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Abstract: The metabolic activity of water-limited ecosystems is strongly linked to the timing and
magnitude of precipitation pulses that can trigger disproportionately high (i.e., hot-moments)
ecosystem COzfluxes. We analyzed over 2-years of continuous measurements of soil CO: efflux (Fs)
under vegetation (Fsveg) and at bare soil (Fsvare) in a water-limited grassland. The continuous wavelet
transform was used to: a) describe the temporal variability of Fs; b) test the performance of empirical
models ranging in complexity; and c) identify hot-moments of Fs. We used partial wavelet coherence
(PWC) analysis to test the temporal correlation between Fs with temperature and soil moisture. The
PWC analysis provided evidence that soil moisture overshadows the influence of soil temperature
for Fs in this water limited ecosystem. Precipitation pulses triggered hot-moments that increased Fsveg
(up to 9000%) and Fsbare (up to 17000%) with respect to pre-pulse rates. Highly parameterized
empirical models (using support vector machine (SVM) or an 8-day moving window) are good
approaches for representing the daily temporal variability of Fs, but SVM is a promising approach to
represent high temporal variability of Fs (i.e., hourly estimates). Our results have implications into

the representation of hot-moments of ecosystem CO: fluxes in these globally distributed ecosystems.

Soil Syst. 2018, 2, x; doi: FOR PEER REVIEW www.mdpi.com/journal/soilsystems



40
41

42
43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9

Soil Syst. 2018, 2, x FOR PEER REVIEW 2 of 23

Keywords: Arid grasslands; precipitation variability; machine learning; soil respiration; wavelet
analysis; rain pulses

1. Introduction

Water-limited ecosystems cover over 30% of the land-area of the world and changes in their
carbon dynamics could have important impacts in the global carbon budget [1,2]. It is known that the
metabolic activity of these ecosystems is strongly tied to the timing and magnitude of precipitation
pulse (PP) events at global [3] and regional scales [4,5]. Thus, the study of how water-limited
ecosystems respond to different patterns of PPs has been an important research topic for more than
40 years [6], and multiple studies have highlighted the importance of these patterns on ecosystem
responses [7-10]. Despite these efforts, it is still unclear how different types of pulses trigger responses
of ecosystem processes [11-13], and consequently it is challenging to represent these responses using
modeling approaches across water-limited ecosystems [14-16].

Climate models project an increase in precipitation variability including more extreme rainfall
events followed by longer dry periods in water-limited ecosystems [17]. These projections have
motivated multiple experiments to better understand the role of changes in frequency and intensity
of PPs on ecosystem processes [18-21]. Studies have shown that changes in PPs substantially influence
carbon dynamics including net primary production [9], gross primary production [22], net ecosystem
exchange [23], ecosystem respiration [24], and soil CO:2 efflux (Fs, as a result of heterotrophic and
autotrophic respiration within the soil) [18]. Rapid changes in water availability after a PP could
increase the entropy of water-limited ecosystems [25], especially after those initial PPs following a
long dry period resulting in hot-moments with disproportionately high Fs [26]. Such PPs could
rapidly change soil CO: diffusion rates, increase photosynthetic substrate supplies for Fs, and
enhance soil microbial and plant metabolism that ultimately increase Fs [8,18,27,28]. The non-
stationary nature of these events and the diversity of underlying mechanisms complicate
measurement campaigns and modeling efforts [29].

There are several challenges for studying Fs hot-moments triggered by PPs.  First, hot-moments
are rare events and are constrained by unique biophysical conditions such as antecedent soil moisture
[30], PP magnitude [31], and the available substrate supply for microbial respiration [32,33]. Second,
hot-moments are sporadic events resulting from a sharp input of a forcing variable (i.e., water input
in water-limited ecosystems); therefore, continuous measurements are needed to accurately capture
their succinct patterns and magnitudes [15,29,34]. Third, semi-empirical functions based on
temperature and moisture responses are commonly used to model Fs [35,36]. These commonly used
functions usually fail to represent Fs hot-moments because fluxes could increase >500% in just a few
hours versus pre-pulse conditions [29,34]. Considering the attention that water-limited ecosystems
have gained for the global carbon cycle [1,2], there is a need for more information on the magnitudes
and potential mechanisms of Fs in these globally distributed ecosystems.

The overarching goal of this study is to characterize the influence of PPs that could trigger Fs
hot-moments in a water-limited grassland. We analyzed >2-years of continuous measurements of Fs
under vegetation (Fsveg) and at bare soil (Fsvare). We postulate three interrelated hypotheses: a) Not all
PPs will trigger hot-moments, as hot-moments may depend on the intensity of the PP, pre-pulse soil
moisture conditions (e.g., after a long dry period), and canopy metabolism (e.g., during growing
season); b) Soil moisture variability will have higher temporal correlation with Fs than soil
temperature in this water-limited ecosystem; and c) Hot-moments -as non-stationary events- are
difficult to represent for semi-empirical models, but machine learning techniques could improve their
representation as these methods can account for non-linear relationships. Here, we applied time
series analysis to describe the temporal variability of Fsveg and Fsvar, and use three modeling
approaches ranging in complexity from linear models to machine learning (i.e., support vector
machine) to test their potential for representing temporal trends and hot-moments. The ultimate aim
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of this study is to enhance the discussion of measurement efforts and modeling approaches for Fs
hot-moments in these globally distributed ecosystems.

2. Materials and Methods

2.1. Study Site

The Balsa Blanca site is located at 208 m.a.s.] and 6.3 km from the coast, in the Cabo de Gata
Natural Park (Almeria, Spain; N36°5626.0", W2°01'58.8"). Following the K&ppen classification, the
site has a desert climate (Bwh) characterized by the Thermo-Mediterranean bioclimatic zone. The
mean air temperature is 182C with mean annual precipitation of 200 mm year-'. Bare soil, gravel and
rock cover about 49% of the landscape. Vegetation is sparse with 60% cover, and dominated by the
perennial grass Macrochloa tenacissima (1.) Kunth with a mean height of 0.5 m. The rest of the vegetation
is composed by Chamaerops humilis, Rhamnus lycoides, and Pistacia lentiscus. The soils are
Mollic Leptosols with a sandy loam texture (61.0% sand, 22.8% silt, 19.5% clay), 1.9% organic carbon,
0.16% total nitrogen, 12.2 ratio C:N, 7.9 pH, 1.5% equivalent carbonates, and with a soil bulk density
of 1.25 g cm? in the upper 30 cm of the soil. Analyzed data were collected between June 2011 and
November 2013 (i.e., > 2 years of measurements) at the study site.

2.2. Instrumentation

2.2.1. Eddy covariance

Net ecosystem exchange (NEE) was measured using an eddy covariance tower, and we use this
information to describe the general metabolic activity (i.e., ecosystem acting as a net carbon source or
sink) of the ecosystem during the study period. Previous studies have described in detail the
instrumentation, data processing, quality assurance/quality control, and data gapfilling for the study
site [37]. Briefly, fluxes of CO: were estimated from fast-response instruments (10 Hz measurements)
mounted atop a 3m tower using an open-path infrared gas analyzer (IRGA, LI-7500, Licor; Lincoln,
NE, USA). Winds and sonic temperature were measured by a three-axis sonic anemometer (CSAT-3,
Campbell Scientific, Logan, UT, USA, hereafter CSI). Data QA/QC and post-processing was
performed following standard procedures [38] and described previously for the study site [37].
Storage fluxes were not calculated because the study site has short canopy with well mixing and it is
assumed that the storage flux to be zero for a 24 hr period. Gaps due to environmental conditions,
instrument malfunction and nighttime low turbulence were filled using the marginal distribution
sampling technique [39], replacing missing values using a time window of several adjacent days.
Positive values of fluxes denote net release to the atmosphere, while negative values indicate net
uptake by the ecosystem.

2.2.2. Soil CO:efflux (Fs)
To estimate Fs we measured soil CO2 concentrations within the soil and applied the gradient method
[40]. Because the vegetation cover is sparse we instrumented an area under vegetation (dominated
by Macrochloa tenacissima (I.) Kunth) to estimate Fsveg, and another area with bare soil (situated at 50
cm away from plants) to estimate Fsvare. We consider that 50 cm away from Macrochloa tenacissima (1.)
Kunth is enough to avoid most of the roots as a previous study demonstrated that most roots of
Macrochloa tenacissima (l.) Kunth are localized right underneath its canopy [41]. This approach has
been followed at the study site by multiple studies to understand spatial variability of FS [42,43]. All
solid-state COz sensors (GMM-222, 0-10000 ppm, Vaisala, Inc., Finland) were installed with a soil
temperature probe (107, CSI), and a water content reflectometer (CS616, CSI) at 5 cm depth (i.e., one
sensor per depth at each location). All measurements were made every 30s and stored as 5 min
averages.
Soil CO: efflux (Fs) was calculated assuming that all transport is due to diffusion [40] as:

Fs = —Dspa% eq.1
where Fs is the upward gas flux (umol COz2 m=2 s1), Ds the soil CO: diffusion coefficient (m2 s), pa
the mean air molar density (umol m3), CZ{” is the vertical CO2 molar fraction gradient (ppm m). The

Z
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CO: gradient was calculated using the difference between the mean air CO2 molar fraction (obtained
from the eddy covariance tower) and the value of each soil CO: sensor. The CO2 molar fraction was
corrected for variations in temperature and pressure. The mean air COz molar fraction was obtained
from days when the eddy covariance tower had been recently calibrated and used as a constant for
all the studied period, due to the impossibility of using the data continuously due to soiling of the
infrared gas analyzer (IRGA) lens. The calibration of this sensor was done monthly using a N2
standard for zero (purity of 99.999%) and known CO: standards for span. We assumed a constant
value for atmospheric CO:2 molar fraction, neglecting its sm149-152all fluctuations that cause
negligible errors on the final fluxes [44]. Due to the large difference in CO2 molar fraction between
the soil (when in some cases could be >1000 ppm) and the atmosphere we estimate that the systematic
errors could be between 2 and 4% on the final fluxes. The soil CO: diffusion coefficient (Ds) was
obtained as:

Ds=¢ D eq.2

where D is the diffusion coefficient of the COz in free air, calculated according to Jones [45], and & is
the tortuosity. We calculated & following Moldrup et al [46] as:

(G
S ="
where ¢ is soil porosity and 6 is soil volumetric water content [47]. In this manuscript positive

values of Fs denote a COzrelease to the atmosphere in consistency with NEE measurements.

eq.3

2.3 Empirical modeling of soil CO: efflux (Fs)

We tested three hierarchical approaches to model hourly and daily means of Fs including a simple

conditional linear approach, support vector machine (SVM) as a machine learning approach, and an

8-day moving window. First, we modeled Fsveg and Fspare using soil moisture and soil temperature as

forcing factors using a conditional approach (referred as Model 1 throughout the text). It is known

that water availability is the main controlling factor in water-limited ecosystems, but the temperature

dependence of Fs is only relevant when water is not a limiting factor [26,35,48]. Thus, we used the

following approach:

If soil temperature > mean annual soil temperature (when the soil is likely to be hot and dry)

log(Fs) = a+b(SM)+c(SM)? eq. 4

If soil temperature < mean annual soil temperature (when it is likely to be cool and moist)
log(Fs) = a+ b(Ts) + b(SM) + c(SM)? eq.5

where log(Fs) is either natural logarithm of Fsveg or Fsvare, SM is soil moisture in the bare soil or under
vegetation, and Ts is soil temperature in the bare soil or under vegetation. This simple approach is
likely to represent the temporal trends but unlikely to represent hot-moments of Fs.

Second, we used a support vector machine (SVM) approach using soil temperature and soil
moisture as predictor variables for Fsveg or Fsvare. This machine learning technique are supervised
learning models/algorithms that analyze data for classification and regression analysis. To explore
the nonlinear relations of the response of Fs we used a kernel function with SVM. The kernel function
was set to be Gaussian and the kernel scale was set to 0.35. We propose that SVM is a flexible approach
for exploring nonlinear relations for classification of data and testing its applicability for representing
Fs pulses. Previous studies have described in detail the theory behind SVM [49,50] and the
application of Gaussian kernels for SVM [51,52]. We cross-validate the classifier using 10-fold cross-
validation.

Third, we modeled Fsveg and Fscare using an 8-day moving window (referred as Model 2
throughout the text). Thus, it allows for parameters to shift through time so that projections match
the data as close as possible. For this approach, we only applied eq. 5 assuming that temperature and
moisture are important within this 8-day moving window. In this case, different parameters for eq.5
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were fitted for each 8-day sliding window calculation. This moving window approach is conceptually
analogous to the calculation of ecosystem respiration based on a moving window of nighttime NEE
[39]. The selection of an 8-day moving window was based on the fact that the effect of PPs on Fs
usually last about 8 days at the study site [27] and this highly parameterized approach could better
represent hot-moments of Fs.

2.4 Time series analyses

First, we used wavelet analysis to explore the spectral properties of the times series of Fs (Fsveg and
Fsbare) and data-model agreement (or disagreement) for Fsveg and Fsvare derived from the three
empirical approaches described above. Wavelet analysis is a time series technique that has been
widely applied in geosciences [53], and recently to analyze the temporal variability of ecosystem-
scale fluxes [54-56], soil CO: effluxes [15,57], and to identify data-model agreement [57-59]. This
technique is used to quantify the spectral characteristics of time series that may be nonstationary and
heteroscedastic. Specifically, we used the continuous wavelet transform because of its ability to
produce a smooth picture in the frequency domain of a time series (e.g., soil CO: efflux, data-model
residuals) and its suitability for visual interpretation. The ability to discern small intervals of scales
(i.e., spectral resolution) depends on the choice of the mother wavelet function. For this, we used the
widely used Morlet wavelet, a complex nonorthogonal wavelet with a good time and scale resolution
that has been widely used for geophysical applications [53,60], and biometeorological measurements
[57-59]. We first analyzed time-series of measurements using a 1-hour time step and then model
residuals using a 1-day time step.

Second, to test the potential influence of soil temperature or soil moisture on Fs, we explored
their partial temporal correlation with Fsveg or Fsbare. In other words, we explored the temporal
correlation of Fs with soil temperature taking into account the influence of soil moisture and vice
versa. We applied partial wavelet coherence analysis (PWC) as it can be interpreted as a technique
similar to partial correlation that can identify significant temporal correlations between two different
time series after eliminating the influence of a third one. Previous reports have described the PWC in
detail for climate studies [61]. The statistical significance (5% significance level) of common power
between any two time series was assessed for PWC using 1000 Monte Carlo simulations of white
noise time series [60]. The time-series used for PWC were analyzed using a 1-hour time step.

3. Results

3.1 Description of temporal patterns

Daily soil temperature ranged from a minimum of 5°C and a maximum of 38°C; with an annual mean
of 22°C under vegetation and 23°C for bare soil (Fig. 1A). Between September 2011 and August 2012
(first hydrologic year) the study site received 216 mm of precipitation, and between September 2012
and August of 2013 (second hydrologic year) it received 221 mm (Fig. 1B). There were no substantial
differences in total precipitation between the hydrological years, but the distribution of the PPs
resulted in different patterns of soil moisture along the years (Fig. 1B).

Water pulses following the dry season (between September and October) substantially raised
Fsveg and Fspare (Fig. 1C). The overall mean for Fsveg and Fsvare was1.5+1.4 umol CO2 m2 s but hot-
moments were present with instantaneous values >20 pumol CO2 m2 s (Fig. 2A, B). We analyzed the
cumulative sum of Fs based on hydrologic years (see above). Annual Fsveg was 480 and 819 gC m?2,
while annual Fsvare was 431 and 871 gC m for the first and second hydrologic years, respectively.
Positive NEE values were common during the dry season when the ecosystem acted as a net CO:
source to the atmosphere (Fig. 1D).
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Figure 1. Time series of daily mean of soil temperature (A), daily sum of precipitation, daily mean
of soil moisture (B), daily mean of soil CO: efflux (Fs) nearby vegetation (Fsveg) and in bare soil (Fsbare;
C), and daily mean of net ecosystem exchange (NEE; C). Dashed lines in panels A-C represent
variables measured under vegetation and solid lines represent variables measured in bare soil. Gray
areas in panels B-C represent precipitation pulses selected as response cases (i.e., Case I, Case II, Case
III; see results section). Solid circles in panel B represent precipitation. Letters in the x-axis represents
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256 We explored the spectral characteristics of the time series of Fsveg and Fspare (Fig. 3). Results using
257  wavelet analysis demonstrate that the 1-day period for Fsvesis more constant than for Fsare (Fig. 3A,
258  B). We observed three distinct PPs that substantially influenced the spectral signature of Fs. First, the
259  large precipitation pulses at the beginning of each growing season (i.e.,, September) resulted in
260  discrete hot-moments influencing the periodicity for Fsves (Fig. 3A) and Fsbare (Fig. 3B) between a time-
261  period of 1- to 16-days (pulses Case I and II). Arguably, another “hot-moment” is observed during
262 October of 2012, but for the purpose of this study (and to simplify the discussion) we consider it
263 similar to a Case II and therefore is not further analyzed. Second, the large precipitation pulse during
264  the growing season of year 2013 also influence the periodicity for Fsveg and Fsvare between 1- to 8-days
265  time-periods (pulse Case III).

266

Case I Case I1 Case 11

Scale [days]

Scale [days]

JASONDJFMAMJJASOND_JFMAMJJASON
Year 2011 Year 2012 Year 2013

267  Figure 3. Continuous wavelet power spectra using the continuous wavelet transform of the time
268  series of soil respiration under vegetation (Fsveg; A) and in bare soil (Fsvare; B). The color codes for
269  power values are from yellow (low values) to dark red (high values). Black contour lines represent
270  the 5% significance level and thin black line indicates the cone of influence that delimits the region
271  not influenced by edge effects. Letters in the x-axis represents months of the year from July 2011 to
272  November 2013. Arrows represent “hot-moments” of Fs identified for this study.

273

274

275 3.2 Influence of soil temperature and soil moisture on Fs

276  Using PWC analysis we found a lack of consistent temporal coherence between Fsvez or Fspare with
277 soil temperature when considering the effect of soil moisture (Fig. 4A, B). In contrast, we found
278  significant temporal coherence between Fsveg or Fsvare with soil moisture when considering the effect
279  of soil temperature (Fig. 4 C, D). The temporal coherence was clearly influenced by PPs for Case I, II,
280  and III with significant temporal correlations between 1- and 16-day periods. The seasonal influence

281  of soil moisture on Fs is represented by the temporal correlation at scales >128-days (Fig. 4C, D).
282
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Figure 4. Partial wavelet coherence analysis (PWC) to test the influence of soil temperature
(controlling for soil moisture) on soil CO: efflux in areas under vegetation (Fsveg; A) or in bare soil
(Fsbare; B). PWC analysis to test the influence of soil moisture (controlling for soil temperature) on CO:
efflux in areas under vegetation (Fsveg; C) or in bare soil (Fstare; D). The color codes for temporal
correlation are from blue (low values) to yellow (high values). Yellow areas within black contour lines
represent the 5% significance level for power values (i.e., high temporal correlation); the thin black
line indicates the cone of influence that delimits the region not influenced by edge effects. Gray areas
in panels C and D represent precipitation pulses analyzed to characterize the response cases (i.e., Case
I, Case 11, Case III). Letters in the x-axis represents months of the year from July 2011 to November
2013.

3.3 Modeling daily Fs
3.3.1. Model 1
Using the conditional approach for equations 4 and 5 with daily Fsveg values resulted in an explained
variance of 47%, with a RMSE of 0.49 umol COz2 m2s. The continuous wavelet transform shows that
errors in the residuals were focused on hot-moments during PPs with periodicities ranging between
2- and 16-days (Fig. 5A, B). These underestimated hot-moments correspond to the PPs previously
identified as Case I to III. This model has a larger probability to over represent Fsveg values of ~1.5
umol CO2 m? s' and under represent Fsveg values > 3.0 umol CO2 m? s' when compared to
measurements (Fig. 6A). Considering the full 2-years of measurements the model underestimates the
cumulative Fsvweg flux by 12% mainly by over representing Fsve; values for year 2011 and
underestimating Fsveg values of years 2012 and 2013 (Fig. 6B).

Using this approach for Fseare resulted in an explained variance of 35% and a RMSE of 0.67 umol
CO2 m?2 s1. The continuous wavelet transform also shows that errors for Fsvare residuals were focused
on hot-moments that correspond to the PPs previously identified as Case I to III (Fig. 5G, H). This
model also has a larger probability to overestimate Fsvez values of ~1.5 pmol CO: m? s! and
underestimate Fsvweg values > 2.5 pmol CO2 m? s' when compared to measurements (Fig. 6C).
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315  Considering the full 2-years of measurements the model underestimates the cumulative Fsbare flux by
316  15% mainly by overestimating Fspare values for year 2011 and underestimating Fsvare values of years
317 2012 and 2013 (Fig. 6D).
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322  Figure5. Analysis of model residuals of soil CO: efflux (Fs) under vegetation (Fsveg; A-F) or in bare
323 soil (Fsbare; G-L). Residuals using equations 2 and 3 (Model 1), Support Vector Machine (SVM) or an
324  8-day moving window approach (Model 2) for Fsveg (A, C, E) and Fspare (G, I, K). Continuous wavelet
325  power spectra using the continuous wavelet transform for residuals of each model for Fsves (B, D, F)
326  and Fsvare (H, J, L). The color codes for power values are from yellow (high values) to red (low values).
327  Yellow areas within black contour lines represent the 5% significance level for power values (i.e., high
328 value of residuals); the thin black line indicates the cone of influence that delimits the region not
329  influenced by edge effects.
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Figure 6. Probability density functions of soil CO: efflux (Fs) values for measurements and each
model under vegetation (Fsveg; A) and bare soil (Fspare; C). Cumulative sums of soil CO:z fluxes for
measurements and each model under vegetation (Fsveg; B) and bare soil (Fsbar; D). Letters in the x-
axis represents months of the year from July 2011 to November 2013. For a description of the models
see methods section. SVM = support vector machine.

3.3.2. Support vector machine (SVM)

Using SVM, we were able to explain 71% of the variance of Fsveg with a RMSE of 0.7, and 51% of the
variance of Fsvare with a RMSE of 0.98 pmol CO2 m? s. The continuous wavelet transform shows that
errors in the residuals were also focused on the previously identified Cases I to III for Fsveg (Fig. 5C,
D) and Fspare (Fig. 51, J). This model also has a larger probability to overestimate Fsvalues of ~1.5 umol
CO:2 m? s and underestimate Fsveg values > 2.5 umol CO2 m?2 s'' when compared to measurements
(Fig. 6A, C). Considering the full 2-years of measurements the model underestimates the cumulative
Fsveg flux by 7% and underestimates Fsvare by 1% as a result of error cancelation. This approach
overrepresents Fs values for year 2011 and underestimates Fs values of years 2012 and 2013 (Fig. 6B,
D).

3.3.3. Model 2

Using the 8-day moving window approach with equation 5, we were able to explain 84% of the
variance of Fsveg with a RMSE of 0.52, and 48% of the variance of Fsvare with a RMSE of 0.73 pmol CO:
m?2s1. The continuous wavelet transform shows that errors in the residuals were also focused on hot-
moments during PPs with periodicities ranging between 2- and 16-days (Fig. 5E, F). These
underestimated hot-moments also correspond to the PPs previously identified as Case I to III.

This model has a similar probability density function for Fsve; values when compared to
measurements (Fig 5A), but slightly overestimates Fsvare values of ~1.5 pmol CO: m? s! and
underestimates Fspare values > 3.0 umol COz2 m s' when compared to measurements (Fig. 6A, C).
Considering the full 2-years of measurements the model underestimates the cumulative Fsveg flux by
2% and underestimates Fsvare by 3% as this approach closely followed the measurements (Fig. 6B, D).
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3.4. Responses to different precipitation pulses

We selected three responses (i.e., Cases) to PPs based on the spectral properties of the time series of
measurements and model residuals. These response Cases represent rapid discrete changes in the
amplitude of soil moisture from a baseline (i.e., pre-pulse conditions), have substantial influence on
the spectral properties of the time series (Fig. 3), and are difficult to represent by the proposed
modeling approaches (Fig. 5). We identified that a Case I response was evident during September
2011 (i.e., days of the year 240 to 265), a Case 1I during September 2012 (i.e., days of the year 240 to
265), and a Case III during March 2013 (i.e., days of the year 110 to 135).

A Case I response followed a large PP (i.e.,, >20 mm) after the long dry season that sharply
increased soil moisture (Fig. 7A). This resulted in an increase of Fsveg to 11.7 pumol CO2 m? s
representing a change of 5400% and of Fspare to 8 umol CO2 m2 s (increase of 3885%) from pre-pulse
conditions (Fig. 7D). A Case II response followed a small PP (i.e., <5 mm) after the dry season that
slightly increased soil moisture (Fig. 7E). Despite this modest response in soil moisture Fsveg increased
to 18 umol CO:2 m2 s and Fspare to 34.4 pmol CO2 m2 s representing a change of 9000% and 17000%
from pre-pulse conditions, respectively (Fig. 7E). A Case Il response was a large PP (i.e., >20 mm)
during the moist conditions of the growing season that moderately increased soil moisture (Fig. 7C)
and increased Fsveg to 8.7 umol CO2 m2 s and Fspare to 11.7 pmol CO2 m? s representing an increase
of 954% and 1099% from pre-pulse conditions, respectively (Fig. 7F).

We tested how the three modeling approaches were able to represent the different responses
using a 1-hour time-step. Overall, all models were able to represent Case I and III responses (Fig. S1),
but SVM was the model that better represented these responses (Fig. 7 H, I). None of the models were
able to represent a Case II response.



385
386

387
388
389
390
391
392

393

394
395
396
397
398
399
400
401
402
403
404

Soil Syst. 2018, 2, x FOR PEER REVIEW 12 of 23

Response Case I Response Case II Response Case 11
(September 2011) (September 2012) (May 2013)
o
30
9 g
IS
E m
5 E
(2]
35 35 T 35
D ! E F
30 30 H 30
L
—~ L
- 25 25 | 25
& H FSpare B
‘e 20 20 :‘.‘ —— Fsyeg 20 5
L‘I’.’ N 1 [
8 15 15 ! 15 §
B 1
g 10 10 10 K
5 5 5 A
0 bl e zaia Y 0 0
35 35 35
20 FSpare FSveg G - FSbare Fs veg H 0 FSbare FSyeg |
r2=0.74 r2=0.93 r2=0.02 r2=0.07 r2=0.36 r2=0.80
= 2 25 25
P RMSE =0.5 RMSE=0.6 RMSE =37 RMSE=24 RMSE =0.8 RMSE=0.7
1)
<>'E 20 20 20 s
L5 s 15 15 5
Q
o
3 10 10
3
5 . She haaaftse
0 MMMM‘ 0
245 250 255 260 265 115 120 125 130 135
DOY for 2011 DOY for 2012 DOY for 2013

Figure 7. Pulse responses of soil moisture (A-C), Fs under vegetation (Fsveg) or in bare soil (Fsbare; D-
F), and model output using support vector machine (SVM) for Fsveg or Fsvare (G-I). Responses are
defined as Case I-1II, and are identified in Figures 1, and 3. Solid lines represent variables measured
under vegetation and dashed lines represent variables measured in bare soil. Fs means soil CO2
efflux. The numbers in the x-axis represent the day of the year (DOY) for years 2011 to 2013 for each
panel.

4. Discussion

Our results support the paradigm that distribution and intensity of PPs influence annual Fs in water-
limited ecosystems. Relatively similar total precipitation but lower soil moisture variability resulted
in 50% higher Fs emissions during the second hydrologic year. Lower, soil moisture variability and
prolonged rains (until June 2013) likely reduced water stress during the second hydrologic year.
Higher ecosystem metabolic activity during the second year was observed by the consistent
periodicity at the 1-day period for Fsveg and Fsvare (Fig. 3). These results support observations that
precipitation patterns that maintain higher soil moisture conditions for a longer time resulted in
higher seasonal ecosystem metabolic rates [25,62].

Discrete PPs generate Fs responses that resulted in hot-moments of Fsveg and Fspare (response Case
I'to III). The wavelet analyses demonstrate that these pulse responses had distinct spectral signatures
localized within specific PPs (Fig. 3). Not every PP resulted in an event with a distinct spectral
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signature in the time series of Fs demonstrating the uniqueness of the selected Cases (Fig. 3). In other
words, despite there were several PPs throughout the length of the study, we identify three distinct
Cases that we interpret as hot-moments of Fs. We recognize that there is a hierarchy of PPs but we
bring attention to the use of time-series analysis and the interpretation of PPs and hot-moments by
analyzing information of automated Fs measurements in the frequency-domain. Arguably, previous
studies have likely underestimated hot-moments of Fs due to lack of continuous measurements as
recent studies are demonstrating the importance of these transient but intense events [29,34,63].

4.1. Can we model daily Fs using temperature and soil moisture information?

Our results show that the temporal influence of soil moisture on Fs overrides the influence of soil
temperature on Fs in this water-limited ecosystem (Fig. 4). This supports the fact that temperature is
only relevant in these ecosystems when soil moisture is available for metabolic processes [26,35,48].
The temporal influence of soil temperature in this water limited ecosystem seems to be concentrated
at the 1-day period during discrete days when water is available. In contrast, the influence of soil
moisture has larger implications for the temporal variability of Fs at scales ranging from 2- to 16- days
during the different responses (i.e., Case I to III).

Our results demonstrate the challenge that empirical modeling approaches have to represent
hot-moments of Fs in water limited ecosystems, where a Case Il response was consistently challenging
to represent by all approaches (Fig. 5). A Case II response substantially increased the magnitude of Fs
but the magnitude of the response was not proportional to the increase in soil moisture. Although
this response is directly linked to an increase in soil moisture, the underlying biotic and abiotic
mechanisms go beyond water availability as previously discussed for rewetting events [29,34].

The conditional approach (i.e., Model 1) was able to represent between 47 and 35% of the
variability in daily Fsveg and Fsvare, respectively. This simple conditional approach can be easily
applied across study sites and is interpretable, as it provides insights about temperature and soil
moisture sensitivity of Fs (by comparing constants in the model). This approach is widely applicable
at the daily-scale and parameters can be compared across sites and across site-years but has the
largest uncertainty of all approaches.

The wealth of information from continuous measurements allows to apply more complex
models that can be highly parameterized such as the 8-day moving window approach (i.e., Model 2).
This moving window approach follows the fact that water availability and precipitation pulses drive
most of the metabolic pulses in this water-limited ecosystem [27]. The use of an 8-day moving
window was confirmed by the PWC showing that water pulses have a consistent temporal influence
between 8- to 16-days regardless of their magnitude or antecedent moisture conditions. This
approach significantly increased the proportion of explained variance to 84% for daily Fsveg and 48%
to daily Fsvare. This approach could be applied as a gapfilling technique for time series of Fs [64], but
has little interpretability and applicability beyond the parameterized time series because parameters
are highly variable in order to match measurements for each moving window (Fig, 6). Future,
applications could be done varying the size of the window to optimize for site-specific conditions
and to improve gapfilling estimates.

Machine learning approaches are versatile and flexible enough to discover complicated
nonlinear relationships and we argue that SVM has the potential for representing the non-stationary
dynamics of Fs. This approach was able to increase the representation of daily Fsvare when compared
with the approach of Model 2. Likely the use of more variables has the potential for improvement of
predictions of hot-moments of Fs that are controlled by factors beyond soil moisture, but caution
must be taken to avoid autocorrelation among variables and model over fitting [65]. The opportunity
for machine learning approaches for Fs is arguably starting with a few examples such as the use of
random forests [66]; thus, it is expected that the use of these techniques will become more common
in the near future.

4.2. How discrete PPs influence hot-moments of Fs?
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We identified three Cases of Fs to PPs where the Fs rate drastically changed (up to 17000%) to affect
the spectral properties of the time series and data-model agreement. Here, we describe the
generalities of these responses, but we recognize that our results are based on the information within
the available time series and longer records could show consistency or a larger diversity of responses.

Case I represents the ecosystem response after a large PP (>20 mm) following a long drought
period, and is characteristic of the beginning of the rainy season in Mediterranean ecosystems [26,27].
Case I is characterized by rapid water infiltration into the soil profile, which substantially increases
soil water content in areas of bare soil and under vegetation (Fig. 8A). Furthermore, the vegetation
could provide a preferential pathway for water infiltration, as demonstrated by an increase of soil
moisture with respect to the bare soil. In Case I we observed larger Fsveg than Fsvare with two possible
explanations. First, we postulate that the autotrophic component of Fs (i.e.,, Fsveg minus Fsbare)
increased as plants rapidly start to use resources to activate the photosynthetic mechanism, therefore
increasing their catabolism and autotrophic respiration [27]. Second, it is likely that the heterotrophic
component of Fs under vegetation is also increased because of higher substrate availability within
the rhizosphere that is rapidly dissolved and available for microbes [28]. Noteworthy, the modeling
approach by SVM was able to represent this response as Fs was highly correlated with soil moisture
regardless of the underlying mechanisms of the heterotrophic and autotrophic components of Fs (Fig
7G).
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Figure 8. Summary of selected Fs responses to precipitation pulses (A-C), and conceptual depiction
of the contingent responses of the ecosystem to precipitation pulses (D-F). The rectangles in D-F
represent a “soil water bucket”, where the “y” axis represents a stress gradient and the dotted line
represents a reference point for comparison among panels. Selected responses are defined as Case I-
III, and are identified in Figures 1, 3, and 7. Case I results in less stressful conditions for several days,

Case Il is characterized by a short period of stress relief, and Case III is in between fluctuations of less
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water stress. Fsveg = soil CO: efflux in areas under vegetation; Fsbare = soil CO:z from areas without
vegetation (i.e., bare soil); SM = soil moisture, where the number of “+” signs denotes higher soil
moisture either at bare soil or under vegetation.

Case II represents the ecosystem response after a small PP (<5 mm) following a long drought
period. This distinction is important because in water-limited ecosystems the beginning of the rainy
season does not always start with a large (i.e., >20 mm) precipitation event [13,67,68]. Case II is
characterized by slow water infiltration that only permeates into soil surface layers because is likely
that vegetation intercepts most water from these small PPs and creates a shadow where soil moisture
is lower (under vegetation) than at the bare soil (Fig. 7B, 8B). Despite the small PP we observed a hot-
moment for Fsveg (18 pmol CO2 m?2 s) and Fspare (>34 pimol CO2 m? s) that increased Fs by 9000 and
17000% from pre-pulse conditions, respectively. These responses are the highest reported for Fs for
rewetting events [29] as a result of very low pre-pulse Fs rates (due to dry conditions during the non-
growing season) and the sharp increase following the PP. Previous studies have demonstrated that
Fs is spatially heterogeneous within a water limited ecosystem [26] and that small PPs do not activate
the metabolism at the plant-level [27]. We postulate that increases in Fsveg and Fsvare are likely driven
by an increase in the heterotrophic component of Fs because there is not enough available water to
trigger plant catabolic metabolism to stimulate autotrophic respiration (Fig. 8B). The lack of
correlation between the size of the PP and the response of Fs make modeling of these responses very
challenging. None of the proposed approaches were able to represent the response as underlying
variables (e.g., available substrate supply) may have influenced the sharp uncorrelated response to
soil moisture. The implication of this modeling limitation is that low-to-medium Fs fluxes are usually
overrepresented by models and high Fs fluxes are underestimated (Fig. 6). Furthermore, these large
responses could contribute up to 40% of total net COz2emissions during dry seasons [27], so accurate
measurements and understanding of these hot-moments is needed to better understand local carbon
dynamics.

Case III represents the ecosystem response to a large precipitation event (~20 mm) during the
cool and moist growing season (Fig. 7C, 8C). We postulate that although the plant canopy can provide
a preferential pathway for water infiltration into the soil (as seen in Case I), this season is characterized
by less soil moisture limitation and a homogeneous distribution of soil water content across the soil
profile (Fig. 8C). Case 1II is characterized by a large change in soil water content with increases in Fs
of about 1000%, but this sharp increase only represents <20% of the sharp response observed for Case
I and II. Noteworthy, the modeling approach by SVM was able to represent the response of Fsveg as it
was highly correlated with soil moisture, but in a lesser degree the response of Fsbare which had a
disproportionally low response to increased moisture in the soil profile (Fig. 7I). We postulate that
Case 111 is likely a result of an increase in heterotrophic and autotrophic activity as plant metabolism
is active during the growing season [27].

We borrow the concept of the “bucket model” to describe how discrete PPs influence hot-
moments of Fs. The “bucket model” is a conceptual idea to describe the response of terrestrial
ecosystems under different precipitation patterns[69]. In this model, the “bucket” represents the
uppermost soil layers with maximum root density and is characterized by upper and lower water
stress thresholds (i.e., a stress gradient) [69]. We propose that an analogous conceptual approach can
be used to explain the hot-moments of Fs in our study. Therefore, “the soil water bucket” represents
the uppermost soil layers within maximum root density and is characterized by upper and lower
water stress thresholds that represent a gradient of ecosystem stress (Fig. 8 D-F). In Case I the
ecosystem is stressed as a consequence of the long dry season, but the PP is able to increase soil
moisture that moves the ecosystem to a state of less stress for a prolonged period of time until the
following precipitation event (Fig. 8D); this response is highly correlated with the temporal patterns
of soil moisture. In Case II the ecosystem is also stressed as a consequence of the long dry season, but
soil moisture is not substantially increased resulting in a short period of reduced stress followed by
a sharp return to a previous stressed state (Fig. 8E). Finally, in Case III the ecosystem is less stressed
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and subsequent changes in soil moisture create variability under a stress gradient (Fig. 8F). This
conceptual idea aims to highlight that variability in PPs defines water limited ecosystems, pushes
these ecosystems towards less-stressed conditions, and could trigger a diverse response of hot-
moments of Fs.

Climate models indicate a future with altered precipitation patterns where extreme PPs could
be followed by long dry periods in water-limited ecosystems. Thus, it is critical to understand how
diverse PPs influence ecosystem processes under different metabolic states. Automated
measurements of Fs provide the opportunity to capture high-temporal resolution of ecosystem
responses, providing information on disproportionately high (i.e., hot-moments) CO: fluxes
following precipitation events [34]. Although CO: fluxes in water-limited ecosystems are low
compared to mesic ecosystems, their sensitivity to changes in precipitation pattern is high and
consequently influences their annual net fluxes. Our results support the application of a machine
learning approach (i.e., SVM) based on information of soil moisture and temperature to represent Fs,
but we recognize that machine learning is parameterized with available data and consequently is not
process based. Hot-moments of Fs as a result of a small precipitation event (<5 mm; Case II pulse)
following a long drought period appear to be the most challenging events to represent and support
the need of continuous measurements to capture the effects of this discrete but sharp response. We
demonstrate that soil moisture has high temporal correlation with Fs and overshadows the influence
of soil temperature in this water-limited ecosystem. Finally, because the variability of carbon
dynamics in water-limited ecosystems influences the global carbon cycle, it is essential to quantify
the responses of non-stationary ecosystem CO: fluxes to transient (and potentially extreme)
precipitation events.
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Model
performance for each one of the precipitation cases.
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