
Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

AN EULERIAN FINITE ELEMENT METHOD FOR PDES IN

TIME-DEPENDENT DOMAINS ∗, ∗∗

Christoph Lehrenfeld1 and Maxim A. Olshanskii2

Abstract. The paper introduces a new finite element numerical method for the solution of partial
differential equations on evolving domains. The approach uses a completely Eulerian description of the
domain motion. The physical domain is embedded in a triangulated computational domain and can
overlap the time-independent background mesh in an arbitrary way. The numerical method is based on
finite difference discretizations of time derivatives and a standard geometrically unfitted finite element
method with an additional stabilization term in the spatial domain. The performance and analysis of
the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded
domains. This paper includes a complete stability and error analysis, which accounts for discretization
errors resulting from finite difference and finite element approximations as well as for geometric errors
coming from a possible approximate recovery of the physical domain. Several numerical examples
illustrate the theory and demonstrate the practical efficiency of the method.

1991 Mathematics Subject Classification. 65M12, 65M60, 65M85.

August 1, 2018.

1. Introduction

Many mathematical models in physics, biology, chemistry and engineering involve partial differential equa-
tions (PDEs) posed on moving domains. Numerical simulations based on these models often face a challenge
of building discretizations, which handle accurately and efficiently both Lagrangian (displacement, material de-
rivative) and Eulerian (temperature, concentration, local fluxes, etc.) quantities. Several numerical approaches
to accomplish this are known from the literature. For example, in the popular arbitrary Lagrangian–Eulerian
approach [17] one transforms the problem from a moving domain to a fixed reference domain through an artifi-
cial mapping and further applies meshing to the reference domain for the discretization purpose. The approach
can be used both with spatial and space–time Galerkin formulations [24, 45]. The method allows for good
resolution of the evolving domain boundary with a fitted mesh, but is known to be less practical in the case of
larger deformations and unable to handle motions with topological changes. To overcome this deficiency, several
methods based on a pure Eulerian description of the domain motion have been developed over the past decades.

Keywords and phrases: evolving domains, unfitted FEM, cutFEM

∗ C.L. was partially supported by the German Science Foundation (DFG) within the project “LE 3726/1-1”
∗∗ M.O. was partially supported by NSF through the Division of Mathematical Sciences grant 1717516

1 Institute for Numerical and Applied Mathematics, University of Göttingen, Göttingen, Germany,
e-mail: lehrenfeld@math.uni-goettingen.de
2 Department of Mathematics, University of Houston, Houston, Texas 77204-3008,

e-mail: molshan@math.uh.edu
c© EDP Sciences, SMAI 1999

2 TITLE WILL BE SET BY THE PUBLISHER

The immersed boundary method [34, 35] uses a fixed time-independent mesh to discretize both Eulerian and
Lagrangian variables, linked by the Dirac delta function smoothed over several layers of mesh cells. Numerical
methods that treat prorogating interfaces in a sharp way were developed more recently using the unfitted finite
element technologies such as extended finite element methods [26] and ‘cut’ finite elements [3]. It is natural
to combine unfitted finite elements with space–time variational formulations of PDE in moving domain, and
this line of research was taken in [6] (for 1D problem) and more recently expanded in [16, 18, 21], including
PDEs posed on evolving manifolds [12, 29, 30]. These geometrically unfitted finite element methods are based
on a fully Eulerian view point and exploit the idea of using time-independent background finite element spaces.
Therefore, these discretizations simplify the construction of numerical methods for domains that exhibit strong
deformations or even topology changes.

Space–time Galerkin methods enjoy solid mathematical foundation (at least for scalar conservation laws)
and both low and high order methods are easily formulated. On a practical side however, the reconstruction
of space–time domains for the purpose of numerical integration is a difficult and possibly time consuming part.
To compensate for that, the space–time method in [16] introduces a variational crime by applying a quadrature
in time approach to approximate space–time integrals. The resulting method does not require a reconstruction
of space–time domains but only domain approximations at discrete time instances. However, to the best of the
authors knowledge there is no theoretical bound for the varational crime commited by the quadrature (in time)
of this method. Further, arising linear systems in all previously mentioned space–time methods that need to be
solved for are typically considerably larger than those of time stepping methods based on finite differences.

In this paper we abandon the use of a space–time variational framework and opt for a more straightforward
(and commonly used in steady domains) approach, where time discretization is based on finite difference approx-
imations and the (unfitted) finite element method is used to accommodate spatial variations. The approach is
based on the fundamental result of the existence of continuous extension operators (from a bounded domain to
Rd, d = 2, 3) in Sobolev spaces. The result allows to identify the solution to the PDE with its smooth extension
and further to design a finite element method, which solves at each discrete time instance for this extended
solution in the computational domain. The acquired numerical extension allows one to apply finite differences
to handle time derivatives in the physical domain. The remarkable feature of the method is that no explicit
information about the extension is required, but a suitable numerical approximation to it becomes available
through adding a simple stabilization term to a standard unfitted finite element method formulation. This term
acts in a narrow band containing the physical domain boundary. This extension mechanism is different from
the one in the classical fictitious domain methods [11], where the PDE is extended from the physical to the
computational domain.

The ideas similar to those elaborated in the present paper, were recently developed in [20, 33] for the case
of PDEs on moving surfaces, where we combined stationary unfitted finite element discretizations (known
as trace FEM) with time discretization schemes based on finite difference approximations. In those papers,
the combination of both approaches has been enabled by adding a stabilization term which acts as a normal
extension and facilitates the transition of information from the surface of one time step to the surface of the
next time step. To carry over this idea to volumetric domains here, we require a different mechanism that
acts as a ‘smooth’ (rather than normal) extension in the unfitted finite element method. The idea of extending
finite element solutions from an active part of the mesh at one time step to the active part of the next time
step in order to apply a method of lines type approach is also found in [40, Section 3.6.3]. In [40] however only
direct neighbors are involved in the extension which leads to time step restrictions obeying a geometrical CFL
condition, ∆t ≤ ch. Further, in [40] the method has been applied without any theoretical error analysis. In this
work we propose and analyze a discretization without such a time restriction of CFL-type. For the stabilization
we consider a so-called ghost penalty method [2] and discuss three different version of it which share the same
essential theoretical properties. As a useful byproduct of the ghost penalty stabilization, the method possesses
robustness w.r.t. the cut configuration not only in terms of error but also in terms of the conditioning of linear
systems.

TITLE WILL BE SET BY THE PUBLISHER 3

The remainder of the paper is organized as follows. In Section 2 we formulate the model problem under
investigation and propose a semi-discretization in time based on the idea of extension operators in Sobolev
spaces in Section 3. The full discrete version of the method which includes a stabilization acting as a discrete
extension operator is presented in Section 4. The a priori error analysis of the scheme is treated in Section 5.
We demonstrate the performance of the method based on numerical examples in Section 6 before we conclude
with final remarks and open problems in Section 7.

2. Mathematical problem

Consider a time-dependent domain Ω(t) ⊂ Rd, d = 2, 3 that is sufficiently regular for each t ∈ [0, T], T > 0,
and evolves smoothly. More precisely, we shall assume the existence of a one-to-one continuous mapping

Ψ(t) : Ω0 → Ω(t) for each t ∈ [0, T], (1)

from the reference domain Ω0 ⊂ Rd. Later for the analysis, we need that ∂Ω0 is piecewise C2 and Lipschitz
and Ψ ∈ Cm+1([0, T] × Ω0), where m ≥ 1 is the polynomial degree of our finite element space. A polygonal

background domain Ω̃ is chosen such that Ω(t) together with its neighborhood is contained in Ω̃ for all times
t ∈ [0, T].

One example of the suitable setup is given by a smooth motion and deformation of the material volume Ω(t),
e.g., volume of fluid. If w : Ω(t) → Rd is the material velocity of the particles from Ω(t), then Ψ(t) can be
defined as the Lagrangian mapping from Ω0 = Ω(0) to Ω(t), i.e. for y ∈ Ω0, Ψ(t, y) solves the ODE system

Ψ(0, y) = y,
∂Ψ(t, y)

∂t
= w(t,Ψ(t, y)), t ∈ [0, T]. (2)

The conservation of a scalar quantity u with a diffusive flux in Ω(t) then leads to the equation

∂u

∂t
+ div(uw)− α∆u = 0 on Ω(t), t ∈ (0, T], (3)

with initial condition u(x, 0) = u0(x) for x ∈ Ω(0). Here α > 0 is the constant diffusion coefficient. This is the
model example of a parabolic PDE posed in a time-dependent domain that we use in this paper to formulate
and analyze the finite element method. For simplicity we shall assume that the flux (which is only the diffusive
flux) is zero on the boundary Γ(t) := ∂Ω(t),

∇u · n = 0 on Γ(t), t ∈ (0, T], (4)

where n is the unit normal on Γ(t).
These are the appropriate boundary conditions for a conserved quantity u. To see this, we apply Reynolds’

transport theorem for moving domains:

d

dt

∫
Ω(t)

u dx =

∫
Ω(t)

∂

∂t
u dx+

∫
∂Ω(t)

(w · n)u ds =

∫
Ω(t)

∂u

∂t
+ div(uw) dx =

∫
Ω(t)

α∆u dx =

∫
∂Ω(t)

α∇u · n ds.

Later, we comment on the numerical treatment of other boundary conditions, see Remark 4.2.
We emphasise that the proposed finite element method applies in a more general situation when one is only

given Ω(tn) or its approximation in some time instances tn ∈ [0, T] without any explicit information about Ψ.
For the analysis, we need to assume that such mapping from the reference domain to the physical one at least
exists and can be extended to a one-to-one mapping from a sufficiently large neighborhood O(Ω0) of Ω0 to
O(Ω(t)). This extended mapping, also denoted by Ψ, is assumed smooth, Ψ ∈ Cm+1([0, T]×O(Ω0)).

4 TITLE WILL BE SET BY THE PUBLISHER

For the analysis, we shall also need the notion of the space–time domain, where the problem (3) is posed,
and its spatial neighborhood:

Q =
⋃

t∈(0,T)

Ω(t)× {t}, O(Q) =
⋃

t∈(0,T)

O(Ω(t))× {t}, Q ⊂ O(Q) ⊂ Rd+1.

3. Discretization in time

We first consider the discretization in time only. The goal of this paper is the study of a fully discrete
method, but the treatment of the semi-discrete problem gives some insight and serves for the purpose of better
exposition.

3.1. Time discretization method

For simplicity of notation, consider the uniform time step ∆t = T/N , and let tn = n∆t and In = [tn−1, tn).
Denote by un an approximation of u(tn), define Ωn := Ω(tn), Γn := Γ(tn).

We define the δ-neighborhood of Ω(t) by

Oδ(Ω(t)) := {x ∈ Rd : dist(x,Ω(t)) ≤ δ}. (5)

We require the neighborhood to be large enough so that

Ωn ⊂ Oδ(Ωn−1) for n = 1, . . . , N. (6)

This can be assured by setting δ proportional to ∆t times the maximum normal velocity of Γ,

δ = cδw
n
∞∆t, with wn

∞ := max
t∈[0,T)

‖w · n‖L∞(Γ(t)) and cδ > 1. (7)

In its turn, we also assume for each n that Oδ(Ωn−1) ⊂ O(Ωn−1), a discretization independent ambient neigh-
borhood, where the extended mapping Ψ is defined. This is always the case for ∆t not too big.

In the time stepping method we combine the solution for un on Ωn with its extension on Oδ(Ωn) in every
time step. This guarantees that un−1 is well-defined on Ωn, and we can approximate the time derivative by a
finite difference. Thus, the implicit Euler method for (3) is

un − Eun−1

∆t
+ div(unw)− α∆un = 0, on Ωn. (8)

Here, E : H1(Ωn−1) → H1(O(Ωn−1)) is a continuous extension operator. A suitable extension operator is
defined in section 3.2.1 below based on the mapping Φ from (1). Although E appears explicitly in (8), it turns
out that in the finite element setting (section 4) a suitable extension can be defined implicitly and there is no
need in any knowledge about Φ.

Variational formulation in space

We seek for un ∈ H1(Ωn) such that for all v ∈ H1(Ωn) there holds∫
Ωn

1

∆t
unv dx+ an(un, v) =

∫
Ωn

1

∆t
Eun−1v dx. (9)

TITLE WILL BE SET BY THE PUBLISHER 5

Here, an(·, ·) denotes the bilinear form for diffusion and convection where we use a skew-symmetric formulation
for the convection:

an(u, v) :=

∫
Ωn
α∇u · ∇v dx+

1

2

∫
Ωn

(w · ∇u) v − (w · ∇v)udx (10)

+
1

2

∫
Ωn

div(w)uv dx+
1

2

∫
Γn

(w · n)uv dx, u, v ∈ H1(Ωn).

We mention that the method has a straight-forward extension to higher order time integration, e.g. the
BDF2 scheme, cf. Remark 5.4 below. For ease of presentation we focus on the implicit Euler method first.

Unique solvability

To guarantee unique solvability in every time step, we ask for coercivity of the left-hand side bilinear form
in (9) with respect to ‖ · ‖H1(Ωn).

Lemma 3.1. For u ∈ H1(Ωn) there holds

an(u, u) ≥ α

2
‖∇u‖2L2(Ωn) − ξ‖u‖2L2(Ωn), (11)

i.e. (9) is uniquely solvable if

∆t < ξ−1 := 2
(
‖ div(w)‖L∞(Ωn) + c2Ω‖w · n‖2L∞(Ωn)/(4α) + α

)−1

(12)

where cΩ is the constant of the multiplicative trace inequality ‖u‖2L2(Γn) ≤ cΩ‖u‖L2(Ωn)‖u‖H1(Ωn).

Proof. Due to

an(u, u) ≥ α‖∇u‖2L2(Ωn) −
1

2
‖ div(w)‖L∞(Ωn)‖u‖2L2(Ωn) −

1

2
‖w · n‖L∞(Γn)‖u‖2L2(Γn),

the multiplicative trace inequality and Young’s inequality we have

‖w · n‖L∞(Γn)‖u‖2L2(Γn) ≤ cΩ‖w · n‖L∞(Γn)‖u‖L2(Ωn)‖u‖H1(Ωn)

≤ c2Ω‖w · n‖2L∞(Γn)/(4α) ‖u‖2L2(Ωn) + α‖u‖2H1(Ωn)

=
(
c2Ω‖w · n‖2L∞(Γn)/(4α) + α

)
‖u‖2L2(Ωn) + α‖∇u‖2L2(Ωn)

which yields

∆t−1‖u‖2L2(Ωn) + an(u, u) ≥
(
∆t−1 − ξ

)
‖u‖2L2(Ωn) +

α

2
‖∇u‖2L2(Ωn).

�

Remark 3.1 (Dirichlet boundary conditions). If we consider u = gD for a given function gD ∈ H
1
2 (Γ(t)) as

boundary condition that is implemented through the Sobolev spaces in the variational formulation instead of
(4), the last integral involving the boundary integral in (10) would vanish and the condition in Lemma 3.1 would
simplify to ∆t < 2‖ div(w)‖−1

L∞(Ωn).

3.2. Stability of the semi-discrete method

In this section we show a numerical stability bound for un. We use the following abbreviations in norms and
scalar products for functions u, v in a domain G: (u, v)G := (u, v)L2(G).

6 TITLE WILL BE SET BY THE PUBLISHER

3.2.1. Extension operator

To define an extension operator from the time dependent domain to its neighborhood, we first assume such
an extension on the initial domain and define a corresponding extension for t > 0 by transformation.

Let m ≥ 1 be a fixed integer, since the boundary of Ω0 is piecewise smooth and Lipschitz, there is a continuous

linear extension operator Ê0 : L2(Ω0) → L2(O(Ω0)), (Ê0u = u in Ω0), with the following properties [43,
Section VI.3.1]:

‖Ê0u‖Wk,p(O(Ω0)) ≤ ĈΩ0
‖u‖Wk,p(Ω0), for u ∈W k,p(Ω0), k = 0, . . . ,m+ 1, 1 ≤ p ≤ ∞. (13)

Note that we can always decompose v from L2(Ω0) as v = u + |Ω0|−1
∫

Ω0
v dx and define the extension

E0v = Ê0u+ |Ω0|−1
∫

Ω0
v dx, then the updated extension operator satisfies same bounds as in (13) thanks to the

Poincaré inequality
‖∇E0v‖O(Ω0) ≤ CΩ0

‖∇v‖Ω0
, for u ∈ H1(Ω0). (14)

We shall need the following commutation property of the extension operator and time derivative.

Lemma 3.2. Let Q0 := Ω0 × (0, T) and O(Q0) := O(Ω0) × (0, T). For v ∈ L2(Q0) such that vt ∈ L2(Q0), it
holds (E0v)t ∈ L2(O(Q0)) and

(E0v)t = E0vt in O(Q0).

Proof. The result follows from the linearity and continuity of E0 and a density argument. For completeness we
included the elemtary proof in the appendix. �

The mapping Ψ(t) from (1) defines a diffeomorphism at every time t between Ω0 and Ω(t) and O(Ω0) and
O(Ω(t)), respectively. Using this mapping we define the extension

Eu(t) := (E0(u ◦Ψ(t))) ◦Ψ−1(t), for each t ∈ [0, T]. (15)

Note that Eu can be also seen as an extension of u from Q to O(Q). Further we shall assume certain regularity
of solution to (3) in terms of space–time anisotropic spaces 1

L∞(0, T ;Hk(Ω(t))) := {v ∈ L2(Q) : v ◦Ψ(t) ∈ Hk(Ω0) for a.e. t ∈ (0, T) and ess sup
t∈(0,T)

‖v ◦Ψ(t)‖Hk(Ω0) <∞},

k = 0, . . . ,m+ 1. Thanks to the smoothness of Ψ, it holds

ess sup
t∈(0,T)

‖v(t)‖Hk(Ω(t)) <∞ for v ∈ L∞(0, T ;Hk(Ω(t))).

For v ∈ L2(Q), vt denotes weak partial derivative w.r.t. the time variable, if it exists as an element of L2(Q).
We need the following properties of the extension.

Lemma 3.3. For u ∈ L∞(0, T ;Hm+1(Ω(t))) ∩W 2,∞(Q) there holds

‖Eu‖Hk(Oδ(Ω(t))) ≤ cL3.3a‖u‖Hk(Ω(t)), k = 0, . . . ,m+ 1, (16a)

‖∇(Eu)‖Oδ(Ωn(t)) ≤ cL3.3b‖∇u‖Ωn(t), (16b)

‖Eu‖W 2,∞(Oδ(Q)) ≤ cL3.3c‖u‖W 2,∞(Q), (16c)

with constants cL3.3a, cL3.3b, cL3.3d depending only on Ψ. Furthermore, for u ∈ L∞(0, T ;Hm+1(Ω(t))) such
that ut ∈ L∞(0, T ;Hm(Ω(t))) it holds

‖(Eu)t‖Hm(Oδ(Ω(t))) ≤ cL3.3e(‖u‖Hm+1(Ω(t)) + ‖ut‖Hm(Ω(t))), (17)

1The definition differs from that of Bochner-type spaces in time-dependent domains found in [1], but suffices for what follows.

TITLE WILL BE SET BY THE PUBLISHER 7

where cL3.3e depends only on Ψ.

Proof. The proof of (16a)–(16c) follows by the standard arguments based on the transformation formulas (15),
the differentiation chain rule, the smoothness assumption for the mapping: Ψ ∈ Cm+1([0, T] × Ω0), (13)–(14),
Lemma 3.2 and Oδ(Ω(t)) ⊂ O(Ω(t)), Oδ(Q) ⊂ O(Q). We draft the proof of (17), since it requires a little bit
more computations. By the definition of the extension, one gets (Eu)t = (E0(u◦Ψ(t)))t◦Ψ−1(t)+(Ψ−1)t∇(E0(u◦
Ψ(t))) ◦Ψ−1(t). Thanks to the smoothness of Ψ it holds

‖(Eu)t‖Hm(Oδ(Ω(t))) ≤ c(‖∇(E0(u ◦Ψ(t)))‖Hm(Oδ(Ω0)) + ‖(E0(u ◦Ψ(t)))t‖Hm(Oδ(Ω0))),

Using the result of Lemma 3.2 and the smoothness of the mapping again, we proceed with

‖(Eu)t‖Hm(Oδ(Ω(t))) ≤ c(‖E0(u ◦Ψ(t))‖Hm+1(Oδ(Ω0)) + ‖E0((u ◦Ψ(t))t)‖Hm(Oδ(Ω0)))

≤ c(‖u ◦Ψ(t)‖Hm+1(Ω0) + ‖(u ◦Ψ(t))t‖Hm(Ω0))

≤ c(‖u‖Hm+1(Ω(t)) + ‖Ψt(t)∇(u ◦Ψ(t))‖Hm(Ω0)) + ‖ut ◦Ψ(t)‖Hm(Ω0))

≤ c(‖u‖Hm+1(Ω(t)) + ‖ut ◦Ψ(t)‖Hm(Ω(t))).

�

3.2.2. Stability

Now we are ready to show the stability of the semi-discrete method. To avoid extra technical complication
for piecewise smooth boundary, we shall assume that ∂Ω0 is C2.

Lemma 3.4. For u ∈ H1(Ωn), n = 1, . . . , N , there holds for any ε > 0

‖Eu‖2Oδ(Ωn) ≤ (1 + (1 + ε−1) δ cL3.4a)‖u‖2Ωn + δ cL3.4bε‖∇u‖2Ωn (18)

for constants cL3.4a, cL3.4b independent of ∆t, n and u, once ∆t is sufficiently small.

Proof. The proof largely follows the arguments found in [13, Theorem 1.5.1.10] and [7, Lemma 4.10]. Let us
define the strip Sδ(Ωn) = Oδ(Ωn) \ Ωn. Since

‖Eu‖2Oδ(Ωn) = ‖Eu‖2Sδ(Ωn) + ‖u‖2Ωn ,

we need to prove

‖Eu‖2Sδ(Ωn) ≤ (1 + ε−1) δ cL3.4a‖u‖2Ωn + δ cL3.4bε‖∇u‖2Ωn . (19)

We define a function φ̂ such that φ̂ is the signed distance function to Γn in Sδ(Ω
n). We have ‖φ̂‖C2(Sδ(Ωn)) ≤ cn,

for δ ≤ ∆t, with cn and ∆t depending only on the curvature of Γn [9], and hence

sup
n=1,...,N

‖φ̂‖C2(Sδ(Ωn)) ≤ c, (20)

with finite c depending on Ω0 and Ψ for sufficiently small ∆t. We set φ := Eφ̂ to be the extension of φ to Oδ(Ωn).
Let Γr = {x ∈ Sδ(Ωn) : φ(x) = r}, r ∈ [0, δ], nr the outward normal vector and Ωr the r-neighborhood of Ωn,
i.e., Γr = ∂Ωr. Applying the Green’s formula, one shows the identity,∫

Γr

(Eu)2nr · ∇φds = 2

∫
Ωr

(Eu)∇(Eu) · ∇φds+

∫
Ωr

(Eu)2∆φds.

8 TITLE WILL BE SET BY THE PUBLISHER

Using nr · ∇φ = 1, Cauchy-Schwarz and Young’s inequalities yields∫
Γr

(Eu)2ds ≤ ‖φ‖C2(Oδ(Ωn))

(∫
Ωr

|Eu||∇(Eu)|ds+

∫
Ωr

(Eu)2ds

)
≤ ‖φ‖W 2,∞(Oδ(Ωn))

(
(1 + ε−1) ‖Eu‖2Ωr +

ε

4
‖∇Eu‖2Ωr

)
.

Thanks to Lemma 3.3 and (20) it holds ‖φ‖W 2,∞(Oδ(Ωn)) ≤ c, with a constant c independent of n. This, the
embedding Ωr ⊂ Oδ(Ωn) and Lemma 3.3 again imply∫

Γr

(Eu)2ds ≤ C
(
cnL3.3a(1 + ε−1) ‖u‖2Ωn + cnL3.3b

ε

4
‖∇u‖2Ωn

)
. (21)

By the co-area formula and using |∇φ| = 1 in Sδ(Ωn) we have

‖Eu‖2Sδ(Ωn) =

∫ δ

0

∫
Γr

(Eu)2ds dr.

Therefore integrating (21) over r ∈ (0, δ) yields (19). �

In the next lemma we show numerical stability of the semi-discrete scheme.

Lemma 3.5. For ∆t sufficiently small and {un}n=1,...,N the solution of (9) with initial data u0 ∈ L2(Ω0) there
holds

‖uk‖2Ωk + ∆t

k∑
n=1

α/2 ‖∇un‖2Ωn ≤ exp(cL3.5tk)‖u0‖2Ω0
, for k = 0, . . . , N, (22)

for a constant cL3.5 that is independent of ∆t and k.

Proof. We test (9) with 2un and get

‖un‖2Ωn + ‖un − Eun−1‖2Ωn + 2∆tan(un, un) = ‖Eun−1‖2Ωn . (23)

With Lemma 3.1, Lemma 3.4 and δ from (7) we get

(1−2ξ∆t)‖un‖2Ωn + ∆tα‖∇un‖2Ωn ≤ ‖Eun−1‖2Ωn ≤ ‖Eun−1‖2Oδ(Ωn−1)

≤ (1 + (1 + ε−1) cδw
n
∞cL3.4a∆t)‖un−1‖2Ωn−1 + cδw

n
∞∆t cL3.4bε‖∇un−1‖2Ωn−1 . (24)

We choose ε = α(2cL3.4bcδw
n
∞)−1 and obtain

(1−2ξ∆t)‖un‖2Ωn + ∆tα‖∇un‖2Ωn ≤ ‖Eun−1‖2Ωn ≤ ‖Eun−1‖2Oδ(Ωn−1)

≤ (1 + c̄∆t)‖un−1‖2Ωn−1 +
α

2
∆t ‖∇un−1‖2Ωn−1 (25)

with c̄ = (1 + ε−1) cδw
n
∞cL3.4a independent of ∆t. Summing up over n = 1, . . . , k, k ≤ N yields

(1−2ξ∆t)‖uk‖2Ωk + ∆tα/2
k∑

n=1

‖∇un‖2Ωn ≤ ‖u0‖2Ω0
+ (2ξ + c̄)∆t

k−1∑
n=0

‖un‖2Ωn . (26)

Assuming that ∆t is sufficiently small so that ξ∆t < 1
4 , we apply the discrete Gronwall inequality which yields

the results with cL3.5 = c̄+ 2ξ. �

TITLE WILL BE SET BY THE PUBLISHER 9

T n
δ

On
δh

Fn
h

Figure 1. Sketch of active part of the mesh (left) and active facets (right) that are utilized in
the stabilization.

Now we turn to the fully discrete case. Besides the technical difficulties of passing from differential equations
to algebraic and finite element functional spaces, we need to handle the situation, when the smooth domain Ωn

is approximated by a set of piecewise smooth Ωn
h, n = 0, . . . , N .

4. Discretization in space and time

4.1. Meshes and finite element spaces

Assume a family of consistent subdivisions of Ω̃ into a quasi-uniform triangulation {Th}h>0 consisting of
simplexes with a characteristic mesh size h. Vh denotes the time-independent finite element space,

Vh := {vh ∈ C(Ω) : vh|S ∈ Pm(S), ∀S ∈ Th}, m ≥ 1, (27)

where Pm(S) is the space of polynomials of at most degree m on S. The domains Ωn, n = 1, . . . , N , are
approximated by discrete approximations Ωn

h, n = 1, . . . , N , e.g. using an approximated level set function, cf.
Section 5.2.

In the full discrete method, we combine the solution and the extension step that we have seen in the semi-
discrete method by one stabilized solve on a discretely extended domain. In every time step, we extend the
domain Ωnh by a layer of thickness δh where we choose δh so that Ωn+1

h is a subset of the extended domain to
Ωnh, δh > wn

∞ ∆t. To this end, we define the active mesh, the set of all elements that have some part in this
extended domain,

T nδ := {S ∈ Th : dist(x,Ωnh) ≤ δh for some x ∈ S}, Onδh,T := {x ∈ S : S ∈ T nδ }. (28)

See the left sketch in Figure 1 for an example. On these active meshes, we define the finite element spaces

V nh := {v ∈ C(Onδh,T) : v ∈ Pm(S), ∀ S ∈ T nδ }, m ≥ 1. (29)

These spaces are the restrictions of the time-independent bulk space Vh on all simplices from T nδ .

4.2. Variational formulation

The numerical method is based on the semi-discrete formulation (9). Instead of applying an extension step
separately we add a stabilization term snh(·, ·) that realizes a discrete version of the extension. It reads as: For

10 TITLE WILL BE SET BY THE PUBLISHER

a given u0
h ∈ V 0

h find unh ∈ V nh , n = 1, . . . , N , satisfying∫
Ωnh

unh − un−1
h

∆t
vh + anh(unh, vh) + γss

n
h(unh, vh) = 0 for all vh ∈ V nh ; (30)

snh(·, ·) is a stabilization bilinear form that is yet to be defined below, cf. Section 4.3, γs = γs(h, δh) is a
stabilization parameter, cf. Section 4.4, and

anh(uh, vh) :=

∫
Ωnh

α∇uh · ∇vh dx+
1

2

∫
Ωnh

((we · ∇uh) vh − (we · ∇vh)uh) dx (31)

+
1

2

∫
Ωnh

div(we)uhvh dx+
1

2

∫
Γnh

(we · n)uhvh dx, uh, vh ∈ H1(Ωnh).

Here, we is a suitable smooth extension of the velocity field w that is only defined on Ωn 6= Ωnh.

4.3. Stabilization bilinear forms

The stabilizing bilinear form snh(·, ·) has multiple purposes. First, it should stabilize the solution of the
problem (30) due to irregular cuts. Secondly, it is responsible for the implicit definition of an extension to
Onδh,T . Thirdly, it provides condition number bounds that are independent of the cut position, cf. Remark 5.3
below.

We present three possible choices in the next subsections on how to choose the stabilization term. They are
all in a very similar flavour and share the crucial properties needed in this method. All these stabilizations have
in common that they add stabilization terms on facets in the region of the boundary Γnh = ∂Ωnh. To this end,
we define the elements that are in the boundary strip:

T nS± := {S ∈ T nδ : dist(x,Γnh) ≤ δh for some x ∈ S}. (32)

We notice that the boundary strip includes cut elements, but possibly also some elements that are completely
inside or outside of Ωnh. We define the set of facets between elements in T nδ and T nS± :

Fnh := {T1 ∩ T2 : T1 ∈ T nδ , T2 ∈ T nS± , T1 6= T2,measd−1(T1 ∩ T2) > 0}. (33)

See the right sketch in Figure 1 for an example.

4.3.1. “Direct” version of the ghost penalty method

For F ∈ Fnh let ωF be the facet patch, i.e. ωF = T1 ∪ T2 for T1 and T2 as in the definition (33). We define
for u, v ∈ V nh

sn,dir
h (u, v) :=

∑
F∈Fnh

sn,dir
h,F (u, v) with sn,dir

h,F (u, v) :=
1

h2

∫
ωF

(u1 − u2)(v1 − v2)dx, (34)

where u1 = EPu|T1 , u2 = EPu|T2 (and similarly for v1, v2) where EP : Pm(S) → Pm(Rd) is the canonical
extension of a polynomial to Rd. This version of the ghost penalty stabilization has been proposed for the first
time – to the best of our knowledge – in [36]. Compared to other version of the ghost penalty method, cf. the
sections below, this version has the advantage that an implementation of the bilinear form is only implicitly
(through the extension EP) depending on the polynomial degree m.

For the analysis, we also define sn,dir
h (u, v) for arbitrary functions u, v ∈ L2(Onδh,T). In this case, we set

u1 = EPΠT1u|T1 , u2 = EPΠT2u|T2 where ΠTi is the L2(Ti)-projection into Pm(Ti), i = 1, 2. We notice that for
v ∈ V nh , ΠTiv|Ti = v|Ti .

TITLE WILL BE SET BY THE PUBLISHER 11

4.3.2. LPS-type version of the ghost penalty method

The second version has been proposed for the first time in the original paper [2]. We call it the LPS (local
projection stabilization)-type version of the ghost penalty method. It also formulates integrals over the facet
patches ωF . But now, the deviation from a polynomial on the patch is penalized:

sn,LPS
h (u, v) :=

∑
F∈Fnh

sn,LPS
h,F (u, v) (35)

with sn,LPS
h,F (u, v) :=

1

h2

∫
ωF

(u−ΠωF u)(v −ΠωF v)dx =
1

h2

∫
ωF

(u−ΠωF u)vdx, u, v ∈ L2(Onδh,T),

where ΠωF : L2(ωF) → Pm(ωF) is the L2 projection into the space of polynomials up to degree m on ωF . We
note that the last equality in (35) holds due to the orthogonality of the L2 projection.

4.3.3. Derivative jump version of the ghost penalty method

The most well-known version of the ghost penalty stabilization is the following based on penalizing jumps in
the (higher order) derivatives across facets, cf. e.g. [3, 5, 23,41]:

sn,djmp
h (u, v) :=

∑
F∈Fnh

sn,djmp
h,F (u, v) with sn,djmp

h,F (u, v) :=
m∑
k=0

h2k−1

k!2

∫
F

[[∂knF u]][[∂knF v]]dx, u, v ∈ Hm+1(T nδ), (36)

where ∂knF is the k-th directional derivative in the direction of the facet normal nF . We note that the summand
to k = 0 is not required in an implementation due to the continuity of functions in V nh .

4.4. Stabilization parameter γs

The stiffness between the unknowns on two elements T ∈ T nδ and T ′ ∈ T nS± that is induced by the stabilization
bilinear form snh(·, ·) depends reciprocally on the distance between the elements T and T ′ measured in terms of
the number of facets that need to be crossed to walk through the mesh from T to T ′. This number K depends
on the anisotropy between spatial and temporal discretization,

K ≤ cK,1(1 + δh/h), δh ≤ cK,2∆t, with cK,1, cK,2 independent of ∆t and h. (37)

Below in the analysis we will see that we require γs ≥ cK,3K (with cK,3 independent of ∆t and h) to compensate
for the weakening of the stabilization for extension strips of increasing size. Hence, we choose

γs = γs(h, δh) = cγ K with cγ > 0 independent of ∆t and h. (38)

4.5. Additional remarks

Remark 4.1 (Unique solvability). Similarly to Lemma 3.1 we can easily check that

anh(uh, uh) ≥ α

2
‖∇uh‖2Ωnh − ξh‖uh‖

2
Ωnh
, (39)

if ∆t < ξ−1
h := 2

(
‖ div(we)‖L∞(Ωnh) + α+ c2Ωh‖we · n‖2L∞(Ωnh)/4α

)−1

. (40)

Hence the left hand side bilinear form in (30) is coercive on V nh w.r.t. the norm

|||v|||n :=
(α

2
‖∇v‖2Ωnh + ‖v‖2Ωnh + γss

n
h(v, v)

)1/2

. (41)

That this is actually a norm on V nh is due to the properties of snh(·, ·) treated below, see Lemma 5.2.

12 TITLE WILL BE SET BY THE PUBLISHER

Remark 4.2 (Implementation of Dirichlet boundary conditions). We comment on the use and implementation
of Dirichlet boundary conditions. If we consider Dirichlet boundary conditions u = gD, we suggest to use (the
unfitted version of) Nitsche’s method for its implementation. In this case, the following bi- and linear forms
have to be added to the discretization in (30):

nnh(uh, vh) :=

∫
Γnh

{(−∇uh · n)vh + (−∇vh · n)uh + λhuhvh} ds, (42)

gnh(vh) :=

∫
Γnh

geD (−∇vh · n + λhvh +
1

2
(we · n)vh) ds, (43)

where geD is a suitable extension of gD from Γn to Γhn. Coercivity of the arising left hand side bilinear form is
then obtained for sufficiently large λh and γs, cf., e.g., [4].

5. Analysis of the fully discrete method

In this section we carry out the numerical analysis of the fully discrete method.

5.1. Preliminaries and notation

In order to reduce the repeated use of generic but unspecified constants, further in the paper we write x . y
to state that the inequality x ≤ cy holds for quantities x, y with a constant c, which is independent of the mesh
parameters h, ∆t, time instance tn, and the position of Γ over the background mesh. Similarly we give sense
to x & y; and x ' y will mean that both x . y and x & y hold.

In the analysis we require different domains stemming from the extension. We define strips which are sharp
in the sense that they do not include full elements. These are the boundary strips

S±δh(Ω
n
h) := {x ∈ Ω̃ : dist(x,Γnh) ≤ δh} and S+

δh
(Ωnh) := {x ∈ Ω̃ \ Ωnh : dist(x,Γnh) ≤ δh}. (44)

Analogously we define S±δh(Ωn) and S+
δh

(Ωn) to Ωn. Further, we define the overlaps Oδh(Ωnh) := S±δh(Ωnh) ∪ Ωnh,

Oδh(Ωn) := S±δh(Ωn)∪Ωn. We notice that S±δh(Ωnh) includes points from the interior of Ωn
h as well as points that

are outside of Ωnh. All elements that have some part in the strip S±δh(Ωnh) (or S+
δh

(Ωnh)) are collected in T nS±(or

T nS+). We specify

δh = cδhw
n
∞ ∆t with 1 < cδh < cδ, (45)

and have that the size of the extension strip scales with δh, |S±δh(Ωnh)| ' δh. The set of elements that have some
part in Ωnh is denoted by

T n := {S ∈ Th : measd(S ∩ Ωnh) > 0}.
We refer to Figures 1 and 2 for sketches of the different domains and parts of the mesh.

In the analysis below we require that δ is sufficiently large so that for n = 1, . . . , N

Onδh,T ⊂ Oδ(Ωn) and Ωnh ⊂ Oδ(Ω(t)), t ∈ In. (46)

For the discrete extension layer, we have with (45) that there holds

cδh sufficiently large implies Ωn
h ⊂ On−1

δh,T , n = 1, . . . , N. (47)

This condition is the discrete analog to (6) and it is essential for the well-posedness of the method.

TITLE WILL BE SET BY THE PUBLISHER 13

T n

Ωnh

T n
S+

S+
δ

(Ωnh)

T n
S±

S±
δ

(Ωnh)

Figure 2. Sketch of discrete domains and different parts of the mesh.

5.2. Geometry approximation

We assume that the approximation of the geometry is of higher order in the sense that

dist(Ωn,Ωnh) . hq+1, (48)

where q is the geometry order of approximation and we assume that integrals on Ωn
h, n = 1, . . . , N can be

computed accurately. Furthermore, we assume that there is a mapping Φ : Oδh(Ωnh) → Oδh(Ωn) that allows to
map from the approximated (extended) domain to the exact (extended) domain and assume that the mapping
Φ is well-defined, continuous and there holds Ωn = Φ(Ωnh) and Oδh(Ωn) = Φ(Oδh(Ωnh)) and

‖Φ− id ‖L∞(Oδh(Ωnh)) . h
q+1, ‖DΦ− I‖L∞(Oδh(Ωnh)) . h

q. (49)

Further, for h sufficiently small Φ is invertible. Such a mapping has been constructed in [14, Section 7.1]
and [31, Lemma 5.1] based on a level set based approximation of the geometries, cf. Remark 5.1 . We use such
a mapping to map from the discrete domain to the exact one. For u ∈ V nh we define ul := u ◦Φ−1. Due to (49)
we have that

‖ul‖2Oδh (Ωn) =

∫
Oδh (Ωn)

(ul)2 dx =

∫
Oδh(Ωnh)

det(DΦ)︸ ︷︷ ︸
'1

u2 dx ' ‖u‖2Oδh(Ωnh), ‖u‖2Ωnh ' ‖u
l‖2Ωn , (50a)

and similarly ‖∇ul‖2Oδh (Ωn) ' ‖∇u‖2Oδh(Ωnh), ‖∇u‖2Ωnh ' ‖∇u
l‖2Ωn . (50b)

Remark 5.1 (Level set based domain descriptions). One popular method to obtain geometry approximations

is based on level sets [42]. Assume a level set function φn is known so that Ωn = {x ∈ Ω̃ | φn < 0}. Further
assume that φn is smooth and ‖∇φn‖2 ' 1 close to the domain boundary ∂Ωn. In practice one typically
only has an approximation φnh to φn that may have been obtained from interpolation or solving a transport
problem based on we and an initial level set functions. Using this discrete approximation φnh we then define

Ωnh = {x ∈ Ω̃ | φnh < 0}. If φnh is a suitable good approximation to φn the approximation assumption (49) holds
true where q is the degree of the approximation for φnh. Most often only the case q = 1 is considered as only
then Ωnh is a polygonal domain which facilitates the implementation of numerical integration. Below, in the
numerical examples we also restrict to q = 1. However, we mention that also higher order geometrical accuracy
can be realized for level set domains, cf. [10, 19,27,32,37].

14 TITLE WILL BE SET BY THE PUBLISHER

5.3. Stability of discrete extensions through snh(·, ·)
In this section we give some fundamental properties which hold for all variants of the stabilization snh(·, ·)

presented before. Let us mention that very recently in [15] a similar analysis that unifies the properties of the
ghost penalty versions from Section 4.3.2 and Section 4.3.3 has been use for stationary unfitted problems.

For all versions of the ghost penalty stabilizations mentioned above, we can split snh(·, ·) into facet-contributions:

snh(·, ·) =
1

h2

∑
F∈Fnh

snh,F (·, ·), (51)

where snh,F (·, ·) provides the following local stabilization property.

Lemma 5.1. Let T1 ∈ T nS± and T2 ∈ T nδ , T1 6= T2 so that for F = T1 ∩ T2 there holds measd−1(F) > 0. Then
we have for u|Ti ∈ Pm(Ti), i = 1, 2 that there holds

‖u‖2T1
. ‖u‖2T2

+ snh,F (u, u), (52a)

‖∇u‖2T1
. ‖∇u‖2T2

+
1

h2
snh,F (u, u). (52b)

Proof. For the derivative jump version the results are given in [4] for m = 1 and extended to the higher order

case in [23, Lemma 5.1]. For sn,dir
h,F (·, ·) we use [36, Lemma 3.1] for (52a) and turn our attention to (52b): Note

that ∇u|Ti ∈ [Pm−1(Ti)]
d, i = 1, 2, so that we can apply (52a) componentwise, i.e.

‖∇u‖2T1
. ‖∇u‖2T2

+ sn,dir
h,F (∇u,∇u). (53)

Now applying an inverse inequality gives sn,dir
h,F (∇u,∇u) . 1

h2 s
n,dir
h,F (u, u). Finally, with

sn,dir
h,F (v, v) =

∑
i=1,2

‖v1 − v2‖2Ti .
∑
i=1,2

‖v1 −ΠωF v‖2Ti + ‖v2 −ΠωF v‖2Ti =
∑
i=1,2

‖vi −ΠωF v‖2ωF

.
∑
i=1,2

‖vi −ΠωF v‖2Ti =
∑
i=1,2

‖v −ΠωF v‖2Ti = ‖v −ΠωF v‖2ωF = sn,LPS
h,F (v, v), (54)

equations (52a) and (52b) follow also for sn,LPS
h,F (·, ·). �

We now want to apply this stabilizing mechanism globally. To this end, we make an assumption on the
meshes T nS+ and T nδ which we comment on in Remark 5.2

Assumption 5.1. To every element in T nS+ we require an element in T nδ \T nS+ that can be reached by repeatedly
passing through facets in Fnh . We assume that there is mapping that maps every element T ∈ T nS+ to such a path

with the following properties. The number of facets passed through during this path is bounded by K . (1 + δh
h).

Further, every uncut element T ∈ T nδ \ T nS+ is the final element of such a path in at most M of these paths
where M is a number that is bounded independently of h and ∆t.

Remark 5.2. We briefly explain why Assumption 5.1 is reasonable if the smooth domain boundary Γn is
sufficiently well-resolved by the mesh. To this end we construct a mapping between elements: B : T nS+ →
T nδ \T nS+ . We take an inner point xT (e.g. the circumcenter) of an element in T ∈ T nS+ and map it by a distance
of δh towards the interior, yT ′ := xT + δh(p(xT)− xT) where p is the closest point projection on Γn. There is
an element T ′ ⊂ T nδ \ T nS+ that contains yT ′ or can be reached from yT ′ by passing only through a few (. 1)
facets in Fnh . Hence, due to shape regularity, the number K of facets in Fnh that are intersected by the path
{xT + s(p(xT) − xT), s ∈ [0, δh]} are bounded by c(h + δh)/h. Due to the geometrical construction of B and
the assumed resolution of the boundary we further have that only a few elements in T nS+ will be mapped to the
same element T ′ ∈ T nδ \ T nS+ , i.e. |B−1(T ′)| ≤M . 1, ∀T ′ ∈ T nδ \ T nS+ .

TITLE WILL BE SET BY THE PUBLISHER 15

With this assumption we have control on the overlap to obtain the following result.

Lemma 5.2. Under Assumption 5.1, there holds for u ∈ V nh :

‖u‖2Oδh(Ωnh) ≤ ‖u‖2Onδh,T . ‖u‖
2
Ωnh

+K h2 snh(u, u), (55a)

‖∇u‖2Oδh(Ωnh) ≤ ‖∇u‖2Onδh,T . ‖∇u‖
2
Ωnh

+K snh(u, u). (55b)

Proof. We start with (55a). First, we notice that there holds

‖u‖2Oδh(Ωnh) ≤ ‖u‖2Onδh,T =
∑
T∈T nδ

‖u‖2T =
∑

T∈T nS+

‖u‖2T +
∑

T∈T nδ \T nS+

‖u‖2T ≤
∑

T∈T nS+

‖u‖2T + ‖u‖2Ωnh . (56)

Now, we repeatedly apply the previous lemma to pass from each T ∈ T nS+ to a T ′ ∈ T nδ \T nS+ . Due to Assumption
5.1 every element in T ∈ T nδ \ T nS+ will appear only M . 1 times and every facet F ∈ Fnh will only appear K
times. Analogously, (55b) follows. �

In the analysis of the time stepping, the critical region to control is the extension strip S+
δh

(Ωnh). We can

bound the L2 norm on this strip by norms on Oδh(Ωnh) and a scaling with δh.

Lemma 5.3. For u ∈ H1(Oδh(Ωnh)) and any ε > 0 there holds

‖u‖2S+
δh

(Ωnh)
. δh(1 + ε−1)‖u‖2Oδh(Ωnh) + δhε‖∇u‖2Oδh(Ωnh). (57)

Proof. We notice that Φ in Section 5.2 maps S+
δh

(Ωnh) on S+
δh

(Ωn). By applying the transformation rules as in

(50) it suffices to show

‖ul‖2S+
δh

(Ωn)
. δh(1 + ε−1)‖ul‖2Oδh (Ωn) + δhε‖∇ul‖2Oδh (Ωn) (58)

for ul = u ◦ Φ−1, u ∈ H1(Oδh(Ωnh)). This however has been shown in Lemma 3.4 (with only a different size of
the extension strip). �

To bound the norms on Oδh(Ωnh) by corresponding norms in Ωn
h we finally make use of the stabilization and

obtain as a direct consequence of Lemma 5.2 and 5.3:

Lemma 5.4. Using Assumption 5.1, for u ∈ V nh and any ε > 0 there holds

‖u‖2S+
δh

(Ωnh)
. δh (1 + ε−1)‖u‖2Ωnh + δh ε‖∇u‖2Ωnh + δhK ((1 + ε−1)h2 + ε)snh(u, u). (59)

As a direct consequence we have for a constant cL5.4 independent of h and ∆t

‖u‖2Oδh(Ωnh) ≤ (1+cL5.4a(ε) ∆t)‖u‖2Ωnh + cL5.4b(ε)α∆t‖∇u‖2Ωnh + cL5.4c(ε, h) ∆tKsnh(u, u), (60)

where cL5.4a(ε) = cL5.4cδhw
n
∞(1 + ε−1), cL5.4b(ε) = cL5.4cδhw

n
∞ε/α and cL5.4c(ε, h) = cL5.4cδhw

n
∞(ε + h2 +

h2ε−1).

Finally, we treat consistency aspects of the stabilization:

Lemma 5.5. For snh ∈ {sn,dirh , sn,LPS
h , sn,djmp

h } as in the Sections 4.3.1, 4.3.2 and 4.3.3, respectively, and
w ∈ Hm+1(Onδh,T), n = 1, . . . , N , there holds

snh(w,w) . h2m‖w‖2Hm+1(Onδh,T). (61a)

16 TITLE WILL BE SET BY THE PUBLISHER

Let I be the Lagrange interpolation operator. Then for w ∈ Hm+1(Onδh,T), n = 1, . . . , N ,

snh(w − Iw,w − Iw) . h2m‖w‖2Hm+1(Onδh,T). (61b)

Proof. We start with (61a). There holds sn,djmp
h (w,w) = 0 due to the continuity of the corresponding (higher

order) derivatives, i.e. we only have to consider snh ∈ {sn,dir
h , sn,LPS

h }. We start with sn,dir
h and consider one

facet contribution for F ∈ Fnh . Let wi,h = EPΠTiw|Ti , i = 1, 2, then

sn,dir
h,F (w,w) = ‖w1,h − w2,h‖2ωF .

∑
i=1,2

‖wi,h −ΠωFw‖2ωF =
∑
i=1,2

∑
j=1,2

‖wi,h −ΠωFw‖2Tj

(∗)
.
∑
i=1,2

‖wi,h −ΠωFw‖2Ti . ‖w −ΠωFw‖2ωF +
∑
i=1,2

‖w − wi,h‖2Ti (62)

. sn,LPS
h,F (w,w) + h2m+2

∑
i=1,2

‖w‖2Hm+1(Ti)
,

where we used shape regularity in (∗) to bound the L2 norm of a polynomial on T1 by its L2 norm on T2 (and vice
versa). Finally, a standard approximation result of the L2 projection gives ‖w−ΠωFw‖2ωF . h2k+2‖w‖2Hk+1(ωF).

Adding over all facets and noting that we have a finite overlap of at most d+1 contributions per element concludes
the proof.

We turn our attention to (61b) and start with sn,djmp
h (·, ·). Let ew = w − Iw and TF be an element so that

F ⊂ ∂TF . With trace inequalities we obtain

sn,djmp
h (ew, ew) ≤

∑
F∈Fnh

m∑
k=0

h2k−1

k!2
(
h−1‖Dkew‖2TF + h‖Dk+1ew‖2TF

)
. (63)

The claim follows for sn,djmp
h from ‖Dkew‖TF . hm+1−k‖w‖Hm+1(TF), k = 0, . . . ,m + 1. Now consider snh ∈

{sn,dir
h , sn,LPS

h }. With the stability of the L2 projections and the polynomial extension operator EP : Pm(T1)→
Pm(T2), one easily checks

snh(ew, ew) . h−2‖ew‖2Onδh,T . h
−2h2m+2‖w‖2Hk+1(Onδh,T). (64)

�

Remark 5.3 (Algebraic stability). The stabilization bilinear form snh(·, ·) is based on the active mesh rather
then the concrete boundary/mesh intersection. This results in stability properties which are robust with respect
to the cut positions. Furthermore, this robustness also carries over to the conditioning of linear systems. In the
original paper [2] it was already shown for an elliptic model problem that the condition number can be bounded
independent of the cut position. We notice that this result can also be carried over to the linear systems arising
from (30).

5.4. Stability analysis

Theorem 5.1. Under Assumption 5.1, sufficiently large cγ in (38), and ∆t sufficiently small, the solution of
(30) satisfies the following estimate:

‖ukh‖2Ωkh + ∆t
k∑

n=1

(
α/2 ‖∇unh‖2Ωn + γss

n
h(unh, u

n
h)
)
≤ exp(cT5.1tk)|||u0

h|||0. (65)

with cT5.1 independent of h, ∆t and k = 1, . . . , N and ||| · |||0 as in (41).

TITLE WILL BE SET BY THE PUBLISHER 17

Proof. We test (30) with unh and multiply by 2∆t which yields:

‖unh‖2Ωnh + ‖unh − un−1
h ‖2Ωnh + 2∆t anh(unh, u

n
h) + 2∆t γss

n
h(unh, u

n
h) = ‖un−1

h ‖2Ωnh . (66)

Using ‖unh − un−1
h ‖2Ωnh > 0, the lower bound on anh(·, ·), cf. (39), and Lemma 5.4, we get

(1−2ξh∆t)‖unh‖2Ωnh + ∆tα‖∇unh‖2Ωnh + 2γs∆ts
n
h(unh, u

n
h) ≤ ‖un−1

h ‖2Ωnh ≤ ‖u
n−1
h ‖2Oδh(Ωn−1

h)
(67)

≤(1 + cL5.4a(ε) ∆t)‖un−1
h ‖2

Ωn−1
h

+ cL5.4b(ε) ∆tα‖∇un−1
h ‖2

Ωn−1
h

+ cL5.4c(ε, h)∆tK sn−1
h (un−1

h , un−1
h).

We choose ε ≤ α/(2cL5.4cδhw
n
∞) so that cL5.4b(ε) ≤ 1/2 and cL5.4a(ε) and cL5.4c = cL5.4c(ε, h) are bounded

independent of h and ∆t. Further, we assume γs ≥ cL5.4cK. Summing up over n = 1, . . . , k, k ≤ N yields

(1−2ξh∆t)‖ukh‖2Ωkh + α/2 ∆t
k∑

n=1

‖∇unh‖2Ωn + γs∆t
k∑

n=1

snh(unh, u
n
h)

≤ ‖u0‖2Ω0 + (cL5.4a + 2ξh)∆t

k−1∑
n=0

‖un‖2Ωn + γs∆ts
0
h(u0

h, u
0
h) + α/2 ∆t‖∇u0

h‖2Ω0 . (68)

Now we can apply Gronwall’s Lemma with ξh∆t ≤ 1
4 and obtain the result with cT5.1 = cL5.4a + ξh. �

5.5. Consistency estimates

Testing (3) with vlh = vh ◦ Φ−1, vh ∈ V nh , where Φ as in Section 5.2, we see that any smooth solution to (3)
satisfies ∫

Ωn
∂tu(tn)vlh dx+ an(u(tn), vlh) = 0 for all vlh = vh ◦ Φ−1, vh ∈ V nh . (69)

For the solution u to (3) we identify its extension Eu, cf. (15), from Q to Oδ(Q) with u.
Thanks to (46) un−1 = u(tn−1) is well-defined on Ωnh and un = u(tn) is well-defined on Onδh,T . Let En =

un − unh, subtracting (30) from (69) we obtain the error equation∫
Ωnh

En − En−1

∆t
vhdx+ anh(En, vh) + γss

n
h(En, vh) = EnC(vh), (70)

with (again vlh = vh ◦ Φ−1)

EnC(vh) :=

I1︷ ︸︸ ︷∫
Ωn
ut(tn)vlhdx−

∫
Ωnh

un − un−1

∆t
vhdx+

I2︷ ︸︸ ︷
an(un, vlh)− anh(un, vh) +

I3︷ ︸︸ ︷
γss

n
h(un, vh) .

Lemma 5.6. Assume u ∈W 2,∞(Q) ∩ L∞(0, T ;Hm+1(Ω(t))), then the consistency error has the bound

|EnC(vh)| . (∆t+ hq + hmK
1
2) (‖u‖W 2,∞(Q) + sup

t∈[0,T]

‖u‖Hm+1(Ω(t))) |||vh|||n. (71)

Proof. We treat EnC(vh) term by term, starting with I1:

I1 =

∫
Ωnh

∫ tn

tn−1

t− tn−1

∆t
utt dt vh dx−

∫
Ωnh

ut(tn)vh dx+

∫
Ωn
ut(tn)vlh dx.

18 TITLE WILL BE SET BY THE PUBLISHER

We have with Ωnh ∈ Oδ(Ω(t)), t ∈ In and (16c)∣∣∣∣∣
∫

Ωnh

∫ tn

tn−1

utt
t− tn−1

∆t
dt vh ds

∣∣∣∣∣ ≤ 1

2
∆t‖utt‖L∞(Oδ(Q))‖vh‖L1(Ωnh) . ∆t‖u‖W 2,∞(Q)‖vh‖Ωnh ,

and∣∣∣∣∣
∫

Ωnh

ut(tn)vh dx−
∫

Ωn
ut(tn)vlh dx

∣∣∣∣∣ =

∣∣∣∣∣
∫

Ωnh

ut(tn)− (ut ◦ Φ)(tn)(1− det(DΦ))vh dx

∣∣∣∣∣
. hq(‖∇ut‖L∞(Oδ(Ωn))‖vh‖Ωnh . h

q‖u‖W 2,∞(Q)‖vh‖Ωnh ,

where we used the change of variables, the second bound in (49) and

|ut(x, tn)− (ut ◦ Φ)(x, tn)| ≤ ‖∇ut‖L∞(Oδ(Ωn))|x− Φ(x)|

with the first bound in (49). The bound for I2 analogously follows from the differentiation chain rule and (49),
see, e.g., [14, Lemma 7.4],

|I2| . hq‖u‖W 2,∞(Q)‖vh‖H1(Ωnh).

For the third term, I3, we first use the Cauchy–Schwarz inequality and further the result of Lemma 5.5,

snh(un, vh) ≤ snh(un, un)
1
2 snh(vh, vh)

1
2 . hm‖u‖Hm+1(Onδh,T)s

n
h(vh, vh)

1
2 . hm‖u‖Hm+1(Ωn)s

n
h(vh, vh)

1
2 .

In the last bound we used Onδh,T ⊂ Oδ(Ωn) and (16a). �

We notice that the latter part in the consistency error, hmK
1
2 , vanishes for the derivative jump formulation

as snh(u, vh) = 0 for all u ∈ Hm+1(Onδh,T), vh ∈ V nh .

5.6. Error estimate in the energy norm

We let u = Iun ∈ V nh be the Lagrange interpolant for un in Onδh,T ⊂ Oδ(Ωn); we assume un sufficiently
smooth so that the interpolation is well-defined. Following standard lines of argument, we split En into finite
element and approximation parts,

En = (un − unI)︸ ︷︷ ︸
en

+ (unI − unh)︸ ︷︷ ︸
enh ∈ V nh

.

Equation (70) yields∫
Ωnh

(
enh − en−1

h

∆t

)
vh ds+ ahn(enh, vh) + γss

n
h(unh, vh) = EnI (vh) + EnC(vh), ∀ vh ∈ V nh , (72)

with the interpolation term

EnI (vh) = −
∫

Ωnh

(
en − en−1

∆t

)
vh dsh − anh(en, vh)− γssnh(en, vh).

We give the estimate for the interpolation terms in the following lemma.

Lemma 5.7. Assume u ∈ L∞(0, T ;Hm+1(Ω(t))) ∩W 2,∞(Q) and ut ∈ L∞(0, T ;Hm(Ω(t))), then it holds

|EnI (vh)| . hmK 1
2 sup
t∈[0,T]

(‖u‖Hm+1(Ω(t)) + ‖ut‖Hm(Ω(t))) |||vh|||n. (73)

TITLE WILL BE SET BY THE PUBLISHER 19

Proof. We use standard interpolation properties of polynomials to conclude

‖en‖Onδh,T + h‖∇en‖Onδh,T . h
m+1‖un‖Hm+1(Oδ(Ωn)) . h

m+1‖un‖Hm+1(Ωn). (74)

The last inequality is thanks to (16a). On Ωn
h we extend uhI for all t ∈ [tn−1, tn] as the Lagrange interpolant

of u(t) in all nodes from Onδh,T so that unI = un−1
I on Ωnh for t = tn−1. Since (unI)t appears to be the nodal

interpolant for ut, we have with (16a) and Onδh,T ⊂ Oδ(Ω(t)), t ∈ In, that

‖ent ‖Ωnh . h
m‖ut‖Hm(Onδh,T) . h

m‖ut‖Hm(Oδ(Ω(t)) . h
m‖ut‖Hm(Ω(t)), t ∈ In. (75)

We treat the first term in EnI (vh) using Cauchy–Schwarz, (75), and (17),∣∣∣∣∣
∫

Ωnh

(
en − en−1

∆t

)
vh dsh

∣∣∣∣ ≤ ∥∥∥∥en − en−1

∆t

∥∥∥∥
Ωnh

‖vh‖Ωnh = |∆t|−1

∥∥∥∥∥
∫ tn

tn−1

et(t
′) dt′

∥∥∥∥∥
Ωnh

‖vh‖Ωnh

≤ |∆t|− 1
2

(∫ tn

tn−1

‖et(t′)‖2Ωnh dt
′
) 1

2

‖vh‖Ωnh . hm sup
t∈[tn−1,tn]

‖ut‖Hm(Onδh,T)‖vh‖Ωnh

. hm sup
t∈[0,T]

(‖u‖Hm+1(Ω(t)) + ‖ut‖Hm(Ω(t)))‖vh‖Ωnh .

(76)

We handle the term anh(en, vh) in a straight-forward way using the Cauchy-Schwarz inequality and (74):

|anh(en, vh)| . hm‖un‖Hm+1(Ωn)(‖vh‖Ωnh + α
1
2 ‖∇vh‖Ωnh).

The stabilization term is treated using the Cauchy–Schwarz inequality and Lemma 5.5,

snh(en, vh) ≤ snh(en, en)
1
2 snh(vh, vh)

1
2 . hm‖u‖Hm+1(Ωn)s

n
h(vh, vh)

1
2 .

We summarize the above bounds into the estimate of the interpolation term as in (73). �

Theorem 5.2. We make Assumption 5.1, and assume cγ in (38) to be sufficiently large, ∆t sufficiently small,
u the solution to (3), u ∈W 2,∞(Q)∩L∞(0, T ;Hm+1(Ω(t))) and ut ∈ L∞(Hm(0, T ; Ω(t))), Ψ to be sufficiently
smooth. For unh, n = 1, . . . , N , the finite element solution of (30), and En = unh−un the following error estimate
holds:

‖En‖2Ωnh +
∆t

2

n∑
k=1

(α
2
‖∇Ek‖2Ωkh + γss

n
h(En,En)

)
. exp(cT5.2tn)R(u)(∆t2 + h2q + h2mK), (77)

with R(u) := supt∈[0,T](‖u‖2Hm+1(Ω(t)) + ‖ut‖2Hm(Ω(t))) + ‖u‖2W 2,∞(Q) and cT5.2 independent of h, ∆t, n and of

the positions of Ωh over the background mesh.

Proof. We set vh = 2∆tenh in (72). This gives

‖enh‖2Ωnh − ‖e
n−1
h ‖2Ωnh + ‖enh − en−1

h ‖2Ωnh + 2∆tanh(enh, e
n
h) + 2∆tγss

n
h(enh, e

n
h) = 2∆t(EnI (eh) + EnC(eh)).

Repeating the arguments as in the proof of Theorem 5.1, we get

(1−2ξh∆t)‖ekh‖2Ωkh +
α

2
∆t

k∑
n=1

‖∇enh‖2Ωnh + γs∆t
k∑

n=1

snh(unh, u
n
h) (78)

≤ ‖e0‖2Ω0
h

+ (cL5.4a + 2ξh)∆t
k−1∑
n=0

‖en‖2Ωnh + γs∆ts
0
h(e0

h, e
0
h) +

α

2
∆t‖∇e0

h‖2Ω0
h

+ 2∆t
k∑

n=1

(EnI (enh) + EnC(enh)).

20 TITLE WILL BE SET BY THE PUBLISHER

To estimate the interpolation and consistency terms, we apply Young’s inequality to the right-hand sides of
(71) and (73) yielding

2∆t(EnC(enh) + EnI (enh)) ≤ c∆t(∆t2 + h2q + h2mK)R(u) +
∆t

2

(
‖enh‖2Ωnh +

α

2
‖∇enh‖2Ωnh + γss

n
h(enh, e

n
h)
)
,

with a constant c independent of h, ∆t, n and of the position of the surface over the background mesh.
Substituting this in (78) and noting e0

h = 0 in O0
δh,T we get

(1− 2ξh∆t)‖ekh‖2Ωkh +
1

2

(
α

2
∆t

k∑
n=1

‖∇enh‖2Ωn + γs∆t
k∑

n=1

snh(unh, u
n
h)

)

≤ (cL5.4a + 2ξh +
1

2
)∆t

k−1∑
n=0

‖en‖2Ωn + cR(u)(∆t2 + h2q + h2mK).

We apply the discrete Gronwall inequality with ξh∆t ≤ 1/4 to get

‖ekh‖2Ωkh +
1

2

k∑
n=1

∆t
(α

2
‖∇enh‖2Ωnh + γss

n
h(enh, e

n
h)
)
. exp(cT5.2tk)R(u)(∆t2 + h2q + h2mK) =: exp(cT5.2tk)Qe.

Now the triangle inequality, (74) and (78) give

‖Ek‖2Ωkh +
1

2

k∑
n=1

∆t
(α

2
‖∇En‖2Ωnh + γss

n
h(En,En)

)
≤ exp(cT5.2tk)Qe + ‖ek‖2Ωkh +

1

2

k∑
n=1

∆t
(
α‖∇en‖2Ωnh + γss

n
h(en, en)

)
. exp(cT5.2tk)Qe + sup

n=1,...,k
‖u‖Hm+1(Ωn)h

2mK.

This completes the proof. �

Remark 5.4 (Extension to BDF2). To keep the analysis manageable, we restricted to the backward Euler
discretization. However, the method is easily extendable to higher order time stepping methods. For example,
it is straightforward to extend the method to the second order accurate in time BDF2 scheme. Indeed, the

finite difference stencil for the time derivative is changed from un−un−1

∆t to 3un−4un−1+un−2

2∆t in the semi-discrete
method in (8) and for the fully discrete method in (30). Accordingly, the width of the neighborhood extension
has to be increased so that Ωn ⊂ O(Ωn−1)∩O(Ωn−2) and Ωnh ⊂ O(Ωn−1

h)∩O(Ωn−1
h). This is done by changing

δn in (45) to δn = 2cδw
n
∞∆t. Further, in the proof of the coercivity in the (spatially) continuous and discrete

setting we have to change the time step restrictions (12) and (40) according to the changed coefficient in the
BDF formula. The Gronwall-type arguments in Section 3.2 and in Theorem 5.1 have to be replaced with
corresponding versions for the BDF scheme. To handle the time derivative terms, one can use the polarization
identity (6.33) from [8]. Finally, the consistency analysis in Section 5.5 can then be improved, specifically the
term I1 leading to a higher order (in ∆t) estimate in Lemma 5.6 and Theorem 5.2.

6. Numerical experiments

In this section we present numerical experiments for the method proposed and analyzed before. First, we
introduce the general setup of the experiments and define the parameters that are shared or varied between the
experiments (Section 6.1) before we investigate the performance of the method for moving domain problems,

TITLE WILL BE SET BY THE PUBLISHER 21

cf. Section 6.2, 6.3 and 6.5. While the setups in Section 6.2 and 6.3 consider smooth domains with a smooth
evolution and are supposed to validate the theoretical prediction, in Section 6.4 we address concerns related to
the conservation properties of the method. Finally, in Section 6.5 we consider a problem with topology changes
that demonstrates the usability of the method beyond the theoretical assumptions made.

6.1. General setup

We discuss the geometry approximation that is used in all numerical experiments, discuss the discretization
parameters that are varied and the quantities of interest that are measured during the numerical studies.

6.1.1. Domain approximation with level sets

In the numerical experiments we use a level set description of the domains Ωn, i.e. we assume that we are

given a level set function φ : Ω̃ → R so that Ωn = {φ(tn) < 0}. For the approximation of the domain we use
an interpolation of φ(tn), denoted by φnh. Thereby, we define the approximate geometries as Ωn

h = {φnh < 0}.
Further, we use a level set function which is an approximate signed distance function so that we can use φnh to
make sense of the strip domains S±δh(Ωnh) which are then replaced by {|φnh| ≤ δh} defining T nδ and Fnh . In all
numerical examples we consider a piecewise linear approximation of the geometry, i.e. q = 1.

6.1.2. Implementational details

In all experiments we use the bilinear form

anh(uh, vh) =

∫
Ωnh

α∇uh · ∇vh dx+

∫
Ωnh

(we · ∇uh) vh +

∫
Ωnh

div(we)uhvh dx, (79)

which is slightly different compared to the bilinear form in (31) that has been used in the analysis. Further, we
introduce a right hand side source term f(vh) :=

∫
Ωnh
fvh dx to (30) that we use in some of the examples.

All implementations are done in ngsxfem [28], an Add-On package for unfitted finite elements in the general
purpose finite element solver Netgen/NGSolve [38, 39].

6.1.3. Discretization parameters

In every of the following examples we consider unstructured triangular, quasi-uniform meshes with an initial
mesh size which we denote by h0 and consider an initial time step size ∆t0. Starting from here, we apply
successive uniform refinements in space and in time and denote the corresponding space and time refinement
levels as Lx = 0, . . . and Lt = 0, . . . , s.t. h = h0 · 2−Lx and ∆t = ∆t0 · 2−Lt . For the stabilization we choose

snh(·, ·) = sn,dir
h (·, ·) and γs = cγK̃ where for K̃ we choose K̃ = dδh/he which is an estimate of the thickness of

the stabilization strip in terms of elements and there holds K̃ ' K ' 1 + δh/h. Here, δh = wn
∞∆t where we

exploit that we know wn
∞ explicitly in all following examples. For cγ we choose cγ = 1 if we do not address

the parameter otherwise. To check for the influence of the stabilization, we consider different choices for γs in
Section 6.2.3. The time steps in all the numerical experiments are chosen such that the (in these cases mild)
condition (40) is fulfilled.

In all numerical examples we consider polynomial degree m = 1. We consider the use of the implicit Euler
method primarily treated in this work, but also of a BDF2 discretization, cf. Remark 5.4.

6.1.4. Quantities of interest

We consider the errors in the discrete space-time norms

‖uh − ue‖2L2(L2) :=
N∑
n=1

∆t‖uh − ue‖2Ωnh , ‖uh − ue‖2L2(H1) :=
N∑
n=1

∆t‖∇(uh − ue)‖2Ωnh ,

‖uh − ue‖L∞(L2) := max
n=1,..,N

‖uh − ue‖Ωnh ,
(80)

22 TITLE WILL BE SET BY THE PUBLISHER

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 1.6· 10−1 9.7· 10−2 6.1· 10−2 4.2· 10−2 3.4· 10−2 3.0· 10−2 2.9· 10−2 2.8· 10−2 —

1 1.4· 10−1 8.5· 10−2 4.8· 10−2 2.9· 10−2 2.0· 10−2 1.7· 10−2 1.6· 10−2 1.5· 10−2 0.89
2 1.4· 10−1 7.8· 10−2 4.3· 10−2 2.3· 10−2 1.4· 10−2 10.0· 10−3 8.6· 10−3 8.2· 10−3 0.91

3 1.4· 10−1 7.7· 10−2 4.0· 10−2 2.1· 10−2 1.1· 10−2 6.8· 10−3 5.0· 10−3 4.4· 10−3 0.89

4 1.4· 10−1 7.6· 10−2 3.9· 10−2 2.0· 10−2 1.0· 10−2 5.5· 10−3 3.4· 10−3 2.5· 10−3 0.81
5 1.4· 10−1 7.6· 10−2 3.9· 10−2 2.0· 10−2 10.0· 10−3 5.1· 10−3 2.7· 10−3 1.7· 10−3 0.59

6 1.4· 10−1 7.6· 10−2 3.9· 10−2 2.0· 10−2 9.9· 10−3 5.0· 10−3 2.6· 10−3 1.4· 10−3 0.30
7 1.4· 10−1 7.6· 10−2 3.9· 10−2 2.0· 10−2 9.9· 10−3 5.0· 10−3 2.5· 10−3 1.3· 10−3 0.11

eocx — 0.88 0.96 0.99 1.00 1.00 0.99 0.97

eocxt — 0.89 0.99 1.03 1.02 1.01 1.01 1.00

Table 1. L2(H1) error for the implicit Euler method for Example 1.

which we also denote as the L2(L2), the L2(H1) and L∞(L2) error, respectively. We notice that we have the a

priori error estimate ‖uh−ue‖L2(H1) . (hm+∆t)·(1+ ∆t
h)

1
2 from the error analysis of the implicit Euler method.

For the BDF2 scheme we expect an improved rate in time and we expect (without theoretical justification yet)
also an additional order in space for the norm ‖uh − ue‖L2(L2).

To display the asymptotical convergence rates in space and time, we use the “experimental order of con-
vergence”(eoc) in space and time (eocx / eoct) which is computed based on two errors of successive levels.
Additionally, we compute the eoc for combined refinements in space and time (eocxt). For the case of the

L2(L2) norm where we expect a convergence rate (∆t+ h2) · (1 + ∆t
h)

1
2 for the implicit Euler method, we also

add the eoc of combined refinement in space and time where to each level of refinement in space we use two
levels of refinements in time (eocxtt).

6.2. Example 1: Traveling circle

As a first example we consider a circle traveling with a time-dependent velocity field that is constant in space
through a background mesh. The setup is taken from [36].

6.2.1. Setup

We fix the background domain to Ω̃ = (−0.7, 0.9) × (−0.7, 0.7) and consider the time interval [0, T] with
T = 0.2. The geometry evolution is based on the following functions,

φ(x, t) = ‖x− ρ(x, t)‖ −R0, ρ(x, t) = (1/π sin(2πt), 0)T , w(x, t) = we(x, t) = ∂tρ(x, t), R0 = 0.5.

We set α = 1 and the (extended) solution is given as

ue(x, t) = cos2
(π

2R
‖x− ρ(x, t)‖2

)
,

which fulfills the boundary conditions due to (−∇ue · n)|Γ(t) = 0, t ∈ [0, T]. We choose f according to ue.
Initial temporal and spatial resolution are chosen as h0 = 0.2, ∆t = 0.1.

6.2.2. Convergence in space and time

In Table 1 and Table 2 we display the L2(H1) norm and the L2(L2) norm for 8 different time and space levels
and corresponding eocs for the implicit Euler method. We observe the convergence behavior ‖uh−ue‖L2(H1) .
(h+∆t). This is better than predicted as we do not observe the influence of the anisotropy factor K ' 1+δh/h.
Below, in the other experiments we also do not see a significant impact of this factor on the results. In the
L2(L2) norm we observe the improved convergence rate ‖uh − ue‖L2(L2) . (h2 + ∆t). In Table 3 we consider

the L2(L2) norm error of a BDF2 discretization and observe ‖uh − ue‖L2(L2) . (h2 + ∆t2).

TITLE WILL BE SET BY THE PUBLISHER 23

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 1.9· 10−2 9.0· 10−3 6.1· 10−3 5.1· 10−3 4.8· 10−3 4.6· 10−3 4.6· 10−3 4.5· 10−3 —

1 1.4· 10−2 5.6· 10−3 3.3· 10−3 2.7· 10−3 2.5· 10−3 2.4· 10−3 2.4· 10−3 2.4· 10−3 0.92

2 1.3· 10−2 4.0· 10−3 1.9· 10−3 1.4· 10−3 1.3· 10−3 1.3· 10−3 1.3· 10−3 1.3· 10−3 0.93

3 1.3· 10−2 3.6· 10−3 1.2· 10−3 7.6· 10−4 6.8· 10−4 6.6· 10−4 6.5· 10−4 6.5· 10−4 0.96

4 1.3· 10−2 3.5· 10−3 9.9· 10−4 4.4· 10−4 3.5· 10−4 3.4· 10−4 3.3· 10−4 3.3· 10−4 0.97

5 1.3· 10−2 3.4· 10−3 9.2· 10−4 3.1· 10−4 1.9· 10−4 1.7· 10−4 1.7· 10−4 1.7· 10−4 0.98

6 1.3· 10−2 3.4· 10−3 8.9· 10−4 2.5· 10−4 1.1· 10−4 9.0· 10−5 8.6· 10−5 8.5· 10−5 0.99

7 1.3· 10−2 3.4· 10−3 8.8· 10−4 2.3· 10−4 7.9· 10−5 4.9· 10−5 4.4· 10−5 4.3· 10−5 0.99

eocx — 1.92 1.97 1.92 1.55 0.70 0.16 0.03

eocxt — 1.74 1.57 1.31 1.11 1.03 1.01 1.00

eocxtt — — — — — 1.95 1.96 1.98

Table 2. L2(L2) error for the implicit Euler method for Example 1.

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 2.2· 10−2 1.2· 10−2 7.6· 10−3 6.0· 10−3 5.3· 10−3 5.0· 10−3 4.9· 10−3 4.8· 10−3 —

1 1.6· 10−2 6.3· 10−3 3.6· 10−3 2.7· 10−3 2.4· 10−3 2.2· 10−3 2.1· 10−3 2.0· 10−3 1.24

2 1.4· 10−2 4.6· 10−3 1.7· 10−3 9.1· 10−4 7.0· 10−4 6.4· 10−4 6.1· 10−4 6.0· 10−4 1.76
3 1.4· 10−2 3.8· 10−3 1.2· 10−3 3.9· 10−4 2.1· 10−4 1.7· 10−4 1.7· 10−4 1.7· 10−4 1.86

4 1.3· 10−2 3.6· 10−3 9.4· 10−4 2.7· 10−4 9.1· 10−5 5.2· 10−5 4.6· 10−5 4.6· 10−5 1.85

5 1.3· 10−2 3.5· 10−3 9.0· 10−4 2.3· 10−4 6.3· 10−5 2.2· 10−5 1.4· 10−5 1.2· 10−5 1.88
6 1.3· 10−2 3.5· 10−3 8.8· 10−4 2.2· 10−4 5.6· 10−5 1.5· 10−5 5.5· 10−6 3.5· 10−6 1.82

7 1.3· 10−2 3.5· 10−3 8.8· 10−4 2.2· 10−4 5.4· 10−5 1.4· 10−5 3.8· 10−6 1.4· 10−6 1.36

eocx — 1.91 1.98 2.01 2.00 1.98 1.87 1.46

eocxt — 1.77 1.89 2.13 2.10 2.04 2.02 2.01

Table 3. L2(L2) error for the BDF2 method for Example 1.

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 9.7· 10−2 4.9· 10−2 3.6· 10−2 3.1· 10−2 2.9· 10−2 2.9· 10−2 2.8· 10−2 2.8· 10−2 —

1 8.5· 10−2 3.0· 10−2 1.8· 10−2 1.5· 10−2 1.4· 10−2 1.3· 10−2 1.3· 10−2 1.3· 10−2 1.08

2 8.6· 10−2 2.1· 10−2 1.1· 10−2 8.0· 10−3 7.5· 10−3 7.4· 10−3 7.4· 10−3 7.4· 10−3 0.83

3 8.9· 10−2 2.1· 10−2 6.8· 10−3 4.5· 10−3 4.0· 10−3 4.0· 10−3 4.0· 10−3 4.0· 10−3 0.91

4 9.2· 10−2 2.2· 10−2 5.4· 10−3 2.7· 10−3 2.2· 10−3 2.1· 10−3 2.1· 10−3 2.1· 10−3 0.93

5 9.3· 10−2 2.3· 10−2 5.6· 10−3 1.8· 10−3 1.2· 10−3 1.1· 10−3 1.1· 10−3 1.1· 10−3 0.96

6 9.4· 10−2 2.3· 10−2 5.8· 10−3 1.4· 10−3 6.9· 10−4 5.7· 10−4 5.5· 10−4 5.4· 10−4 0.98
7 9.4· 10−2 2.3· 10−2 5.9· 10−3 1.5· 10−3 4.5· 10−4 3.1· 10−4 2.8· 10−4 2.8· 10−4 0.98

eocx — 2.01 1.99 2.01 1.70 0.54 0.13 0.03

eocxt — 1.72 1.47 1.25 1.05 1.00 0.99 0.99

eocxtt — — — — — 1.78 1.88 1.96

Table 4. L∞(L2) error for the implicit Euler method for Example 1.

In Table 4 and Table 5 we also show the convergence of the implicit Euler and the BDF2 method in the
L∞(L2) norm. We observe the same convergence rates as in the L2(L2) norm.

6.2.3. Influence of the stabilization parameter

Next, we are interested in the sensitivity of the error on the choice of the stabilization scaling γs. To this
end, we fix Lt = 3 and we vary Lx ∈ {0, . . . , 7} and cγ ∈ {1/100, 1, 100}. Further, we consider two cases: First,

24 TITLE WILL BE SET BY THE PUBLISHER

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 1.1· 10−1 6.6· 10−2 4.6· 10−2 3.6· 10−2 3.2· 10−2 3.0· 10−2 2.9· 10−2 2.8· 10−2 —

1 9.4· 10−2 3.4· 10−2 2.2· 10−2 1.7· 10−2 1.5· 10−2 1.4· 10−2 1.3· 10−2 1.3· 10−2 1.11
2 9.6· 10−2 2.6· 10−2 9.6· 10−3 6.6· 10−3 5.7· 10−3 5.3· 10−3 5.2· 10−3 5.1· 10−3 1.35

3 9.5· 10−2 2.4· 10−2 6.4· 10−3 2.5· 10−3 2.0· 10−3 1.8· 10−3 1.8· 10−3 1.8· 10−3 1.53

4 9.5· 10−2 2.4· 10−2 6.1· 10−3 1.6· 10−3 7.2· 10−4 6.2· 10−4 6.0· 10−4 6.0· 10−4 1.57
5 9.5· 10−2 2.4· 10−2 6.1· 10−3 1.5· 10−3 4.0· 10−4 2.0· 10−4 1.9· 10−4 1.9· 10−4 1.68

6 9.5· 10−2 2.4· 10−2 6.0· 10−3 1.5· 10−3 3.8· 10−4 10.0· 10−5 5.7· 10−5 5.4· 10−5 1.79
7 9.5· 10−2 2.4· 10−2 6.0· 10−3 1.5· 10−3 3.8· 10−4 9.5· 10−5 2.5· 10−5 1.5· 10−5 1.84

eocx: — 2.00 1.97 1.99 2.00 1.99 1.94 0.71

eocxt — 1.66 1.84 1.93 1.81 1.82 1.84 1.90

Table 5. L∞(L2) error for the BDF2 method for Example 1.

Lx 0 1 2 3 4 5 6 7

K̃ 1 1 1 2 3 5 9 17

γs = 0.01 · K̃ 1.2· 10−2 3.3· 10−3 1.2· 10−3 7.3· 10−4 6.7· 10−4 6.5· 10−4 6.5· 10−4 6.5· 10−4

γs = K̃ 1.3· 10−2 3.6· 10−3 1.2· 10−3 7.6· 10−4 6.8· 10−4 6.6· 10−4 6.5· 10−4 6.5· 10−4

γs = 100 · K̃ 3.5· 10−2 8.4· 10−3 2.2· 10−3 9.9· 10−4 7.6· 10−4 7.0· 10−4 6.8· 10−4 6.7· 10−4

γs = 0.01 1.2· 10−2 3.3· 10−3 1.2· 10−3 7.3· 10−4 6.7· 10−4 6.5· 10−4 6.5· 10−4 6.5· 10−4

γs = 1 1.3· 10−2 3.6· 10−3 1.2· 10−3 7.4· 10−4 6.7· 10−4 6.5· 10−4 6.5· 10−4 6.5· 10−4

γs = 100 3.5· 10−2 8.4· 10−3 2.2· 10−3 9.7· 10−4 7.5· 10−4 6.9· 10−4 6.6· 10−4 6.5· 10−4

Table 6. L2(L2) error for implicit Euler method in Example 1 for different stabilization
scalings γs, Lx = 0, . . . , 7, Lt = 3.

we use the scaling of γs with K̃, the thickness of the extension strip and secondly, a constant scaling of γs,
i.e. γs = cγ .

In Table 6 the results for a fixed time resolution are shown. We observe that there is only a very mild
dependency of the numerical results on the choice of the stabilization parameter. Further, we observe that the
anisotropy scaling with K̃ seems not to have a significant effect.

6.3. Example 2: Growing / shrinking circle

In this example we consider growing and shrinking circles which are described below in similar setups.

6.3.1. Setups

We fix the background domain to be Ω̃ = (−1.25, 1.25)× (−1.25, 1.25) and fix the time interval to [0, T], T =
ln(2). The geometry evolution for the growing circle is based on the following functions:

φ(x, t) = ‖x‖ −R(t), R(t) = R0e
t, R0 =

1

2
, w(x, t) = x.

For the shrinking sphere we take accordingly

φ(x, t) = ‖x‖ −R(t), R(t) = R0e
−t, R0 = 1, w(x, t) = −x.

This corresponds to a circle growing from radius 1
2 to radius 1 for the one case and a circle shrinking from radius

1 to radius 1
2 for the other. We obtain the constants wn

∞ = 1, div(w) = ±2. We choose the diffusivity α = 0.2
and the right hand side f so that the manufactured solution is (in both cases)

ue(x, t) = cos(πr/R(t)),

which fulfills the boundary conditions. As initial resolution we choose h = 0.4, ∆t = 0.5.

TITLE WILL BE SET BY THE PUBLISHER 25

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 3.0· 10−1 2.2· 10−1 1.6· 10−1 1.4· 10−1 1.2· 10−1 1.1· 10−1 1.0· 10−1 9.6· 10−2 —

1 2.5· 10−1 1.3· 10−1 8.0· 10−2 4.9· 10−2 3.5· 10−2 2.6· 10−2 2.1· 10−2 1.8· 10−2 2.37
2 2.5· 10−1 8.9· 10−2 4.3· 10−2 2.4· 10−2 1.4· 10−2 9.1· 10−3 6.7· 10−3 5.6· 10−3 1.72

3 2.3· 10−1 7.8· 10−2 2.4· 10−2 1.1· 10−2 5.9· 10−3 3.5· 10−3 2.6· 10−3 2.1· 10−3 1.39

4 2.3· 10−1 7.0· 10−2 2.0· 10−2 5.7· 10−3 2.4· 10−3 1.3· 10−3 8.3· 10−4 6.5· 10−4 1.71
5 2.2· 10−1 6.6· 10−2 1.7· 10−2 4.4· 10−3 1.2· 10−3 5.0· 10−4 2.7· 10−4 1.9· 10−4 1.80

6 2.2· 10−1 6.3· 10−2 1.6· 10−2 3.9· 10−3 9.9· 10−4 2.7· 10−4 1.0· 10−4 5.9· 10−5 1.68
7 2.2· 10−1 6.2· 10−2 1.5· 10−2 3.7· 10−3 9.0· 10−4 2.3· 10−4 6.2· 10−5 2.3· 10−5 1.35

eocx — 1.80 2.01 2.06 2.04 1.99 1.87 1.42

eocxt — 1.16 1.64 1.99 2.20 2.26 2.24 2.19

Table 7. L2(L2) error for the BDF2 method for the growing circle in Example 2.

Lt ↓\Lx→ 0 1 2 3 4 5 6 7 eoct

0 1.3 8.2· 10−1 5.0· 10−1 3.8· 10−1 3.5· 10−1 3.6· 10−1 3.8· 10−1 4.0· 10−1 —
1 3.1· 10−1 1.7· 10−1 1.0· 10−1 7.8· 10−2 7.8· 10−2 8.7· 10−2 9.5· 10−2 1.0· 10−1 1.97

2 2.3· 10−1 8.8· 10−2 4.5· 10−2 2.8· 10−2 2.5· 10−2 2.6· 10−2 2.8· 10−2 3.0· 10−2 1.75

3 2.1· 10−1 7.2· 10−2 2.3· 10−2 1.1· 10−2 7.6· 10−3 7.3· 10−3 7.8· 10−3 8.3· 10−3 1.85
4 2.0· 10−1 6.4· 10−2 1.8· 10−2 5.4· 10−3 2.6· 10−3 2.0· 10−3 2.0· 10−3 2.1· 10−3 1.97

5 1.9· 10−1 6.0· 10−2 1.6· 10−2 4.1· 10−3 1.2· 10−3 6.1· 10−4 5.0· 10−4 5.2· 10−4 2.04
6 1.9· 10−1 5.7· 10−2 1.5· 10−2 3.7· 10−3 9.3· 10−4 2.8· 10−4 1.4· 10−4 1.2· 10−4 2.06

7 1.9· 10−1 5.6· 10−2 1.4· 10−2 3.4· 10−3 8.4· 10−4 2.1· 10−4 6.5· 10−5 3.5· 10−5 1.84

eocx — 1.72 1.98 2.05 2.04 1.97 1.72 0.90

eocxt — 2.94 1.90 2.02 2.09 2.10 2.07 2.05

Table 8. L2(L2) error for the BDF2 method for the shrinking circle in Example 2.

6.3.2. Convergence in space and time

In the Tables 7 and 8 the L2(L2) errors for the examples are shown using the BDF2 method. We again
observe an error behavior of the form h2 + ∆t2. The results are in agreement with the previous observations.

6.4. Example 3: Mass conservation

In Section 2 we give a conservation property that is fulfilled by the exact solution to the problem. However,
due to the fact that we rely on a discrete extension, we do not preserve this property on the discrete level.
In this final example we want to investigate the mass loss for the geometrical setup of the first example.
We set u0 = sin(π‖x − ρ(x, t)‖2) and α = 0.1. This time we consider f = 0 so that the total mass of
the exact solution, i.e. U = Uk =

∫
Ωk
uk dx, k = 1, .., N , is constant over time. Analogously we define the

discrete mass Ukh =
∫

Ωkh
ukh dx, k = 1, .., N . In Table 9 we display the maximum deviation from the inital mass

Emass
h = maxk=1,..,N |Ukh −U0

h |. We observe that this deviation is not zero, but converges with at least the same
rate as the L2(L2) norm.

To enforce a global constraint on the solution we use a Lagrange multiplier formulation as it has been done
in [?]. In the context of unfitted FEM the enforcement of exact global conservation has also been considered
in [16]. This changes our formulation from (30) to the following formulation: For a given u0

h ∈ V 0
h find

(unh, λ) ∈ V nh × R, n = 1, . . . , N , satisfying

∫
Ωnh

unh − un−1
h

∆t
vh dx+ anh(unh, vh) + γss

n
h(unh, vh) + λ

∫
Ωnh

vh dx+ µ

∫
Ωnh

unh dx = µ

∫
Ωn−1
h

un−1
h dx (81)

26 TITLE WILL BE SET BY THE PUBLISHER

0 1 2 3 4 5 6 7 eoc.

0 3.6· 10−2 2.6· 10−2 1.8· 10−2 1.4· 10−2 1.4· 10−2 1.5· 10−2 1.6· 10−2 1.7· 10−2 —

1 3.9· 10−3 6.2· 10−3 5.3· 10−3 3.8· 10−3 2.4· 10−3 1.3· 10−3 1.8· 10−3 2.2· 10−3 2.95
2 2.2· 10−3 2.4· 10−3 1.8· 10−3 1.3· 10−3 8.4· 10−4 5.1· 10−4 2.8· 10−4 2.6· 10−4 3.09

3 5.9· 10−4 6.8· 10−4 4.1· 10−4 2.9· 10−4 2.0· 10−4 1.3· 10−4 8.2· 10−5 9.6· 10−5 1.41

4 8.2· 10−4 2.3· 10−4 4.9· 10−5 5.9· 10−5 3.7· 10−5 2.5· 10−5 1.7· 10−5 2.3· 10−5 2.04
5 9.3· 10−4 3.3· 10−4 8.2· 10−5 1.3· 10−5 7.6· 10−6 4.7· 10−6 3.2· 10−6 4.7· 10−6 2.31

6 9.5· 10−4 3.5· 10−4 9.4· 10−5 1.4· 10−5 3.1· 10−6 1.0· 10−6 5.6· 10−7 8.5· 10−7 2.48
7 9.5· 10−4 3.6· 10−4 9.6· 10−5 1.5· 10−5 3.5· 10−6 6.7· 10−7 2.2· 10−7 1.5· 10−7 2.50

eoc: 1.40 1.90 2.65 2.13 2.39 1.62 0.53

diag 2.54 1.81 2.62 2.96 2.97 3.06 1.91

Table 9. Max. deviation from conservation, Emass
h , for BDF2 method in the example of

Section 6.4.

0 1 2 3 4 5 6 7 eoc.

0 2.3· 10−2 1.5· 10−2 9.3· 10−3 7.4· 10−3 7.9· 10−3 9.4· 10−3 1.1· 10−2 1.2· 10−2 —

1 4.4· 10−3 7.0· 10−3 5.9· 10−3 4.3· 10−3 2.7· 10−3 1.4· 10−3 4.2· 10−4 2.5· 10−4 5.59

2 1.6· 10−3 2.1· 10−3 1.4· 10−3 8.5· 10−4 4.4· 10−4 1.3· 10−4 1.2· 10−4 2.9· 10−4 −0.22
3 2.4· 10−5 3.8· 10−4 2.4· 10−4 1.3· 10−4 4.7· 10−5 1.4· 10−5 6.6· 10−5 1.1· 10−4 1.41

4 3.6· 10−4 3.2· 10−5 3.4· 10−5 2.1· 10−5 5.6· 10−6 5.0· 10−6 1.6· 10−5 2.6· 10−5 2.04

5 4.6· 10−4 5.7· 10−5 3.5· 10−6 2.7· 10−6 2.6· 10−7 9.5· 10−7 3.0· 10−6 5.3· 10−6 2.31
6 4.7· 10−4 7.3· 10−5 4.8· 10−6 3.8· 10−7 1.2· 10−6 2.3· 10−7 5.2· 10−7 9.6· 10−7 2.48

7 4.7· 10−4 7.8· 10−5 6.4· 10−6 1.3· 10−6 1.3· 10−6 1.9· 10−7 1.1· 10−7 1.7· 10−7 2.51

eoc 2.60 3.61 2.30 0.00 2.74 0.86 −0.65

diag 1.71 2.31 3.49 4.49 2.56 0.86 1.63

Table 10. L2(ΩNh) norm difference at t = T between the two methods discussed in Section 6.4.

for all vh ∈ V nh , µ ∈ R. Here λ is the Lagrangian multiplier to the scalar constraint
∫

Ωnh
unh dx =

∫
Ωn−1
h

un−1
h dx.

The adaptation to the BDF2 scheme is straight-forward. We denote this solution as un,∗h . By construction this
approach conserves mass exact. To demonstrate that it does not destroy the accuracy of the original method,

we display the difference of the methods in the L2(ΩNh) norm, ‖uN,∗h − uNh ‖ΩNh , in Table 10. We observe that

the difference converges with the same order of convergence as the error of the original method as the norm of
the difference tends to zero with the same order in space and time, although the eoc is a bit less regular as in
the experiments before. We conclude that the convergence properties of the original method is preserved, i.e.
we can combine the method with a formation that ensures exact global conservation.

6.5. Example 4: Example with topology change

In this example we consider a geometrically singular configuration. The level set function to two colliding
and afterwards separating circles is

φ(x, t) = min(‖x− s1(t)‖2, ‖x− s2(t)‖2)−R, s1(t) = (0, t− 3/4), s2(t) = (0, 3/4− t),

where s1(t) and s2(t) is the center of the two circles. As the time interval we choose T = 3/2, so that
φ(x, 0) = φ(x, T). The corresponding velocity field is discontinuous at y = 0 and t = T/2:

w(x, y, t) =

{
(0, 1)T if y > 0 and t ≤ T/2 or y < 0 and t > T/2,
(0,−1)T if y ≤ 0 and t ≤ T/2 or y > 0 and t > T/2.

As initial concentration we choose u0 = −1 for y < 0, i.e. in the lower circle and u0 = 1 for y > 0, i.e. in the

TITLE WILL BE SET BY THE PUBLISHER 27

-1 1

t=0.0T t=0.1T t=0.2T t=0.3T t=0.4T t=0.5T t=0.6T t=0.7T t=0.8T t=0.9T t=1.0T

Figure 3. Simulation results of the example in Section 6.5. The first row displays the results
for ∆t = T/10, the second row the results for ∆t = T/80. The elements marked in green are
the ones in T nδ .

upper circle. We choose the globally (not component-wise) conservative method (81), α = 0.1, h = 0.07 and the
time step sizes ∆t = T/10 and ∆t = T/80. In Figure 3 the results of the simulations are displayed. Note that
this setup is not covered by the analysis as the domain and its evolution is not smooth. Obviously, the method
is stable even for this example with non smooth domains. Note that there can be an artificial mass exchange
between the two phases if the extension layers intersect before the physical domains intersect, cf. for instance
the picture to ∆t = T/10 and t = 0.1T . However, for finer time steps these artificial intersections are reduced,
cf. the result for ∆t = T/80 and t = 0.1T .

7. Conclusions and open problem

In this paper we introduced a numerical method for solving PDEs on evolving domains. The method is
easy to implement as it bases on standard stationary unfitted finite element discretizations and standard finite
difference approximations in time. We were able to derive optimal order error bounds in the energy norm for
this method. Unlike space–time Galerkin methods, the present approach does not require a physical domain
reconstruction on each time slab. In fact, one only needs approximations of physical domain at time instances
tn. No reconstruction of a Lagrangian or arbitrary mapping Ψ from a reference domain is needed either, which
makes the method particularly attractive for application, where the domain deformation is given by a series of
snapshots without further information about the underlying motion: One example is the blood flow simulation
in a human heart when the patient-specific motion of the heart walls is recovered from a sequence of medical
images; see, e.g., [22, 25,44] and references therein.

At the end of this study, let us discuss a few points where extensions and possible modifications of the
presented method or its analysis are worth pursuing.

So far, in the method we used an extension to the domain Ωn
h based on a priori estimated strip size. One

could improve this by only involving elements that are relevant on the next time step based on Ωn+1
h if this

information is available. Furthermore, one could separate the stabilized solution step and the extension into
two steps as has been done in the semi-discrete method.

28 TITLE WILL BE SET BY THE PUBLISHER

In the analysis we only derived error estimates for the H1 norm in space, but observed a higher order
convergence (in space) in the L2 norm. Using duality techniques we expect that improved rates can also be
obtained for L2 norm estimates.

In this paper we treated only implicit Euler discretizations in the analysis and commented on extensions
to BDF2 discretization which we also used in the numerical experiments. An extension to more general time
stepping scheme has not been used so far, but is an interesting topic.

We only consider a comparably simple model problem. Many applications will involve more complex prob-
lems, e.g. two-phase Navier-Stokes equations. An extension of the method to these problems should be inves-
tigated and analyzed in the future.

For the numerical examples we used a geometry approximation and finite element order q = m = 1 although
the analysis allows also for higher order schemes in space. Due to practical reasons such as accurate and robust
numerical integration, the development and implementation of higher order methods can be difficult, but should
not – based on recently developed techniques [10,19,27,37] – pose a major obstacle.

Appendix A. Proof of Lemma 3.2

Proof. The result follows in three steps.
Step 1. Define a sequence of vm ∈ C∞(Q0) such that vm → v in L2(Q0) and vmt → vt in L2(Q0). Functions

vm can be constructed by the following standard argument. First note that from inequality v2(0) = v2(t) −∫ t
0
(v2)t ds ≤ v2(t) + 2(

∫ T
0
v2 ds)

1
2 (
∫ T

0
v2
t ds)

1
2 it follows that v(x, 0) is well defined as an element of L2(Ω0).

Similar v(T) ∈ L2(Ω0). Thus we consider

ṽ(x, t) =


v(x, t) for x ∈ Ω0, t ∈ (0, T)

v(x, 0) for x ∈ Ω0, t ≤ 0

v(x, T) for x ∈ Ω0, t ≥ T
0 otherwise

,

and define vm = ωεm∗ṽ with a smooth mollifier ωε and εm → 0 with m→∞. By the basic properties of mollifiers
vmt = ωεm ∗ ṽt, and vm ∈ C∞(Q0) is the desired sequence. Due to the continuity of E0 : L2(Ω0)→ L2(O(Ω0)),
it holds

‖E0w‖2L2(O(Q0)) =

∫ T

0

∫
O(Ω0)

|E0w|2 dx dt ≤ c
∫ T

0

∫
Ω0

w2 dx dt = c‖w‖2L2(Q0) for any w ∈ L2(Q0).

Since E0 is linear, we infer that E0 is continuous from L2(Q0) to L2(O(Q0)) and hence the convergence vm → v
in L2(Q0) and vmt → vt in L2(Q0) imply E0vm → E0v in L2(O(Q0)) and E0vmt → E0vt in L2(O(Q0)).

Step 2. We now show that for a smooth function w = vm ∈ C∞(Q0) (m is fixed) the extension and time
derivative commute, i.e., (E0w)t = E0wt in O(Q0). We have for fixed t ∈ (0, T) and |δ| sufficiently small:

E0w(t)− E0w(t+ δ) = E0(w(t)− w(t+ δ))

= E0(δwt(t)− ξδ) with ξδ(·) =

∫ t+δ

t

wtt(s, ·)s ds

= δE0wt(t)− E0ξδ in O(Ω0),

where we used the linearity of E0. By the continuity of E0 in L∞(Ω0), it holds

‖E0ξδ‖L∞(O(Ω0)) ≤ c‖ξδ‖L∞(Ω0) ≤ c|δ|2‖wtt‖L∞(Q0) ≤ C|δ|2,

where C is independent of δ. Since t was taken arbitrary from (0, T), this proves (E0w)t = E0wt in O(Q0).

TITLE WILL BE SET BY THE PUBLISHER 29

Step 3. Finally, we show (E0v)t = E0vt by a density argument. Using L2(O(Q0))-convergence from step 1

and the commutation property from step 2, we get for any finite function η ∈ Ċ(O(Q0)):∫
O(Q0)

(E0v)ηt d(x, t) = lim
m→∞

∫
O(Q0)

(E0vm)ηt d(x, t) = − lim
m→∞

∫
O(Q0)

(E0vm)tη d(x, t)

= − lim
m→∞

∫
O(Q0)

(E0vmt)η d(x, t) = −
∫
O(Q0)

(E0vt)η d(x, t).

Thus (E0v)t = E0vt holds by the definition of the weak partial derivative. �

References

[1] A. Alphonse, C. M. Elliott, and B. Stinner, An abstract framework for parabolic pdes on evolving spaces, Portugaliae

Mathematica, 72 (2015), pp. 1–47.

[2] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217–1220.
[3] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing, Cutfem: Discretizing geometry and partial differential

equations, International Journal for Numerical Methods in Engineering, 104 (2015), pp. 472–501.
[4] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: Ii. a stabilized nitsche method,

Applied Numerical Mathematics, 62 (2012), pp. 328–341.

[5] , Fictitious domain methods using cut elements: Iii. a stabilized nitsche method for stokes’ problem, ESAIM: Mathe-
matical Modelling and Numerical Analysis, 48 (2014), pp. 859–874.

[6] J. Chessa and T. Belytschko, Arbitrary discontinuities in space–time finite elements by level sets and X-FEM, International

Journal for Numerical Methods in Engineering, 61 (2004), pp. 2595–2614.
[7] C. M. Elliott and T. Ranner, Finite element analysis for a coupled bulk–surface partial differential equation, IMA Journal

of Numerical Analysis, 33 (2013), pp. 377–402.

[8] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Springer, New York, 2004.
[9] H. Federer, Curvature measures, Transactions of the American Mathematical Society, 93 (1959), pp. 418–491.

[10] T.-P. Fries and S. Omerović, Higher-order accurate integration of implicit geometries, International Journal for Numerical

Methods in Engineering, (2015).
[11] R. Glowinski, T.-W. Pan, T. I. Hesla, and D. D. Joseph, A distributed lagrange multiplier/fictitious domain method for

particulate flows, International Journal of Multiphase Flow, 25 (1999), pp. 755–794.
[12] J. Grande, Eulerian finite element methods for parabolic equations on moving surfaces, SIAM Journal on Scientific Computing,

36 (2014), pp. B248–B271.

[13] P. Grisvard, Elliptic problems in nonsmooth domains, vol. 69, SIAM, 2011.
[14] S. Gross, M. A. Olshanskii, and A. Reusken, A trace finite element method for a class of coupled bulk-interface transport

problems, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), pp. 1303–1330.

[15] C. Gürkan and A. Massing, A stabilized cut discontinuous Galerkin framework: I. elliptic boundary value and interface
problems, arXiv preprint arXiv:1803.06635, (2018).

[16] P. Hansbo, M. G. Larson, and S. Zahedi, A cut finite element method for coupled bulk–surface problems on time–dependent

domains, Computer Methods in Applied Mechanics and Engineering, 307 (2016), pp. 96–116.
[17] C. Hirt, A. A. Amsden, and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of

computational physics, 14 (1974), pp. 227–253.

[18] C. Lehrenfeld, The Nitsche XFEM-DG space-time method and its implementation in three space dimensions, SIAM J. Sci.
Comp., 37 (2015), pp. A245–A270.

[19] , High order unfitted finite element methods on level set domains using isoparametric mappings, Comp. Meth. Appl.
Mech. Eng., 300 (2016), pp. 716–733.

[20] C. Lehrenfeld, M. A. Olshanskii, and X. Xu, A stabilized trace finite element method for partial differential equations on

evolving surfaces, SIAM Journal on Numerical Analysis, 56 (2018), pp. 1643–1672.
[21] C. Lehrenfeld and A. Reusken, Analysis of a Nitsche XFEM-DG discretization for a class of two-phase mass transport

problems, SIAM J. Numer. Anal., 51 (2013), pp. 958–983.
[22] A. Lozovskiy, M. A. Olshanskii, and Y. V. Vassilevski, A quasi-Lagrangian finite element method for the Navier-Stokes

equations in a time-dependent domain, Computer Methods in Applied Mechanics and Engineering, 333 (2018), pp. 55–73.
[23] A. Massing, M. G. Larson, A. Logg, and M. E. Rognes, A stabilized nitsche fictitious domain method for the Stokes

problem, Journal of Scientific Computing, 61 (2014), pp. 604–628.
[24] A. Masud and T. J. Hughes, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations

for moving domain problems, Computer Methods in Applied Mechanics and Engineering, 146 (1997), pp. 91–126.

30 TITLE WILL BE SET BY THE PUBLISHER

[25] R. Mittal, J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. Huang, S. Jain, L. Younes, T. Abraham, and R. T. George,
Computational modeling of cardiac hemodynamics: current status and future outlook, Journal of Computational Physics, 305

(2016), pp. 1065–1082.

[26] N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International journal
for numerical methods in engineering, 46 (1999), pp. 131–150.

[27] B. Müller, F. Kummer, and M. Oberlack, Highly accurate surface and volume integration on implicit domains by means

of moment-fitting, International Journal for Numerical Methods in Engineering, 96 (2013), pp. 512–528.
[28] ngsxfem : Add-On to NGSolve for uniffted finite element methods. http://github.com/ngsxfem.

[29] M. A. Olshanskii and A. Reusken, Error analysis of a space–time finite element method for solving PDEs on evolving

surfaces, SIAM Journal on Numerical Analysis, 52 (2014), pp. 2092–2120.
[30] M. A. Olshanskii, A. Reusken, and X. Xu, An Eulerian space–time finite element method for diffusion problems on evolving

surfaces, SIAM Journal on Numerical Analysis, 52 (2014), pp. 1354–1377.

[31] M. A. Olshanskii and D. Safin, A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces, Mathe-
matics of Computation, 85 (2016), pp. 1549–1570.

[32] , Numerical integration over implicitly defined domains for higher order unfitted finite element methods, Lobachevskii
Journal of Mathematics, 37 (2016), pp. 582–596.

[33] M. A. Olshanskii and X. Xu, A trace finite element method for PDEs on evolving surfaces, SIAM Journal on Scientific

Computing, 39 (2017), pp. A1301–A1319.
[34] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of computational physics, 25 (1977), pp. 220–252.

[35] , The immersed boundary method, Acta numerica, 11 (2002), pp. 479–517.

[36] J. Preuß, Higher order unfitted isoparametric space-time FEM on moving domains, master’s thesis, NAM, University of
Göttingen, 2018.

[37] R. Saye, High-order quadrature method for implicitly defined surfaces and volumes in hyperrectangles, SIAM Journal on

Scientific Computing, 37 (2015), pp. A993–A1019.
[38] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules, Computing and Visualization in

Science, 1 (1997), pp. 41–52.

[39] , C++11 Implementation of Finite Elements in NGSolve, Institute for Analysis and Scientific Computing, Vienna

University of Technology, (2014).

[40] B. Schott, Stabilized Cut Finite Element Methods for Complex Interface Coupled Flow Problems, phd thesis, TU Munich,
2017.

[41] B. Schott and W. Wall, A new face-oriented stabilized xfem approach for 2d and 3d incompressible navier–stokes equations,

Computer Methods in Applied Mechanics and Engineering, 276 (2014), pp. 233–265.
[42] J. A. Sethian, Level set methods and fast marching methods, Cambridge University Press, 1999.

[43] E. M. Stein, Singular integrals and differentiability properties of functions (PMS-30), vol. 30, Princeton university press,

2016.
[44] B. Su, R. San Tan, J. Le Tan, K. W. Q. Guo, J. M. Zhang, S. Leng, X. Zhao, J. C. Allen, and L. Zhong, Cardiac

MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated, Journal of biomechanics, 49

(2016), pp. 1199–1205.
[45] T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou, A new strategy for finite element computations involving moving

boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. computation of free-surface flows, two-
liquid flows, and flows with drifting cylinders, Computer Methods in Applied Mechanics and Engineering, 94 (1992), pp. 353–
371.

	1. Introduction
	2. Mathematical problem
	3. Discretization in time
	3.1. Time discretization method
	3.2. Stability of the semi-discrete method

	4. Discretization in space and time
	4.1. Meshes and finite element spaces
	4.2. Variational formulation
	4.3. Stabilization bilinear forms
	4.4. Stabilization parameter s
	4.5. Additional remarks

	5. Analysis of the fully discrete method
	5.1. Preliminaries and notation
	5.2. Geometry approximation
	5.3. Stability of discrete extensions through shn(,)
	5.4. Stability analysis
	5.5. Consistency estimates
	5.6. Error estimate in the energy norm

	6. Numerical experiments
	6.1. General setup
	6.2. Example 1: Traveling circle
	6.3. Example 2: Growing / shrinking circle
	6.4. Example 3: Mass conservation
	6.5. Example 4: Example with topology change

	7. Conclusions and open problem
	Appendix A. Proof of Lemma 3.2
	References

