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 24 
Abstract: The metabolic activity of water-limited ecosystems is strongly linked to the timing and 25 
magnitude of precipitation pulses that can trigger disproportionately high (i.e., hot-moments) 26 
ecosystem CO2 fluxes. We analyzed over 2-years of continuous measurements of soil CO2 efflux (Fs) 27 
under vegetation (Fsveg) and at bare soil (Fsbare) in a water-limited grassland. The continuous wavelet 28 
transform was used to: a) describe the temporal variability of Fs; b) test the performance of empirical 29 
models ranging in complexity; and c) identify hot-moments of Fs. We used partial wavelet coherence 30 
(PWC) analysis to test the temporal correlation between Fs with temperature and soil moisture. The 31 
PWC analysis provided evidence that soil moisture overshadows the influence of soil temperature 32 
for Fs in this water limited ecosystem. Precipitation pulses triggered hot-moments that increased Fsveg 33 
(up to 9000%) and Fsbare (up to 17000%) with respect to pre-pulse rates. Highly parameterized 34 
empirical models (using support vector machine (SVM) or an 8-day moving window) are good 35 
approaches for representing the daily temporal variability of Fs, but SVM is a promising approach to 36 
represent high temporal variability of Fs (i.e., hourly estimates). Our results have implications into 37 
the representation of hot-moments of ecosystem CO2 fluxes in these globally distributed ecosystems.  38 

 39 
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1. Introduction 44 
Water-limited ecosystems cover over 30% of the land-area of the world and changes in their 45 

carbon dynamics could have important impacts in the global carbon budget [1,2]. It is known that the 46 
metabolic activity of these ecosystems is strongly tied to the timing and magnitude of precipitation 47 
pulse (PP) events at global [3] and regional scales [4,5]. Thus, the study of how water-limited 48 
ecosystems respond to different patterns of PPs has been an important research topic for more than 49 
40 years [6], and multiple studies have highlighted the importance of these patterns on ecosystem 50 
responses [7-10]. Despite these efforts, it is still unclear how different types of pulses trigger responses 51 
of ecosystem processes [11-13], and consequently it is challenging to represent these responses using 52 
modeling approaches across water-limited ecosystems [14-16]. 53 

Climate models project an increase in precipitation variability including more extreme rainfall 54 
events followed by longer dry periods in water-limited ecosystems [17]. These projections have 55 
motivated multiple experiments to better understand the role of changes in frequency and intensity 56 
of PPs on ecosystem processes [18-21]. Studies have shown that changes in PPs substantially influence 57 
carbon dynamics including net primary production [9], gross primary production [22], net ecosystem 58 
exchange [23], ecosystem respiration [24], and soil CO2 efflux (Fs, as a result of heterotrophic and 59 
autotrophic respiration within the soil) [18]. Rapid changes in water availability after a PP could 60 
increase the entropy of water-limited ecosystems [25], especially after those initial PPs following a 61 
long dry period resulting in hot-moments with disproportionately high Fs [26]. Such PPs could 62 
rapidly change soil CO2 diffusion rates, increase photosynthetic substrate supplies for Fs, and 63 
enhance soil microbial and plant metabolism that ultimately increase Fs [8,18,27,28]. The non-64 
stationary nature of these events and the diversity of underlying mechanisms complicate 65 
measurement campaigns and modeling efforts [29]. 66 

There are several challenges for studying Fs hot-moments triggered by PPs.  First, hot-moments 67 
are rare events and are constrained by unique biophysical conditions such as antecedent soil moisture 68 
[30], PP magnitude [31], and the available substrate supply for microbial respiration [32,33]. Second, 69 
hot-moments are sporadic events resulting from a sharp input of a forcing variable (i.e., water input 70 
in water-limited ecosystems); therefore, continuous measurements are needed to accurately capture 71 
their succinct patterns and magnitudes [15,29,34]. Third, semi-empirical functions based on 72 
temperature and moisture responses are commonly used to model Fs [35,36]. These commonly used 73 
functions usually fail to represent Fs hot-moments because fluxes could increase >500% in just a few 74 
hours versus pre-pulse conditions [29,34]. Considering the attention that water-limited ecosystems 75 
have gained for the global carbon cycle [1,2], there is a need for more information on the magnitudes 76 
and potential mechanisms of Fs in these globally distributed ecosystems. 77 

The overarching goal of this study is to characterize the influence of PPs that could trigger Fs 78 
hot-moments in a water-limited grassland. We analyzed >2-years of continuous measurements of Fs 79 
under vegetation (Fsveg) and at bare soil (Fsbare). We postulate three interrelated hypotheses: a) Not all 80 
PPs will trigger hot-moments, as hot-moments may depend on the intensity of the PP, pre-pulse soil 81 
moisture conditions (e.g., after a long dry period), and canopy metabolism (e.g., during growing 82 
season); b) Soil moisture variability will have higher temporal correlation with Fs than soil 83 
temperature in this water-limited ecosystem; and c) Hot-moments -as non-stationary events- are 84 
difficult to represent for semi-empirical models, but machine learning techniques could improve their 85 
representation as these methods can account for non-linear relationships. Here, we applied time 86 
series analysis to describe the temporal variability of Fsveg and Fsbare, and use three modeling 87 
approaches ranging in complexity from linear models to machine learning (i.e., support vector 88 
machine) to test their potential for representing temporal trends and hot-moments. The ultimate aim 89 
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of this study is to enhance the discussion of measurement efforts and modeling approaches for Fs 90 
hot-moments in these globally distributed ecosystems. 91 

 92 

2. Materials and Methods 93 
2.1. Study Site 94 
The Balsa Blanca site is located at 208 m.a.s.l and 6.3 km from the coast, in the Cabo de Gata 95 

Natural Park (Almería, Spain; N36°56′26.0′′, W2°01′58.8′′). Following the Köppen classification, the 96 
site has a desert climate (Bwh) characterized by the Thermo-Mediterranean bioclimatic zone. The 97 
mean air temperature is 18º C with mean annual precipitation of 200 mm year-1. Bare soil, gravel and 98 
rock cover about 49% of the landscape. Vegetation is sparse with 60% cover, and dominated by the 99 
perennial grass Macrochloa tenacissima (l.) Kunth with a mean height of 0.5 m. The rest of the vegetation 100 
is composed by Chamaerops humilis, Rhamnus lycoides, and Pistacia lentiscus. The soils are 101 
Mollic Leptosols with a sandy loam texture (61.0% sand, 22.8% silt, 19.5% clay), 1.9% organic carbon, 102 
0.16% total nitrogen, 12.2 ratio C:N, 7.9 pH, 1.5% equivalent carbonates, and with a soil bulk density 103 
of 1.25 g cm-3 in the upper 30 cm of the soil. Analyzed data were collected between June 2011 and 104 
November 2013 (i.e., > 2 years of measurements) at the study site. 105 
 106 
2.2. Instrumentation 107 
2.2.1. Eddy covariance 108 
Net ecosystem exchange (NEE) was measured using an eddy covariance tower, and we use this 109 
information to describe the general metabolic activity (i.e., ecosystem acting as a net carbon source or 110 
sink) of the ecosystem during the study period. Previous studies have described in detail the 111 
instrumentation, data processing, quality assurance/quality control, and data gapfilling for the study 112 
site [37]. Briefly, fluxes of CO2 were estimated from fast-response instruments (10 Hz measurements) 113 
mounted atop a 3m tower using an open-path infrared gas analyzer (IRGA, LI-7500, Licor; Lincoln, 114 
NE, USA). Winds and sonic temperature were measured by a three-axis sonic anemometer (CSAT-3, 115 
Campbell Scientific, Logan, UT, USA, hereafter CSI). Data QA/QC and post-processing was 116 
performed following standard procedures [38] and described previously for the study site [37]. 117 
Storage fluxes were not calculated because the study site has short canopy with well mixing and it is 118 
assumed that the storage flux to be zero for a 24 hr period. Gaps due to environmental conditions, 119 
instrument malfunction and nighttime low turbulence were filled using the marginal distribution 120 
sampling technique [39], replacing missing values using a time window of several adjacent days. 121 
Positive values of fluxes denote net release to the atmosphere, while negative values indicate net 122 
uptake by the ecosystem. 123 
 124 
2.2.2. Soil CO2 efflux (Fs) 125 
To estimate Fs we measured soil CO2 concentrations within the soil and applied the gradient method 126 
[40]. Because the vegetation cover is sparse we instrumented an area under vegetation (dominated 127 
by Macrochloa tenacissima (l.) Kunth) to estimate Fsveg, and another area with bare soil (situated at 50 128 
cm away from plants) to estimate Fsbare. We consider that 50 cm away from Macrochloa tenacissima (l.) 129 
Kunth is enough to avoid most of the roots as a previous study demonstrated that most roots of 130 
Macrochloa tenacissima (l.) Kunth are localized right underneath its canopy [41]. This approach has 131 
been followed at the study site by multiple studies to understand spatial variability of FS [42,43]. All 132 
solid-state CO2 sensors (GMM-222, 0-10000 ppm, Vaisala, Inc., Finland) were installed with a soil 133 
temperature probe (107, CSI), and a water content reflectometer (CS616, CSI) at 5 cm depth (i.e., one 134 
sensor per depth at each location). All measurements were made every 30s and stored as 5 min 135 
averages. 136 

Soil CO2 efflux (Fs) was calculated assuming that all transport is due to diffusion [40] as: 137 
𝐹𝑠 = 	−𝐷'𝜌)

*+,
*-
                    eq. 1

  
138 

where Fs is the upward gas flux (µmol CO2 m−2 s−1), DS the soil CO2 diffusion coefficient (m2 s−1), ρa 139 
the mean air molar density (µmol m−3), *+,

*-
 is the vertical CO2 molar fraction gradient (ppm m-1). The 140 
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CO2 gradient was calculated using the difference between the mean air CO2 molar fraction (obtained 141 
from the eddy covariance tower) and the value of each soil CO2 sensor. The CO2 molar fraction was 142 
corrected for variations in temperature and pressure. The mean air CO2 molar fraction was obtained 143 
from days when the eddy covariance tower had been recently calibrated and used as a constant for 144 
all the studied period, due to the impossibility of using the data continuously due to soiling of the 145 
infrared gas analyzer (IRGA) lens. The calibration of this sensor was done monthly using a N2 146 
standard for zero (purity of 99.999%) and known CO2 standards for span. We assumed a constant 147 
value for atmospheric CO2 molar fraction, neglecting its sm149-152all fluctuations that cause 148 
negligible errors on the final fluxes [44]. Due to the large difference in CO2 molar fraction between 149 
the soil (when in some cases could be >1000 ppm) and the atmosphere we estimate that the systematic 150 
errors could be between 2 and 4% on the final fluxes. The soil CO2 diffusion coefficient (DS) was 151 
obtained as: 152 
 153 

DS=ξ Da                                   eq. 2 154 
 155 

where Da is the diffusion coefficient of the CO2 in free air, calculated according to Jones [45], and ξ is 156 
the tortuosity. We calculated ξ following Moldrup et al [46] as: 157 
 158 

ξ = (012)4.6

0
                                 eq. 3 159 

where 𝜙 is soil porosity and 𝜃 is soil volumetric water content [47]. In this manuscript positive 160 
values of Fs denote a CO2 release to the atmosphere in consistency with NEE measurements. 161 
 162 
2.3 Empirical modeling of soil CO2 efflux (Fs) 163 
We tested three hierarchical approaches to model hourly and daily means of Fs including a simple 164 
conditional linear approach, support vector machine (SVM) as a machine learning approach, and an 165 
8-day moving window. First, we modeled Fsveg and Fsbare using soil moisture and soil temperature as 166 
forcing factors using a conditional approach (referred as Model 1 throughout the text). It is known 167 
that water availability is the main controlling factor in water-limited ecosystems, but the temperature 168 
dependence of Fs is only relevant when water is not a limiting factor [26,35,48]. Thus, we used the 169 
following approach: 170 

If soil temperature > mean annual soil temperature (when the soil is likely to be hot and dry)  171 
log(Fs) = a+b(SM)+c(SM)2             eq. 4 172 

 173 
If soil temperature < mean annual soil temperature (when it is likely to be cool and moist)  174 

log(Fs) = a+ b(Ts) + b(SM) + c(SM)2             eq. 5 175 
 176 
where log(Fs) is either natural logarithm of Fsveg or Fsbare, SM is soil moisture in the bare soil or under 177 
vegetation, and Ts is soil temperature in the bare soil or under vegetation. This simple approach is 178 
likely to represent the temporal trends but unlikely to represent hot-moments of Fs. 179 

Second, we used a support vector machine (SVM) approach using soil temperature and soil 180 
moisture as predictor variables for Fsveg or Fsbare. This machine learning technique are supervised 181 
learning models/algorithms that analyze data for classification and regression analysis. To explore 182 
the nonlinear relations of the response of Fs we used a kernel function with SVM. The kernel function 183 
was set to be Gaussian and the kernel scale was set to 0.35. We propose that SVM is a flexible approach 184 
for exploring nonlinear relations for classification of data and testing its applicability for representing 185 
Fs pulses. Previous studies have described in detail the theory behind SVM [49,50] and the 186 
application of Gaussian kernels for SVM [51,52]. We cross-validate the classifier using 10-fold cross-187 
validation. 188 

Third, we modeled Fsveg and Fsbare using an 8-day moving window (referred as Model 2 189 
throughout the text). Thus, it allows for parameters to shift through time so that projections match 190 
the data as close as possible. For this approach, we only applied eq. 5 assuming that temperature and 191 
moisture are important within this 8-day moving window. In this case, different parameters for eq.5 192 
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were fitted for each 8-day sliding window calculation. This moving window approach is conceptually 193 
analogous to the calculation of ecosystem respiration based on a moving window of nighttime NEE 194 
[39]. The selection of an 8-day moving window was based on the fact that the effect of PPs on Fs 195 
usually last about 8 days at the study site [27] and this highly parameterized approach could better 196 
represent hot-moments of Fs.  197 

 198 
2.4 Time series analyses 199 
First, we used wavelet analysis to explore the spectral properties of the times series of Fs (Fsveg and 200 
Fsbare) and data-model agreement (or disagreement) for Fsveg and Fsbare derived from the three 201 
empirical approaches described above. Wavelet analysis is a time series technique that has been 202 
widely applied in geosciences [53], and recently to analyze the temporal variability of ecosystem-203 
scale fluxes [54-56], soil CO2 effluxes [15,57], and to identify data-model agreement [57-59]. This 204 
technique is used to quantify the spectral characteristics of time series that may be nonstationary and 205 
heteroscedastic. Specifically, we used the continuous wavelet transform because of its ability to 206 
produce a smooth picture in the frequency domain of a time series (e.g., soil CO2 efflux, data-model 207 
residuals) and its suitability for visual interpretation. The ability to discern small intervals of scales 208 
(i.e., spectral resolution) depends on the choice of the mother wavelet function. For this, we used the 209 
widely used Morlet wavelet, a complex nonorthogonal wavelet with a good time and scale resolution 210 
that has been widely used for geophysical applications [53,60], and biometeorological measurements 211 
[57-59]. We first analyzed time-series of measurements using a 1-hour time step and then model 212 
residuals using a 1-day time step.  213 

Second, to test the potential influence of soil temperature or soil moisture on Fs, we explored 214 
their partial temporal correlation with Fsveg or Fsbare. In other words, we explored the temporal 215 
correlation of Fs with soil temperature taking into account the influence of soil moisture and vice 216 
versa. We applied partial wavelet coherence analysis (PWC) as it can be interpreted as a technique 217 
similar to partial correlation that can identify significant temporal correlations between two different 218 
time series after eliminating the influence of a third one. Previous reports have described the PWC in 219 
detail for climate studies [61]. The statistical significance (5% significance level) of common power 220 
between any two time series was assessed for PWC using 1000 Monte Carlo simulations of white 221 
noise time series [60]. The time-series used for PWC were analyzed using a 1-hour time step. 222 

 223 

3. Results 224 
3.1 Description of temporal patterns 225 
Daily soil temperature ranged from a minimum of 5oC and a maximum of 38oC; with an annual mean 226 
of 22oC under vegetation and 23oC for bare soil (Fig. 1A). Between September 2011 and August 2012 227 
(first hydrologic year) the study site received 216 mm of precipitation, and between September 2012 228 
and August of 2013 (second hydrologic year) it received 221 mm (Fig. 1B). There were no substantial 229 
differences in total precipitation between the hydrological years, but the distribution of the PPs 230 
resulted in different patterns of soil moisture along the years (Fig. 1B). 231 

Water pulses following the dry season (between September and October) substantially raised 232 
Fsveg and Fsbare (Fig. 1C). The overall mean for Fsveg and Fsbare was1.5±1.4 µmol CO2 m-2 s-1 but hot-233 
moments were present with instantaneous values >20 µmol CO2 m-2 s-1 (Fig. 2A, B). We analyzed the 234 
cumulative sum of Fs based on hydrologic years (see above). Annual Fsveg was 480 and 819 gC m-2, 235 
while annual Fsbare was 431 and 871 gC m-2 for the first and second hydrologic years, respectively. 236 
Positive NEE values were common during the dry season when the ecosystem acted as a net CO2 237 
source to the atmosphere (Fig. 1D). 238 
  239 
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 240 
Figure 1.  Time series of daily mean of soil temperature (A), daily sum of precipitation, daily mean 241 
of soil moisture (B), daily mean of soil CO2 efflux (Fs) nearby vegetation (Fsveg) and in bare soil (Fsbare; 242 
C), and daily mean of net ecosystem exchange (NEE; C). Dashed lines in panels A-C represent 243 
variables measured under vegetation and solid lines represent variables measured in bare soil. Gray 244 
areas in panels B-C represent precipitation pulses selected as response cases (i.e., Case I, Case II, Case 245 
III; see results section). Solid circles in panel B represent precipitation. Letters in the x-axis represents 246 
months of the year from July 2011 to November 2013.  247 
 248 

 249 

 250 
 251 
 252 

Figure 2. Time series of half-hour values of soil CO2 efflux under vegetation (Fsveg; A) and in bare soil 253 
(Fsbare; B). Letters in the x-axis represents months of the year from July 2011 to November 2013; y-axis 254 
represent each hour of the day. 255 
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We explored the spectral characteristics of the time series of Fsveg and Fsbare (Fig. 3). Results using 256 
wavelet analysis demonstrate that the 1-day period for Fsveg is more constant than for Fsbare (Fig. 3A, 257 
B). We observed three distinct PPs that substantially influenced the spectral signature of Fs. First, the 258 
large precipitation pulses at the beginning of each growing season (i.e., September) resulted in 259 
discrete hot-moments influencing the periodicity for Fsveg (Fig. 3A) and Fsbare (Fig. 3B) between a time-260 
period of 1- to 16-days (pulses Case I and II). Arguably, another “hot-moment” is observed during 261 
October of 2012, but for the purpose of this study (and to simplify the discussion) we consider it 262 
similar to a Case II and therefore is not further analyzed. Second, the large precipitation pulse during 263 
the growing season of year 2013 also influence the periodicity for Fsveg and Fsbare between 1- to 8-days 264 
time-periods (pulse Case III).  265 

 266 

Figure 3. Continuous wavelet power spectra using the continuous wavelet transform of the time 267 
series of soil respiration under vegetation (Fsveg; A) and in bare soil (Fsbare; B). The color codes for 268 
power values are from yellow (low values) to dark red (high values). Black contour lines represent 269 
the 5% significance level and thin black line indicates the cone of influence that delimits the region 270 
not influenced by edge effects. Letters in the x-axis represents months of the year from July 2011 to 271 
November 2013.  Arrows represent “hot-moments” of Fs identified for this study. 272 

 273 
 274 

3.2 Influence of soil temperature and soil moisture on Fs 275 
Using PWC analysis we found a lack of consistent temporal coherence between Fsveg or Fsbare with 276 
soil temperature when considering the effect of soil moisture (Fig. 4A, B). In contrast, we found 277 
significant temporal coherence between Fsveg or Fsbare with soil moisture when considering the effect 278 
of soil temperature (Fig. 4 C, D). The temporal coherence was clearly influenced by PPs for Case I, II, 279 
and III with significant temporal correlations between 1- and 16-day periods. The seasonal influence 280 
of soil moisture on Fs is represented by the temporal correlation at scales >128-days (Fig. 4C, D). 281 

 282 
 283 
 284 
 285 

  286 
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Figure 4. Partial wavelet coherence analysis (PWC) to test the influence of soil temperature 287 
(controlling for soil moisture) on soil CO2 efflux in areas under vegetation (Fsveg; A) or in bare soil 288 
(Fsbare; B). PWC analysis to test the influence of soil moisture (controlling for soil temperature) on CO2 289 
efflux in areas under vegetation (Fsveg; C) or in bare soil (Fsbare; D). The color codes for temporal 290 
correlation are from blue (low values) to yellow (high values). Yellow areas within black contour lines 291 
represent the 5% significance level for power values (i.e., high temporal correlation); the thin black 292 
line indicates the cone of influence that delimits the region not influenced by edge effects. Gray areas 293 
in panels C and D represent precipitation pulses analyzed to characterize the response cases (i.e., Case 294 
I, Case II, Case III). Letters in the x-axis represents months of the year from July 2011 to November 295 
2013.   296 

 297 
 298 

3.3 Modeling daily Fs 299 
3.3.1. Model 1 300 
Using the conditional approach for equations 4 and 5 with daily Fsveg values resulted in an explained 301 
variance of 47%, with a RMSE of 0.49 µmol CO2 m-2 s-1. The continuous wavelet transform shows that 302 
errors in the residuals were focused on hot-moments during PPs with periodicities ranging between 303 
2- and 16-days (Fig. 5A, B). These underestimated hot-moments correspond to the PPs previously 304 
identified as Case I to III. This model has a larger probability to over represent Fsveg values of ~1.5 305 
µmol CO2 m-2 s-1 and under represent Fsveg values > 3.0 µmol CO2 m-2 s-1 when compared to 306 
measurements (Fig. 6A). Considering the full 2-years of measurements the model underestimates the 307 
cumulative Fsveg flux by 12% mainly by over representing Fsveg values for year 2011 and 308 
underestimating Fsveg values of years 2012 and 2013 (Fig. 6B). 309 

Using this approach for Fsbare resulted in an explained variance of 35% and a RMSE of 0.67 µmol 310 
CO2 m-2 s-1. The continuous wavelet transform also shows that errors for Fsbare residuals were focused 311 
on hot-moments that correspond to the PPs previously identified as Case I to III (Fig. 5G, H). This 312 
model also has a larger probability to overestimate Fsveg values of ~1.5 µmol CO2 m-2 s-1 and 313 
underestimate Fsveg values > 2.5 µmol CO2 m-2 s-1 when compared to measurements (Fig. 6C). 314 
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Considering the full 2-years of measurements the model underestimates the cumulative Fsbare flux by 315 
15% mainly by overestimating Fsbare values for year 2011 and underestimating Fsbare values of years 316 
2012 and 2013 (Fig. 6D). 317 

 318 
 319 

 320 
 321 

Figure 5.  Analysis of model residuals of soil CO2 efflux (Fs) under vegetation (Fsveg; A-F) or in bare 322 
soil (Fsbare; G-L). Residuals using equations 2 and 3 (Model 1), Support Vector Machine (SVM) or an 323 
8-day moving window approach (Model 2) for Fsveg (A, C, E) and Fsbare (G, I, K). Continuous wavelet 324 
power spectra using the continuous wavelet transform for residuals of each model for Fsveg (B, D, F) 325 
and Fsbare (H, J, L). The color codes for power values are from yellow (high values) to red (low values). 326 
Yellow areas within black contour lines represent the 5% significance level for power values (i.e., high 327 
value of residuals); the thin black line indicates the cone of influence that delimits the region not 328 
influenced by edge effects.  329 
  330 
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 331 
Figure 6.  Probability density functions of soil CO2 efflux (Fs) values for measurements and each 332 
model under vegetation (Fsveg; A) and bare soil (Fsbare; C). Cumulative sums of soil CO2 fluxes for 333 
measurements and each model under vegetation (Fsveg; B) and bare soil (Fsbare; D). Letters in the x-334 
axis represents months of the year from July 2011 to November 2013. For a description of the models 335 
see methods section. SVM = support vector machine. 336 

 337 
 338 
3.3.2. Support vector machine (SVM) 339 
Using SVM, we were able to explain 71% of the variance of Fsveg with a RMSE of 0.7, and 51% of the 340 
variance of Fsbare with a RMSE of 0.98 µmol CO2 m-2 s-1. The continuous wavelet transform shows that 341 
errors in the residuals were also focused on the previously identified Cases I to III for Fsveg (Fig. 5C, 342 
D) and Fsbare (Fig. 5I, J). This model also has a larger probability to overestimate Fs values of ~1.5 µmol 343 
CO2 m-2 s-1 and underestimate Fsveg values > 2.5 µmol CO2 m-2 s-1 when compared to measurements 344 
(Fig. 6A, C). Considering the full 2-years of measurements the model underestimates the cumulative 345 
Fsveg flux by 7% and underestimates Fsbare by 1% as a result of error cancelation. This approach 346 
overrepresents Fs values for year 2011 and underestimates Fs values of years 2012 and 2013 (Fig. 6B, 347 
D). 348 
 349 
3.3.3. Model 2 350 
Using the 8-day moving window approach with equation 5, we were able to explain 84% of the 351 
variance of Fsveg with a RMSE of 0.52, and 48% of the variance of Fsbare with a RMSE of 0.73 µmol CO2 352 
m-2 s-1. The continuous wavelet transform shows that errors in the residuals were also focused on hot-353 
moments during PPs with periodicities ranging between 2- and 16-days (Fig. 5E, F). These 354 
underestimated hot-moments also correspond to the PPs previously identified as Case I to III.  355 

This model has a similar probability density function for Fsveg values when compared to 356 
measurements (Fig 5A), but slightly overestimates Fsbare values of ~1.5 µmol CO2 m-2 s-1 and 357 
underestimates Fsbare values > 3.0 µmol CO2 m-2 s-1 when compared to measurements (Fig. 6A, C). 358 
Considering the full 2-years of measurements the model underestimates the cumulative Fsveg flux by 359 
2% and underestimates Fsbare by 3% as this approach closely followed the measurements (Fig. 6B, D). 360 
 361 
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3.4. Responses to different precipitation pulses 362 
We selected three responses (i.e., Cases) to PPs based on the spectral properties of the time series of 363 
measurements and model residuals. These response Cases represent rapid discrete changes in the 364 
amplitude of soil moisture from a baseline (i.e., pre-pulse conditions), have substantial influence on 365 
the spectral properties of the time series (Fig. 3), and are difficult to represent by the proposed 366 
modeling approaches (Fig. 5). We identified that a Case I response was evident during September 367 
2011 (i.e., days of the year 240 to 265), a Case II during September 2012 (i.e., days of the year 240 to 368 
265), and a Case III during March 2013 (i.e., days of the year 110 to 135). 369 

A Case I response followed a large PP (i.e., >20 mm) after the long dry season that sharply 370 
increased soil moisture (Fig. 7A). This resulted in an increase of Fsveg to 11.7 µmol CO2 m-2 s-1 371 
representing a change of 5400% and of Fsbare to 8 µmol CO2 m-2 s-1 (increase of 3885%) from pre-pulse 372 
conditions (Fig. 7D). A Case II response followed a small PP (i.e., <5 mm) after the dry season that 373 
slightly increased soil moisture (Fig. 7E). Despite this modest response in soil moisture Fsveg increased 374 
to 18 µmol CO2 m-2 s-1 and Fsbare to 34.4 µmol CO2 m-2 s-1 representing a change of 9000% and 17000% 375 
from pre-pulse conditions, respectively (Fig. 7E). A Case III response was a large PP (i.e., >20 mm) 376 
during the moist conditions of the growing season that moderately increased soil moisture (Fig. 7C) 377 
and increased Fsveg to 8.7 µmol CO2 m-2 s-1 and Fsbare to 11.7 µmol CO2 m-2 s-1 representing an increase 378 
of 954% and 1099% from pre-pulse conditions, respectively (Fig. 7F).  379 

We tested how the three modeling approaches were able to represent the different responses 380 
using a 1-hour time-step. Overall, all models were able to represent Case I and III responses (Fig. S1), 381 
but SVM was the model that better represented these responses (Fig. 7 H, I). None of the models were 382 
able to represent a Case II response. 383 
  384 
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385 
Figure 7. Pulse responses of soil moisture (A-C), Fs under vegetation (Fsveg) or in bare soil (Fsbare; D-386 
F), and model output using support vector machine (SVM) for Fsveg or Fsbare (G-I). Responses are 387 
defined as Case I-III, and are identified in Figures 1, and 3. Solid lines represent variables measured 388 
under vegetation and dashed lines represent variables measured in bare soil. Fs means soil CO2 389 
efflux. The numbers in the x-axis represent the day of the year (DOY) for years 2011 to 2013 for each 390 
panel. 391 
 392 

4. Discussion 393 
Our results support the paradigm that distribution and intensity of PPs influence annual Fs in water-394 
limited ecosystems. Relatively similar total precipitation but lower soil moisture variability resulted 395 
in 50% higher Fs emissions during the second hydrologic year. Lower, soil moisture variability and 396 
prolonged rains (until June 2013) likely reduced water stress during the second hydrologic year. 397 
Higher ecosystem metabolic activity during the second year was observed by the consistent 398 
periodicity at the 1-day period for Fsveg and Fsbare (Fig. 3). These results support observations that 399 
precipitation patterns that maintain higher soil moisture conditions for a longer time resulted in 400 
higher seasonal ecosystem metabolic rates [25,62].  401 

Discrete PPs generate Fs responses that resulted in hot-moments of Fsveg and Fsbare (response Case 402 
I to III). The wavelet analyses demonstrate that these pulse responses had distinct spectral signatures 403 
localized within specific PPs (Fig. 3). Not every PP resulted in an event with a distinct spectral 404 
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signature in the time series of Fs demonstrating the uniqueness of the selected Cases (Fig. 3). In other 405 
words, despite there were several PPs throughout the length of the study, we identify three distinct 406 
Cases that we interpret as hot-moments of Fs. We recognize that there is a hierarchy of PPs but we 407 
bring attention to the use of time-series analysis and the interpretation of PPs and hot-moments by 408 
analyzing information of automated Fs measurements in the frequency-domain. Arguably, previous 409 
studies have likely underestimated hot-moments of Fs due to lack of continuous measurements as 410 
recent studies are demonstrating the importance of these transient but intense events [29,34,63]. 411 
 412 
4.1. Can we model daily Fs using temperature and soil moisture information? 413 
Our results show that the temporal influence of soil moisture on Fs overrides the influence of soil 414 
temperature on Fs in this water-limited ecosystem (Fig. 4). This supports the fact that temperature is 415 
only relevant in these ecosystems when soil moisture is available for metabolic processes [26,35,48]. 416 
The temporal influence of soil temperature in this water limited ecosystem seems to be concentrated 417 
at the 1-day period during discrete days when water is available. In contrast, the influence of soil 418 
moisture has larger implications for the temporal variability of Fs at scales ranging from 2- to 16- days 419 
during the different responses (i.e., Case I to III).   420 

Our results demonstrate the challenge that empirical modeling approaches have to represent 421 
hot-moments of Fs in water limited ecosystems, where a Case II response was consistently challenging 422 
to represent by all approaches (Fig. 5). A Case II response substantially increased the magnitude of Fs 423 
but the magnitude of the response was not proportional to the increase in soil moisture. Although 424 
this response is directly linked to an increase in soil moisture, the underlying biotic and abiotic 425 
mechanisms go beyond water availability as previously discussed for rewetting events [29,34].  426 

The conditional approach (i.e., Model 1) was able to represent between 47 and 35% of the 427 
variability in daily Fsveg and Fsbare, respectively. This simple conditional approach can be easily 428 
applied across study sites and is interpretable, as it provides insights about temperature and soil 429 
moisture sensitivity of Fs (by comparing constants in the model). This approach is widely applicable 430 
at the daily-scale and parameters can be compared across sites and across site-years but has the 431 
largest uncertainty of all approaches.  432 

The wealth of information from continuous measurements allows to apply more complex 433 
models that can be highly parameterized such as the 8-day moving window approach (i.e., Model 2). 434 
This moving window approach follows the fact that water availability and precipitation pulses drive 435 
most of the metabolic pulses in this water-limited ecosystem [27]. The use of an 8-day moving 436 
window was confirmed by the PWC showing that water pulses have a consistent temporal influence 437 
between 8- to 16-days regardless of their magnitude or antecedent moisture conditions. This 438 
approach significantly increased the proportion of explained variance to 84% for daily Fsveg and 48% 439 
to daily Fsbare. This approach could be applied as a gapfilling technique for time series of Fs [64], but 440 
has little interpretability and applicability beyond the parameterized time series because parameters 441 
are highly variable in order to match measurements for each moving window (Fig, 6). Future, 442 
applications could be done varying the size of the window to optimize for site-specific conditions 443 
and to improve gapfilling estimates. 444 

Machine learning approaches are versatile and flexible enough to discover complicated 445 
nonlinear relationships and we argue that SVM has the potential for representing the non-stationary 446 
dynamics of Fs. This approach was able to increase the representation of daily Fsbare when compared 447 
with the approach of Model 2. Likely the use of more variables has the potential for improvement of 448 
predictions of hot-moments of Fs that are controlled by factors beyond soil moisture, but caution 449 
must be taken to avoid autocorrelation among variables and model over fitting [65]. The opportunity 450 
for machine learning approaches for Fs is arguably starting with a few examples such as the use of 451 
random forests [66]; thus, it is expected that the use of these techniques will become more common 452 
in the near future. 453 
 454 
4.2. How discrete PPs influence hot-moments of Fs? 455 
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We identified three Cases of Fs to PPs where the Fs rate drastically changed (up to 17000%) to affect 456 
the spectral properties of the time series and data-model agreement. Here, we describe the 457 
generalities of these responses, but we recognize that our results are based on the information within 458 
the available time series and longer records could show consistency or a larger diversity of responses.  459 

Case I represents the ecosystem response after a large PP (>20 mm) following a long drought 460 
period, and is characteristic of the beginning of the rainy season in Mediterranean ecosystems [26,27]. 461 
Case I is characterized by rapid water infiltration into the soil profile, which substantially increases 462 
soil water content in areas of bare soil and under vegetation (Fig. 8A). Furthermore, the vegetation 463 
could provide a preferential pathway for water infiltration, as demonstrated by an increase of soil 464 
moisture with respect to the bare soil. In Case I we observed larger Fsveg than Fsbare with two possible 465 
explanations. First, we postulate that the autotrophic component of Fs (i.e., Fsveg minus Fsbare) 466 
increased as plants rapidly start to use resources to activate the photosynthetic mechanism, therefore 467 
increasing their catabolism and autotrophic respiration [27]. Second, it is likely that the heterotrophic 468 
component of Fs under vegetation is also increased because of higher substrate availability within 469 
the rhizosphere that is rapidly dissolved and available for microbes [28]. Noteworthy, the modeling 470 
approach by SVM was able to represent this response as Fs was highly correlated with soil moisture 471 
regardless of the underlying mechanisms of the heterotrophic and autotrophic components of Fs (Fig 472 
7G). 473 

 474 

 475 
Figure 8. Summary of selected Fs responses to precipitation pulses (A-C), and conceptual depiction 476 
of the contingent responses of the ecosystem to precipitation pulses (D-F). The rectangles in D-F 477 
represent a “soil water bucket”, where the “y” axis represents a stress gradient and the dotted line 478 
represents a reference point for comparison among panels. Selected responses are defined as Case I-479 
III, and are identified in Figures 1, 3, and 7. Case I results in less stressful conditions for several days, 480 
Case II is characterized by a short period of stress relief, and Case III is in between fluctuations of less 481 
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water stress. Fsveg = soil CO2 efflux in areas under vegetation; Fsbare = soil CO2 from areas without 482 
vegetation (i.e., bare soil); SM = soil moisture, where the number of “+” signs denotes higher soil 483 
moisture either at bare soil or under vegetation.  484 
 485 
 486 

Case II represents the ecosystem response after a small PP (<5 mm) following a long drought 487 
period. This distinction is important because in water-limited ecosystems the beginning of the rainy 488 
season does not always start with a large (i.e., >20 mm) precipitation event [13,67,68]. Case II is 489 
characterized by slow water infiltration that only permeates into soil surface layers because is likely 490 
that vegetation intercepts most water from these small PPs and creates a shadow where soil moisture 491 
is lower (under vegetation) than at the bare soil (Fig. 7B, 8B). Despite the small PP we observed a hot-492 
moment for Fsveg (18 µmol CO2 m2 s-1) and Fsbare (>34 µmol CO2 m2 s-1) that increased Fs by 9000 and 493 
17000% from pre-pulse conditions, respectively. These responses are the highest reported for Fs for 494 
rewetting events [29] as a result of very low pre-pulse Fs rates (due to dry conditions during the non-495 
growing season) and the sharp increase following the PP. Previous studies have demonstrated that 496 
Fs is spatially heterogeneous within a water limited ecosystem [26] and that small PPs do not activate 497 
the metabolism at the plant-level [27]. We postulate that increases in Fsveg and Fsbare are likely driven 498 
by an increase in the heterotrophic component of Fs because there is not enough available water to 499 
trigger plant catabolic metabolism to stimulate autotrophic respiration (Fig. 8B). The lack of 500 
correlation between the size of the PP and the response of Fs make modeling of these responses very 501 
challenging. None of the proposed approaches were able to represent the response as underlying 502 
variables (e.g., available substrate supply) may have influenced the sharp uncorrelated response to 503 
soil moisture. The implication of this modeling limitation is that low-to-medium Fs fluxes are usually 504 
overrepresented by models and high Fs fluxes are underestimated (Fig. 6). Furthermore, these large 505 
responses could contribute up to 40% of total net CO2 emissions during dry seasons [27], so accurate 506 
measurements and understanding of these hot-moments is needed to better understand local carbon 507 
dynamics.  508 

Case III represents the ecosystem response to a large precipitation event (~20 mm) during the 509 
cool and moist growing season (Fig. 7C, 8C). We postulate that although the plant canopy can provide 510 
a preferential pathway for water infiltration into the soil (as seen in Case I), this season is characterized 511 
by less soil moisture limitation and a homogeneous distribution of soil water content across the soil 512 
profile (Fig. 8C). Case III is characterized by a large change in soil water content with increases in Fs 513 
of about 1000%, but this sharp increase only represents <20% of the sharp response observed for Case 514 
I and II. Noteworthy, the modeling approach by SVM was able to represent the response of Fsveg as it 515 
was highly correlated with soil moisture, but in a lesser degree the response of Fsbare which had a 516 
disproportionally low response to increased moisture in the soil profile (Fig. 7I).  We postulate that 517 
Case III is likely a result of an increase in heterotrophic and autotrophic activity as plant metabolism 518 
is active during the growing season [27].  519 

We borrow the concept of the “bucket model” to describe how discrete PPs influence hot-520 
moments of Fs. The “bucket model” is a conceptual idea to describe the response of terrestrial 521 
ecosystems under different precipitation patterns[69]. In this model, the “bucket” represents the 522 
uppermost soil layers with maximum root density and is characterized by upper and lower water 523 
stress thresholds (i.e., a stress gradient) [69]. We propose that an analogous conceptual approach can 524 
be used to explain the hot-moments of Fs in our study. Therefore, “the soil water bucket” represents 525 
the uppermost soil layers within maximum root density and is characterized by upper and lower 526 
water stress thresholds that represent a gradient of ecosystem stress (Fig. 8 D-F). In Case I the 527 
ecosystem is stressed as a consequence of the long dry season, but the PP is able to increase soil 528 
moisture that moves the ecosystem to a state of less stress for a prolonged period of time until the 529 
following precipitation event (Fig. 8D); this response is highly correlated with the temporal patterns 530 
of soil moisture. In Case II the ecosystem is also stressed as a consequence of the long dry season, but 531 
soil moisture is not substantially increased resulting in a short period of reduced stress followed by 532 
a sharp return to a previous stressed state (Fig. 8E). Finally, in Case III the ecosystem is less stressed 533 
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and subsequent changes in soil moisture create variability under a stress gradient (Fig. 8F). This 534 
conceptual idea aims to highlight that variability in PPs defines water limited ecosystems, pushes 535 
these ecosystems towards less-stressed conditions, and could trigger a diverse response of hot-536 
moments of Fs.  537 

Climate models indicate a future with altered precipitation patterns where extreme PPs could 538 
be followed by long dry periods in water-limited ecosystems. Thus, it is critical to understand how 539 
diverse PPs influence ecosystem processes under different metabolic states. Automated 540 
measurements of Fs provide the opportunity to capture high-temporal resolution of ecosystem 541 
responses, providing information on disproportionately high (i.e., hot-moments) CO2 fluxes 542 
following precipitation events [34]. Although CO2 fluxes in water-limited ecosystems are low 543 
compared to mesic ecosystems, their sensitivity to changes in precipitation pattern is high and 544 
consequently influences their annual net fluxes. Our results support the application of a machine 545 
learning approach (i.e., SVM) based on information of soil moisture and temperature to represent Fs, 546 
but we recognize that machine learning is parameterized with available data and consequently is not 547 
process based. Hot-moments of Fs as a result of a small precipitation event (<5 mm; Case II pulse) 548 
following a long drought period appear to be the most challenging events to represent and support 549 
the need of continuous measurements to capture the effects of this discrete but sharp response. We 550 
demonstrate that soil moisture has high temporal correlation with Fs and overshadows the influence 551 
of soil temperature in this water-limited ecosystem. Finally, because the variability of carbon 552 
dynamics in water-limited ecosystems influences the global carbon cycle, it is essential to quantify 553 
the responses of non-stationary ecosystem CO2 fluxes to transient (and potentially extreme) 554 
precipitation events. 555 
 556 
  557 
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