO; emissions (Raich and Potter, 1995). Anoxic
saturated soils such as those found in wetland environments are estimated to represent roughly
20-30% of global CH4 emissions, while well-drained upland soils account for roughly 5-10% of
the CH4 removed from the atmosphere annually (Dlugokencky et al., 2011).

Temperate forests are a major ecosystem type at the global scale, covering much of the
eastern United States, Central and Eastern Europe, and East Asia (Friedl et al., 2002). These
ecosystems store large quantities of carbon in their vegetation biomass and soils (Pan et al.,
2011; Post et al., 1982), and these ecosystem components exchange large quantities of carbon
with the atmosphere in the form of CO; and CH4 (Gough et al., 2007; Warner et al., 2017). Soil-
atmosphere CO; and CH4 fluxes in temperate forests are highly heterogeneous in space, varying
across regional scales with climate, ecoregion, and land use types (Ambus and Christensen,
1995; Raich and Tufekcioglu, 2000; Smith et al., 2000); and at landscape scales with vegetation
cover, hydrologic conditions, and topographic heterogeneity (Atkins et al., 2014; Gomez et al.,
2017; Maier et al., 2017; Reyes et al., 2017; Warner et al., 2018). Fluxes also vary temporally
with diel patterns in temperature and plant activity, and with seasonally changing patterns in

temperature, precipitation, and plant phenology (Crill, 1991; Phillips et al., 2010; Vargas and
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Allen, 2008; Wang et al., 2013). Thus, the spatiotemporal heterogeneity of soil-atmosphere CO.
and CH4 fluxes is especially large in topographically complex landscapes that experience
seasonal climates, and accurately quantifying CO> and CH4 fluxes in these ecosystems is a major
challenge for estimating and managing local to regional carbon budgets (King et al., 2015;
Tonitto et al., 2016).

This scientific challenge has been approached in different ways. Top-down flux
measurement techniques such as eddy covariance can measure fluxes at the ecosystem scale, but
often are not well-suited for use in topographically heterogeneous terrain (Baldocchi, 2003;
Baldocchi et al., 2000). Smaller scale techniques, such as flux chamber measurements employing
portable gas analyzers, can better describe the heterogeneity of fluxes across different sources
and sinks in an ecosystem (Gomez et al., 2017; Leon et al., 2014; Maier et al., 2017; Warner et
al., 2017). However, upscaling manual chamber flux measurements to the ecosystem scale, and
assessing relative importance of different sources and sinks within an ecosystem, is difficult
because of their small measurement footprint (Phillips et al., 2017, Vargas et al., 2011). An
alternative approach of landform classification and aggregation of mean fluxes from point
measurements within each landform has been employed for estimating watershed scale soil-
atmosphere CO; (Gomez et al., 2016; Riveros-Iregui and McGlynn, 2009; Webster et al., 2008a)
and CHj4 fluxes (Gomez et al., 2016) in temperate ecosystems. However, studies incorporating
topographic variability into ecosystem scale predictions of in situ chamber flux measurements of
multiple GHGs are scarce. The aggregation of major landform elements, while useful, assumes
spatial homogeneity of fluxes within each landform and does not reflect the spatially continuous
nature of the land surface and soil processes at fine spatial resolutions. Furthermore, there is a

lack of standardization in defining landforms, which hinders potential comparisons of findings
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across studies and across ecosystem types. A continuous approach to scaling point measurements
across topographically complex landscapes could potentially address both of these issues by
providing continuous, high resolution maps of fluxes describing the functional variability of soils
within and across landform categories. In the context of this study and the previous studies
mentioned above, topographic or terrain “complexity” and “variability” refer to medium scale
topographic variations that are sufficiently described by a 2-meter resolution digital elevation
model (DEM). This may include landscape features like convergent and divergent slopes,
riparian zones, slope shoulders, and slope orientations, but excludes microtopographic variations
that may be obscured at a 2-meter pixel size, such as small bumps and divots in the land surface.
The field of digital soil mapping has expanded with the rapid acceleration of computer
processing, and has found many novel applications for soil scientists attempting to model the
continuous spatial distributions of soil properties (McBratney et al., 2003). Digital soil mapping
utilizes high-resolution DEMs, remote sensing data, legacy maps, and climate data to represent
the soil forming environment and predict soil properties across landscapes where information is
scarce. Machine learning or hypothesis driven models are used to couple field measurements of
soil properties to spatial covariates derived from these publicly available data sources in order to
generate predicted distributions of soil properties, classes, or functions (Hengl et al., 2017, 2004;
McBratney et al., 2003; Wiesmeier et al., 2011). As soil-atmosphere GHG fluxes are ultimately a
product of soil biogeochemical processes that are influenced by soil properties, we postulated
that digital soil mapping is an alternative, low-cost approach to predict the magnitude and
variability of soil CO, and CH4 fluxes with high spatial resolution across a piedmont landscape.
Our overarching goals were to develop a framework for “upscaling” manual soil GHG

chamber flux measurements to a continuous spatial distribution across complex terrain that could
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be employed in future and existing soil chamber flux studies, and examine how this continuous
approach may reveal shifting spatial patterns of fluxes across seasons. In this study, we applied a
digital soil mapping approach to upscale two years of existing flux measurements within a
forested, northern piedmont watershed at seasonal scales. The goals of this study were to: 1)
evaluate data-model agreement between chamber CO> and CH4 flux measurements and terrain
attributes using a digital soil mapping approach, 2) assess the spatial relationships between
predicted soil CO2 and CH4 fluxes and seasonal changes in temperature and precipitation. We
hypothesized that terrain attributes, including slope, aspect, and other terrain attributes, could be
reliable predictors of soil CO, and CHjy fluxes, given that other soil forming factors like

vegetation and climate were relatively homogeneous in our spatial domain.

2. Methods
2.1 Study site and sampling design

This study was conducted in a 12-hectare forested headwater watershed at Fair Hill
Natural Resources Management Area, Cecil County, Maryland, USA (39° 42’ N, 75° 50’ W).
Forest vegetation is primarily composed of Fagus grandifolia, Quercus spp., Lirodendron
tulipifera, and Acer spp (Warner et al., 2017). Soils within the study area are coarse-loamy,
mixed, mesic Lithic Dystrudepts belonging to the Manor and Glenelg series loams, which
overlay pelitic gneiss and schist bedrock (Anderson and Matthews, 1973). Annual precipitation
is approximately 1200 mm. Annual mean air temperature is 12 °C, reaching a maximum of 25 °C
and minimum of -0.6 °C (DEOS 2017). The watershed has hilly topography typical of the
Northern Piedmont, with a total elevation change of 31 m. Flux measurement locations had been

distributed 20 sampling locations across four hillslope transects with sampling points that



147

148

149

150

151

152

153

154
155
156
157

spanned valley bottoms, slopes, and upland areas as part of a study examining the influence of
topography on soil properties and fluxes (Warner et al., 2018, Fig 1). A transect design was
chosen for logistical reasons, as it maximized the number of measurements that could be taken
within a mid-day window to avoid confounding diurnal effects (e.g., rapid changes in
temperature and storm fronts) on fluxes (Cueva et al., 2017). Transects varied in length (27 to 70

m), elevation gain (6 to 14 m), and maximum slopes (9 to 25 percent).

---------- 1 m contours
Ephemeral channel
Perennial channel

A Sampling location

50 100 m
I 1

e

Figure 1. DEM and contour map of the study watershed. Sampling points are denoted by
triangles, the perennial stream network is denoted by a solid white line, and ephemeral channels
are denoted by white dashed lines.
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159 2.2 Flux measurements

160 Soil-atmosphere CO> and CH4 fluxes were measured from 10 cm diameter, 9 cm tall
161  PVC collars inserted 5 cm into the soil at each sampling point along the transects. Fluxes were
162  calculated based on the change of gas concentration within the chamber over the course of three
163  minutes, which was measured with an ultraportable greenhouse gas analyzer (Los Gatos

164  Research, Mountain View, California, USA) as described previously (Warner et al. 2017).

165  Measurements were taken at mid-day (11:00 — 15:00) two times monthly from September 2014
166  to November 2016, with additional measurements following precipitation events and during
167  drought periods, yielding a set of 880 total flux measurements. These measurements were

168  classified by season based on annual patterns of soil temperature and moisture, which were

169  measured from 0 to 4 cm with a handheld probe simultaneously with fluxes. Seasons were

170  defined as winter (cold-wet: Jan 1-Feb 28), spring (warm-wet: Mar 1-May 20), early summer
171  (hot-wet: May 20-Jul 31), late summer (hot-dry: Aug 1-Sep 30), and fall (warm-dry: Oct 1-Dec
172 31). Seasonal groupings were determined based on site-specific temperature, precipitation, and
173 phenological patterns (Warner et al., 2018).

174

175 2.3 Topographic analysis and processing

176  Topographic data was acquired from a LiDAR (Light Detecting and Ranging)-derived DEM
177  with 2 meter spatial resolution (NOAA, 2005). The DEM was preprocessed and conditioned for
178  further topographic and hydrologic analysis (Jenson and Domingue, 1988). Flow direction was
179  calculated as the maximum triangle slope (Tarboton, 1997). Primary and secondary terrain

180 attributes were derived from this DEM in SAGA GIS (Conrad et al., 2015), and a full list of

181  these attributes is provided in Supplementary Table 1. A GPS (Geographical Positioning System)
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survey was conducted to locate each chamber within 1-meter accuracy, allowing us to accurately

identify the corresponding pixels on the terrain attribute grids.

2.4 Modeling fluxes and prediction uncertainty with quantile regression forests

Our digital soil mapping framework is summarized in Figure 2. Of the 27 topographic
attributes considered, the attributes that were ultimately used in our predictions were selected for
each season using the random forest-based variable selection method proposed by Genuer et al.
(2012). A list of these variables and their descriptions is provided in Table 1, as is a comparison
of summary statistics and distributions of each variable for the whole study watershed and for the
set of sampling points where flux measurements were taken. This method uses a repeated cross
validation procedure to select the most informative variables for model interpretation and model
prediction purposes. The variables are first ranked by importance and eliminated systematically
to reduce model error, ultimately yielding a small set of highly important variables that are
sufficient for making robust predictions (Table 2).

This study employed quantile regression forests (Meinshausen, 2006), a variant of the
random forests algorithm (Breiman, 2001). The random forests algorithm creates an ensemble of
regression trees based on bagging, a statistical sub-setting technique applied to available data and
available predictors. The final prediction is the average of all the regression trees which are
evaluated by an out-of-bag cross-validation form. Alternatively, the quantile regression forests
algorithm estimates the variance of all the ensembled trees (not just the mean as with the original

random forests algorithm), producing a full conditional distribution of the response variable (i.e.,

10
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Table 1. Selected variables used in quantile regression forests models. Summary statistics for
each variable are provided for the whole study watershed and the sampling points. The third
column provides D-statistics and p-values from Kolmogorov-Smirnoff Tests comparing the
distributions of variables for the whole watershed and set of sampling points.

ID Attribute Summary Summary K-S
Number (Watershed) (Points) test
Flow Line Curvature (radians m™): Min: -3.8e-3 Min: -4.3e-4  D:0.20
1 The mean local curvature of pixels from a flow path Max: 3.4e-3 Max: 5.6e-4  p: 0.40
running through a target pixel. Mean: -3.4e-6  Mean: 7.9¢-6
SD: 1.7e-4 SD: 2.2e-4
Topographic Wetness Index (SAGA): Min: 2.1 Min: 3.5 D: 0.23
2 A SAGA modified version of the Topographic Max: 12.6 Max: 10.4 p: 0.26
Wetness Index (Beven and Kirkby, 1979) that also Mean: 5.8 Mean: 5.9
accounts for vertical distance to the channel network. SD: 1.8 SD: 2.2
Slope (radians): Min: 2.7¢e-4 Min: 0.04 D: 0.47
3 The angle of maximum rise over run at each pixel. Max: 0.43 Max: 0.35 p: <0.01
Mean: 0.11 Mean: 0.17
SD: 0.07 SD: 0.08
Channel Network Base Level (masl): Min: 77.1 Min: 78.4 D: 0.48
4 The interpolated elevation of a stream channel Max: 101.4 Max: 92.6 p: <0.01
network. Mean: 91.0 Mean: 85.4
SD: 5.3 SD: 3.9
Vertical Distance to Channel Network (m): Min: 0 Min: 0 D: 0.15
5 The difference between surface elevation and Channel ~ Max: 15.4 Max: 9.5 p: 0.74
Network Base Level. Mean: 3.8 Mean: 3.0
SD:3.4 SD: 3.0
Downslope Curvature (radians m™): Min: -0.59 Min: -0.19 D: 0.25
6 The mean local curvature of pixels along the Max: 0.22 Max: 0.07 p: 0.16
downslope flow path running from a given pixel. Mean: -0.01 Mean: -0.03
SD: 0.05 SD: 0.06
Upslope Accumulation Area (m?): Min: 11 Min: 54 D:0.24
7 The area of pixels that are routed through a given pixel Max: 47300 Max: 13100 p: 0.19
by a flow direction calculation (m?) Mean: 945 Mean: 1850
SD: 2740 SD: 3518
Aspect (radians away from 0 (North)): Min: 0 Min: 1.2 D: 0.20
8 The direction of a slope. In this case, aspect has been Max: 3.1 Max: 3.1 p: 0.43
normalized such that maximum values are south- Mean: 2.1 Mean: 2.1
facing and minimum values are north facing SD: 1.4 SD: 1.2
Catchment Slope (radians): Min: 3.8e-4 Min: 0.09 D: 0.58
9 The mean slope angle of pixels within an Upslope Max: 0.30 Max: 0.20 p: <0.01
Accumulation Area. Mean: 0.09 Mean: 0.14
SD: 0.04 SD: 0.03
Multiresolution Index of Valley Bottom Flatness: Min: 0 Min: 0 D: 0.43
10 A quantitative measure of valley bottom topographic Max: 4.8 Max: 1.4 p: <0.01
characteristics based of slope angles of a pixel derived  Mean: 0.55 Mean: 0.29
at multiple resolutions (Gallant and Dowling, 2003). SD: 0.60 SD: 0.46
Multiresolution Index of Ridge Top Flatness: Min: 0 Min: 0 D: 0.48
11 A quantitative measure of upland plateau topographic ~ Max: 4.0 Max: 0.95 p: <0.01
characteristics based of slope angles of a pixel derived Mean: 0.38 Mean: 0.09
at multiple resolutions (Gallant and Dowling, 2003). SD: 0.59 SD: 0.21

11
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soil GHG flux) as a function of its predictors (i.e., terrain attributes). Therefore, quantile
regression forests provide the means to judge the reliability of predictions, since prediction
intervals can be extracted from the full conditional distribution of both predicted fluxes at each
season for each pixel across the watershed. After variable selection, quantile regression forest
model parameters mtry (the number of predictor variables randomly selected at each node in a
tree) and ntree (the number of “trees” grown in the forest) were tested using leave-one-out cross
validation to minimize model error while maximizing explained variance. The mtry parameter
was tested from 2 to n — 1 (n = number of predictors), and the ntree parameter was tested from
50 to 1000 at increments of 10. The result of the quantile regression forest was a set of
conditional prediction distributions (ntree ranged 90 to 230 for CO, fluxes and 60 to 230 for CHa
fluxes) of mean mid-day soil CO> and CH4 fluxes at each pixel (total of 30134) within the study
watershed during each season. As these prediction distributions often were not normally
distributed, medians of the conditional prediction distributions at each pixel were used as final
predictions. The interquartile ranges of the conditional distributions were used as a spatially
explicit measure of prediction uncertainty. This approach allowed us to predict spatially
continuous distributions of seasonal mean mid-day soil-atmosphere CO; and CH4 fluxes and the
interquartile range of these predictions across the 12 ha watershed for each season.

Variable selection, parameter testing, and quantile regression forest predictions were
performed in packages “VSURF” (Genuer et al. 2016), “e1071” (Meyer et al. 2015),
“randomForest” (Liaw and Wiener 2002), and “quantregForest” (Meinshausen 2016) in the R
software (R Core Team 2015). Model accuracy was evaluated for each soil GHG flux and each

season based on root mean square error (RMSE) and the coefficient of determination (r?). Per
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hectare fluxes were estimated as the sum of the predicted fluxes at each 2-meter pixel multiplied
by the true surface area (adjusted by slope) of each pixel and normalized to watershed area.

In this study, model performance and soil GHG predictions were evaluated in two ways.
First was “model accuracy” referred to the coefficient of determination (r?) and root mean square
error (RMSE) of our quantile regression forests model fit to our 20 observations of each GHG
flux in each season. Second was “prediction uncertainty”, which referred to the spread of the
conditional prediction distribution (where n = the ntree parameter) generated by the quantile
regression forests model at each pixel. Thus, “model accuracy” was used as an indicator of
overall model fit, while “prediction uncertainty”” was used as an indicator of the consistency of
predictions made by individual trees grown within the quantile regression forests model.
Prediction uncertainty was expressed both as a percentage (i.e., interquartile range of the
conditional prediction distribution divided by the median) and as a unit (i.e., umol m? s™! or nmol

m2 ') value equal to the interquartile range of the conditional prediction distribution.
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243 Figure 2. Flow diagram of modeling approach used in this study. Double outlines indicate
244  primary data sources, while shaded boxes indicate final products presented in this paper.
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2.5 Seasonal relationships of fluxes, temperature, and precipitation

To examine the watershed scale spatial variability of flux responses to seasonal climate
patterns, we fit linear models to mean annual temperature and fluxes at each pixel. Seasonal
meteorological data were taken from a nearby (~1 km) weather station in the Delaware
Environmental Observation System (DEOS 2017). Temperature relationships to CO, and CH4
fluxes were assessed by fitting pixel-wise linear models of mean seasonal air temperature to
mean seasonal GHG fluxes and extracting the slope for each pixel, yielding a seasonal
temperature relationship in units of pmol CO> m s™! or nmol CHs m™ s! per degree Celsius. We
also examined the potential influence of seasonal precipitation patterns on fluxes. In pixels where
temperature-flux relationships were significant, the residuals of these relationships were related
to mean weekly precipitation for each season. In pixels where temperature-flux relationships
were not significant, predicted flux values were related to mean weekly precipitation in each
season instead. Pixel-wise linear models were also used to examine relationships between CO»

and CH4 fluxes across seasons.

3. Results
3.1 Selected variables for each season and gas flux

A total of 10 prediction grids were made (one for each season and each gas), and the
selected predictor variables were different between seasons and between CO; and CHg4 fluxes.
Table 2 lists which variables were selected for each model. A topographic wetness index was
selected as a predictor of CH4 fluxes across all seasons, and as a predictor for CO: from early
summer to fall. Flow line curvature was selected as a predictor for CO> fluxes in all seasons, but

never for CHy fluxes. Slope angle, upslope accumulation area, and the Multiresolution index of

15



270  Valley Bottom Flatness (MRVBF) were also commonly selected as predictors of CHs fluxes,

271  while upslope accumulation area and the interpolated channel network base elevation were

272 selected in three seasons for CO; fluxes. Other variables, such as aspect, were selected only once
273  for a specific season and flux (Table 2).

274

275 3.2 Predicted fluxes and model accuracy

276 Model predictions of mean mid-day fluxes were close to our observed mean fluxes across
277  sampling locations in each season (Fig 3). A detailed description of observed fluxes can be found
278  in Warner et al. (2018). Model accuracy was lowest in spring for both CO, and CH4 with r? of
279 0.1 and 0.35, and RMSE of 0.39 umol CO> m s”! and 0.25 nmol CHs m s°!, respectively.

280  Model accuracy was highest in early summer for CO; (r> = 0.61, RMSE = 0.90 pmol m s!) and
281  in late summer for CHs (r* = 0.64, RMSE = 0.47 nmol m s!). A list of model r> and RMSE is
282  provided in Table 2.

283
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Figure 3. Comparisons of observed CO> and CH4 fluxes and predicted fluxes from the medians
of conditional prediction distributions generated by quantile regression forests. In panels A and
B, seasons are denoted by shapes, and error bars indicate the upper and lower quartiles of the

conditional prediction distributions.

Table 2. R-squared and Root Mean Square Error values for assessing model accuracy of quantile
regression forests models. Selected variables for each model correspond to the ID Number

column of Table 1.

CO; fluxes CHg fluxes

Season R? RMSE (umol  Variables Selected R? RMSE (nmol  Variables Selected
m?’s?) m?s?)

Winter 0.42 0.09 1,4,6,8,9 0.57 0.13 2,7,10
Spring 0.10 0.39 1,5, 11 0.35 0.25 2,3,7,10
Early Summer | 0.61 0.90 1,2,4,7 0.50 0.60 3,7
Late Summer 0.40 0.70 1,2,3,4 0.64 0.47 2,3,10
Fall 0.40 0.39 1,2,7 0.39 0.46 2,10

17



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Like the observed GHG fluxes, predicted seasonal mean fluxes varied across the
landscape and across seasons (Fig 4). Predicted CO> efflux was generally low in winter (range
0.15 to 0.55 umol m2 '), with the highest fluxes in the steep south-facing slopes near the
watershed outlet, and lowest in low slope pixels near the stream network and in the upper
reaches of the watershed. Winter predictions of net CH4 uptake were highest along convergent
hillslopes (maximum -0.52 nmol m™ s!), with neutral to slightly positive net CH4 fluxes
predicted in low lying areas (Fig 4). In spring, predicted CO> efflux was highest in steeply
sloping and low slope pixels that that were situated high above the stream channel (range 0.60 to
1.6 pmol m s7!). Predicted CH4 uptake was highest on the steepest areas of the catchment in
spring (maximum -0.81 nmol m s!), with neutral to slightly positive soil CHs4 fluxes predicted
in flat, near stream areas of the watershed (Fig 4). Early summer predicted mean CO> efflux was
the highest of any season (maximum of 5.2 pmol m2 s!) in steep sloping pixels near the
watershed outlet, especially in pixels with concave flow line curvature. However, low CO> efflux
(minimum of 1.4 pmol m2 s!) was predicted in low slope pixels near the stream network. Early
summer also had the highest predicted soil CHs emissions (maximum of 0.6 nmol m s!), which
corresponded to areas of very low predicted CO> efflux. Low soil CH4 uptake (~-0.2 nmol m? s
1 was predicted for most of the watershed except in pixels with high slopes and low upslope
area, where predicted soil CHs uptake was relatively high (maximum of -1.9 nmol m s!) (Fig
4). In late summer, predicted CO: efflux was again highest in high slope pixels, but without the
same small areas of relatively high efflux observed in early summer. CO» efflux was relatively
small across the rest of the watershed (range 1.1 to 3.4 umol m s!). Predicted net CHs uptake
was highest during this season, with the highly negative values concentrated along convergent

hillslopes (maximum of -2.1 nmol m™ s!), slightly negative values in low slope areas
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above and below the hillslopes, and slightly positive soil CHy fluxes in flat areas surrounding the
stream network. Predicted CO; efflux and CH4 uptake was slightly lower across the watershed in
fall than in late summer, but the spatial patterns of the highest predicted fluxes were similar
between the two seasons. Most notably, positive CHy fluxes were not predicted in any pixels

during these seasons (Fig 4).

3.3 Prediction uncertainty

Percent prediction uncertainty (the interquartile range of the prediction distribution at
each pixel as a percentage of the median of the prediction distribution) of predicted CO, efflux
was relatively low compared to predicted CHs4 fluxes (Fig 5), generally staying below 100%
across all seasons. For CO; efflux, spatial distributions of areas with relatively high percent
prediction uncertainty varied between seasons. Areas of high percent prediction uncertainty were
focused in low slope pixels high above the stream network (winter and spring), steep near stream
areas (early summer), flat pixels near the watershed outlet (late summer), but were scattered
across the watershed in fall (Fig 5). Predicted CH4 fluxes had very large ranges in percent
uncertainty, but the spatial patterns of this uncertainty were more consistent across seasons than
for CO; predictions. Percent uncertainty for each prediction was relatively low (< 100%) in high
slope pixels during all seasons, but extremely high percent uncertainty (> 1000%) was observed
for CH4 fluxes in some areas with near-zero predicted net fluxes (Fig 5, 6). In general, percent
prediction uncertainty was highest in pixels where predicted fluxes were nearest to zero,
although low predicted fluxes were often associated with similarly low prediction uncertainty in

units of flux (Fig 6). In exception, soil CH4 flux predictions were highly uncertain in low slope
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pixels in upland areas of the watershed during early summer, resulting in high percent

uncertainty in many of pixels predicted to be moderate sinks or sources of CHy (Fig 5, 6).
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Figure 4. Predicted seasonal mean mid-day CO: (top) and CH4 (bottom) fluxes at each pixel in

our study watershed during each season. Predicted values represent the median of the conditional

prediction distribution of seasonal mean fluxes generated for each pixel.
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Figure 5. Percent prediction uncertainty for CO: (top) and CHs4 (bottom) fluxes at each pixel in
our study watershed during each season. Percent uncertainty was calculated as the interquartile
range divided by the median of the conditional prediction distribution generated for each pixel.
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Figure 6. The relationship between % prediction uncertainty and predicted CHs fluxes. High %
prediction uncertainty is caused by some of the uncertain model predictions of CH4 fluxes in
early summer, while in other seasons it is due to near-zero predicted CHs fluxes.
3.4 Per hectare fluxes and whole watershed means

We predicted the mean mid-day flux per hectare of both gases as the sum of predicted
fluxes at each pixel divided by watershed area. Per hectare CO; emissions were greatest in early
summer, with predicted mean mid-day efflux (sum of lower and upper quartiles of prediction
distribution) of 108 (73.1 to 150) mol CO; hr'! ha'!. Early summer predicted CHs fluxes had the
greatest uncertainties, leading to predicted mean mid-day net flux of -17.1 (-53.8 to 21.8) mmol
CHs hr!. Predicted per hectare net CHy4 flux was greatest in late summer and fall, with fluxes of -
29.5 (-51.8 t0 -6.3) and -22 (-41.4 to -6.4) mmol CHy hr'!, respectively. Fluxes were lowest
during winter months, with estimated per hectare mid-day fluxes of 10.0 (5.6 to 14.8) mol CO>
hr!and -5.9 (-11.3 to -0.6) mmol CH4 hr'! . When comparing CO» equivalents using a 100-year

global warming potential of 25 for CHa4, we estimated that soil CH4 fluxes could offset the global
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371  Figure 7. Comparisons of seasonal means (+ 1 S.D.) of observed fluxes at sampling locations
372 (grey triangles, n = 20), predicted fluxes at sampling locations (grey squares, n = 20), and
373  predicted fluxes across the entire study watershed (black circles, n = 30134).

374



375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

We compared the means of observed fluxes across the 20 sampling sites to means of
predicted fluxes at 20 sampling sites and across the whole study watershed (Fig 7). Observations
and predictions at the 20 sampling sites were generally quite close. Mean predicted CO; efflux
across the whole watershed was lower than the means of predictions and observations at the 20
sampling locations in spring (Fig 7a). From early summer to fall, mean predicted CH4 uptake
across the whole watershed was lower than the means of predictions and observations at the 20
sampling locations (Fig 7b).

3.5 Seasonal relationships between fluxes, temperature, and precipitation

Linear models relating seasonal mean air temperature (explanatory variable) with
predicted seasonal mean CO» efflux (response variable) were significant (p < 0.05) at every pixel
in the watershed. The slopes of these relationships ranged from 0.2 to 0.6 pmol CO> m? st °C"!
with lower values found in flat near stream areas and higher values found along steep slopes,
with the highest values corresponding to areas of extremely high predicted efflux in early
summer (Fig 4, 8a). Linear models relating seasonal mean soil CHy fluxes and temperature were
significant (p < 0.05) within pixels on steep sloping areas and in a few scattered pixels in other
parts of the watershed, but were not significant for most pixels with low slope values. Where
significant, slopes of temperature relationships ranged from -0.23 to -0.02 (nmol CHs m™ s °C-
1, with the greatest relationship for soil CHs4 uptake across sloped convergent zones and along
the base of steeply sloping areas (Fig 8b).

There were no significant relationships between precipitation and the residuals of the
COz-temperature relationships in any pixel, nor were there any such relationships with CHas-
temperature residuals in the pixels where these relationships were significant. However, mean

weekly precipitation was significantly positively correlated to soil CHs4 fluxes (higher net

24



399

400

401

402

403

404

405

406
407

408
409
410
411

CH4 emissions in wet seasons) in low slope pixels near the stream network (~ 0.07 nmol CHs m™
st mm™), and negatively correlated in similarly low slope pixels at the perimeter of these areas
(~-0.07 nmol CHs m2 s! mm!), (Fig 8c¢).

Seasonal CO; and CHg4 fluxes were significantly correlated to each other for a small
portion of the watershed that primarily included the same pixels where significant CH4 —
temperature relationships were observed (Fig 8d). This correlation was generally negative where

it was significant, indicating a seasonal increase in soil CH4 uptake with increasing CO» efflux.

E o
Slope - CO, vs Temperature (% ) Slope - CH, vs Temperature (“—mg'cm s )
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Figure 8. Pixel-wise slopes derived from linear models of seasonal (B) CO; and seasonal mean
temperature, (C) CH4 fluxes and seasonal mean temperature, (C) seasonal CH4 fluxes and
seasonal mean weekly precipitation, (D) seasonal mean CO> fluxes and CH4 fluxes. Gray areas
indicate pixels with non-significant (n =5, p > 0.1) relationships.
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4. Discussion
4.1 Continuously distributed flux predictions

This study demonstrates that a digital soil mapping framework can be used to predict
soil-atmosphere CO; and CH4 fluxes across a forested watershed. Predicted mean fluxes from
quantile regression forests closely represented our observations in all seasons (Fig 3), suggesting
that soil surface GHG flux measurements and DEM-derived terrain attributes can be effectively
used in tandem to estimate soil-atmosphere fluxes across topographically heterogeneous
ecosystems. Unlike approaches that rely on classification and aggregation of fluxes from major
landforms (Gomez et al., 2016; Webster et al., 2008a), this approach allowed us to estimate the
continuous spatial distributions of these fluxes at high spatial resolution (2 m pixel size). Though
both approaches can discern differences in fluxes between major landscape features (i.e.,
hillslopes, upland and valley bottom flats), our approach also provided a detailed, continuous
estimate of flux variability within major landscape features that cannot be achieved by only using
landform classification. For example, our approach suggested the elevated CO; efflux in areas of
concave flow line curvature along transitional hillslopes in early summer, and elevated CH4
uptake along convergence zones along transitional hillslopes in late summer and fall (Fig 4). The
elevated patches of CO; efflux may be a result of organic carbon accumulation in areas of
concave hillslope curvature (Fissore et al., 2017) coupled with hot, moist conditions in the early
summer season, which would be conducive for high rates of heterotrophic respiration. The
predicted elevated rates of CHs uptake in convergence zones along hillslopes is noteworthy, as
these were areas with higher topographic wetness indices (representing where water would tend
to accumulate) than other parts of the hillslopes. Soil moisture is generally assumed to inhibit

methanotrophic activity because it limits Oz and CH4 diffusion into the soil (Del Grosso et al.
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2000), but it is possible that these convergence areas remain moist enough to protect soil
microbial communities from drought stress during dry seasons like late summer and fall,
allowing elevated CH4 uptake at these times.

The ranges of our flux predictions were comparable to fluxes reported in other temperate
forests. Our CO; efflux predictions fell within the ranges reported in another temperate forest,
which ranged from a median of 0.7 umol CO, m s'! in winter/spring to 4.1 pmol CO> m? s!in
summer, with high emissions in along hillslopes and low emissions in flatter, low lying areas
(Creed et al., 2013; Webster et al., 2008b). Our predictions of net CH4 fluxes were also
comparable to observations in a similar temperate forest, that found mean late summer net CHy4
fluxes of -2.0 nmol CHs m™ s7! in slopes and flat upland areas, but high emissions of CHs (some
instantaneous measurements as high as 100 nmol CHs m™ s!) only during early summer in flay,
low lying areas of the watershed (Wang et al., 2013). While our predicted mean CH4 efflux only
reached a maximum of 0.6 nmol CHs m™ s’!, we too observed brief “hot moments” of emissions
in early summer (as high as 19 nmol CHs m s!) in low lying flat areas near the stream network,

which had near-zero net fluxes during the rest of the year (Warner et al., 2018).

4.2 Mean flux predictions and uncertainty

In most seasons, mean predicted CO; fluxes for the whole study watershed were similar
to mean observed and predicted fluxes for the 20 sampling locations (Fig 7a). This suggests that
the sampling locations in this study were able to represent the general distribution of CO» fluxes
across the catchment for most seasons except spring, when the 20 sampling points may have
overrepresented areas with high CO> emissions. Similarly, the 20 sampling points may have

overrepresented areas of high CH4 uptake during the summer and fall (Fig 7b). These results

27



458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

demonstrate how mean fluxes at the watershed or landscape scale may be influenced not only by
spatial variability across the land surface, but by seasonal variability in spatial patterns of fluxes.
The representativeness of a set of chamber measurement locations may inconsistent in time, as
the spatial patterns of fluxes vary with seasons. Our findings suggest that spatially continuous
approaches for scaling flux observations may help reduce such temporally transient biases when
making large scale estimates of flux means and totals based on static chamber measurements
across complex landscapes.

The spatial distributions of prediction uncertainty may also vary from season to season.
This was very clear for predictions of early summer CH4 fluxes. Model estimates of early
summer CH4 flux per hectare ranged from a moderate net source to a moderate net sink. We
attribute this broad range to the large prediction uncertainties of CHs fluxes in some areas of the
watershed during this season (Fig 5). We found two primary causes of high percent prediction
uncertainty in our models. In some cases (such as in low-lying areas during late summer), the
high percent CH4 prediction uncertainty was a product of a prediction distribution with a median
near zero and an interquartile range that, while small in units of flux, was much larger than the
median prediction (for example, a median and interquartile range of 0.001 and 0.1 nmol m s!
would have a percent prediction uncertainty of 10000%; Fig 6). In early summer however, high
percent prediction uncertainty was a product of highly variable conditional prediction
distributions in some areas of the watershed (Fig 5, 6, early summer predictions), which led to a
highly uncertain estimate of large scale soil CH4 flux in early summer. It should be noted,
however, that large scale measurement techniques like eddy covariance can face the same

challenges when hotspots form in hot, wet conditions (Hortnagl et al., 2018; Wang et al., 2013).
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As ecosystem models continue to provide increasingly detailed insights into
biogeochemical processes, communicating their uncertainty, and the underlying implications of
this uncertainty, becomes increasingly important. In the former case described above, percent
prediction uncertainty may be high, but the degree of this uncertainty in units of flux may be too
small to be ecologically relevant. In the latter case, the high level of prediction uncertainty in
flat, high elevation areas has major implications for interpreting the net CH4 source or sink status
of the landscape. Beyond communicating the uncertainty of model estimates, understanding the
causes for this uncertainty may highlight certain processes are challenging to model (i.e.
greenhouse gas fluxes), and help guide future efforts in upscaling chamber measurements.

The high uncertainty of per hectare early summer CHs4 fluxes may stem from the large
variability of CHs fluxes within landscape features that have similar topographic characteristics
(e.g., flat or low slope) in hot, wet environmental conditions. We observed large CH4 emissions
in a few low elevation sampling locations while other pixels with similar terrain attributes had no
net flux, or were weak net sinks of CHa. Studies in other temperate forests have observed brief
early summer “hot moments” of CH4 emissions from small areas of low-lying soils that may
entirely offset or exceed CH4 uptake occurring across most of the watershed (Itoh et al., 2007;
Wang et al., 2013). Furthermore, it is known that anaerobic biogeochemical processes, such as
methane production, can vary significantly in space due to subtle variations in surface
microtopography at scales below the 2 meter scale employed in this study (Frei et al., 2012),
which may help explain why CH4 flux observations from different small-footprint chambers may
vary significantly even within areas with similar DEM-derived terrain attributes. Our variable
selection process selected only terrain attributes of slope and upslope accumulation area as

predictors of CH4 fluxes in early summer (Table 2). Slope was similarly low in pixels in flat

29



503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

areas near the stream network and in high elevation areas, while upslope accumulation area was
variable in the former and low in the latter. Thus, in some cases our quantile regression forests
model made predictions based on attributes of topographically similar pixels with distinctly
different CH4 fluxes, which led to highly variable conditional prediction distributions. Low slope
pixels occupy a large portion of this study watershed, the high prediction uncertainty of these
pixels was compounded in our per hectare flux estimates. These findings highlight the
difficulties that “hot spots” and “hot moments” of CH4 fluxes introduce to large scale modeling
efforts (Savage et al., 2014). This could potentially be addressed by more frequent measurements
and the use of larger footprint chambers, or larger numbers of chambers, in areas prone to
forming biogeochemical hot spots (wet, low lying soils). Striking a balance between the
logistical constraints of chamber flux measurement campaigns and the selection of sampling
sites, duplicate measurements within pixels, and chamber size is challenging, and the successes
and setbacks of this and future research efforts will help optimize sampling strategies.

While high variability of fluxes from topographically similar pixels can cause large
prediction uncertainty, the same problem may arise when similar fluxes are observed from
topographically distinct pixels. This effect may be responsible for the much lower model
accuracy for spring CO; efflux (r* = 0.1; Table 2) than for any other season or flux. In this
season, our variable selection process selected flowline curvature, multiresolution index of ridge
top flatness, and vertical distance to channel network as predictors of CO> efflux. Many pixels
occupying sloping areas of the watershed have high, low, and intermediate values of these
attributes, while flatter, high elevation pixels have low, high, and high values, respectively.

Despite these major differences in selected terrain attributes, many of these pixels had similar
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CO: fluxes, and consequently the model had challenges relating fluxes with surficial terrain

attributes.

4.3 Relationships of seasonal CO; and CH4 fluxes, temperature, and precipitation

Temporal relationships between seasonal meteorological patterns and fluxes were
different for each gas. The highest temperature-CO; efflux relationship corresponded to soils
along steep pixel with concave flow line curvature near the catchment outlet, and relatively
lower temperature-CO; efflux relationships were found in low slope areas lying both near the
stream network and high above it (Fig 8a). The higher temperature-CO- efflux relationship from
the steep sloping areas indicates the potential importance of these topographic features to
landscape scale CO> budgets in a warmer future climate. The residuals of the temperature-CO»
efflux relationship were not correlated to mean weekly precipitation in any pixel, suggesting that
the temperature is the dominant regulator of the seasonal variability of soil CO» efflux across this

watershed. However, it should be noted that this study was not in an arid or semiarid ecosystem,
and that precipitation variability is a well-known major driver of the seasonal variability of soil
CO; efflux in many ecosystem types (Riveros-Iregui et al., 2012; Stielstra et al., 2015; Takahashi
etal., 2011, Vargas et al., 2012).

Conversely, pixels with high slopes and low wetness indices (strong net CHy sinks) were
the only portions of the watershed where significant linear relationships between seasonal
temperature and CH4 fluxes were observed (Fig 8b). Sloping areas, specifically convergent zones
along and at the base of slopes, showed increasing negative CHy fluxes (i.e., CHs sinks) in
warmer seasons. Pixels that were consistently net CHy sources, or pixels with near-zero net CH4

fluxes in most seasons, were not significantly related to seasonal temperature (Fig 8b). However,

31



548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

we found significant relationships between mean seasonal CHy fluxes and weekly precipitation
in low-lying flat areas near the stream network. Notably, the pixels that were closest to the
stream or ephemeral channels showed a positive relationship between seasonal mean
precipitation and CHy flux (i.e. more CH4 emission in wetter seasons), but opposite relationships
were observed in pixels in the adjacent perimeter areas (Fig 8c). Similar patterns have been
observed during rainy periods in temperate forests (Itoh et al., 2007), which has been explained
by a frequent lateral influx of oxygen-rich water to valley bottom perimeter soils that is rapidly
depleted before it reaches more central soils. This results in sustained saturation and significantly
increased CH4 production in the central areas, but also suppressed CH4 production in the
adjacent perimeter soils (Itoh et al., 2007).

In addition to the relationships between GHG fluxes and seasonal meteorological
patterns, we also examined the potential seasonal correlations among the GHG fluxes
. There has recently been increasing interest in the relationships between soil CO2 and CHy
fluxes across landscapes, which may provide insights into the shared functional controls of
heterogeneous soil types, vegetation, and microbial community structure on multiple soil
greenhouse gas fluxes within an ecosystem (Maier et al., 2017). In general, soils with high CO»
efflux tend to have high CH4 uptake, while soils with low CO; efflux may have near-zero CHy4
fluxes or act as net sources of CH4 (Maier et al., 2017; Warner et al., 2018). We found significant
correlations between predicted seasonal CO; and CH4 fluxes almost exclusively in steep sloping
pixels (Fig 8d), the same areas where we found significant correlations between predicted CH4
uptake and temperature. These sloped soils are generally well-aerated and well-drained, which
consistently provides conditions conducive for aerobic heterotrophic activity and methane

oxidation even in periods of frequent rain. Flatter and lower elevation areas of the watershed may
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be less well-drained, creating a soil environment that may be more conducive to CH4 production,
or may have a closer balance between methanogenic and methanotrophic processes. As rates of
both methanogenesis and methanotrophy increase with temperature (Semenov et al., 2004;
Yvon-Durocher et al., 2014), areas containing soils that support both microbial processes may
have no relationship between temperature and the net CH4 flux at the soil surface.

Thus, our findings suggest that warmer mean seasonal temperatures may influence steep
slopes in forested ecosystems to act as relatively greater CO; sources, but also relatively greater
net CHj4 sinks. However, changes in precipitation patterns may have a greater impact on CHy
fluxes in flatter low lying areas than changes in seasonal temperatures, making the combined
(and confounding) effects of temperature and precipitation variability on soil-atmosphere CHg4

exchange difficult to predict across topographically complex landscapes.

5. Conclusions

This study demonstrates the potential of digital soil mapping for making estimates of
seasonal soil-atmosphere CO> and CH4 fluxes across a topographically heterogeneous watershed
based on manual soil flux measurements and publicly available topographic data. This approach
worked well for predicting fluxes in most seasons, but predicted CH4 fluxes had relatively higher
uncertainty than predicted CO; efflux during early summer, when hotspots of CH4 efflux
developed in some areas in the watershed. We found areas with high slopes to have high
relationship between temperature and CO; efflux and net CHs4 uptake, indicating the potential
importance of soils on these landscape features to GHG budgets under future climate regimes.
The well-drained soils of these slopes likely support aerobic soil processes across all seasons,

resulting in a significant spatial correlation between CO; efflux and net CH4 that was not
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observed in other areas of the watershed. Our approach also identified variability of fluxes within
sloping areas of the landscape based on variations in terrain attributes, particularly in the summer
and fall. The application of this digital soil mapping framework to existing chamber flux data or
to future studies could provide insights about the spatial variability of soil GHG fluxes, the
spatial variability of factors controlling them, and could aid the development of GHG budgets in
complex terrain. We hope that this work encourages modeling efforts in other complex systems,
which may need to incorporate publicly available data on vegetation, land use, and climate
surfaces in addition to terrain attributes. Transparent communication of uncertainty, both in
predictions and predictors, is important for allowing future studies to refine modeling efforts and

estimates of greenhouse gas budgets in complex systems.
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