
Empowering Children To Rapidly Author
Games and Animations Without Writing Code

Rahul Banerjee1, Jason Yip2, Kung Jin Lee2, and Zoran Popović1

1Center for Game Science
Computer Science & Engineering

University of Washington
{banerjee,zoran}@cs.washington.edu

2Information School
University of Washington

{jcyip,kjl26}@uw.edu

ABSTRACT
Prior research has established that long-term interests in pro-
gramming are often shaped by formative computing experi-
ences, especially those involving programming and graphics.
Existing authoring environments for children (ages 9-14) to
make 2D games and animations require them to: (a) create
programs, (b) customize templates, or (c) combine rewrite
rules with programs. One way to support early experiences
in computing for a more diverse set of learners is to sim-
plify such authoring systems, by removing text heavy code
and minimizing cognitive load, which can allow separation
of coding concepts from writing code. In this paper, we de-
scribe an exploratory system we are designing to test this
idea, called BlockStudio. Using a Programming By Example
paradigm, children manipulate colored blocks on the screen
to specify desired behavior via concrete changes. Based on
these inputs, our system synthesizes generalized rules based
on color. We give a brief overview of our current proto-
type, then share insights gleaned from two intergenerational
co-design sessions with children and discuss implications for
designers of similar systems.

Author Keywords
Authoring; games; interactive content; programming by
example; rule-based system; user interface;

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION
Children’s initial experiences with computers have the po-
tential to shape their motivation to engage in programming.
According to Hasan [12], early successes with programming
and graphics are important for computer self-efficacy be-
liefs, while Bandura et al. [1] found children’s perceived self-
efficacy to be a key factor in their careers and future aspi-
rations. Surveying informatics students at the college level,
Ko [19] found that negative experiences with programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IDC’16, June 21–24, 2016, Manchester, United Kingdom.
ACM 978-1-4503-4313-8/16/06. . . $15.00
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
DOI: http://dx.doi.org/10.1145/2930674.2930688

(a) (b)

(c) (d)

Figure 1: Games created in BlockStudio (a) Mouse Wants
Food, (b) Extreme Pong, (c) Maze, (d) Grumpy Neighbors

at an early age caused many participants to decide against
computer science jobs as a career.

Given children’s love of video games and animations, a nat-
ural introduction to programming might be allowing students
to program such artifacts themselves. Today, children ages
9-14 can choose from several authoring environments to cre-
ate their own 2D games and animations ([36, 7, 33, 4, 42,
8, 14, 24, 37], also see [17, 11] for systems prior to 2002),
but all of these options rely on programming (in the form of
text or code blocks), on template customization via menus,
or on rewrite rules combined with programming. Children
have diverse backgrounds and motivations, and they may not
be ready to take on one of the above systems. In particular,
if they struggle too much with complex text or coding, such
systems can be difficult to use.

Hence, it is important to explore systems employing alterna-
tive approaches that can help such children gain early suc-
cess with computer programming. If successful, this could
help them progress to more complex systems as the next step,
whereas the alternative is for such individuals to decide that
programming is not for them, which hurts the field of comput-
ing. Turkle and Papert [44, p. 4] observed “On an individual
level, talent is wasted, self image eroded. On the social level,
the computer culture is narrowed”. A key part of program-
ming is figuring out the simplest rules such that the system

230

(a) (b) (c)

Figure 2: The BlockStudio Interface: (a) Main Screen, (b) UI Elements, and (c) Sprite Library. Names of UI Elements in (b):
1-Palette, 2-Grid, 3-Mode Button, 4-Preview Window, 5,6-Rule Panels, 7-Sprite Button, 8-Undo/Redo, and 9-Snapshot Button.

behaves the right way globally. This has traditionally been
bound up with the ability to write code, but could be isolated
and given to students separately (and earlier).

This paper reports on an exploratory prototype called Block-
Studio, which is an authoring environment aimed at empow-
ering children to create their own games and animations,
while using no code blocks, very little text, and no knowl-
edge of programming constructs like loops or branches.

We now describe related systems, followed by a brief
overview of the current prototype. We then share formative
assessments from two participatory sessions with an inter-
generational co-design group, showing the potential of our
approach. We conclude with a discussion of what we have
learned from these early sessions, our future plans and impli-
cations for designers of similar systems.

RELATED WORK
Several authoring environments exist that allow children to
create 2D games and animations. While more nuanced tax-
onomies of such systems exist (for an excellent survey of end-
user programming systems, see [17] and [11]), from our per-
spective, previous systems use one of three basic approaches,
mainly: (a) writing programs, (b) modifying templates, or (c)
combining rewrite rules with programming. We now describe
each of these categories.

Writing programs
One of the earliest environments explicitly aimed at teaching
programming was Alice [33], where users coded in a script-
ing language to build 3D worlds. HANDS [32] combined a
personified computing agent with a simplified programming
language. Systems like Scratch [36] and a later version of Al-
ice [4] used drag-and-drop assembly of code blocks to create
games, animations, and stories, thus sparing novices the frus-
tration of syntax errors. Storytelling Alice [18] was designed
to motivate more girls to learn programming by leveraging
3D animated stories. Recent systems employing code blocks
include Kodu [24], Blockly [9], PencilCode [10], and AppIn-
ventor [48].

From a Cognitive Load Theory [43] perspective, computer
programming has a high intrinsic cognitive load, meaning

that the task itself has a certain complexity which cannot
be reduced. The program specification method (by writ-
ing text or by assembling code blocks) adds additional cog-
nitive load, and we can attempt to minimize this. Mason
and Cooper [25] found that using a subset of the normally
available code blocks when programming Lego Mindstorms
robots led to better learning by novice programmers, im-
proved self-efficacy, and a lowered perception of difficulty.
When designing ScratchJr [7] (aimed at children ages 4-6) its
creators decided to use one third fewer programming blocks
than Scratch. Thus, prior work shows that reducing code
blocks can make such systems more approachable. With
BlockStudio, we are exploring the idea of removing code
blocks altogether, which differentiates our approach from
these systems.

We are also minimizing the use of text in the interface, which
sets our system apart from prior work. Wilson’s report [46]
describes interviews with dyslexic computer programmers,
revealing their challenges when dealing with text. Although
that work dealt with adults, we believe that reducing our de-
pendence on text will make the interface more approachable
for individuals of all ages who struggle with text.

Howland et al. [13] recommend system designers to present
a task at the appropriate level of abstraction for drawing out
the higher-level concepts, without necessarily connecting it
back to programming. BlockStudio allows construction of
branches and loops using only colored blocks, providing the
possibility of expressing programming concepts, while by-
passing the requirement to have textual code, or code blocks
labeled “if then”, “forever”, “repeat”, “repeat until”, etc.

Modifying templates
Some systems support game creation via templates (e.g., side-
scroller, top-down maze, etc.). After instantiating a template,
its appearance can be modified using drag-and-drop assem-
bly of tiles or characters, while other properties like motion
parameters may be modified by editing appropriate property
sheets. Systems like Klik & Play [23], GameMaker [42] and
GameSalad [14] offer multiple templates, trading off the ab-
sence of coding with the memorization of a more text-heavy
UI. The split-attention effect [3] predicts that when users have

231

to integrate information from disparate locations, they expe-
rience a higher cognitive load. We believe that time spent
learning such an interface increases the time required for a
user to build their first artifact, hence we chose not to use
multiple templates.

LittleBigPlanet [41], Gamestar Mechanic [37] and Su-
per Mario Maker [30] restrict users to a single template,
leveraging learners’ prior knowledge of specific games in
their respective environments. BlockStudio has a “lowered
floor” [36], but we also wish to have sufficiently “wide walls”,
hence we decided not to design the environment around a sin-
gle template. We wish to enable children to create games, an-
imations, stories, quizzes, and other digital artifacts that may
not neatly fit into a single category.

Combining rewrite rules with programming
An alternate technique called Programming By Example (or
Programming By Demonstration) allows users to demon-
strate examples in order to generate code. One flavor of
PBE uses rewrite rules, where users select a rectangular re-
gion of the screen and specify before-after appearances for
that portion. Systems like ChemTrains [2], Vampire [27],
Agentsheets [34], AgentCubes [35], KidSim [39] and Stage-
Cast [40] use rewrite rules combined with programming, thus
reducing the burden of authoring. AgentSheets (its successor
AgentCubes) and KidSim (later named StageCast) are based
on a grid and use visual rewrite rules to specify changes in the
grid occupancy pattern. In StageCast, children edit rules in-
side a separate dialog using code blocks, instead of via direct
manipulation. AgentSheets is agent-based, and uses a built-in
language called AgenTalk, which allows for the construction
of games and simulations.

Our approach to authoring dynamic behavior is inspired by
the idea behind visual rewrite rules — i.e., specification
of concrete changes to objects, forming a before-after pair.
However, we do not ask the user to demarcate a region for
expressing a visual rewrite rule. Instead, we let them use di-
rect manipulation to modify any block’s state in response to
a stimulus. BlockStudio eschews code blocks and thereby,
rule editors (which depict rules using code blocks). A rule
is edited by deleting and creating it. This trades off the time
penalty of re-creating rules with the simplicity of no code.

ToonTalk [16] maps concurrent constraint programming onto
a set of metaphors from the physical world, (e.g.: “birds carry
things to their nests”) allowing children to contruct programs
using these graphical analogies. In ToonTalk, generalized be-
havior is programmed by demonstrating a concrete activity
to a robot (thus “training it”), then opening up the robot’s
thought bubble and editing the program therein. Though
training is closely related to visual changes on-screen, the
connection from robot actions to these graphical objects is
via symbolic manipulation of object properties.

BlockStudio differs from ToonTalk in two important regards:
First, generalized rules are inferred entirely from concrete
changes performed on graphical objects. This lets children
avoid inspection and editing of symbolic programs. Second,
objects are not imbued with special significance (like birds,

robots, boxes, hammers) – thus, one can start creating arti-
facts without having to learn these metaphors.

Other PBE Systems
PBE has a rich history in the broader domain of end-user pro-
gramming systems (see [5], [22], [28], and [29]). Early sys-
tems like Chimera [20], Mondrian [21], and Lemming [31]
allowed the user to create graphical editing macros from ex-
amples, but did not have any notion of time, which precluded
creation of games or animations. Pavlov [47] combined the
idea of PBE with a timeline-based interface (like Macrome-
dia Director) to allow creation of games. On average, users of
the system (Master’s-level students of Computer Science) re-
quired 80 minutes to learn it, before they could start building
a game. Gamut [26] allowed construction of entire applica-
tions using PBE, but users required several hours to do this.

Our goals are distinct from such systems in two respects.
First, we specifically focus on children ages 9-14 as our target
users. Second, we wish to empower these users to prototype
their creative ideas within a short time, ideally completing
their first BlockStudio game within an hour.

SYSTEM DESCRIPTION
BlockStudio lets users arrange colored rectangles (blocks) on
screen to determine the appearance of their game, following
which they can specify dynamic behavior for these blocks by
demonstrating responses to runtime stimuli. All blocks have
attributes (color, position, size, and velocity), and any combi-
nation of these can be modified in response to stimuli.

Stimulus-Response Rules
A stimulus-response pair is called a rule. Stimuli include user
inputs (clicks on blocks or keypresses), called touches, and
overlap between blocks, called collisions. Rules are charac-
terized by the type of stimulus (keypress, click or collision),
and when blocks are involved (click and collision), param-
eterized by the color of the blocks involved in the stimulus.
Blocks can be assigned appearances other than a solid color
(like a person or a spaceship), by choosing from a built-in
library of images (Figure 2c).

No Code Blocks and Little Text
BlockStudio users never encounter code blocks. Rules are
applied solely based on color, meaning that a rule defined
using one yellow block applies to all yellow blocks. Thus, in
BlockStudio, color determines behavior.

There are only a few places in the interface that use text:
the two rule panels (which say “Touch Rules” and “Collision
Rules”), the mode button (which says “Done” in Demonstra-
tion mode), the prompt “What Happens When?” (also shown
in Demonstration mode), and the label instructing users to
click the game preview in order to exit the Sprite Library.

Design Interface
The BlockStudio interface (Figure 2b) consists of the palette,
from where blocks are dragged and dropped onto the grid,
which is a rectangular space to organize blocks. The mode
button switches the system between various modes (we de-
scribe modes in more detail in the next subsection).

232

Figure 3: BlockStudio’s three modes and overall workflow.

The preview window is always live, showing the result of
playing the game/animation one second into the future. It
is intended to help fine-tune block positions and velocities.

As rules are created, the rule panels reflect their existence via
rule widgets (Figure 4) representing the corresponding stim-
uli. There are two panels, one for touch rules (keypresses and
clicks) and one for collision rules. Scroll buttons are added to
a rule panel when there are more rules than can be shown at
once.

Clicking the sprite button opens the sprite library (Figure 2c),
which lets the user assign appearances to blocks from a built-
in library of images. We compute convex hulls from these
images using the Gift-Wrapping method [15] and use the re-
sulting polygons for overlap testing. If no sprite is assigned,
a rectangle is used for this purpose.

The arrangement of blocks on the grid is regularly saved and
accumulated in a linear history, accessible via the Undo/Redo
buttons. There is also a camera button, which lets users man-
ually save the current grid appearance to a built-in clipboard
area.

Modes
The BlockStudio interface can be in Pause, Play, or Demon-
stration mode (Figure 3). In Pause mode, time does not ad-
vance. Here, children can arrange blocks and modify their
attributes so as to achieve a desired static appearance, like for
a game level or an animation. Changes made to blocks in this
mode do not affect any rules. In Pause mode, clicking the
mode button causes a switch to Play mode.

In Play mode, the game or animation is playing (i.e. time is
advancing) and a stimulus causes the corresponding response
to be executed, provided a rule exists for that stimulus. In
Play mode, the blocks and the mode button are visible (click-
ing the mode button causes a switch to Pause mode). The
rule panels are visible, but greyed out (to indicate that rules
cannot be deleted in Play mode). All other UI elements, like

(a) (b)

Figure 4: Rule widgets in BlockStudio for various stimuli: (a)
Mouse clicks on yellow, blue, and green blocks (b) Collisions
between yellow-blue, green-blue, and yellow-green blocks.

the grid, the palette, and the preview window are hidden. The
mode button looks like the symbol for “Pause”.

While in Play mode, after encountering a stimulus for
which no rule exists, BlockStudio transitions automatically
to Demonstration mode, where the user must specify how
the blocks’ arrangement should be affected in response to
this stimulus. Possible changes include creation/deletion of
blocks and modification of their attributes, like color, posi-
tion, size, and velocity. In this mode, the grid is shown,
because this helps to align blocks and demonstrate precise
horizontal/vertical motions. The rule panels are hidden, be-
cause one cannot delete a rule as part of a demonstration. The
palette is visible, because one can create blocks as part of a
demonstration. Also, the mode button turns red and displays
the word “Done”, indicating that BlockStudio is waiting for
the user to finish demonstrating their desired response.

Clicking “Done” ends the demonstration, at which point the
altered game state is examined by the inference system to cre-
ate a new stimulus-response rule. The system then returns to
Play mode.

The transition from Demonstration to Play mode must be ini-
tiated by the user, because it is impossible to reliably detect
when the user has finished modifying the state.

Inference of rules
After the user ends their demonstration (by clicking “Done”),
we synthesize generalized rules based on color from their
specified changes, via a process we call inference. A de-
tailed description of our inference mechanism is beyond the
scope of this paper, but it relies on pattern matching, looking
for differences between the blocks on the grid before and af-
ter the demonstration. For instance, a difference in position
is inferred to mean “move the selected block by the speci-
fied amount”. A difference in color is inferred to mean “set
the selected block’s color to be X”. A block’s presence be-
fore and absence after the demonstration implies deletion of
that block, whereas the reverse scenario implies creation of
a new block. Comparing block velocities before and after
a collision, we can infer “bounce”, “stop”, etc. An inferred
rule is added to the list of known rules, with a rule widget
added to the appropriate Rule Panel (depending on whether it
is a touch or collision rule) indicating its presence. Figure 4a
shows three rule widgets corresponding to mouse clicks on
blocks, while Figure 4b depicts rule widgets for collisions

233

(a) (b)

(c) (d)

Figure 5: Specifying keypress rules in BlockStudio: (a) Cre-
ate block, click Play (b) Press left arrow key, drag block left
(c) Click Done (d) Repeat for other arrow keys. Now the yel-
low block can be moved using cursor keys. (Prompt and rule
widgets in (b), (c), and (d) magnified for readability)

among blocks. Figure 5d shows rule widgets for various ar-
row keypresses.

While in Demonstration mode, after every mouse click, the
preview window shows the effect of the inferred rule (based
on the demonstration so far). Thus, users can try out vari-
ous “what-if scenarios” during their demonstrations, before
committing to a particular response for that stimulus.

Workflow
The authoring workflow in BlockStudio is incremental, vi-
sual, and based on concrete examples.

Incremental means that the artifact is built up piecemeal, and
the overall design does not need to be clear at the start. Thus,
movement patterns for a player’s character can be specified
first, or background objects can be laid out in detail before do-
ing other things. This can be more accommodating of work-
ing styles like Turkle and Papert’s “bricolage” [44].

Visual means that all input uses graphics, not text. This is
in contrast to text-heavy interfaces or code blocks (annotated
using text), which require users to read this text in order to
understand their function.

Concrete examples means that behavior is specified via ac-
tual occurrences, instead of via abstract specifications (in the
form of code). David C. Smith [38] refers to such represen-
tations as “analogical”, in contrast to symbolic or “Fregean”
representations. Thus, to specify the outcome for a particular
situation requires the user to first set up this situation, which
ties in well with an incremental approach to authoring.

For example, to program a rule of the form “when the left ar-
row key is pressed, all yellow blocks should move left”, the
user creates a yellow block, clicks Play, presses the left arrow

key, drags the yellow block left and clicks “Done” (Figure 5).
Thus, the user provides a concrete example of what needs to
happen (moving the block), as opposed to an abstract specifi-
cation thereof (like “block.x = block.x - 10”). Besides avoid-
ing code in the form of text or blocks, this also avoids negative
numbers, coordinate systems, pixels, etc.

CO-DESIGN SESSIONS
The BlockStudio interface is based on the idea of avoiding
code, and minimizing text for children ages 9-14. Our long-
term goal is to maximize its usability by children who strug-
gle with text and/or find coding a challenge. As an initial
step in our designs, we organized two participatory design
sessions with an intergenerational co-design group of adults
and children, to gauge what works well, what does not, and
discover elements that could be added to BlockStudio to im-
prove its usability. We chose to engage in Druin’s Coopera-
tive Inquiry [6] to work with children as design partners. At a
broader level, we hoped that these sessions would inform our
ideas for future work. We now briefly describe the co-design
sessions, and continue our discussion of its results in the next
section.

Each session lasted for 90 minutes. We worked with 10 child
participants (four boys, six girls, ages 7-11) and half of them
had some programming knowledge (i.e., Scratch), while the
rest had little or none. Each session had seven adult design re-
searchers working with the children. For each session, we be-
gan with the “Question of the Day” and presented a 10-minute
demonstration on a large screen on how to use BlockStudio
and then allowed them 40 minutes with the BlockStudio inter-
face to create a game (session 1) and remix a game (session
2). In both sessions, we used a co-design technique called
Stickies [45], in which we collected the children’s likes, dis-
likes and design ideas for BlockStudio onto notes with ad-
hesive backing. Using these notes, we created a frequency
analysis of the common design and interaction themes around
how to improve BlockStudio.

For the first session, we wanted to focus on the usability of
BlockStudio, so we primed them with the question “what is
your favorite game?”, before letting them explore the sys-
tem for 40 minutes for game creation. The second co-design
session focused on modification of existing creations. The
second co-design session focused on modification of existing
creations, which is a longer-term goal. Therefore, we primed
the children with the question “if you could change some-
thing about a game, what would it be?”. For this session, we
gave them three existing BlockStudio artifacts as a “starting
point” and gave them around 10 minutes to modify a copy of
each of them. The artifacts were as follows:

An animation of a mouse avoiding a cat and eating some
cheese.

A puzzle game, where a block had to be moved through a
maze (using the cursor keys) to a star. Certain parts of the
maze had to be visited in a certain order to unblock obstacles.

A space game, where falling asteroids had to be aimed at us-
ing the left/right arrow keys, and shot by pressing the space-
bar to fire a pellet.

234

In both sessions, we arranged the participants into dyads (five
dyads total), with an adult observer per dyad. We encour-
aged children to think aloud, while the observers coded their
remarks as “Likes”, “Dislikes”, or “Design Ideas” using the
Stickies technique.

Findings from first session
The overall feedback from the children was that they enjoyed
using the system to author games. Their Likes showed a pos-
itive outcome for usability (“easier than Scratch”, “easy and
I have control over it”, “deleting rules”) and variety (“spawn-
ing new things on collision”, “collision possibilities”, “world
creation control”). Dislikes included block creation (“hav-
ing to click-drag to create things”), elements being too small
(“when square too small, hard to control”), or not small
enough (“blocks not thin enough”), and certain system-wide
choices, like automatic block deletion (“blocks going off-
screen should not be deleted, but instead just stop there”).
Noteworthy Design Ideas included expanding existing pos-
sibilities (“more colors”, “a color picker to select your own
color”), introducing new possibilities (“make/upload own art-
work”, “backgrounds”, “sounds”, “rotate blocks”), and short-
cuts (“button to duplicate block”, “button to reset all colors to
default rectangle appearance”, “button to clear grid”).

Findings from second session
The Likes gathered from the second session showed a posi-
tive perception of the variety possible (“making a story com-
pletely different”, “creating a teleporter”, “like that you can
modify the game”).

Many Dislikes and Design Ideas were similar to those from
the first session, like asking for more customization (“more
designs”, “background music”, “sound effects”).

A new Dislike we saw was due to personal preference (“dis-
like storytelling – needs more thinking and editing”). Most
of the remaining Dislikes and Design Ideas were from chil-
dren struggling to figure out the existing rules in these arti-
facts (“hover text explanation of collision rules that exist”,
“use text to describe an item”, “don’t know what brown blue
boxes are doing”).

DISCUSSION
The first session provided positive feedback that the system
was fairly usable by children with ten minutes of instruction,
providing a fast ramp-up for these first-time users. Though
some of our young co-designers had prior programming ex-
perience and the rest did not, BlockStudio held the interest of
both sets of children, which allows us to recognize the poten-
tial of environments that are free of code and text-heavy ele-
ments. Some children wanted to automatically create more
objects, at which point they were taught how to construct
a loop-like design pattern (bouncing a block repeatedly be-
tween two other blocks). Once they knew the pattern, they
were able to use it for their own purposes. This has multiple
implications for systems that don’t use code blocks.

First, these findings show that children (some of whom had
never written programs), were able to understand the idea un-
derlying loops, and then implement it in their own games,

implying that the next step would be to explain to them what
they did and how it relates to coding. A separate study will
be necessary to establish how well this sort of understand-
ing transfers to actual programming tasks, but we consider
this a favorable outcome for our early design prototype. This
should be of interest to CS education researchers, because
this could allow individuals with learning disabilities to learn
programming, using non-textual methods.

In addition, we have observed other design patterns in prior
informal sessions, including “lives” (respawning a charac-
ter), “score” (counting up/down), “progress bar” (filling up
a space), etc. Thus, even systems devoid of code blocks
have a vocabulary of design patterns, which novices cannot
be expected to know. Therefore, designers of code-free sys-
tems need to teach these patterns in a scaffolded way, paying
attention towards eventually transitioning learners to code.
Template-based systems often have a library of such patterns
ready to drag-and-drop into one’s project. Thus it might be
worth studying how to let advanced users save and reuse pat-
terns that they have created.

During the second session, the children were now comfort-
able with the interface and knew how to construct games us-
ing the system. Focusing their attention on modifying exist-
ing artifacts revealed that children tended to erase all exist-
ing blocks and rules before authoring their game. This is un-
surprising, since there is no mechanism in our current proto-
type for describing the response corresponding to a particular
rule. This suggests that future work should focus on finding
ways to visually convey what the game’s code “does”. We
believe this visualization challenge to be a rich space for ex-
ploration by UI designers. Even for textual or block code
based systems, it might be worth quantifying how often chil-
dren read and then modify programs in systems using code
blocks, compared to a system like BlockStudio.

One participant was interested in seeing the generated code
that controls the blocks. He was the most advanced user in the
group and had experience creating games in Scratch. While
contrary to our goal of eliminating code from the interface,
this suggests that we could let novices create programs using
PBE, but after a certain level of proficiency, reveal the inner
workings via code blocks. One possibility is that BlockStudio
can be designed to help lead into more complex block coding
environments (e.g., Scratch).

Though BlockStudio is primarily aimed at older children
(ages 9-14), we are curious to investigate how well adult
novices can use this system, especially if they have struggled
to create programs using conventional methods. In particular,
we would like to conduct further studies investigating how
BlockStudio might allow families to learn, create, and code
together. Our overarching goal is to enable groups of diverse
individuals to collaborate, combining their strengths to real-
ize creative ideas. This early version of BlockStudio is our
first step towards this objective.

CONCLUSION
We have presented an exploratory prototype system called
BlockStudio, aimed at empowering young novices to create

235

2D games and animations without writing code. We have
summarized existing authoring systems and contrasted their
code and/or text-based approaches with ours. A brief de-
scription of our system was provided, followed by future di-
rections for BlockStudio and other similar systems, gleaned
from two participatory co-design sessions with children. Our
initial findings contribute ideas to CS education researchers
and UI designers by showing the possibility of separating the
concepts underlying coding from the text aspects thereof.

SELECTION AND PARTICIPATION OF CHILDREN
We found ten children (4 boys and 6 girls) using snowball
sampling, and their ages ranged from 7 through 11. We had
IRB consent and assent throughout the process. Ethnically,
there were 4 White, 2 Native, 2 mixed heritage (Asian/Black,
White/Asian), and 2 Asian participants, and they were a mix
from public schools and homeschooling (N = 1).

ACKNOWLEDGEMENTS
The first author would like to thank artists Brian Britigan,
Barbara Krug, and Marianne Lee for creating BlockStudio
artwork, Nova Barlow for coordinating early pilot studies,
and Dan Butler, Kathleen Tuite, and Adam Smith for thought-
ful feedback on early prototypes of the system. We also wish
to thank our KidsTeam UW co-designers, without whose help
this work would not have been possible.

REFERENCES
1. Bandura, A., Barbaranelli, C., Caprara, G. V., and

Pastorelli, C. Self-efficacy beliefs as shapers of
children’s aspirations and career trajectories. Child
development (2001), 187–206.

2. Bell, B., and Lewis, C. Chemtrains: A language for
creating behaving pictures. In Visual Languages, 1993.,
Proceedings 1993 IEEE Symposium on, IEEE (1993),
188–195.

3. Chandler, P., and Sweller, J. The split-attention effect as
a factor in the design of instruction. British Journal of
Educational Psychology 62, 2 (1992), 233–246.

4. Cooper, S., Dann, W., and Pausch, R. Alice: a 3-d tool
for introductory programming concepts. In Journal of
Computing Sciences in Colleges, vol. 15, Consortium for
Computing Sciences in Colleges (2000), 107–116.

5. Cypher, E., and Halbert, D. C. Watch what I do:
programming by demonstration. The MIT Press, 1993.

6. Druin, A. Cooperative inquiry: developing new
technologies for children with children. In Proceedings
of the SIGCHI conference on Human Factors in
Computing Systems, ACM (1999), 592–599.

7. Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers,
M. U., Bontá, P., and Resnick, M. Designing scratchjr:
Support for early childhood learning through computer
programming. In Proceedings of the 12th International
Conference on Interaction Design and Children, ACM
(2013), 1–10.

8. Games, Y. Game maker.
https://www.yoyogames.com/gamemaker, 2007.
[Online; accessed 20-May-2016].

9. Google. Blockly.
https://code.google.com/p/blockly/, 2012. [Online;
accessed 20-May-2016].

10. Google. Pencil Code. https://pencilcode.net/, 2014.
[Online; accessed 20-May-2016].

11. Guzdial, M. Programming environments for novices.
Computer science education research 2004 (2004),
127–154.

12. Hasan, B. The influence of specific computer
experiences on computer self-efficacy beliefs.
Computers in Human Behavior 19, 4 (2003), 443–450.

13. Howland, K., Good, J., and Nicholson, K.
Language-based support for computational thinking. In
Visual Languages and Human-Centric Computing,
2009. VL/HCC 2009. IEEE Symposium on, IEEE
(2009), 147–150.

14. Inc., G. GameSalad. http://www.gamesalad.com/,
2009. [Online; accessed 20-May-2016].

15. Jarvis, R. A. On the identification of the convex hull of a
finite set of points in the plane. Information Processing
Letters 2, 1 (1973), 18–21.

16. Kahn, K. Toontalk - an animated programming
environment for children. Journal of Visual Languages
& Computing 7, 2 (1996), 197–217.

17. Kelleher, C., and Pausch, R. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys (CSUR) 37, 2 (2005), 83–137.

18. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM (2007),
1455–1464.

19. Ko, A. J. Attitudes and self-efficacy in young adults’
computing autobiographies. In Visual Languages and
Human-Centric Computing, 2009. VL/HCC 2009. IEEE
Symposium on, IEEE (2009), 67–74.

20. Kurlander, D. Graphical editing by example in chimera.
Watch What I Do: Programming by Demonstration,
Cypher, A.(ed.) (1993), 270–290.

21. Lieberman, H. Mondrian: a teachable graphical editor.
In INTERCHI (1993), 144.

22. Lieberman, H. Your wish is my command: Programming
by example. Morgan Kaufmann, 2001.

23. Lionet, F., and Lamoureux, Y. Klik and Play.
http://knpforschools.webs.com/, 1994. [Online;
accessed 20-May-2016].

24. MacLaurin, M. B. The design of kodu: a tiny visual
programming language for children on the xbox 360. In
ACM Sigplan Notices, vol. 46, ACM (2011), 241–246.

236

https://www.yoyogames.com/gamemaker
https://code.google.com/p/blockly/
https://pencilcode.net/
http://www.gamesalad.com/
http://knpforschools.webs.com/

25. Mason, R., and Cooper, G. Mindstorms robots and the
application of cognitive load theory in introductory
programming. Computer Science Education 23, 4
(2013), 296–314.

26. McDaniel, R. G., and Myers, B. A. Building
applications using only demonstration. In Proceedings
of the 3rd international conference on Intelligent user
interfaces, ACM (1998), 109–116.

27. McIntyre, D. W., and Glinert, E. P. Visual tools for
generating iconic programming environments. In Visual
Languages, 1992. Proceedings., 1992 IEEE Workshop
on, IEEE (1992), 162–168.

28. Myers, B. A. Taxonomies of visual programming and
program visualization. Journal of Visual Languages &
Computing 1, 1 (1990), 97–123.

29. Myers, B. A., Ko, A. J., and Burnett, M. M. Invited
research overview: end-user programming. In CHI’06
extended abstracts on Human factors in computing
systems, ACM (2006), 75–80.

30. Nintendo. Super Mario Maker.
http://supermariomaker.nintendo.com/, 2014.
[Online; accessed 20-May-2016].

31. Olsen Jr, D. R., Ahlstrom, B., and Kohlert, D. Building
geometry-based widgets by example. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, ACM Press/Addison-Wesley Publishing Co.
(1995), 35–42.

32. Pane, J. F., and Myers, B. A. The impact of
human-centered features on the usability of a
programming system for children. In CHI’02 Extended
Abstracts on Human Factors in Computing Systems,
ACM (2002), 684–685.

33. Pierce, J. S., Audia, S., Burnette, T., Christiansen, K.,
Cosgrove, D., Conway, M., Hinckley, K., Monkaitis, K.,
Patten, J., Shochet, J., et al. Alice: easy to use interactive
3d graphics. In Proceedings of the 10th annual ACM
symposium on User interface software and technology,
ACM (1997), 77–78.

34. Repenning, A. Agentsheets: a tool for building
domain-oriented visual programming environments. In
Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems,
ACM (1993), 142–143.

35. Repenning, A., and Ioannidou, A. Agentcubes: raising
the ceiling of end-user development in education
through incremental 3d. In Visual Languages and
Human-Centric Computing, 2006. VL/HCC 2006. IEEE
Symposium on, IEEE (2006), 27–34.

36. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J., Silverman, B., et al. Scratch: programming
for all. Communications of the ACM 52, 11 (2009),
60–67.

37. Salen, K. Gaming literacies: A game design study in
action. Journal of Educational Multimedia and
Hypermedia 16, 3 (2007), 301–322.

38. Smith, D. C. Pygmalion: A computer program to model
and stimulate creative thought. Birkhäuser Basel, 1977.

39. Smith, D. C., Cypher, A., and Spohrer, J. Kidsim:
programming agents without a programming language.
Communications of the ACM 37, 7 (1994), 54–67.

40. Smith, D. C., Cypher, A., and Tesler, L. Programming
by example: novice programming comes of age.
Communications of the ACM 43, 3 (2000), 75–81.

41. Sony. Little Big Planet.
http://littlebigplanet.playstation.com/, 2008.
[Online; accessed 20-May-2016].

42. Staffieri, A. GameMaker.
http://alstaffieri.com/gamemaker.html, 1995.
[Online; accessed 20-May-2016].

43. Sweller, J. Cognitive load theory, learning difficulty, and
instructional design. Learning and instruction 4, 4
(1994), 295–312.

44. Turkle, S., and Papert, S. Epistemological pluralism:
Styles and voices within the computer culture. Signs
(1990), 128–157.

45. Walsh, G., Foss, E., Yip, J., and Druin, A. Facit pd: a
framework for analysis and creation of intergenerational
techniques for participatory design. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, ACM (2013), 2893–2902.

46. Wilson, D.-M. Multimodal programming for dyslexic
students. In Proceedings of the 6th International
Conference on Multimodal Interfaces, ICMI ’04, ACM
(New York, NY, USA, 2004), 343–343.

47. Wolber, D. Pavlov: Programming by stimulus-response
demonstration. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (1996), 252–259.

48. Wolber, D., Abelson, H., Spertus, E., and Looney, L.
App Inventor. ” O’Reilly Media, Inc.”, 2011.

237

http://supermariomaker.nintendo.com/
http://littlebigplanet.playstation.com/
http://alstaffieri.com/gamemaker.html

