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Abstract. The paper introduces a finite element method for the incompressible Navier—Stokes equations posed on a closed
surface I' C R3. The method needs a shape regular tetrahedra mesh in R3 to discretize equations on the surface, which
can cut through this mesh in a fairly arbitrary way. Stability and error analysis of the fully discrete (in space and in
time) scheme is given. The tangentiality condition for the velocity field on T is enforced weakly by a penalty term. The
paper studies both theoretically and numerically the dependence of the error on the penalty parameter. Several numerical
examples demonstrate convergence and conservation properties of the finite element method.
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1. Introduction

Fluid equations posed on manifolds naturally arise in mathematical models of lipid membranes, foams,
emulsions and other thin material layers that exhibit surface fluidity and viscosity; see e.g., [2,5,7,31,32].
Recently there has been a growing interest to numerical simulation of fluid systems posed on sur-
faces [1,8,20-22,26-29]. Due to its geometrical flexibility, finite element method is the most popular
numerical approach for surface Darcy, Stokes, Navier—Stokes and coupled bulk—surface fluid problems.
For example, papers [8,22,28] apply surface finite element methods (P;—P; in [22,28] and Taylor-Hood
elements in [8]) to discretize the incompressible surface Navier—Stokes equations in primitive variables on
stationary manifolds. The authors of [21,26,27] rewrite the governing equations in vorticity—stream func-
tion variables, which are scalar quantities for 2D surfaces, and further apply P; finite element methods
to the resulting system. In [1] a steady coupled bulk—surface Navier—Stokes system was also treated by a
finite element method. The present paper contributes to this emerging research field with stability and
error analysis of a geometrically unfitted finite element method introduced here for the Navier—Stokes
equations of incompressible viscous surface fluid.

Discretization of fluid systems on manifolds brings up several difficulties in addition to those well-
studied for finite element methods applied to equations posed in Euclidian domains. First, one has to
approximate covariant derivatives. The present paper exploits embedding of the two-dimensional surface
in R and makes use of tangential differential calculus; see e.g., [16,17,31] for the derivation of surface
fluid equations in terms of exterior differential operators in Cartesian coordinates. This allows us to avoid
the use of intrinsic variables on a surface and makes implementation of the numerical method relatively
straightforward in a standard finite element software. Next, in certain computational approaches—for
example, based on vorticity—stream function variables—to formulate a finite element method, one has
to recover surface curvatures, which is known to be a delicate numerical procedure, unless they are
explicitly available through surface parametrization. The present method does not need this information
and is capable of handling systems posed on implicitly defined surfaces. Another difficulty stems from the
need to recover a tangential velocity field on a surface I'. It is not straightforward to build a finite element
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method which is conformal with respect to this tangentiality condition. In fact, the subspace of finite
element velocity functions uy, satisfying uy, - n = 0 (n is the normal vector field on T') may contain only
zero elements (geometrical locking effect). Two natural ways to enforce the condition in the numerical
setting are either the use of Lagrange multipliers [11] or adding a penalty term to the weak variational
formulation. Following [13,14,16,22,28], we shall enforce the tangential constraint weakly with the help
of a penalty term. Finally, one has to deal with geometric errors originating from approximation of I" by a
“discrete” (e.g., polygonal) surface I'j, or, more general, from inexact integration of finite element bilinear
forms over I'. The effect of this geometric consistency on a finite element error for surface vector Laplacian
equation was studied in [14]. For finite element exterior calculus approximation of the Hodge-Laplacian
operator, the geometric consistency estimates were derived in [15]. We do not address this issue here,
assuming exact integration over T.

The present paper builds on the earlier work on the unfitted trace finite element method (TraceFEM)
for PDEs posed on manifolds embedded in R¢, d = 2,3; in particular we exploit certain ideas found in
[4,10,11,22,24]. The method uses shape regular surface-independent background triangulation and allows
a surface or a curve to cut through this triangulation in an arbitrary way. The choice of the geometrically
unfitted discretization is motivated by the ultimate goal of numerical simulation of fluid flows on evolving
surfaces I'(¢t) [16,17,34]. Unfitted discretizations, such as TraceFEM, allow to avoid mesh reconstruction
for the time-dependent geometry and to treat implicitly defined surfaces. As illustrated, for example, in
[19], TraceFEM works very well for scalar PDEs posed on evolving surfaces, including cases where T'(¢)
undergoes topological changes, and it can be naturally combined with the level set method for implicit
surface representation.

The paper presents a complete error analysis of the TraceFEM for time-dependent incompressible
Navier—Stokes equations on a steady surface. Previous numerical analyses of fluid and related systems on
manifolds include error analysis of fitted and unfitted finite element methods for surface vector-Laplacian
problems in [11,14], respectively, as well as the error analysis of Pi—P; TraceFEM for the steady Stokes
problem in [22]. Thus, the novelty here is the analysis of a time-dependent fluid system and the inclusion
of inertia terms. Furthermore, we allow the surface to have non-trivial vector fields of infinitesimal rigid
transformations. The corresponding velocity vector fields belong to the kernel of the viscous term and so
the PDE system is not dissipative on the whole space of divergence free tangential velocities, but only
on a subspace. The finite element method preserves the corresponding property only approximately, and
handling it requires some less standard considerations.

The remainder of the paper is organized in four sections. In Sect. 2 we recall some elementary no-
tions of tangential calculus, introduce the surface incompressible Navier—Stokes equations and their weak
formulation. We further derive energy balance and basic a priori estimates, which should be helpful in
understanding expected properties of the discrete problem. Section 3 introduces the fully discrete finite
element formulation and discusses necessary implementation details. Stability and error analysis is the
topic of Sect. 4. Here we prove an error estimate of optimal order in the energy norm. We also track
carefully the dependance of the error estimate on the penalty parameter. This reveals the optimal scaling
of this parameter with respect to discretization parameters. Finally, Sect. 5 presents results of a few
numerical experiments, which illustrate the theory.

2. Continuous Problem

Assume that T' is a closed sufficiently smooth surface in R3. The outward pointing unit normal on
I' is denoted by n, and the orthogonal projection on the tangential plane is given by P = P(x) :=
I - n(x)n(x)?, x € T. In a neighborhood O(T) of T the closest point projection p : O(I') — T is well
defined. For a scalar function p : T' — R or a vector function u : I' — R? we define p¢ = pop : O(') — R,
u® = uop : O) — R3 extensions of p and u from I to its neighborhood O(T') along the normal
directions. The surface gradient and covariant derivatives on I' are then defined as Vpp = PVp® and
Vru := PVu®P. The definitions of surface gradient and covariant derivatives are independent of a
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particular smooth extension of p and u off I'. On I' we consider the surface rate-of-strain tensor [12] given
by

1 1
E(u) := 5P(vu +vul)P = 5(vpu + Vru®). (2.1)
We also define the surface divergence operators for a vector u: I' — R3 and a tensor A : ' — R3%3:
divru := tr(Vru), divrA := (divp(e] A), divr(ej A), divlﬂ(egA))T7

with e; the ith basis vector in R3.
For a given force vector f € L?(T')3, with f-n = 0, we consider the following surface Navier—Stokes
problem: Find a vector field u: I' — R3, with u-n =0, and p: I’ — R such that

p (881; + (Vru)u) —vPdivp(Es(u)) + Vrp=f onT, (2.2)

divru=0 onI. (2.3)

Here u is the tangential fluid velocity, p the surface fluid pressure, p and v are density and viscosity

coefficients and u = % + (Vru)u is the full time derivative, i.e. derivative along material trajectories of

surface particles. We further assume v, p and f re-scaled so that p = 1.

Remark 2.1. The operator P divpE,(+) in Eq. (2.2) models surface diffusion, which is a key component
in modeling Newtonian surface fluids and fluidic membranes [12,31]. In the literature, there are different
formulations of the surface Navier—Stokes equations, some of which are formally obtained by substituting
Cartesian differential operators by their geometric counterparts. These formulations may involve different
surface Laplace type operators, e.g., Bochner or Hodge-de Rham Laplacians. We refer to [16] for a brief
overview of different formulations of the surface Navier—Stokes equations.

2.1. Weak Formulation

We assume T is at least C? smooth and compact. Further (-,-) and || - || denote L?(I") inner product and
norm. In what follows, we need both general and tangential vector fields on I'. Hence, we consider the
space V := H(T')® with norm
[l = [[al* + || Vrull?, (2.4)
and its subspaces
Vr:={ueV]|u-n=0}, E:={ueVy|Eu)=0} (2.5)
For u € V we define the orthogonal decomposition into tangential and normal parts:
u=ur+uyn, ur€ Vr. (2.6)

We use the notation from (2.6) further in the text. Subspace E from (2.5) spans all infinitesimal rigid
transformations—also known as Killing vector fields—that may exist for I'. E is a closed subspace of
V1 and dim(E) < 3 for a two-dimensional manifold; see e.g. [30]. We define the Hilbert space V9. as an
orthogonal complement of E in V. We also define L§(I) := {p € L*(I') | [pdz=0}.

Consider the bilinear forms (with A : B = tr(AB”) for A, B € R?*3)

o) = [ (Truw)spds, wontp eV (2.1
a(u,v) = V-/FES(U) :Es(v)ds, u,vevV, (2.8)

b(u,p) = —/p divruds, ueV, pe L*(). (2.9)
r
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A weak formulation of (2.2)-(2.3) reads: Find u € L%(0,T; V¢ (T)) with u; € L?*(0,T; V4 (T)) and
p € L3(T x (0,T)) satisfying u|;—g = ug on I' and

<ut7 ¢>VT><V’T + C(uv u, 111’) + a‘(uv 111’) - b(pv d’) + b(q7 u) = (fv /lﬁb) (210)

for all ¢ € Vp, g € L*(T") and for a.e. t € [0,T].
For divergence free tangential vector fields, we find using integration by parts that the c-form is
skew-symmetric in its second and third arguments:

c(u,v,¥) = —c(u,¥,v), Vuv, € Vyp, divru=0. (2.11)

Testing (2.10) with 9 = u, ¢ = —p, and using (2.11) we obtain the energy balance equality,

1d
—|[u|]? + v||Es(u)||* = (f,u), a.e. t<€0,T]. (2.12)
2.dt
Also for any v € E we have
c(u,u,v) = —c(u,v,u) = — / ul(Vrv)uds = —/ ulE,(v)uds = 0. (2.13)
r r

Consider decomposition u = u’ + u®, u’ € V4, u® € E for all ¢t € [0,7] and test (2.10) with 1 = u®,
g = —p. Thanks to (2.11) and (2.13) we have

c(u,u,u) =0

c(u,u,u®) =0

} = c(u,u,u’) =0.
This and E,(u®) = 0 yield the energy balance both for u® and u® parts of the solution,

u® e li 012 2
S 2 = (£0) and 3P 4 B (0] = (£, u'). (2.14)

We see that system is dissipative on VY., but not on the whole space Vr, if dim(E) > 0. The estimate
[ullze< 0, 7;L2r)) < ol + 2 (£l 1 (0,7;L2(r))

follows immediately from (2.12). To show a bound for the L?(0,7;V) norm of u, we need the surface
Korn inequality below. There exist cx > 0 such that

|Es(V)|| > ck|lv|li for all v e V; (2.15)
see [16]. Since F is finite dimensional (and so all norms on E are equivalent), inequality (2.15) implies
IvII? + |Es(v)||? > Ck|v|3 forall v e Vy. (2.16)

Now with the help of the Cauchy—Schwarz inequality we conclude from (2.12) that
t
[a@®)” < fuolf® +2/0 [£(s)[|-1l[u(s)1 ds
t t
[ IR s < ol 2t [ 1) |-t s

where || - ||—1 is the dual norm for V-norm. From (2.12) we also have

/nE DIPds < 2 ol + /Hf -1 l[u(s)ll ds.
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Therefore, thanks to (2.16), we get

Citv / u(s) |2 ds < v / ([a()[12 + |1 Ba(u(s))|?) ds

< @m) ol + (14 260) [ 1))l ds

1 ! 1 ¢
< (5 +0) Ial? + @+ 2000t [ I)IE s+ 100 [ uio) s
0 0

After cancellation, this implies

[ullr20,7;v) < c(l[uoll + £l r2(0,7;v7))- (2.17)
A discrete counterpart of (2.17) will be important for the error analysis further in the paper.
2.2. Some Further Useful Results

We shall also need the space
V,.:={ucL*T)® :ur € Vy, uy € L*(')}, with |Ju

v, = lurli + rllun]?,

where we introduce parameter 7 > 0 in the definition of the norm for the convenience of finite element
analysis in Sect. 4. The following embeddings are obvious:

Vr CVCV,cL*I)>

One useful observation is that bilinear forms in (2.7)—(2.9) are well defined and continuous on the larger
space V.. To see this, one first notes the identity Vru = Vyrur +uyH, for any u € V, where H := Vrn
is the shape operator (second fundamental form) on I'. Hence, using H = H” we also get

Es(u) = Es(ur) +uyH, divru = divrur + untr(H). (2.18)

This identity allows to define Vru, Eg(u) € L?(I')3*? and divru € L*(T) for all u € V.. Moreover, for
a C? surface ||H|| ) < C < 0o and one shows with the help of Cauchy-Schwarz inequality,

vilv.,, wuevV, veV, (2.19)
ql, uev,, qgeL*T). (2.20)

a(u,v) < c|lul

b(u,q) < c|lul

Vi

Vi
Using H = H”, Hn = 0, we also work out for the trilinear form,
c(u,v,¥) = c(ur,vr,¥r) + c(ur,vnn, Pr)
< lurllza@ IVrverlle @) llvrloar
+ llurllza@myllvn 2@ lrllLar) (2.21)
< llurllpam)lv]

< dflur|h[lv]

v 17 llay
"pTHlv

where for the last inequality we used the embedding H'(T') C L*(T"). A sharper estimate for the c-form
follows from the Gagliardo—Nirenberg inequality,

Vi

1 1
larlLary < cllurl?[juz|{; (2.22)
see e.g., [18]. We close this section noting that the following infsup condition for b(v, p) form can be easily
shown [16],
b
sup (v,p)

> collp|| for all p € LE(T). (2.23)
veVY || Hl
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3. Finite Element Method

For the discretization of the variational problem (2.10) we apply the trace finite element approach (Trace-
FEM) introduced in [24] for elliptic equations on surfaces and extended in [22] for the surface steady
Stokes problem. The TraceFEM is a geometrically unfitted discretization technique in a spirit of XFEM
and cutFEM. Therefore it allows very flexible treatment of complex and implicitly defined surfaces. To
apply the method, we assume that I is strictly contained in a polygonal domain  C R3, which is our
computational domain. We consider a family {7, },~0 of shape regular tetrahedral tessellations of 2. The
subset of tetrahedra that have a nonzero intersection with I' is collected in the set denoted by Thr. For
the analysis of the method, we assume {’ThF th>o to be quasi-uniform with the characteristic mesh size h.

The domain formed by all tetrahedra in 7,1 is denoted by QL. On T,I' we use a standard finite element
space of continuous functions that are piecewise-polynomial of degree 1. This so-called bulk finite element
space is denoted by Vj,

Vi ={veC@Q):veP(T) forany T € T,'}.

The numerical approach allows higher order polynomial spaces, and we comment in the text, where
modifications are required for this. However, in this paper we analyse and experiment with the P; spaces.
The velocity and pressure finite element spaces are

U, = (V)3 Qn:=VinLyT).

Restriction of a finite element function on I' is an element of V,, i.e. it does not necessarily satisfy the
u - n = 0 condition. It is not straightforward to build a finite element method which is conformal with
respect to this tangentiality condition. As discussed in the introduction, we use a penalty method to
enforce the tangentiality condition weakly.

To define the finite element method, we also need an extension n¢ of the normal vector from I'" to Qg
We choose n = Vd in QF, where d is the signed distance function to I'. In practice, d is often not available
and thus we use approximations. This and other implementation details are reviewed in Sect. 3.1. We
introduce the following finite element bilinear forms:

ap(u,v) = 1// Es(u): Es(v)ds + 7'/ unvN ds + pu/ (Vun) - (Vvn) dz, (3.1)
r r or

sn(p. q) pr/ Vp-Vqdaz, (3-2)
or

with some real parameters 7 > 0, p, > 0, p, > 0. The forms are well defined for p,q € H'(}),
u,veHY(Q])3.

Assuming a constant time step At = L, we use the notation u*(x) := u(t*, x), t* = kAt and similar
for p. The semi-implicit time discretization and the trace finite element method result in the following

scheme: Given uf;l, uf;z € Uy, find (uﬁ,pl}j) € Uy x Qp, solving

([uh]f 7vh) + ah(uzv Vh) +c” (ﬁfw ulga Vh) + b(Vh,pZ) = (fk7 Vh)
b(uii, qn) — Sh(plﬁa an) =0
for all v, € Uy, and ¢, € Qp, k= 2,3,...,N. In this paper, we consider the second order method with
k—2

k k—1
g dup —4u,” +u, K
[up]; = u

(3.3)

oA , up =2uft —uf2 (3.4)
k

For k =1, we set [uh]iC = (uf —uf~!)/At and @ = u}~'. Following [33] and other work on numerical
analysis of incompressible fluid systems, we explicitly skew-symmetrize the trilinear form,

(w1, v) = %(C(w, w,v) - c(w, v, u)). (3.5)

Due to identity (2.11), this is a consistent modification.
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Remark 3.1 (ap-form). The second term in the definition of a;, penalizes the non-zero normal velocity
component. The third (volumetric) term is the so-called volume normal derivative stabilization [4,10].
The term vanishes for the strong solution u of Egs. (2.2)—(2.3), since one can always assume a normal
extension of u off the surface. The inclusion of this term stabilizes the resulting algebraic system. Indeed,
if p, = 0, then for a natural nodal basis in Uy, small cuts of the background triangulation by the surface
may lead to arbitrarily small diagonal entries in the resulting matrix. The stabilization term in (3.1)
eliminates this problem since for a suitable choice of p, it allows to get control over the L?(£2})-norm of
vy, € Uy, by the problem dependent norm

1
(AL val® + [val2)®  with |[v]2 = an(v, V).
We note that other efficient stabilization techniques exist; see [4] and the review in [23].

Remark 3.2 (sp-form). The bilinear form s, is introduced for finite element pressure stabilization. In
addition to stabilizing the nodal basis with respect to small element cuts, sp-term also stabilizes the
velocity—pressure pair against the violation of the inf-sup condition [the discrete counterpart of (2.23)].
For this reason, both tangential and normal components of the pressure gradient (which together form the
full gradient) are included in the definition of s,. For P;—P; bulk finite elements used in this paper, the
stabilization resembles the well-known Brezzi-Pitkédranta stabilization [3] for the planar Stokes problem.
For higher order elements, the pressure stabilization should be updated to preserve higher order accuracy.
One way of doing this is to split between normal and inf-sup (pressure—velocity) stabilizations

Op Oq

Sh(p, (I) = Pp,1 or In on dx + Pp,2 /QF fih(vrp) fih(VF(J) dx, (3'6)

h
where kj, is a suitably defined elementwise ‘fluctuation’ operator; see e.g., [9] for the planar case. This or
other possible ways to stabilize the method for higher order finite element pairs will be studied elsewhere.

Following the analysis for the surface Stokes problem [22], we set
oy = pu = h, (3.7)

which is a minimal possible stabilization from a wide range of acceptable parameters; see [4,10] for the
analysis of the normal stabilization for scalar problems. We write x < y to state that the inequality
x < cy holds for quantities x,y with a constant ¢, which is independent of h and the position of T' over
the background mesh. Similarly for x 2 y, and x ~ y will mean that both < y and x 2 y hold.

3.1. Implementation Details

We discuss some implementation aspects of the trace finite element discretization (3.3). In the bilinear
forms ap(-,-), ¢(-,-,-) full gradients of the arguments are computed and next projection P is applied.
These can be computed as in standard finite element methods. It is important for the implementation
that in ap(+,-) and ¢*(-,-,-) we do not need derivatives of projected velocities, e.g., of (up)r. To avoid
differentiation of P in the b-form, we rewrite the bilinear form as b(vy, pr) = fr Vrpn-vpds = fF(PVph)~
v}, ds. This differentiation by parts is valid for H'-conforming pressure finite element spaces, as used in
this paper. Implementation then only requires an approximation of n; &~ n and not of derivatives of n.

In the implementation of this method one typically replaces I' by an approximation I', =~ I' such
that integrals over I';, can be efficiently computed. Furthermore, the exact normal n is approximated by
n;, ~ n. In the literature on finite element methods for surface PDEs, this is standard practice. We will
use a piecewise planar surface approximation I', with dist(I',T',) < h2. If one is interested in surface
FEM with higher order surface approximation, we refer to the recent paper [10]. We assume a level set
representation of I':

I'={xeR®: ¢(x) =0},
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with some smooth function ¢ such that |Vé| > ¢y > 0 in a neighborhood of T'. For the numerical
experiments in Sect. 5 we use a piecewise planar surface approximation:

I ={xcR?: I(4(x)) = 0},

where I, (¢(x)) € V}, is the nodal interpolant of ¢. As for the construction of suitable normal approxima-
__Vén(x)

' 1, geve availk . . 4(%) = 196,60l
where ¢y, is a finite element approximation of a level set function ¢ which characterizes I'. This is tech-

nique we use in Sect. 5, where ¢y, is defined as a P, nodal interpolant of ¢. Analyzing the effect of resulting
geometric errors is beyond the scope of this paper; for elliptic PDEs posed on surfaces such analysis can
be found in [4,23,25] and, in particular, in [14], where one finds the geometric error estimates for the
closely related problem with a vector-Laplacian on a surface (this analysis suggests the approximation of
n;, we use here).

tions ny, ~ n, several techniques are available in the literature. One possibility is to use ny (x)

4. Analysis
In this section, we present stability and error analysis of the finite element method (3.3). We allow
non-zero right hand side in the discrete incompressibility condition, i.e., we consider

b(uy, qn) — sn(pf,an) = 9" (an) (4.1)

instead of the second equation in (3.3), where g¥ is a functional on Q. We need this generalization to
properly handle certain consistency terms in the error analysis. For the analysis we also assume

> (4.2)

4.1. Numerical Stability

For the energy balance of the finite element method, we test (3.3) with v;, = uf, ¢, = —pf. To handle
the discrete time derivative (3.4), we use the following polarization identity:

k ~k k— =~ k—1
AAH([up]; ,up) = [kl + flag P = Qo™ 2+ 87 + A [y 1

with [uh]ft = (uj ™ —2uf +uf~')/|At]%. After simple calculations we get for k = 2,3,..., N,
1 ~
g (ol 85 2) + vl ()17 + 7l w1
At k=12 |2 |2
+ T” [nlyy 17+ pull(0 - V)i 72 gr) + ol VERIZ2@r)
O(|At|?) and O(h?) dissipative terms
1 _ ~
= ag U7 1) + (8, k) — o (7). (4.3)

An analogous equality with obvious modifications holds for & = 1. The discrete balance (4.3) resembles
(2.12) up to several dissipative terms. Note that the true solution of (2.2)—(2.3) is tangential to I" and there
is no uy-terms in (2.12). For the finite element solution, we further show that the term 7 Z,Icvzl At||uZ’N ||?
is of order O(|At|* + h? + 771 4+ h7). So its contribution to energy dissipation is of the second order in
space and fourth order in time for the penalty parameter of order h~2. Other dissipative terms, which are
not present in (2.12) [middle line of (4.3)], result from time stepping and stabilization procedures. There
order with respect to discretization parameters is O(]At|3) for the first term and O(h?) for the second
and the third [to see this, note (3.7) and the extra scaling O(h) resulting from the integration over the
thin strip Q}].
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To handle the source term g*(pf) on the right hand side of (4.3), we need the dual norm to the one
induced by the pressure stabilization term:

1
lgll—s == Sup g(@)/llqlls, for g€ @y, llalls = sn(q, q)?;
qeEQn

then it obviously holds, |¢"(pf)| < [Ipf[lsllg"]|-s < F([[PEIZ + lg¥[% ). In the same way, we treat the
forcing term |(f*,vF)| < [[f¥|lv.[[v}|v,. Note that we need a norm on the larger space V, for the
analysis of the discrete problem comparing to the energy estimates in Sect. 2.1. As a consequence of the
Korn inequality (2.16) and (4.2), the V. norm is controlled by the problem dependent norm:

[Vlv., S (V2 +|Iv|?)z, forallve V.. (4.4)

Multiplying (4.3) by 4At and summing up for & = 1,...,n and treating the g* and f* terms as above
we arrive on the following estimate
n n
[ailf® + > At {Jug]? + k2 < upl® + > At {]|E"]lv,
k=1 k=1

willv. +llg" 2.} (4.5)

To estimate the V,-norms of u}, we proceed as in the continuous case of Sect. 2.1, with the only change

that instead of (2.16) we use (4.4) and summation _,_, At in place of fot . These arguments lead to the
estimate

> Al S bl + 0 A {IE1R, + 1912, } - (4.6)
k=1 k=1
Next we apply the Cauchy-Schwarz inequality to the f*-term in (4.5),

> Ay,

k=1
and use (4.6) to estimate the second term on the right hand side. Thus (4.5)—(4.7) lead to our final
numerical stability estimate

il + D At { a5, + kI3 S [lapl® + > At {Ilfkll%; + IngHi} : (4.8)
k=1 k=1

ubllv. < AHEFR, + D At (4.7)
k=1 k=1

for n = 1,2,...,N. We note that the norm ||g*|_s is mesh-dependent through parameter p, in the
definition of s; form. We admit the presence of such term on the right-hand side of the stability estimate
for the following reason: for incompressible surface fluids, either we have g¥ = 0 or we apply (4.8) for an
equation with a consistency term ¢*, which scales with A in a suitable way. Next, we analyse convergence
of the method. We start with consistency estimates.

4.2. Consistency Estimates

Further we need I' € C?% assumption, since we deal with normal extension of functions from I' to QE
and we need the extended normal vector field to be at least from C?(Q}). For the normal extension of a
sufficiently smooth function v defined on T', the following estimates will be useful [24,25]:

2 | Vro|| = | Vol p2ory,  for all v € HY(D),
h% ||U|| ~ ||’U||L2(Q}:)7 for all v € LQ(F), (49)

e |[vll gy 2 [0llgzr),  for all v € HA(T).

Applying the first estimate in (4.9) componentwise and using that normal derivatives vanish, we also get
for all v.e HY(I')3:
1
IVvlirz@ry S A2 v (4.10)
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Recall the notation u® = u(t*), p* = p(t*). Testing (2.10) with ¥ = Pvy|r for v;, € V}, and ¢ = ¢4
for g5, € Qp, we find that u, g satisfy

([u]i€ Vi) + ah(uk,vh) + c*(ﬁk7 uk,vh) + b(vh,pk) = (fk,vh) + consistﬁ(vh) (4.11)
b(u,qr) — sn(p", an) = consistl (qn) '

for all v, € Uy, and g, € Q, with
consist? (vy,) ::([u]f —w ("), vp) + (@ —uF,uF vy) + g (uF v vn)

— ic(uk, vp, N1, ub)
consist;f(qh) = —sn(p", qn).
Note that Pvy, yields to vy, in some forms, since u;(t%), [u]; and £* are tangential to I' and ¢(u*, u¥, vj, yn)
= 0 holds.
For further analysis we need certain regularity for the solution to the surface Navier—Stokes system.
Assumption 4.1. The solution of (2.2)—(2.3) is such that
ue L>(0,T; H*(T)%), pe L>(0,T; H'(T))
diu d?’ll (412)
e L0, T; HY(I)?), i=1,2, —= € L>®(0,T;L*(I")?).
L eIROTH(Y), =12 E e LT AT

Lemma 4.1. Assume (4.12), then the consistency error has the bound

lconsistt (vi)] < (JAH2 +772) ||va

V., |consisty(gn)| S Pllanlls, k> 2. (4.13)

Proof. We treat consist(vy) term by term:

[(ue(t7) — [u]f), v)]

i k=22 t k—1Y2
t—t Lt
- /(/Ic Q(ZLT)umdt_/k 1(At)lltttdt> vy dx
T th— tl—

SIAL2 suplugee|[[vall
telth—2,tk]

S AP ugee|l oo 0,502 0y IVl v -

Using the definition of the trilinear form, identity Vru = Vrur + uyH, and estimates (2.21), we have
1, , ~

F_ub ub v, = §(c(uk —uf,uf, vy,) = (@ — u, vy, uh))

1 ~ ~
=5 (20(u’c —uf uF v ) / vp n (W — u*)THU® dx)
r

*(u

SIAP sup gl pa ey (IVeu* | sy Va2l + llon, v 0¥ s ry)
teth—2 tk]

S AP |wee || pos 0,118 (o IV rul e 0,720 0y || V|
S AL gl poc 0,75 1 (o) 1l o 0,7 120y [V v, -

In the last inequality we use embedding H(T') € L*(T") and (4.2). Further, we compute

S et llonnll S 72 a1 [vallv..

lapn (u”, v, yn)| = v /Es(uk) : Hup, n ds
r

le(u®, v, ym,u?)| = S ||uk||%4(F)||Uh7N”

/( (uk)THuk)vh,N ds
r

_1
S [ lon,vll S 772 [u*[[F]1val

V-
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For the second consistency term we have thanks to the definition of the s-norm, (3.7) and (4.9):
[consisty, (an)| < [0 |sllanlls S VRIVE* |2 (r lanlls S BIVEp*|lanlls
S hlIplle 0, 7;m1 () llanlls-
Now (4.13) follows from the assumptions (4.12) on the regularity of u and p. O

For k=1 estimate as in (4.13) holds with |At|? replaced by |At|.
Let Ef = u* —u), EF = p* — pf, subtracting (3.3) from (4.11) we obtain the error equations

(Bul®,vi) + an(BE, v4) + ¢ (G, BE, v,,) + b(vi, BF) = consist! (vi,) — ¢ (BE, u¥, vi,),
A . o (4.14)
b(Equ qh) - Sh(Epa q}L) = COHSIStp(qh)7

for all v, € Uy, and ¢, € Q.

4.3. Error Estimate in the Energy Norm

We let uf = Z(u*) € Uy, and p§ = Z(p*) € QF be the Lagrange interpolants for (extensions of) u® and
p* in QL we assume both surface velocity and pressure to be sufficiently smooth so that the interpolation
is well-defined. The following approximation properties of u’f and p’f are well-known from the literature;
see e.g, [23-25]:

1
lu =}l + A Vr(a = uf)| + A2 [ V(a = uf)| L2 op) < Ch?|ullgzr)

\ (4.15)
lp = PEI + Al Ve (o = 2D + 22 IV (p = PPl 20y < Chlpllae ()

We emphasize that a constant C' in (4.15) depends only on the shape regularity of tetrahedra from QE,
but not on how I' intersects them.

Following the standard line of arguments, we split the error into finite element and approximation
parts,

E; = (u* —uf) + (uf —up), Ey= " —pf) + (0f —ph).
—_—— Y —_—— Y
ek eﬁ eV, ek 62 €Qp
Equation (4.14) yields
(lenlt s va) + an(el, va) + ¢* (@}, ef, vi) + b(va, €f)
= consist? (v;,) — interpol® (vi,) — ¢* (EE, u¥, vy,), (4.16)

b(ef:, qn) — sn(ef, qn) = consist}(gn) — interpol} (gx),
for all v, € Uy, and g, € Qp,, with the interpolation terms
interpol” (vy,) = (e ]t Vi) +an(ef,vy) + (ke vy) + b(v, eb),
interpoly (gn) = b(e*, qn) — sn(e", qn)
We estimate the interpolation and ¢* terms on the right hand side in the following lemma.

Lemma 4.2. Assume (4.12), then it holds

linterpol® (v;,)| < (h + 72 h2 + h|[uk

v.) [vallv.,  linterpol®(an)| < Allanlls,

- (4.17)
e (B, u*, vi)l S (h+ 85D IIvallve, k=1,2....
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Proof. We extend uk, k =1,..., N, for all t € [t*~1,#*] as the Lagrange interpolant of u(¢) in all nodes
from Q} . Since (u}); is the nodal interpolant for u;, we have thanks to (4.15) that [|e.|| < hllug| 1 (r) for
t € [0,T). Let k > 2, with the help of this bound and the Cauchy—Schwarz inequality we treat the first
term in interpol® (v;,),

& 3 ek _ ekfl 1 ekfl _ ek72
g le]; - virds| < 3 Al +§ AL [[vall
3 tk 1 tk—l
= |At™! <2 /k 1e,g(s) ds|| + 3 /k . e (s)ds ) [Ivall
th— th—

1
2

3 e 3 1 -1

_1

<iah (2 / le(s)|2ds | + 2 / lee)Ids | | Ival
2\ S 2\ o

S hoosup . lluell gy Ivell S Rllagl 2o o, 75m (r)

te[th—2 tk]

Similar we handle the term with [e]iC for & = 1. Other terms in interpol® (v;) are handled in a straight-
forward way using the Cauchy—Schwarz inequality, (2.21), (4.15) and (4.9):

1 1
anfe’,va) < <|\ek\\1 + 74 bl + b e i apy) Ivallv.
(h+ 3R [ ey + b3 [0 | 2oy ) 1Vl
<h+wh2>nu

o lvallv.,

hll

S
c*(uy, e, vn) S |y
b(vh, )5 h|

For the second interpolation term interpol’lf(qh), we similarly have by (4.15) and (4.9)
b(e*, an) S " IIVranll S B2 u® ||z IVean ] < B2 (0¥ || mz ) [ Van|
3
< 020t g2y [Vanll L2 ary S Bl [z lanlls,

[sn(e®, @)l S Plp" oy lanlls-

Note that we used the estimate |[Vgn| < k™2 ||Va|| 2(qry. which is elementary, since Vg, is constant in
each tetrahedra from QF; see e.g., [25, Lemma 4.3] for the (more general) estimate. Finally, we estimate

" (B, u¥,vi)| < [e" (€, u, vi) | + [e*(&F, u*, vi)|

Sl ulivallv, + IGEIIVEu® (| Loy Iva,zllzewy + 165 IIVevalllu®] o)

< hllu® Ly [[vallv. + ek ]lu

In the last inequality we used L*(I') ¢ HY(T'), L>=(I') C H*(T') and (due to Vrvy = Vrvyr + v, vH)
IVeve|l S ||vnellv,. We finally obtain the desired estimate (4.17) using the assumption on the regularity

of the solution: |||z o, rys) S 1, [P* 10y < Pl @y S 1, [0 52y < [l 0,200y
<1

We now apply the stability estimate in (4.8) to the error function, satisfying Eq. (4.16), and we further
use the results in Lemmas 4.1 and 4.2 to estimate the right hand side. Since the estimate in Lemmas 4.1
holds for k > 2, we first obtain that



JMFM A Penalty Finite Element Method Page 13 of 18 14

n
eI+ > At {llerl3. +llerl2}
k=2

v.)

n
S llehll® + (14 7h*)R? + At + 771+ At > (|65 + 7 |[up|
k=2
n—1
Sllenll® + (14 7h?)h? + At + 771 + ALY Jlef % (4.18)
k=0
For the last inequality, we applied the stability bound (4.6) for the finite element solution to conclude
that At> ), [uy||f. < 1.

On the first time step of (3.3), the implicit Euler method is applied and instead of the first consistency
bound in (4.13) we have |consist’, (vy,)| < (JAt| + 77 2) [|vy||v.. Moreover, an examination of the proof of
Lemma 4.1 reveals that this estimate can be improved to |consisty, (vi)| < (|At|||va| + |on.n])- All other
estimates of consistency and interpolation terms in Lemmas 4.1 and 4.2 remain the same. Using this in
(4.16) for k = 1 together with v;, = e,ll, qn = e’,?L leads after simple calculations to

lenl* + At(lenls + llenll?) < llehl* + (1 +7h*)h? + |At[* + 7.

Substituting the above inequality to (4.18) and noting that [le)|| = 0 and [le},||* + At|e},|2 = At[lef||3,,
we get

n n—1
lerl® + > At {lleflIy. + lleklls} < (1+ AR + At + 771 + ALY lef]*.
k=1 k=0

We next apply the discrete Gronwall inequality to obtain
n
llerl® + > At {lleflly. + llekllZ} < (14 rh*)h* + At + 771
k=1
The triangle inequality and approximation properties (4.15) lead to the final error bound:

IE202 + 57 At {IEEIE. + IBEIZ} S (14 7h2)h? + At 477, (4.19)
k=1
form=1,...,N.
The main result is summarized in the following theorem.

Theorem 4.3. Assume I' € C® and the solution to the surface fluid system (2.2)-(2.3) is sufficiently
smooth such that (4.12) holds. For the trace finite element method (3.3) assume that the background
mesh is quasi-uniform, and parameters satisfy (3.7) and (4.2). Then the finite element method is stable
and the error estimate (4.19) holds.

From the result in (4.19) we see that the optimal penalty parameter 7 scales with h=2. This is
consistent with the analysis of the steady surface Stokes and vector Laplacian problems in [11,22]. Note
that the squared L?(T")-norm of normal component u’fL n on the left hand side of (4.19) is multiplied by
7, which leads to the estimate Y, _; At||uﬁ,N||2 < (r7Y+ 22 +|At|*7 =1 + 772, This and (4.19) yields
the following corollary.

Corollary 4.4. Let T ~ h™2. Under assumption of Theorem 4.3 the following error estimate holds:

N
k12 k12 k2 2 4
e IEEIR + 32 A (IEEIE + BSIE) <+ At

,,,,,

(4.20)

N
> Atlluy y|* S B0+ AL
k=1
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-6~ max; [[u* —ujf|
. 1/2
= (S Atk ub])
1/2
(S Atfuy -y [2)"

T2 (T A - 2
--- O(nh)

Error

Refinement level ¢

Fia. 1. Velocity and pressure error in various norms against the refinement level £. Results were computed with
At=2""%/10=0(h), 7 =h;? and v = 1

5. Numerical Results

The section collects results of several numerical experiments that illustrate the performance of the finite
element method on a model example of the Navier—Stokes equations posed on a unit sphere embedded
in a cubic computational domain Q = [~5/3,5/3]3. We examine the accuracy of the method by varying
discretization and penalty parameters. All results agree well with the error bound in Theorem 4.3 and
Corollary 4.4. In addition, we include an example which studies energy conservation property of the
method.

In all experiments we build a family of unfitted triangulations 7, of © consisting of nj sub-cubes,
where each of the sub-cubes is further refined into 6 tetrahedra. Here £ € N denotes the level of refinement,
with mesh size hy = %13 and ny = 271, We set parameters Pp = pu = h, which is in agreement with (3.7).
In all experiments BDF2 (two-step backward differentiation formula) discretization of the time derivative
as in (3.4) is used. To perform numerical integration, we consider nodal interpolant I (¢) € Vj, of the
level set function ¢(x) = [|x||2 — 1, x = (21,22, 23)7. Further all integrals were computed over I'j,, which
is the zero level of Ij(¢). All implementations were done in DROPS software package [6].

5.1. Convergence to Exact Smooth Solution

We first test the convergence of the finite element method (3.3) for the example of a synthetic smooth
time-dependent solution. For the exact solution, we define

u=f(z1)&,, p=0, (5.1)
where f(z,t) = 1+ z(1 — 3exp(—t)), and &, is the tangential vector field corresponding to the rigid
rotation of the sphere about z axis normalized to have [|€,]| = 2. We note that £, € E and divru = 0.

The right hand side f is defined such that (5.1) is exact solution to (2.2)—(2.3).

Following the result in Corollary 4.4 we set 7 = h™2 and vary the mesh size and time step. Results
are shown in Fig. 1 for v = 1 and Fig. 2 for v = 0.01. For both values of the viscosity parameter, the
convergence plots follow the same pattern. We observe the first order convergence in L?(0,T; H*(T))
velocity norm and the second order convergence to zero of the normal velocity component. Both trends
are in agreement with (4.20). In L>(0,T; L?(T")) velocity norm we see second order convergence, which
is better than was predicted by our analysis. The pressure converges with a rate between O(h) and

O(h?).
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-6~ max; [[u* —uf|
(Z & Atllu* —uf|)
1/2
(Zk Atlluy, - ny, HZ) /

= (S Al - pf2)?
--- O(hY)

1/2

Refinement level ¢

F1a. 2. Velocity and pressure error in various norms against the refinement level £. Results were computed with
At =2'"/10=O(h), 7 = h;? and v = 0.01

—>T1=1
—a-7=2
——T7=28

T =232
==== reference

Kinetic energy

Fic. 3. Evolution of the kinetic energy for numerical solutions for different values of the penalty parameter 7. Other
parameters are fixed: | =5, At = 0.01 and v = 1

5.2. Penalty Parameter Dependence

In this section we demonstrate that taking penalty parameter 7 large enough is important for the nu-
merical accuracy, but letting 7 — oo leads to larger errors in agreement with (4.19). We consider two
velocity—pressure pairs:

(@) u=zfi(z,t)€,, p=0, (b)Y u= fo(t)Pe,, p=ay®+z, (5.2)

where fi(z,t) = 2+ z(4 — 10exp(—t)), f2(t) = 1 — exp (1 — 6t), and calculate right hand sides such
that (a) and (b) are exact solutions to (2.2)—(2.3). We choose both solutions such that divru # 0, since
otherwise the consistency term E,(u) : Huy vanishes for the spherical I' and does not contribute to the
error equation. For both solutions we observe convergence of the method (plots not included) if we use
the same refinement strategy as in Sect. 5.1. We next compute finite element solutions approximating
(5.2)(a) with several values of the penalty parameter 7 = 2% k = 0,...,5. We fix mesh refinement level
¢ =5 and time step At = 0.01. Figure 3 shows the evolution of the kinetic energy for numerical solutions
versus reference data. For 7 = 2° the computed values match well with the reference curve.

Further we study how the error depends on the variation of 7 and compute finite element solutions
approximating (5.2)(b) with values of the penalty parameter 7 = 2%, k = 0,1,...,20. Again the mesh
refinement level ¢ and time step are fixed. Results for ¢ = 4, At = 0.02 are shown in Fig. 4 and they are
in a good agreement with error estimate (4.19). We note a large plateau of optimal values for the penalty
parameter, which makes its easier to choose a suitable 7.
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-0~ maxy, [u® — uf||

12y 1/2
= (e Atfut —uf})
A e g2\ 1/2
112 (At - 12

Error

0 5 10 15 20
logy T

Fic. 4. Error norms for velocity and pressure plotted against the penalty parameter 7. The results were computed with
v=1¢=4, At =0.02, t = [0, 1]
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F1c. 5. Kinetic energy evolution for FE Killing vector field, v = 0

5.3. Energy Conservation for Infinitesimal Rigid Transformation

Tangential flows of infinitesimal rigid transformations on manifolds do not dissipate energy; see the first
equality in (2.14). We mentioned already that this property does not necessarily carry over to the discrete
flow systems. Numerical diffusion produced by such flows is due to the geometry and functional spaces
approximations. In this section, we demonstrate this numerical phenomena and show that both viscous
and inertia terms contribute to the numerical dissipation. Moreover, the amount of the dissipation depends
on the form of nonlinear terms. In all numerical experiments so far, we used the convective form. In the
existing literature on numerical simulations of the surface Navier—Stokes equations, convective [8,27] and
rotational [20,28] forms have been used. In the rotation form, one computes for the Bernoulli pressure
instead of kinematic pressure and the nonlinear terms take the form (rotru)n x u = (Vru — Viu)u.
While equivalent for smooth solutions, this forms lead to discrete systems with possibly different numerical
properties.

Figures 5 and 6 show the kinetic energy history for the numerically simulated evolution of the Killing
vector field on the unit sphere. We set initial velocity equal to P, Lagrangian interpolant of &, and
run simulations for two refinement levels (¢ = 3 and ¢ = 4) and two viscosity parameters (v = 0
and v = 1). Experiment with v = 0 illustrate the contribution of non-linear terms and corresponding
pressure (through stabilization) to numerical energy dissipation, while experiment with v = 1 illustrate
the contribution of numerical viscous stresses. As should be expected, grid refinement lead to a rapid
decrease of numerical diffusion in both cases. The results of computations without nonlinear term in
Fig. 5 (labeled by “w/o nonlinear”) show that the volumetric stabilization and normal penalty alone do
not produce any significant diffusion. The rotation form leads to more dissipative solution. The likely
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| = 4 Stokes
= 5 Stokes
= %= | = 4 convective
—%— [ = 5 convective
= += | = 4 rotational
—4— [ = )5 rotational
=== reference

Kinetic energy

Time

Fic. 6. Kinetic energy evolution for FE Killing vector field, v = 1, At = 0.1

explanation is that the Bernoulli pressure contributes significantly to the discrete energy balance (4.3)
through the third term in the middle line.
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