Pathways for the science community to characterize the state, vulnerabilities, and management opportunities of soil organic matter

Harden, J.W.¹, Hugelius, G.^{1,2}, Ahlström, A.³, Blankinship, J.C.⁴, Bond-Lamberty⁵, Lawrence, C.⁶ Loisel, J.⁷, Malhotra, A⁸, Jackson, R.B.^{1,9} Ogle, S¹⁰, Phillips, C.¹¹, Ryals, R.¹², Todd-Brown, K.¹³, Vargas, R.¹⁴, Vergara, S.E.¹⁵, Cotrufo,M. F.¹⁰, Keiluweit, M.¹⁶, Heckman, K.A.¹⁶, Crow, S.E.¹², Silver,W.L.¹⁵, DeLonge, M.¹⁷, and Nave, L.¹⁸

- 1. Department of Earth System Science, Stanford University, Stanford, CA, USA 94305
- 2. Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, SE-10631 Stockholm, Sweden
- 3. Department of Physical Geography, Lund University, Lund, Sweden
- 4. Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, USA 85721
- 5. Pacific Northwest National Laboratory, Joint Global Change Research Institute, University of Maryland, College Park, College Park, Maryland 20740, USA
- 6. US Geological Survey, Geologic and Environmental Change Science Center, 1 Denver Federal Center, Denver, Colorado 80225, USA
- 7. Department of Geography, Texas A&M University, OM building room 810, 3147 TAMU, College Station, TX 770843, USA
- 8. Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA 37831
- 9. Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA USA 94305
- 10. Natural Resource Ecology Laboratory and Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, 80523, USA
- 11. USDA-ARS Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, Oregon 97330
- 12. Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA 96822
- 13. Pacific Northwest National Laboratory, Richland, WA 99354
- 14. Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA, 19716
- 15. Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley CA, USA, 94720
- 16 School of Earth and Sustainability, Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA, 01003
- 17. Food and Environment Program, Union of Concerned Scientists, DC, USA 20012
- 18. University of Michigan, Biological Station and Department of Ecology and Evolutionary Biology, Pellston, MI USA, 49769

Abstract

Soil organic matter supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and

soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and its management for sustained production and climate regulation.

Acknowledgments: This article resulted from a weeklong workshop held in Feb. 2017 by the first 14 authors (listed alphabetically after the two lead authors) and from additional participation by the remaining authors. We thank attendees of the ISCN all-hands meeting Dec. 11, 2016 held in SF and USGS Powell Center on Spatial Scaling of Soil Organic Carbon for their supportive and constructive ideas; Ankur Desai for insightful manuscript comments; and for funding support by Stanford University Earth System Science, USDA Forest Service, U.S. Geological Survey, The Bolin Climate Research Center at Stockholm University for ISCN support.

1. Introduction

Soil organic matter (SOM) governs many physical and chemical characteristics of soils, and is one determinant of a soil's capacity for fertility, ecosystem productivity, and CO₂ sequestration. Thus SOM, and its main constituent soil organic carbon (SOC), interacts with several aspects of the Earth system and its services to society (Banwart et al., 2014), including food, fiber, water, energy, cycling of C and nutrients, and biodiversity. Historically, estimates of global SOC stocks ranged from 500 to over 3000 Pg, with recent estimates of ca. 2000 Pg to a depth of two meters (Scharlemann et al. 2014; Batjes, 2016). Large land areas (up to 6 billion ha) are estimated to be in some state of soil degradation (Gibbs and Salmon, 2015), associated in many cases deficient stocks of SOM. Increasing SOM content, and thus SOC storage, can improve the state of soil and ecological sustainability, and can also contribute to climate change mitigation by capturing atmospheric CO₂.

SOM has traditionally been studied by two rather separate scientific communities that have been publishing in rather disparate journals (SM2a), one focused on soil health and productivity in context of agricultural management and the other focused on the terrestrial C

cycle and its role in climate regulation. Soil health or quality is a concept formalized in the 1990s to describe holistic soil management practices that enhance the biological, chemical, and physical processes of soil. Increasingly, the goals of these communities are converging and should not be pursued in isolation from each other. Together, the science communities working on agricultural soils and those working on soil C cycling have an opportunity to combine and transform our knowledge, databases, and mathematical frameworks for the benefit of environmental health and humanity.

At the global scale, SOM is one of the largest and actively cycling C reservoirs (Cias et al., 2013; Jackson et al. 2017) and direct human activities impact over 70% of C stocks in the upper meter of soil. Globally soils store 1,300-1,500 Pg of C in the top meter (Fig. 1a; Batjes, 2016). Much of this SOM is in lands impacted directly by cropping, grazing, and forestry practices, with 30% residing in lands only indirectly impacted by human activities such as peatlands and permafrost soils (Hugelius et al., 2014; Köchy et al., 2015; Loisel et al., 2017). The distribution of soils in managed lands follows the distribution of human land use (Fig. 1b, c) and overlaying the estimated SOC stocks with human land-use data shows that the majority of near-surface SOC stocks are in lands directly affected by human activities today (Fig. 1c).

Efforts such as the '4-per-1000' program, a global initiative to reduce atmospheric CO₂ through soil C sequestration (Minasny et al., 2017), demonstrate that many soils in managed systems could offer an opportunity for climate regulation. While uncertainties are very large, it is evident that land management practices can lead to C gains from 0.01 kg C yr⁻¹ up to 0.07 kg C yr⁻¹ (Minasny et al., 2017). Other additional estimates are in the same order of magnitude (Paustian et al. 2016, Smith et al. 2007). If these numbers are applied across all Earth's managed lands, there is an opportunity to sequester several Pg C yr⁻¹ globally (fig. 1d). While not all lands are likely to be managed consistently, this maximum estimate could potentially offset future C emissions from permafrost (Koven et al., 2015) or the combined projected emissions from land use change and agricultural management (Pugh et al., 2015; projected emissions in fig. 1d).

The ability to detect shifts in SOC and to potentially increase SOC storage is increasingly important for scientific and societal challenges in the face of rapidly changing terrestrial landscapes, yet detecting changes in SOM are as problematic to measure and predict as they are important for climate and landuse planning. For example, estimates of future SOM dynamics range widely, and recent compilations of soil radiocarbon demonstrate that global models

underestimate the transit time of C in soil, biasing the capacity for soils to store C in future years (He et al, 2016). Meanwhile conceptual frameworks for SOM stabilization are also changing, challenging the science community to shift methods and measurements to test alternative models. For example, paradigms and metrics of SOM_C (de)stabilization and storage have been shifting (Schmidt et al., 2011; Lehmann and Kleber, 2015). Emerging paradigms de-emphasize the chemical properties of SOM itself and focus more on mechanisms that isolate or stabilize C such as sorption of biopolymers and their decomposition products on mineral surfaces and the entrapment of organic matter in aggregates. These and other recent developments call for model development and new datasets to address aggregate dynamics, carbon use efficiency of microbial organisms, the role of dissolved organic matter, priming to enhance SOM decomposition, and mineral protection of organic matter.

In this article we posit that there is a need and an opportunity for the scientific community to: 1) better identify datasets to characterize ecosystem and landscape properties, processes, and mechanisms that dictate SOC storage and stabilization and their vulnerabilities to change; 2) identify, rescue, and disseminate existing datasets; 3) develop platforms for sharing data, models, and management practices for SOC science; and 4) improve the connection between global C cycle and soil management research communities. The International Soil Carbon Network (ISCN) is a community devoted to open and shared high-quality science for characterizing the state, vulnerabilities, and opportunities for managing SOM. To this end, the ISCN supports cross-disciplinary collaborations that target actionable SOM-related science questions, which are outlined in section 2. Challenges and strategies for the ISCN to function as a community platform for communication, modeling, and data sharing, as well as to increase interoperability among SOM-relevant networks, are outlined in section 3.

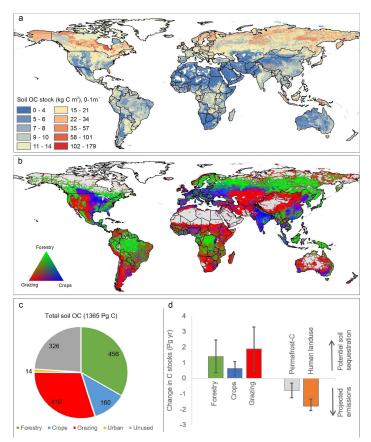


Figure 1. Soil organic carbon stocks and areas currently under land use practices. (a) Spatial variability of soil SOC stocks in the upper meter of soil, based on the WISE 3.1. database (Batjes, 2016). (b) Fractional human use of the land surface through forestry, grazing and agricultural crops (Erb et al., 2007); grey areas represent.... (c) Global SOC stocks (0-1 m) distributed under different land-use categories. (d) Potential opportunities for soil C sequestration in presently managed forest, crop, and grazing lands (assuming average management C gains of 0.04 kg C yr⁻¹ with error bars showing the range of 0.01-0.07 kg C yr⁻¹; Minasny et al., 2017) could compensate for total emission projections from permafrost-C due to the climate feedback (Koven et al., 2015; mean and range of projection until 2100 under RCP8.5) and the projected impact of "human land use", defined as land use change, agricultural representation, crop harvest, and management (Pugh et al., 2015; mean and ensemble range of projection until 2100 under RCP8.5). Note that harvest from forestry is not included in this last projection.

2. Challenges for characterizing the state, vulnerabilities, and management opportunities of soil organic matter

2.1 Understanding mechanisms underlying storage and (de)stabilization of SOC

Changes in SOM and SOC are generally based on assessments of stocks or turnover, residence and transit times (Sierra et al. 2017; He et al, 2016). Assessments of SOC stocks and transit times remain a critical constraint on the ability of models to predict CO₂ exchanges and their responses to environmental and land use pressures (Todd-Brown et al, 2013). Advancements in measurements and numerical models must be grounded in our best understanding of the processes controlling SOM dynamics across scales (Hinckley et al, 2014). Mechanisms of C (de)stabilization are of particular importance for establishing a predictive understanding of SOM dynamics because these same mechanisms presumably drive vulnerabilities and opportunities for C accumulation and potential sequestration under changes in climate, management, or other disturbances.

Currently, most global model frameworks rely on state-factor theory (Campbell and Paustian, 2015), where soil properties are the product of a suite of factors such as climate, biota, topography, parent material, and stage or age of pedogenesis (Jenny,1941), superimposed with major land uses such as deforestation for agriculture (Amundson and Jenny, 1991). Under this framework, global-scale spatial heterogeneity of SOC is a direct reflection of variation within these factors and, accordingly, will vary with climate and land use change. A quantitative and predictive understanding of how soil and ecosystem properties interact to regulate SOC remains elusive due to interactions and interdependencies of the state variables and small, local-scale physico-chemical, and biological processes and mechanisms that also influence the stabilization and destabilization of SOC.

A quantitative understanding of SOC pool dynamics requires a quantitative understanding of both processes and mechanisms leading to C stabilization and destabilization. A process represents a fundamental sequence of actions or steps that lead to a particular

outcome, whereas a mechanism reflects the combined interaction of processes (Fig. 2). Processes are often more directly measureable than mechanisms and, therefore, a more fundamental construct for incorporation into models. We tend to classify mechanisms of soil (de)stabilization as being primarily biological, physical, or chemical (Six et al., 2002; Fig. 2), but many mechanisms cross these boundaries due to interactions among many processes. The past two decades brought substantial advances in our conceptual understanding of mechanisms of SOM stabilization (Schmidt et al., 2011 and Lehmann and Kleber 2015). Yet, quantitative representations of these concepts in global and regional models lags, due in part to a lack of balance among theory-model-data synthesis and lack of incorporation of local-scale understanding of SOM dynamics.

Understanding the mechanisms of SOM (de)stabilization, the underlying driving processes, and the relationships between processes and drivers at various spatial scales is needed to evaluate the potential for SOC to change. To address this need, an emerging priority is the execution and synthesis of manipulative field and lab experiments that specifically target processes and drivers at different spatial and temporal scales (see section 2.2. and Fig. 3). Processes can be observed and often measured as rates of change, either as direct flux measurements over short timescales or changes in stocks over moderate to long timescales. However, identifying drivers often requires manipulation or big data synthesis to infer causation Examples include networks of experimental manipulations that target specific processes, such as the Detritus Input and Removal Treatments (DIRT) that manipulates inputs to soil (e.g., Lajtha et al. 2014), the international Soil Experimental Network (iSEN) that warms deep soil (Torn et al. 2015), Drought-Net that manipulates precipitation, and temperature and moisture gradient studies (Giardina et al. 2014, reference for moisture). By coupling broadly distributed and comparable data synthesis efforts with process-based models, we have the opportunity to capture mechanistic understanding and to constrain the SOC storage and its sensitivity to disturbance.

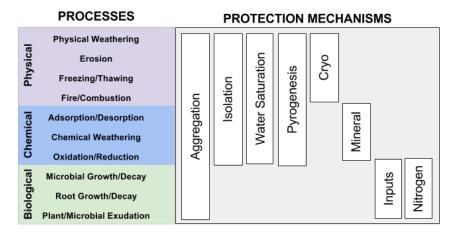


Figure 2. Processes controlling SOM_C pools and the mechanisms involved in stabilizing SOC. Isolation = physical disconnection (e.g. Schimel & Schaeffer 2012); Cryo = cryopreservation; Pyrogenesis = fire residues; Mineral = mineral interaction; Inputs = microbial and plant residues that influence desirability or access to microbes (e.g. Kallenbach *et al.* 2016 *Nature Communications*); Nitrogen = nitrogen or other nutrient limitations (e.g. Averill *et al.* 2014 *Nature*)

2.2. Prioritizing soil data to empower our science

There are many types of data, beyond SOC stock data, used to investigate C dynamics at different spatial and temporal scales (Fig. 3). Data consolidation and archiving efforts so far have focused principally on SOC stocks (e.g. Batjes et al. 2016; Scharlemann et al. 2014), but SOC stocks typically change slowly over timescales of decades to millennia, providing limited sensitivity for investigating shorter-term processes such as land use and climate impacts (Jastrow et al. 2005; Kravchenko and Robertson 2011; Phillips et al. 2015). At the same time, technique advancements over the last several decades have seen an escalation in methods pertinent for investigating SOC change at shorter timescales (Fig. 3). For instance, utilization of the enriched atmospheric ¹⁴C signal ("bomb C") has allowed tracing and dating of SOC at annual timescales (Trumbore 2000). Density and size fractionation techniques have helped to distinguish more rapidly cycled SOC from protected, less rapidly-cycled C (Jastrow 1996, Kong et al. 2005, Gregorich and Janzen 1996). More recently, *in situ* chemistry techniques have been used to investigate SOC transformation over timescales of hours to days (Mackelprang et al. 2016; Haggerty et al. 2014). The data types that are most relevant for measuring SOC change at

experimental timescales, however, have not been consolidated and archived, thus impeding two of the more important lines of inquiry in SOC science, namely 1) the biochemical mechanisms of SOC stabilization and destabilization, and 2) the anticipated impacts of climate change and land use (see top panels of Fig. 3).

Part of the challenge in archiving a diversity of SOC data types is social--they are collected by different sub-communities of soil science and microbiology--and logistical--the data have different structures and storage formats (see Supp. Material SM4). Nevertheless, some of these data types have been widely collected, and archiving efforts could open several novel research opportunities. For instance, the soil-to-atmosphere CO_2 flux (soil respiration or R_S) is one data type that has been measured extensively, both in laboratory incubations and in situ in field studies, and offers many possibilities for more extensive use. Rs data provides an instantaneous measurement of soil metabolism, and thus offers a unique window into terrestrial carbon dynamics at fine temporal and spatial resolution where questions about temperature, moisture sensitivity and respiratory pathways are addressed (Fig. 3). While a considerable effort has been made to synthesize seasonal and annual averages for field-based R_S fluxes (e.g., Bond-Lamberty and Thomson, 2010a), flux datasets including isotopic measurements (isofluxes), time series and experimental manipulations that include soil moisture, and laboratory-based incubation data have only sparingly archived in centralized repositories (e.g.; Kim et al., 2012). Rs data have been used only sparsely for soil C model validation (Wang et al., 2014) or model benchmarking (Shao et al., 2013) despite having characteristics ideal for these purposes; they reflect fundamental metabolic processes, are geographically widespread, and do not require extensive postobservational processing. High-temporal-resolution $R_{\rm S}$ data may also present unique possibilities for constraining and validating fluxes inferred from eddy covariance (Phillips et al., 2016) and spatiotemporal analyses (Lavoie et al. 2014; Leon et al. 2014). Finally, because soil-toatmosphere C fluxes (in particular soil heterotrophic respiration) cannot be directly measured at scales larger than ~1 m² (Bond-Lamberty et al., 2016), data compilations have enormous value for upscaling and for synthesizing our understanding of soil metabolism. While R_s is but one example of data that will help meet challenges for characterizing SOM and SOC, their relevance to mechanistic questions of SOC (de)stabilization has the potential to address higher level questions related to landuse practices, policy, and longterm consequences of change (Fig. 3).

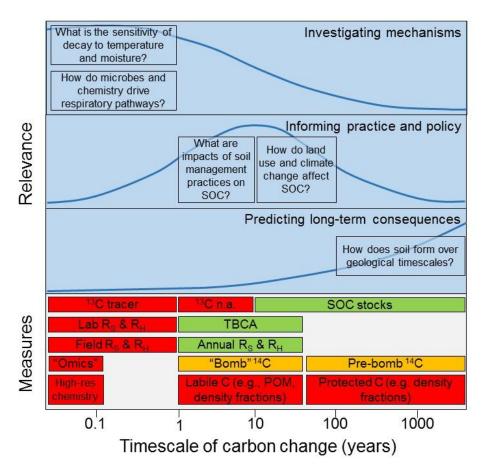
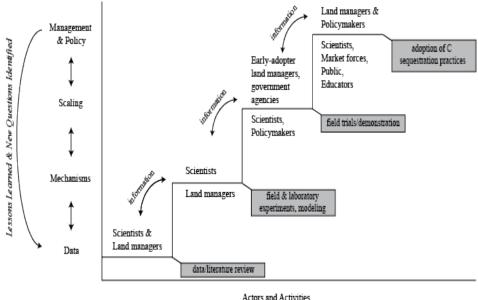



Figure 3. Example research questions and datasets useful for investigating SOC change at different timescales. Blue lines indicate relevance of the topic and question to the timescale of measurement. Colors for measures indicate status of data archiving efforts. Measurements can be well aggregated in centralized repositories (green), have had limited compilation (yellow), or have had very limited compilation (red). Rs, soil respiration; RH, heterotrophic respiration; 13 C n.a., 13 C natural abundance; TBCA, Total belowground total allocation; POM, particulate organic matter.

2.3 Land management and its potential to increase SOM C: an emerging priority

Increases in SOM_C play a key role in climate regulation through sequestration of CO₂, but there also co-benefits relevant to land managers through increased land yield, soil water retention, resilience to extreme weather and nutrient retention. Land managers are primary agents governing changes to SOM and SOM_C stocks, thus in order for scientists to help shape and drive more successful and scalable practices, it is important to view SOC research as a social enterprise as well as a scientific enterprise.

Successful management of SOM requires collaboration among scientists, land managers, landowners, and policy makers. A science-land manager-policy partnership can be initiated at any stage of a problem, for example as a science question or a land management challenge. One example (Fig. 4) starts with research question and tethers field/lab experiments to ecological and social issues important to land managers. Seeking feedback from stakeholders at each phase of inquiry also generates new inquiries, which can be visualized in Fig. 4 as movement from right to left on the research-to-policy progression. A cooperative research approach introduces more sources of feedback and points of iteration than an isolated scientific process, but is instrumental for influencing SOM management practices.

11

Figure 4. Creating conditions to optimize the effectiveness of land use to sequester SOM_C . Actors involved in managing lands for soil C sequestration change in response to the scale and level of information needed. Evaluating and implementing practices (Y axis) starts with scientists working with land managers and propagates through broader spatial scales and policies as goals are defined, communicated, and met. Major actors can vary with each step, with activities shown in the gray boxes. Arrows represent flows of information. In this example, the stepwise progress from local to more regional scales represent the increasing opportunity to impact both productivity and CO2 sequestration through soil C sequestration.

Grazinglands (rangelands) represent a largely untapped global potential for SOM C sequestration as they occur across a wide range of bioclimatic conditions, cover ca. 40% of icefree land and store ca. 30% of the terrestrial SOC pool to 1 m depth (Fig. 1) The global potential for rangeland C sequestration has been estimated to range from 0.3 to as much as 1.6 Pg CO₂-eq yr⁻¹ (Paustian et al, 2016). Many grazing lands have degraded SOM C stocks due to historic, poor management practices and changes in land use intensity. Stocks of SOM C in grazing lands are vulnerable to losses through erosion, compaction, and reductions in plant C inputs from plant community shifts or overgrazing. Improved grazing, irrigation, plant species management, and the use of organic or inorganic fertilizers of these lands can significantly increase soil C stocks (Conant et al. 2017). Application of composted organic waste streams has been demonstrated to be an economic and beneficial proactive that contributes to both rangeland productivity and climate regulation (Ryals et al 2013, DeLonge et al. 2013; see SM5). Lifecycle assessments, in which broader implications for land management are tracked, (e.g., the waste management and energy systems; DeLonge et al. 2013) and other ecosystem services and values (e.g. biodiversity or endemic plant impacts) are also important issues that drive land management choices.

Forest SOM management often focuses on minimizing losses to erosion and disturbance and less on building SOM through residue and vegetation management, as is common in grazinglands and croplands (Binkley and Fisher 2013). While there are robust, broadly consistent methods for accounting for and predicting future C stocks in forest aboveground biomass, there is less consensus on methods for assessing belowground SOM and SOM C. Long-term monitoring (Johnson and Todd 1998; McLaughlin and Phillips 2006), experimental manipulation (Edwards and Ross-Todd 1983; Gundale et al. 2005), expert review (Jandl et al. 2007; Lal 2005), quantitative synthesis (Laganiere et al. 2010; Nave et al. 2010), and ecosystem modeling (Kurz et al. 2009; Scheller et al. 2011) have all produced valuable insights into forest management impacts on SOM. At the same time, the many conflicting results of these studies raise the question of whether responses of SOM to forest management can be generalized across soil and ecosystem types. In addition, the lack of spatially explicit assessments (e.g., maps, geostatistical models) of forest management impacts on SOM highlights our challenge to quantify SOM C stocks and the complex spatiotemporal processes involved in scaling. Given these limitations, methods of quantifying the spatial distribution and controls on forest SOM across scales are needed for forest practices. These applications may be aided by promising advances in digital soil mapping (Mansuy et al. 2014; Mishra and Riley 2015), and spatially explicit soil carbon assessments (Domke et al. 2017; Soil Survey Staff 2013).

Croplands have been managed for more than two decades in ways that benefit soil conditions and reduce greenhouse gas emissions (e.g., Smith et al. 2007, Paustian et al. 2016). There are many practices influencing SOM_C storage in croplands. These include tillage management (in some cases, Powlson et al. 2014); crop rotations and cover crops (Poeplau and Don 2015); improving crop production through fertilization and irrigation management; selection of high residue-yielding crops; crop intensification by removing bare-fallow management in a cropping system; application of silica residues to reduce greenhouse gas emissions (Gutekunst et al. 2017), and application of organic amendments with manure or biochar.

Despite existing knowledge, there is a limited ability to accurately estimate the changes in SOM_C, particularly at smaller scales (Ogle et al. 2010, Paustian et al. 2016). For example, mechanistic understanding such as the effect of tillage management on aggregate dynamics (Six et al. 2000), has not been effectively incorporated into modelling frameworks. Biochar amendments have emerged as one of the most promising practices for sequestering C in agricultural soils (Lehmann, 2007), but there are still questions about the impact of biochar on SOM dynamics (Knicker, 2011). Efforts to incorporate agricultural SOM_C sequestration into policy programs have been plagued by lack of understanding about the longer term impacts of pervasive warming on SOM_C pools (Conant et al. 2011), which could vary widely depending on the response of microbial communities (Wieder et al. 2015).

3. The ISCN as a platform for communication, modeling, and data

While science communities targeting soil health and those targeting climate regulation are making great strides in the science of SOM, a combined and coordinated effort could take advantage of technological and communication advances to meet challenges discussed in section 2 through the International Soil Carbon Network by establish the basis (platforms) by which we share openly our means of communication, modeling, and data sharing.

Fig 5. An approach for applying management options to the science of SOC (de)stabilization. Three general classes of soil carbon (de)stabilization processes (biological, chemical and physical) are fundamental to understanding the susceptibility of soils to disturbance (e.g., compaction and erosion, etc). As such, knowledge of the relevant mechanism at play for a given soil can inform key measurements needed (e.g., soil infiltration and sediment transport) and effective management strategies (e.g., diversify vegetation/minimize use and plant stabilizing vegetation/control runoff).

Communication of our science starts with restructuring and broadening the soil data that are shared within ISCN, allowing for different types of data, and discovering new ways to share data without compromising its attribution and credits. To increase the potential impact of SOM science and to better impact land management practices, it also is beneficial to frame and disseminate our information in the context of both soil health and climate regulation. For

example, given some knowledge of the dominant processes leading to C stability in a given soil (path A, Fig. 5), one may evaluate which disturbances may release SOM and SOC and what measurements would mitigate SOM losses. Conversely, we may apply this framework in the reverse direction. Given some ongoing or historical management practices (path B, Fig. 5), we can work inward and to assess what processes could be most affected. Carbon cycle science can also be reframed from the biological, chemical and physical processes paradigm presented in Fig. 2 to a land management perspective (Table 1). See supplementary materials SM2 for more precise definitions and references.

Table 1. Linkages between soil health indicators and SOC. Soil health indicators are readily-measured soil properties that are used to diagnose the ability of soil to provide services such as nutrient cycling, erosion mitigation, water storage, or microbial activity. Many of these soil health indicators relate directly to SOC content, and many can be ameliorated through restorative practices that increase SOM. For all examples listed, the practices that enhance soil health also restore (and enhance) SOM and SOC, thus what is good for the goose (soil) is good for the gander (atmosphere). Based on these example, scientists and land managers can readily agree that management practices that protect, promote, and conserve soil carbon are practices that prevent erosion, provide and preserve water and nutrient capacity.

	HEALTH INDICATORS	FUNCTIONAL PROBLEMS	EXPLANATORY C VARIABLES	RESTORATIVE PRACTICES
Physical	Macroaggregate Stability	Erosion, compaction	Root growth, fungal biomass, biological crusts	Conservation tillage, "no-till"
	Water Infiltration Rate	Low infiltration, erosion	SOM content	High residue inputs, cover crops, conservation tillage,
	Available Water Capacity	Arid region water management	SOM content	OM additions
Chemical	Potentially Mineralizable N	Poor fertility	Potentially mineralizable C	Fertility management
Cher	Soil test P	Poor fertility	Applied organic matter	Fertility and pH management
Biologica	Microbial Biomass Carbon	Limited soil life	Applied organic matter, root biomass	High residue inputs, cover crops, conservation tillage, "no-till", OM additions

Modeling platforms, in which computations and conceptual paradigms are openly shared, would greatly enhance our ability to understand variations among spatial and temporal scales that plague our ability to precisely and accurately estimate and predict changes in SOC. Conceptual paradigms that form the scientific basis for our computational models were initially based on "humification" processes (Hedges, 1988; RothC model (Jenkinson et al. 1977) and Century model (Parton et al., 1987). The community is increasingly recognizing the role of microbial access to SOC and its stabilization involving specific mechanisms described in Fig. 2 (Jastrow et al. 1996, Six et al. 2000, Kaiser and Kalbitz 2012, Averill et al. 2014, Keiluweit et al. 2015, Cotrufo et al. 2015, Lehmann and Kleber 2015). Yet measurements used to drive and test these models vary and are often not structured experimentally to test one model over another. Issues of spatiotemporal scaling, which often represent processes originating from fine temporal or spatial scales must address whether mechanisms and functions change between spatial and/or temporal scales, keeping in mind that responses of soil processes to forcing factors such as climate or disturbance are typically different across scales (O'Rourke et al, 2015). For example, multiple nonlinear processes that operate on fine spatial scale may average to processes that appear linear or cancel out at a coarser spatial scale, and therefore processes that regulate short temporal dynamics may differ from the processes that govern long-term changes (Urban et al., 1987). Similarly, at fine scales a response might be related to a specific landscape or climate attribute, which when aggregated is lost or obscured. Temporal scaling is also a challenge, as long-term changes in SOM C are particularly difficult to capture with measurements. Fluxes of heterotrophic respiration, for example, can be measured only at fine spatial and temporal scales (Bond-Lamberty et al., 2016) whereas observing short-term changes in SOM C pools is reduced to detecting small changes relative to a large pool of bulk SOM C (Stockmann et al., 2013). While radiocarbon measurements suggest that the majority of bulk SOM C is much older (He et al., 2016), and hence not very active, long-term changes in SOM C storage could be governed by processes other than those that determine short term fluxes. Models are incorporating these

new ideas into mathematical frameworks to consider emerging paradigms (e.g., Allison et al. 2010, Wieder et al. 2013, Sulman et al. 2014) and there is a growing need to openly share modeling code along with data used to drive and test model performance. Until models and specific parts of models are sufficiently tested, compared, and shared openly, modeling SOM and SOM-C will remain highly uncertain.

In addition to simply sharing model codes, it is also becoming clear that a **community-based model** could emerge from the soils community. In particular modular frameworks with water, temperature, and plant production modules would allow for "plug and play" with new SOM modules that are under development. These other modules would not likely be the focus of development, but are needed to realistically simulate SOM dynamics from experiments and regional analyses. The design of such supporting modules could be informed by or rely on recent progress with frameworks (e.g. PeCAN project http://pecanproject.github.io/index.html). As new models are published and shown to work better than the existing SOM community model, the community model would be replaced with improved mathematical frameworks for SOM dynamics. In turn, scientists and investigators evaluating SOM dynamics could incorporate the latest science embodied in the SOM community model housed on the platform into their assessments. ISCN would effectively encourage the use of the latest science in national assessments such as evaluating climate change impacts, greenhouse gas emissions and soil health (e.g. Ogle et al., 2014).

There is also an emerging need for Big soil data, designed as a searchable database for soil properties. Empirical models could be structured from a searchable, robust database but we could also challenge our conceptual and computational models to improve our assessments of SOM and SOC change. The ISCN network database (http://doi.org/10.17040/ISCN/1305039 or http://ameriflux-data.lbl.gov:8080/ISCN/DOI.html.) afforded early opportunities to design common data templates, promote data synthesis, and generate publications. The ISCN-gen3 database is poised to move beyond observational soil point data and associated drivers, and well into the realm of process-level attributes such as soil fractions and spectral data. These data types have been envisioned and piloted since its earliest generations, but have only recently gained wider attention and use among the wider community of scientists interested in soil carbon.

Currently the ISCN database has a mix of overlapping and unique data as compared with other databases (Supplemental Material SM1). For example, most closely aligned are the World

Soil Information Service (WoSIS) and ISCN, both of which report soil profile data but for different attributes: The ISCN reports over 100 (carbon plus other attributes) soil properties/attributes for ~70,000 profiles and their constituent layers, whereas WoSIS reports 12 properties for over 150,000 profiles. ISCN currently hosts solid phase attributes for soil, and the data are structured in a way compatible with ecosystem CO_2 –land-atmosphere flux data served by FLUXNET and AmeriFlux networks . Despite the large number of soil profiles included in both WoSIS and ISCN, however, there remains an enormous amount of un-archived soil data. Compiling and harmonizing these data could help answer questions of C turnover; soil properties related to mechanisms controlling SOM_C (de)stabilization; soil respiration fluxes in context of soil and environmental measurements; and metrics of pools or forms of bioavailable vs non-available SOM C.

This so-called 'long tail' of data has been identified in other fields (Dietze 2013) and represents data that have been collected but, for one reason or another, is not easily available for re-analysis. A comparison of literature and data repository records suggested that process and biological data are underrepresented in repositories, relative to descriptive, chemical and physical data (Suppl. Materials Figure SF1, methods in supplementary materials SM3). Comparison of the top keywords in SOM and SOC literature to data repositories suggested that other data types ripe for synthesis in context of SOM_C include soil incubation and temperature sensitivity, soil chronosequence studies, wildfire emissions/retention, nitrogen and phosphorus cycling, root and fungal dynamics, and soil microbiology. For example, a soil carbon-related data repository search suggests that only 1% of the entries in the broader literature have been archived in data repositories (Suppl. Materials SM3). While databases are powerful, they are far from comprehensive with respect to data available in other forms, states, and accessibilities.

Harmonizing disparate small datasets poses unique challenges due to the diversity in types of measurements and their associated methods, unlike larger national and regional survey campaigns which operate under a single protocol. For example, the Biomass And Allometry Database (BAAD) (Falster et al., 2015) has been a unique highly successful example of a community-based data aggregation effort. Public repositories, including Dryad, FigShare, and ORNL DAAC, have emerged and enjoyed enthusiastic support. As these data repositories have grown, issues around discoverability have emerged such as getting people in a common community to agree on a common technical vocabulary has been challenging. Many efforts (e.g. DataONE) have focused on semantics and linked many of these repositories in a unified search

framework. Finally, data harmonization is required not only for typical data cleaning operations like correcting unit mis-matches and transparent reproducibility, but also to reconcile different methods and evaluate reliability. This final step requires not only computational skills but also domain expertise.

3.4 Interoperability of ISCN

Data

ISRIC - World Soil

FAO - Harmonized World Soil Database

Information Service

& Global Soil Data Facility

International Land Model Benchmarking Project

Long-Term Ecological

Critical Zone

Observatories

Research Network Predictive Ecosystem Analyzer (PEcAn)

WDC - Soils

ISCN

Earth System Model Evaluation Tool

International Soil Modeling Consortium

Global Soil Partnership (ITPS) Global Carbon Project

4 per mille FAO's World Soil Charter Global Soil Biodiversity Initiative NRCS Soil Health Initiative World Soil Resources Report Coalition on Agricultural Greenhouse Gases Environmental Defense Fund Soil Health Initiative

Sustainable Management

Fig 6: Examples of organizations, groups or entities addressing data, modeling and management relevance of soil carbon. These currently disparate niches need bridging to address complex problems in soil C science. The soil community is data- and knowledge-ready for a platform like ISCN that can bridge data, tools, best management practices and outreach. We propose a way forward to improve soil C data curation with a focus on process variables, which can be applied into a community model framework and actionable science that harnesses mechanistic understanding to address questions on soil health management.

While these international efforts of the ISCN gain momentum, there are parallel requirements to

coordinate and share technology, data, protocols, and experiences to maximize resources and generate knowledge. Arguably, this can only be achieved by increasing interoperability within ISCN and among partner networks, organizations, and members. Interoperability is broadly defined as the ability of a system to work with or use the parts of another system (Chen et al. 2008; Vargas et al. 2017).

Challenges related to conceptual barriers include syntactic and semantic differences in the types of information (Madin et al. 2008); technological barriers such as incompatibility of information technologies (e.g. methods to acquire, process, store, exchange, and communicate data; Peters et al. 2014); organizational barriers related to current institutional responsibility and authority such as with institutions, networks, or governments (Supp. Table ST3); and cultural barriers that can be country-specific but must be considered to increase interoperability of networks (Vargas et al. 2017).

4.0 Conclusions and Implications

Soils have entered an 'anthropogenic state', with most of the global surface area either directly managed by humans or influenced by human activities. As a result, soils globally have lost SOM since at least the Industrial Revolution, with direct impacts on climate, ecosystem productivity and resilience to disturbance. There is a crucial need to improve our science and to communicate our findings. In this paper, we identified the following goals: (1) identify key datasets needed to improve our detection of broad-scale soil C trends and understanding of SOM-C stabilization and destabilization mechanisms, (2) set up infrastructure to rescue, centralize, and disseminate currently disparate soil datasets relevant to critical soil processes, (3) develop a robust and modular modeling platform for developing process-based models that would move field data and localized experiments into a larger Earth systems framework and (4) improve the connection between soil C-cycle science and land management practices. These goals can be achieved as the ISCN improves the exchange of ideas, data, modeling tools, and as we share information and support other networks, organizations, and institutions.

Processes that influence changes in SOM and SOC have been defined and quantified over the past several decades, and metrics for soil health, degradation, and storage are beginning reflect the interdisciplinary science needed to link soil/land/ecosystem/crop productivity to CO₂ budgets at various scales. Growing populations, increased land use, and intensified land us compel us to merge the sciences of soil health to those of C cycling. The current state of our soils and opportunities and vulnerabilities that result from different land management practices are of particular importance. In addition, quantifying the optimal SOM_C storage capacity of soils would provide a benchmark to further assess human impact on soils and help quantify future/potential benefits of altered soil management practices. More importantly, these science-based estimates would inform soil valuation by economists, both as resource and service

providers, for our societies and ecosystems while also improving assessments of soil C and its exchange with the atmosphere.

References

Allison, S. D., Wallenstein, M. D. and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci, 3, 336–340, 2010.

Amundson, R., and H. Jenny. 1991. A place of humans in the state factor theory of ecosystems and their soils. Soil Sci. 151:99–109. doi:10.1097/00010694-199101000-00012

Averill C, Turner BL, Finzi AC. 2014. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505:543-545.

Banwart, Steve, et al. "Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop." Carbon Management 5.2 (2014): 185-192.

Batjes, N. H., Ribeiro, E., van Oostrum, A., Leenaars, J., and Jesus de Mendes, J.: Standardised soil profile data for the world (WoSIS, July 2016 snapshot), doi:10.727/isric-wdcsoils.2016003, 2016.

Binkley, D. and Fisher, R. F.: Nutrition Management, in Ecology and management of forest soils, pp. 254–275, Wiley, Hoboken, NJ., 2013.

Bond-Lamberty, B. and Thomson, A. M. 2010a. A global database of soil respiration data, Biogeosciences, 7, 1915–1926

Bond-Lamberty, B. and Thomson, A. M. 2010b. Temperature-associated increases in the global soil respiration record, Nature, 464(7288), 579–582

Bond-Lamberty, B., Epron, D., Harden, J. W., Harmon, M. E., Hoffman, F. M., Kumar, J., McGuire, A. D. and Vargas, R. 2016. Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps, Ecosphere, 7(6), d01380

Campbell EE and Paustian K, Current developments in soil organic matter modeling and the expansion of model applications: a review. Environ. Res. Lett. 10 (2015) 123004.

Chen, D., G. Doumeingts, and F. Vernadat. 2008. Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry 59:647-659.

Conant, R. T., et al. 2011. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology 17(11): 3392–3404.

Conant, R. T., Cerri, C. E. P., Osborne, B. B. and Paustian, K.: Grassland management impacts on soil carbon stocks: a new synthesis, Ecol. Appl., 27(2), 662–668, doi:10.1002/eap.1473, 2017.

Cotrufo M.F., Soong J.L., Horton A.J., Campbell E.E., Haddix M.H., Wall D.L., Parton W.J. (2015) Soil organic matter formation from biochemical and physical pathways of litter mass loss. Nature Geosciences, doi:10.1038/ngeo2520.

Ciais, P., T. Gasser, J. D. Paris, K. Caldeira, M. R. Raupach, J. G. Canadell, A. Patwardhan, P. Friedlingstein, S. L. Piao, and V. Gitz. "Attributing the increase in atmospheric CO2 to emitters and absorbers." *Nature Climate Change* 3, no. 10 (2013): 926.

DeLonge, M.S., Ryals, R., Silver, W.L., 2013. A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands. Ecosystems, 16 (2013), pp. 962–979

Dietze, M. C., Serbin, S. P., Davidson, C., Desai, A. R., Feng, X., Kelly, R., Kooper, R., LeBauer, D. S., Mantooth, J., McHenry, K. and Wang, D.: A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes, Journal of Geophysical Research-Biogeosciences, 119(3), 286–300, 2014.

Domke G.M., Perry C.H., Walter B.F., Nave L.E., Woodall C.W., Swanston C.W. In Press. Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecological Applications.

Edwards, N.T., Ross-Todd, B.M., 1983. Soil carbon dynamics in a mixed deciduous forest following clear cutting with and without residue. Soil Science Society of America Journal 47, 1014–1021.

Erb K.H., Gaube V., Krausmann F., Plutzar C., Bondeau A. and Haberl H. 2007 A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data, Journal of Land Use Science, 2:3, 191-224, DOI: 10.1080/17474230701622981

Falster, D. S., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, R. G., Vårhammar, A., Aiba, M., Ando, M., Anten, N., Aspinwall, M. J., Baltzer, J. L., Baraloto, C., Battaglia, M., Battles, J. J., Bond-Lamberty, B., van Breugel, M., Camac, J., Claveau, Y., Coll, L., Dannoura, M., Delagrange, S., Domec, J.-C., Fatemi, F., Feng, W., Gargaglione, V., Goto, Y., Hagihara, A., Hall, J. S., Hamilton, S., Harja, D., Hiura, T., Holdaway, R., Hutley, L. S., Ichie, T., Jokela, E. J., Kantola, A., Kelly, J. W. G., Kenzo, T., King, D., Kloeppel, B. D., Kohyama, T., Komiyama, A., Laclau, J.-P., Lusk, C. H., Maguire, D. A., le Maire, G., Mäkelä, A., Markesteijn, L., Marshall, J., McCulloh, K., Miyata, I., Mokany, K., Mori, S., Myster, R. W., Nagano, M., Naidu, S. L., Nouvellon, Y., O'Grady, A. P., O'Hara, K. L., Ohtsuka, T., Osada, N., Osunkoya, O. O., Peri, P. L., Petritan, A. M., Poorter, L., Portsmuth, A., Potvin, C., Ransijn, J., Reid, D., Ribeiro, S. C., Roberts, S. D., Rodríguez, R., Saldaña-Acosta, A., Santa-Regina, I., Sasa, K., Selaya, N. G., Sillett, S. C., Sterck, F., Takagi, K., Tange, T., Tanouchi, H., Tissue, D., Umehara, T., Utsugi, H., Vadeboncoeur, M. A., Valladares, F., Vanninen, P., Wang, J. R., Wenk, E., Williams, R., de Aquino Ximenes, F., Yamaba, A., Yamada, T., Yamakura, T., Yanai, R. D. and York, R. A.: 2015. BAAD: a Biomass And Allometry Database for woody plants, Ecology, 96(5), 1445–1445

Gundale, M.J., DeLuca, T.H., Fiedler, C.E., Ramsey, P.W., Harrington, M.G., Gannon, J.E., 2005. Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. Forest Ecology and Management 213, 25–38.

Gutekunst, M. Y., R. Vargas, and A. L. Seyfferth. 2017. Impacts of soil incorporation of pre-incubated silica-rich rice residue on soil biogeochemistry and greenhouse gas fluxes under flooding and drying. Science of the Total Environment:134-143.

Giardina, C.P., Litton, C.M., Crow, S.E., Asner, G.P. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat. Clim. Change, pp. 1758–6798.

Gibbs, H.K. and Salmon, J.M. 2015. Mapping the world's degraded lands. Applied Geography 57, 12–21. doi:10.1016/j.apgeog.2014.11.024

Gregorich, E. G. and Janzen, H. H. 1996 Storage of Soil Carbon in the Light Fraction and Macroorganic

Matter, in Structure and organic matter storage in agricultural soils, edited by M. R. Carter and B. A. Stewart, Lewis Publishers, Boca Raton, FL.

Hagerty, S. B., van Groenigen, K. J., Allison, S. D., Hungate, B. A., Schwartz, E., Koch, G. W., Kolka, R. K. and Dijkstra, P.: Accelerated microbial turnover but constant growth efficiency with warming in soil, Nat. Clim. Change, 4(10), 903–906, doi:10.1038/nclimate2361, 2014.

He, Y., Trumbore, S.E., Torn, M.S., Harden, J.W., Vaughn, L.J.S., Allison, S.D., and Randerson, J.T. 2016. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century, Science, 353. 1419-1424.

Hedges, J. I. in Humic Substances and their Role in the Environment (eds Frimmel, F. H. & Christman, R. F.) 45–58 (John Wiley & Sons, 1988)

Hinckley, E.-L. S., Wieder, W., Fierer, N. and Paul, E.: Digging Into the World Beneath Our Feet: Bridging Across Scales in the Age of Global Change, Eos Trans. Am. Geophys. Union, 95(11), 96–97, doi:10.1002/2014EO110004, 2014.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C., O'Donnell, J., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., Kuhry, P. 2014, Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, Volume 11, pages 6573-6593

Jackson, R. B., K. Lajtha, S. E. Crow, G. Hugelius, M. G. Kramer, and G. Piñeiro. 2017. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, in press.

Jandl R, Lindner M, Vesterdal L, Bauwensd B, Baritze R, Hagedorn F, Johnson D, Minkkinen K, Byrne K. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137: 253-268.

Jastrow, J. D.: Soil aggregate formation and the accrual of particulate and mineral-associated organic

matter, Soil Biol. Biochem., 28(4-5), 665-676, doi:10.1016/0038-0717(95)00159-X, 1996.

Jastrow, J. D., Michael Miller, R., Matamala, R., Norby, R. J., Boutton, T. W., Rice, C. W. and Owensby, C. E.: Elevated atmospheric carbon dioxide increases soil carbon, Glob. Change Biol., 11(12), 2057–2064, doi:10.1111/j.1365-2486.2005.01077.x, 2005.

Jenny, Hans 1941. Factors of Soil Formation.

Jenkinson, D. S. and Rayner, J. H.: The Turnover of Soil Organic Matter in Some of the Rothamsted Classical Experiments, Soil Sci., 123(5)

Johnson, D., Todd, D.E. 1998. The effects of harvesting on long-term changes in nutrient pools in a mixed oak forest. Soil Science Society of America Journal 62, 1725–1735.

Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in soils, Soil Biol. Biochem., 52, 29–32, doi:10.1016/j.soilbio.2012.04.002, 2012.

Kallenbach, C.M., Frey, S.D., and Grandy, A.S. 2016 Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls, Nature Comm., 7, 13630.

Keiluweit M., Bougoure J. J., Nico P. S., Pett-Ridge J., Weber P. K. and Kleber M. 2015. Mineral protection of soil carbon counteracted by root exudates. *Nature Climate Change*, 1–8.

Kravchenko, A. N. and Robertson, G. P.: Whole-Profile Soil Carbon Stocks: The Danger of Assuming Too Much from Analyses of Too Little, Soil Sci. Soc. Am. J., 75(1), 235, doi:10.2136/sssaj2010.0076, 2011.

Kim, D.-G., Vargas, R., Bond-Lamberty, B. and Turetsky, M. R. 2012. Effect of rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research, Biogeosciences, 9, 2459–2483

Knicker, H. 2011. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quaternary International 243:251-263

Köchy, M., Hiederer, R., & Freibauer, A. 2015. Global distribution of soil organic carbon–Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1), 351-365.

Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F. and van Kessel, C.: The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems, Soil Sci. Soc. Am. J., 69(4), 1078, doi:10.2136/sssaj2004.0215, 2005.

Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, Macdougall AH, Marchenko SS, Mcguire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M. 2015. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373, DOI: 10.1098/rsta.2014.0423

Kravchenko, A. N. and Robertson, G. P.: Whole-Profile Soil Carbon Stocks: The Danger of Assuming Too Much from Analyses of Too Little, Soil Sci. Soc. Am. J., 75(1), 235, doi:10.2136/sssaj2010.0076, 2011.

Kurz, WA, Dymond, CC, White, TM, Stinson, G, Shaw, CH, Rampley, GJ, Smyth, C, Simpson, BN, Neilson, ET, Trofymow, JA, Metsaranta, J, Apps, MJ. 2009. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling 220: 480-504.

Laganiere J, Angers DA, Pare D. 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology 16: 439-453.

Lajtha, K., Bowden, R. D. and Nadelhoffer, K.: Litter and Root Manipulations Provide Insights into Soil Organic Matter Dynamics and Stability, Soil Sci. Soc. Am. J., 78(S1), S261, doi:10.2136/sssaj2013.08.0370nafsc, 2014.

Lal R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220: 242-258.

Lavoie, M., Phillips, C. L. and Risk, D.: A practical approach for uncertainty quantification of high frequency soil respiration using Forced Diffusion chambers, J. Geophys. Res.-Biogeosciences, 120, doi:10.1002/2014JG002773, 2014.

Leon, E., Vargas, R., Bullock, S., Lopez, E., Panosso, A. R. and La Scala, N. 2014. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem, Soil Biol. Biochem., doi:10.1016/j.soilbio.2014.05.029

Lehmann, J. 2007. A handful of carbon. Nature 447(7141): 143-144.

Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature 528, 60-68, doi:10.1038/nature16069, 2015.

Loisel, Julie, van Bellen, Simon, Pelletier, Luc, Talbot, Julie, Hugelius, Gustaf, Karran, Daniel, Yu, Zicheng, Nichols, Jonathan, Holmquist, James 2017, Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Science Reviews, volume 165, pp 59-80. http://doi.org/10.1016/j.earscirev.2016.12.001

Mackelprang R, Saleska SR, Jacobsen CS, Jansson JK, Taş N (2016) Permafrost Meta-Omics and Climate Change. *Annual Review of Earth and Planetary Sciences*, **44**, 439–462.

Madin, J. S., S. Bowers, M. P. Schildhauer, and M. B. Jones. 2008. Advancing ecological research with ontologies. Trends in Ecology & Evolution 23:159-168.

Mansuy N, Thiffault E, Pare D, Bernier P, Guindon L, Villemaire P, Poirier V, Beaudoin A. 2014. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method. Geoderma 235:59-73.

McLaughlin, J.W., Phillips, S.A., 2006. Soil carbon, nitrogen, and base cation cycling 17 years after whole-tree harvesting in a low-elevation red spruce (Picea rubens)-balsam fir (Abies balsamea) forested watershed in central Maine, USA. Forest Ecology and Management 222, 234–253.

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V.,

Chen, Z.S., Cheng, K., Das, B.S. and Field, D.J., 2017. Soil carbon 4 per mille. Geoderma, 292, pp.59-86.

Mishra U, Riley WJ. 2015. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks. Biogeosciences 12: 3993-4004.

Nave L.E., Vance E.D., Swanston C.W., Curtis P.S. 2010. Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management 259: 857-866.

Ogle, S.M., F.J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian. 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biology 16:810-820.

Ogle, S.M., L. Olander, L. Wollenberg, T. Rosenstock, F. Tubiello, K. Paustian, L. Buendia, A. Nihart, and P. Smith. 2014. Reducing agricultural greenhouse gas emissions in developing countries: providing the basis for action. Global Change Biology 20:1-6

O'Rourke SM, Angers DA, Holden NM, McBratney AB. 2015. Soil organic carbon across scales. Global Change Biology 21: 3561–3574.

Parton W. J., Schimel D. S., Cole C. V. and Ojima D. S. 1987. Analysis of factors controlling soil organic-matter levels in Great-Plains grasslands. **51**, 1173–1179.

Paustian, K., J. Lehmann, S. Ogle, D. Reay, G.P. Robertson, P. Smith. 2016. Climate smart soils. Nature: 532:49-57.

Peters, D. P. C., H. W. Loescher, M. D. SanClements, and K. M. Havstad. 2014. Taking the pulse of a continent: expanding site-based research infrastructure for regional- to continental-scale ecology. Ecosphere **5**:1-23.

Phillips, C. L., Murphey, V., Lajtha, K. and Gregg, J. W.: Asymmetric and symmetric warming increases turnover of litter and unprotected soil C in grassland mesocosms 2016 Biogeochemistry, 128(1–2), 217–231, doi:10.1007/s10533-016-0204-x

Phillips, C. L., Bond-Lamberty, B., Desai, A. R., Lavoie, M., Risk, D., Tang, J., Todd-Brown, K. E. O.

and Vargas, R., , 2016. The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling, Plant Soil, in press, doi:10.1007/s11104-016-3084-x

Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis. Agriculture, Ecosystems & Environment 200, 33–41. doi:10.1016/j.agee.2014.10.024

Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G., 2014. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change 4, 678–683. doi:10.1038/nclimate2292

Pugh ,T.A.M., Arneth, A., Olin, S., Ahlström, A., Bayer, A.D., Klein, Goldewijk K., Lindeskog, M. and Schurgers, G. 2015 Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management, Environmental Research Letters, 10, 124008, doi:10.1088/1748-9326/10/12/124008

Ryals, R., W.L. Silver. 2013. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands, Ecological Applications, 23(1), 46-59.

Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81-91.

Scheller RM, Hua D, Bolstad PV, Birdsey RA, Mladenoff DJ. 2011. The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests. ECOLOGICAL MODELLING 222: 144-153.

Schimel J. and Schaeffer S. M. 2012. Microbial control over carbon cycling in soil. *Front. Microbio.* **3**, 1–11. Available at: http://journal.frontiersin.org/Journal/10.3389/fmicb.2012.00348/full.

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56.

Shao, P., Zeng, X., Moore, D. J. P. and Zeng, X. 2013. Soil microbial respiration from observations and Earth System Models, Environ. Res. Lett., 8(3), 034034.

Sierra, C. A., Müller, M., Metzler, H., Manzoni, S. and Trumbore, S. E.: The muddle of ages, turnover, transit, and residence times in the carbon cycle, Glob. Change Biol., 23(5), 1763–1773, doi:10.1111/gcb.13556, 2017.

Six J., Elliott E. T. and Paustian K. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. *Soil Biol Biochem* **32**, 2099–2103.

Six, J., Conant, R.T., Paul, E.A., and Paustian, K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils, Plant and Soil, 241, 155-176

Smith, P. Martino, D., Cai, Z., Gwary, D., Janzen, H., Pushpam, K., McCari, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romaenkov, V., Schnieider, W., and Towparyoon, S. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture, 2007.... - Agriculture, Ecosystems & Environment, V. 18, 1, 6-28.

Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S. Towprayoon, M. Wattenbach, and J. Smith. 2007. Greenhouse gas mitigation in agriculture. Phil. Transactions of Royal Society B, DOI: 10.1098/rstb.2007.2184.

Soil Survey Staff. 2013. Rapid Carbon Assessment (RaCA) project. United States Department of Agriculture, Natural Resources Conservation Service. Available online. June 1, 2013 (FY2013 official release).

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., O'Donnell, A. G., Parton, W. J., Whitehead, D. and Zimmermann, M.: The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agric. Ecosyst. Environ., 164, 80–99, doi:10.1016/j.agee.2012.10.001, 2013.

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. and Pacala, S. W.: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2, Nat. Clim. Change, 4(12), 1099–1102, doi:10.1038/nclimate2436, 2014.

Todd-Brown, K.E., Randerson, J.T., Post, W.M., Hoffman, F.M., Tarnocai, C., Schuur, E.A., Allison, S.D. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10 (3).

Torn, M. S., Chabbi, A., Crill, P., Hanson, P. J., Janssens, I. A., Luo, Y., Pries, C. H., Rumpel, C., Schmidt, M. W. I., Six, J., Schrumpf, M. and Zhu, B.: A call for international soil experiment networks for studying, predicting, and managing global change impacts, SOIL, 1(2), 575–582, doi:10.5194/soil-1-575-2015, 2015.

Trumbore, S.E. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics, Ecol. Appl., 10, 399–411, 2000.

Urban, D.L., O'Neill, R.V. & Shugart, H.H. 1987. Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. Bioscience, 37, 119–127

Vargas, R., D. Alcaraz-Segura, R. Birdsey, N. A. Brunsell, C. O. Cruz-Gaistardo, B. de Jong, J. Etchevers, M. Guevara, D. J. Hayes, K. Johnson, H. W. Loescher, F. Paz, Y. Ryu, Z. Sanchez-Mejia, and K. P. Toledo-Gutierrez. 2017. Enhancing interoperability to facilitate implementation of REDD+: case study of Mexico. Carbon Management:1-9. doi: 10.1080/17583004.2017.1285177

Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., Chi, Y., Wang, J. and Xu, S. 2014. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration, Glob. Chang. Biol., 20(10), 3229–3237.

Wieder, W.R., Cleveland, C.C., Smith, W.K., Todd-Brown, K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience doi: 10.1038/ngeo2413