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Abstract We introduce meshfree finite difference methods for approximating nonlin-
ear elliptic operators that depend on second directional derivatives or the eigenvalues
of theHessian. Approximations are defined on unstructured point clouds, which allows
for very complicated domains and a non-uniform distribution of discretisation points.
The schemes are monotone, which ensures that they converge to the viscosity solution
of the underlying PDE as long as the equation has a comparison principle. Numerical
experiments demonstrate convergence for a variety of equations including problems
posed on random point clouds, complex domains, degenerate equations, and singular
solutions.

Mathematics Subject Classification 35J15 · 35J60 · 35J70 · 65N06 · 65N12

1 Introduction

In this article we introduce meshfree finite difference methods for approximating a
class of nonlinear elliptic partial differential equations (PDEs) that can be written in
terms of second directional derivatives and/or the eigenvalues of the Hessian matrix in
two dimensions. This encompasses a number of important equations including Pucci
minimal/maximal equations, a PDE for the convex envelope of a function, certain
obstacle problems, and the Monge-Ampère equation. The methods are defined on
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76 B. D. Froese

unstructured point clouds, which allows for non-uniform distribution of discretisation
points and complicated geometries. As long as the PDE satisfies a comparison princi-
ple, these approximations are guaranteed to converge to the weak (viscosity) solution
of the underlying PDE.

1.1 Background

Fully nonlinear elliptic partial differential equations (PDEs) arise in numerous applica-
tions including reflector/refractor design [26], meteorology [11], differential geometry
[9], seismology [15], astrophysics [21], mesh generation [8], computer graphics [38],
and mathematical finance [20]. Because of the prevalence of these equations in appli-
cations, the development of robust numerical methods is a priority.

In recent years, the numerical solution of these equations has received a great deal
of attention, and several new methods have been developed including finite difference
methods [4,19,33,39,42], finite element methods [1,5,7,41], least squares methods
[12], and methods involving fourth-order regularisation terms [17]. However, these
methods are not designed to compute weak solutions. When the ellipticity of the
equation is degenerate or no smooth solution exists, methods become very slow, are
unstable, or converge to an incorrect solution.

Using a framework developed by Barles and Souganidis [2], provably con-
vergent (monotone) methods have recently been constructed for several fully
nonlinear equations [24,36,37]. Methods with a similar flavour have been devel-
oped by constructing Markov chain approximations for equations with a control
interpretation [6,29]. However, these methods are typically defined on uniform
Cartesian grids and do not lend themselves to adaptivity or complicated geome-
tries.

State-of-the-art methods have recently been applied to problems in refractor design
[18], which involve the solution of a two-dimensional Monge-Ampère equation with
degeneracy. In that setting, it was desirable to introduce large gradients into the data.
Non-monotone methods were found to be unstable, while monotone methods were
restricted to Cartesian grids and could not effectively resolve the large gradients in
the data. In order to improve results in this and other applications, it is necessary
to develop convergent, adaptive methods for solving fully nonlinear elliptic equa-
tions.

1.2 Contribution of this work

This article introduces a framework for constructing convergent approximations of
elliptic equations onunstructured point clouds,which is a first step towards the adaptive
methods that are needed by applications. We focus on two-dimensional equations that
can be written in terms of various second-directional derivatives,

F(x, u(x), uθθ (x); θ ∈ A ⊂ [0, 2π)) = 0, (1)
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Meshfree finite difference methods… 77

where the admissible set A is used to characterise a finite subset of all unit vectors in
R
2.
We also consider functions of the eigenvalues λ−(D2u(x)) ≤ λ+(D2u(x)) of the

Hessian matrix,

F
(
x, u(x), λ−(D2u(x)), λ+(D2u(x))

)
= 0, (2)

which can be written in terms of the minimum and maximum second directional
derivative over all possible directions in R2.

Equations (1)–(2) encompass a large range of nonlinear elliptic equations. For
example, as long as the PDE operator is a convex function of the Hessian matrix, it
can be expressed in the form of (1), though the precise details of this representation
may be non-trivial [16, Proposition 5.3].

The key idea is to select stencils that align as closely as possible with the relevant
direction eθ = (cos θ, sin θ). This can be accomplished by relying on a suitable search
neighbourhood,whichmust be large relative to the spatial resolution of the point cloud.
The resulting schemes are not consistent in the traditional sense—in particular, they
are not exact on quadratic functions. However, the truncation error does vanish as the
point cloud is refined, and the schemes are monotone.

We describe conditions on the point cloud that ensure the existence of an appro-
priate meshfree finite difference approximation. Following the work of Barles and
Souganidis [2], we prove that our methods converge to the viscosity solution of the
PDE as long as the equation satisfies a comparison principle.

Using the framework of filtered methods [25], these meshfree schemes also open
up many new possibilities for designing higher-order, provably convergent numerical
methods on general meshes or point clouds.

1.3 Contents

In Sect. 2, we review viscosity solutions and a convergence framework for fully non-
linear elliptic equations. In Sect. 3, we describe our new meshfree finite difference
approximations and provide convergence proofs. In Sect. 4, we present several com-
putational examples that demonstrate the power of these new schemes. In Sect. 5, we
provide concluding remarks and discuss future work.

2 Weak solutions

One of the challenges associated with the approximation of fully nonlinear PDEs is
the fact that classical (smooth) solutions may not exist. It thus becomes necessary to
interpret PDEs using some notion ofweak solution, and the numericalmethods that are
used need to respect this notion of weak solution. The most common concept of weak
solution for this class of PDEs is the viscosity solution, which involves transferring
derivatives onto smooth test functions via a maximum principle argument [10].
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78 B. D. Froese

2.1 Viscosity solutions

The PDEswe consider in this work belong to the class of degenerate elliptic equations,

F(x, u, D2u(x)) = 0, x ∈ Ω ⊂ R
2. (3)

Definition 1 (Degenerate elliptic) The operator F : Ω ×R× S2 → R is degenerate
elliptic if

F(x, u, X) ≤ F(x, v,Y )

whenever u ≤ v and X ≥ Y .

Remark 2 The PDE operators (1), (2) that we consider in this work are degenerate
elliptic if they are non-decreasing functions of their second argument (u) and non-
increasing functions of all subsequent arguments (which involve second directional
derivatives).

Since degenerate elliptic equations need not have classical solutions, solutions need
to be interpreted in a weak sense. The numerical methods developed in this article are
guided by the very powerful concept of the viscosity solution [10]. Checking the
definition of the viscosity solution requires checking the value of the PDE operator
for smooth test functions lying above or below the semi-continuous envelopes of the
candidate solution.

Definition 3 (Upper and lower semi-continuous envelopes) The upper and lower
semi-continuous envelopes of a function u(x) are defined, respectively, by

u∗(x) = lim sup
y→x

u(y),

u∗(x) = lim inf
y→x

u(y).

Definition 4 (Viscosity subsolution (supersolution)) An upper (lower) semi-continu-
ous function u is a viscosity subsolution (supersolution) of (3) if for every φ ∈ C2(Ω̄),
whenever u − φ has a local maximum (minimum) at x ∈ Ω̄ , then

F (∗)∗ (x, u(x), D2φ(x)) ≤ (≥)0.

Definition 5 (Viscosity solution) A function u is a viscosity solution of (3) if u∗ is a
subsolution and u∗ a supersolution.

Remark 6 This definition also accounts for Dirichlet boundary conditions if the PDE
operator is extended to the boundary as

F(x, u(x), D2φ(x)) = u(x) − g(x), x ∈ ∂Ω.

This provides a weak interpretation of the boundary conditions, which can also allow
for viscosity solutions that are discontinuous at the boundary.
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An important property ofmany elliptic equations is the comparison principle, which
immediately implies uniqueness of the solution.

Definition 7 (Comparisonprinciple)APDEhas a comparisonprinciple ifwheneveru
is an upper semi-continuous subsolution and v a lower semi-continuous supersolution
of the equation, then u ≤ v on Ω̄ .

Proving this form of the comparison principle is highly non-trivial, with very few
results available for general degenerate elliptic equations. Instead, this is typically done
on a case-by-case basis with techniques adapted to the PDE in question. In some cases,
where viscosity solutions are discontinuous, the comparison result must be relaxed so
that u ≤ v only in the interior of the domain Ω . In that case, Theorem 18 is modified
to guarantee convergence only at points in the interior of the domain. Full details of
these comparison results go well beyond the scope of the present article. We refer to
[23] for an example of a recent result that rigorously establishes interior comparison
and convergence for the equation of prescribed Gaussian curvature.

2.2 Approximation of viscosity solutions

In order to construct convergent approximations of elliptic operators, we will rely
on the framework provided by Barles and Souganidis [2] and further developed by
Oberman [36].

We consider finite difference schemes that have the form

Fε(x, u(x), u(x) − u(·)) = 0 (4)

where ε is a small parameter.
The convergence framework requires notions of consistency and monotonicity,

which we define below.

Definition 8 (Consistency) The scheme (4) is consistent with the Eq. (3) if for any
smooth function φ and x ∈ Ω̄ ,

lim sup
ε→0+,y→x,ξ→0

Fε(y, φ(y) + ξ, φ(y) − φ(·)) ≤ F∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
ε→0+,y→x,ξ→0

Fε(y, φ(y) + ξ, φ(y) − φ(·)) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 9 (Monotonicity) The scheme (4) is monotone if Fε is a non-decreasing
function of its final two arguments.

Schemes that satisfy these two properties respect the notion of the viscosity solution
at the discrete level. In particular, these schemes preserve the maximum principle and
are guaranteed to converge to the solution of the underlying PDE.

Theorem 10 (Convergence [36])Let u be the unique viscosity solution of the PDE (3),
where F is a degenerate elliptic operator with a comparison principle. Let the finite
difference approximation Fε be consistent and monotone and let uε be any solution
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of the scheme (4), with bounds independent of ε. Then uε converges uniformly to u as
ε → 0.

We remark that the above theorem assumes existence of a bounded solution to
the approximation scheme. This is typically straightforward to show for a consistent,
monotone approximation of a well-posed PDE, though the precise details can vary
slightly and rely on available well-posedness theory for the PDE in question. When
the scheme is strictly monotone (proper), stability follows immediately from a discrete
comparison principle as in [36, Theorem8]. Formore complicated equations, the result
can be established by constructing smooth sub- and super-solutions of the PDE, which
are also sub- and super-solutions of the approximation scheme due to consistency.
Application of the comparison principle then leads to existence of a bounded solution
[23, Lemmas 35–36].

2.3 Wide stencil schemes

In order to construct a convergent approximationof thePDE (3), it is sufficient to design
consistent and monotone approximation schemes for second directional derivatives of
the form

Fε
θ (x, u(x), u(x) − u(·)) ≈ −∂2u

∂e2θ
.

These can then be substituted directly into the PDE operator F , which by assumption
is a monotone function of these derivatives.

However, constructing monotone approximations of these operators is not straight-
forward. In fact, results by Motzkin and Wasow [35] and Kocan [28] demonstrate that
there are elliptic operators for which no bounded finite difference stencil will enable
the construction of a consistent, monotone approximation.

Oberman [37] addressed this issue by introducing the notion of wide stencil finite
difference schemes. These schemes use centred difference approximations of the form

∂2u

∂e2θ
= u(x + hθeθ ) + u(x − hθeθ ) − 2u(x)

h2θ
+ O(h2θ ) (5)

for directions eθ that align with the grid. That is, there should exists some hθ such
that hθeθ = (m, n) where m, n ∈ Z. These finite difference approximations cannot
simply rely on nearest neighbours; instead, they require wide stencils. As stencils are
allowed to grow wider, more directions can be accommodated.

A fixed stencil width will only permit the discretisation of second derivatives in
finitely many directions. If these approximations are used for general elliptic operators
of the form (3), theywill introduce additional discretisation error of the form dθ , which
corresponds to the size of angles that can be resolved on the stencil. See Fig. 1.

While provably convergent wide stencil finite approximations can be constructed
for nonlinear elliptic equations of the form (3), they suffer fromseveral limitations.One
restriction is that these approximations are definedonly onuniformCartesian grids, and
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Fig. 1 A wide finite difference
stencil

do not extend naturally to non-uniform grids or non-rectangular domains. A second
problem with wide stencil schemes is the challenge of dealing with discretisation
points near the boundary, where it is not possible to construct a wide stencil lying
inside the domain. One option is to use an (inconsistent) narrower stencil near the
boundary and accept the resulting boundary layer in the computed solution. In some
cases, it is possible to use an altered scheme near the boundary, which is typically
complicated and highly dependent on the particular form of the boundary conditions.

3 Meshfree finite difference approximations

In this section, we introduce a framework for constructing monotone approximations
of second directional derivatives on general point clouds. These approximations apply
easily to complicated geometries and non-uniform distribution of discretisation points.
We describe the approximations, and also provide conditions on the point clouds that
guarantee a convergent numerical method.

We focus the discussion on monotone approximation of second directional deriva-
tives; these can then be used to approximate other nonlinear operators as described in
Sect. 3.4.

3.1 Notation

We introduce the following notation.

– Ω ⊂ R
2 is a bounded domain with Lipschitz boundary ∂Ω .

– G ⊂ Ω̄ is a point cloud consisting of the points xi , i = 1, . . . , N .
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82 B. D. Froese

– h = supx∈Ω miny∈G |x − y| is the spatial resolution of the point cloud. In particu-
lar, every ball of radius h contained in Ω̄ contains at least one discretisation point
xi .

– hB = supx∈∂Ω miny∈G∩∂Ω |x − y| is the resolution of the point cloud on the
boundary. In particular, every ball of radius hB centred at a boundary point x ∈ ∂Ω

contains at least one discretisation point xi ∈ G ∩ ∂Ω on the boundary.
– δ = minx∈Ω∩G inf y∈∂Ω |x − y| is the distance between the set of interior dis-
cretisation points and the set of boundary discretisation points. In particular, if
xi ∈ G ∩ Ω and x j ∈ G ∩ ∂Ω , then the distance between xi and x j is at least δ.

– dθ is the desired angular resolution of themeshfreefinite difference approximation.
– r ≡ h(1+ sin(dθ/2) + cos(dθ/2) cot(dθ/2)) is the search radius associated with
the point cloud.

3.2 Approximation scheme

The idea of meshfree finite difference methods is that at each node xi ∈ G in the point
cloud, we examine all other nodes within the search neighbourhood B(xi , r) ∩ G. An
appropriate subset {x j ; j ∈ N (i)}of these points is then selected to form the local finite
difference stencil. Finally, these are used to construct an approximation of the form

∂2u

∂e2θ
≈ F̃θ (xi , ui , ui − u j ; j ∈ N (i)).

Meshfree methods have previously been used to approximate several PDE opera-
tors [3,13,14,27,30–32,40]. However, the approaches contained in these works do not
apply to the construction of monotone approximations of fully nonlinear or degenerate
operators. In fact, from the results of [28,35], we expect that in general no finite search
neighbourhood will be sufficient for the construction of an approximation that is both
monotone and consistent (in the sense that the formal discretisation error goes to zero
as h → 0).

We propose monotone approximations that are not consistent in the traditional
sense; in particular, they will not give exact results on quadratic functions. Instead,
we will accept an additional source of discretisation error dθ relating to how well the
stencil is alignedwith the direction eθ . To build a convergentmethod in this framework,
we will allow the search radius r to depend on the spatial resolution h, with the total
number of points in the search neighbourhood approaching infinity as the point cloud
is refined.

Consider any interior point x0 ∈ G∩Ω . Each point y j , j = 1, . . . , N in the search
neighbourhood B(x0, r) ∩ G can be expressed in polar coordinates (h j , θ j ) in terms
of the rotated coordinate frame defined by the vectors x0 + eθ and x0 + eθ+π/2:

y j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(h j , dθ j ), 0 ≤ dθ j < π/2

(h j , π − dθ j ), π/2 ≤ π − dθ j < π

(h j , π + dθ j ), π ≤ π + dθ j < 3π/2

(h j , 2π − dθ j ), 3π/2 ≤ 2π − dθ j < 2π.

(6)
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Note that dθ j measures the angular distance between the point x j and the given
direction vector x0 + eθ ; in each case, dθ j ∈ [0, π/2]. In particular, we assume that if
the search radius is large enough, each dθ j will be less than some pre-specified angular
resolution dθ . Conditions needed to ensure the existence of these discretisation points
will be established in Sect. 3.3.

In each quadrant, we select the point that alignsmost closelywith the given direction
vector x0 + eθ ,

xi = argmin
y j∈B(x0,r)∩G

{
dθ j | (i − 1)π/2 ≤ θ j < iπ/2

}
, i = 1, . . . , 4. (7)

The existence of these points is established in Sect. 3.3. If more than one value
y j yields the same angular distance, we select the value with the smallest radial
coordinate h j . See Fig. 2 for an illustration of the resulting finite difference sten-
cil.

Next, we seek to approximate the PDE using this stencil. We look for an approxi-
mation of the form

Fig. 2 A finite difference stencil
chosen from a point cloud

θ

x1

x3

x2

x4

x0

(a)

(b)

dθ2

dθ4

dθ3

x1

x2

dθ1

x3

x4

x0
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∂2u

∂e2θ
≈

4∑
i=1

ai (u(xi ) − u(x0))

=
4∑

i=1

ai

[
hi cos θi uθ (x0) + hi sin θi uθ+π/2(x0) + 1

2
h2i cos

2 θi uθθ (x0)

+O(h3i + h2i sin dθi )
]
.

Consistency and (negative) monotonicity require at a minimum

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑
i=1

ai hi cos θi = 0

4∑
i=1

ai hi sin θi = 0

4∑
i=1

1
2ai h

2
i cos

2 θi = 1

ai ≥ 0.

(8)

This type of approximation is unusual in that it does not take into account the
other second derivatives uθ+π/2,θ+π/2 and uθ,θ+π/2. Because of this, the resulting
approximation scheme need not be exact on quadratic functions. However, as long as
the values of dθi are small (i.e. the points are well aligned with the direction eθ ), the
contribution from these second derivatives is also expected to be small.

Ignoring the condition ai ≥ 0, the consistency conditions (8) lead to a system of
three linear equations in four unknowns. Existence of a positive solutions is guaran-
teed, as we demonstrate below, and in general we can expect infinitely many positive
solutions. One way to select a particular solution is to augment the system with an
additional symmetry condition. A natural choice is

a1h1 sin θ1 + a4h4 sin θ4 = 0. (9)

Among other things, this ensures that if one of the neighbours (say x1) exactly aligns
with the eθ direction so that sin θ1 = 0, the non-aligned neighbour x4 will receive no
weight in the approximation scheme. We also observe that this condition combined
with (8) ensures a similar condition for the neighbours x2, x3 that approximately align
with the −eθ direction:

a2h2 sin θ2 + a3h3 sin θ3 = 0.

We can now explicitly solve the linear system (8)–(9). To make the description
more compact, we introduce the notation

Ci = hi cos θi = O(hi ), Si = hi sin θi = O(hidθi ). (10)
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Then a solution of (8)–(9) is

a1 = 2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a2 = 2S3(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a3 = −2S2(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a4 = −2S1(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)
.

(11)

We note that because xi lies in the i th quadrant, we have

C1,C4, S1, S2 ≥ 0, C2,C3, S3, S4 ≤ 0.

This ensures that the coefficients (11) satisfy the positivity condition ai ≥ 0.
We can easily verify that each coefficient ai has a size on the order of at most

ai = O
(

1

h2i

)
.

For example,

a1 = 2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

≤ 2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1)
= 2S4

C2
1 S4 − C2

4 S1

≤ 2S4
C2
1 S4

= O
(

1

h21

)
.

By construction, the overall spatial and angular resolution of the scheme satisfy

max{hi } ≤ r, max{dθi } ≤ dθ.

Thus the resulting (negative) monotone approximation scheme has the form

Dθθu(x0) ≡
4∑

i=1

ai (u(xi ) − u(x0)) = ∂2u(x0)

∂θ2
+ O(r + dθ). (12)

We remark that in the special case of a Cartesian grid and a direction eθ that aligns
with the grid, the approximation resulting from the coefficients (11) reduces to the
usual centred difference discretisation.
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3.3 Existence of consistent, monotone scheme

Next, we establish conditions on the point cloud that will ensure the existence of a
monotone and consistent scheme.

In order to construct the finite difference approximation, it was necessary to posit
the existence of a node xi in each quadrant such that 0 ≤ dθi ≤ dθ < π/2 and
|xi − x0| ≤ r . In this section, we describe conditions on the point cloud G and the
associated search radius r that guarantee this is true.

We consider two different scenarios: points that are a distance of at least r from the
boundary ∂Ω and points that are within a distance r of the boundary.

First we consider points sufficiently far from the boundary.

Lemma 11 (Existence of Stencil (Interior)) Choose any x0 ∈ Ω such that
dist(x, ∂Ω) ≥ r . Then the four discretisation points xi ∈ G defined by (7) exist.

Proof We demonstrate the existence of a suitable node x1 in the first quadrant; the
other cases are analogous.

Our goal is to show that the set

G ∩ {
x0 + teφ | φ ∈ [θ, θ + dθ ], t ∈ (0, r ]} (13)

is non-empty. Consider the closed ball B̄(x0 + (r − h)eθ+dθ/2, h), recalling that

r = h(1 + sin(dθ/2) + cos(dθ/2) cot(dθ/2)).

Using elementary geometric arguments, we see that this small ball is contained within
the above wedge. See Fig. 3.

From the definition of the spatial resolution h, any ball of radius h must contain a
node x1 ∈ G. Since this small ball is containedwithin thewedge (13), we have success-
fully identified a node x1 within the wedge. Thus the wedge contains an appropriate
discretisation node and the monotone stencil exists. �


Secondly, we consider points close to the boundary of the domain. This is a more
delicate calculation since a ball of the usual search radius r may not be contained
in the domain, and the argument used to prove Lemma 11 breaks down. Indeed, for
certain degenerate PDEs, more traditional methods posed on a uniform grid [6,37]
will necessarily be either inconsistent or non-monotone at points near the boundary
where the full stencil width cannot be accessed [28].

In order to ensure the existence of appropriate neighbours close to the boundary,
we need to require that the boundary of the domain is more highly resolved than the
interior. This boundary resolution is characterised by the parameter hB , which will
typically be less than the overall resolution h.

Lemma 12 (Existence of Stencil (Boundary)) Choose any x0 ∈ Ω such that
dist(x, ∂Ω) < r . If the boundary resolution of the point cloud G satisfies hB ≤
2δ tan(dθ/2) and dθ is sufficiently small (depending on the regularity of the domain)
then the four discretisation points xi ∈ G defined by (7) exist.
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x0

h

h

dθ/2

θ

dθ/2

r

x1

a

b

c

a = h sin(dθ/2)
b = h cos(dθ/2)
c = b cot(dθ/2)

= h cos(dθ/ dθ/2)
r = h + a + c

= h dθ/2)

2) cot(

+ cos(dθ/
(1 + sin(

2) cot(dθ/2))

Fig. 3 A node x1 exists within the given search neighbourhood

Proof Our goal is to show that the set

G ∩ Ω̄ ∩ {
x0 + teφ | φ ∈ [θ, θ + dθ ], t ∈ (0, r ]} (14)

is non-empty. If the wedge is contained entirely within the domain Ω , the proof
proceeds as with Lemma 11.

Suppose instead, that this wedge intersects ∂Ω . In particular, we let y, z be the first
points of intersection of the rays x0 + teθ , x0 + teθ+dθ with the boundary ∂Ω . For
small enough dθ , the arc of the boundary between y and z lies completely inside the
search neighbourhood,

|w − x0| < r whenever w ∈ ∂Ω lies between y and z.

By definition, dist(x0, ∂Ω) ≥ δ. Thus the arclength of the boundary contained in
the search neighbourhood is at least 2δ tan(dθ/2) ≥ hB ; see Fig. 4. By the definition
of the boundary resolution, this must contain a discretisation node. �


These two results immediately yield the existence of a monotone discretisation.

Theorem 13 (Existence of Stencil) Let G be a point cloud with boundary resolution
hB ≤ 2δ tan(dθ/2) and let x0 ∈ Ω . If the angular resolution dθ is sufficiently small
then the four discretisation points xi ∈ G defined by (7) exist.

It is also important to verify that the scheme is consistent; that is, the discretisation
error should go to zero as the point cloud is refined. We recall that the search radius is
given by

r = h(1 + sin(dθ/2) + cos(dθ/2) cot(dθ/2)) = O
(

h

dθ

)
.
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Fig. 4 A node x1 exists within
the given search neighbourhood
near the boundary

∂Ω

x2

x3

x4

x1

x0 θ

∂Ω

x0

2δ tan(dθ/2)

δ

dθ/2

θ

x

z

y

1

Then the overall discretisation error in (12) is

O (r + dθ) = O
(

h

dθ
+ dθ

)
.

Consistency requires that as h → 0, both h/dθ → 0 and dθ → 0. In particular, an
optimal choice is dθ = O(

√
h). This requires a search radius of size r = O(

√
h) and

yields a formal discretisation error of O(
√
h).

We emphasise also that the boundary needs to be sufficiently well resolved in order
to construct these schemes. For our optimal choice, we suppose that the distance δ

between any interior node and the boundary is on the order of O(h). Then the spatial
resolution of the boundary should be

hB ≤ 2δ tan(dθ/2) = O(h3/2).
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The more traditional alternative to this higher boundary resolution is to use a lower-
order or even inconsistent scheme near the boundary, which leads to a computed
solution containing a boundary layer [6,37].

3.4 Convergent approximation of nonlinear equations

Now we demonstrate that we can use meshfree finite differences to construct conver-
gent approximations of fully nonlinear elliptic PDEs of the form (1) and (2).

In the case of (1), which involves second directional derivatives in finitely many
directions, we use the approximation

F̃i [u] ≡ F(xi , ui ,Dθθui ; θ ∈ A) = 0. (15)

As in [37], the eigenvalues of the Hessian in 2D can be characterised (via Rayleigh–
Ritz) as the minimal and maximal second directional derivatives,

λ−(D2u) = min
θ∈[0,2π)

∂2u

∂e2θ
, λ+(D2u) = max

θ∈[0,2π)

∂2u

∂e2θ
.

We approximate these by computing the minima (maxima) over a finite subset

Ã =
{
jdθ | j = 0, . . . , �2π

dθ
�
}

, (16)

which introduces the directional resolution error into a second part of the approxima-
tion. Then we can approximate (2) by

F̃i [u] ≡ F

(
xi , ui ,min

θ∈Ã
Dθθui ,max

θ∈Ã
Dθθui

)
= 0. (17)

We note that for boundary nodes xi ∈ G ∩ ∂Ω , we simply enforce the Dirichlet
boundary data and the monotone scheme is

u(xi ) − g(xi ) = 0.

These schemes are consistent and monotone.

Lemma 14 (Consistency) Let F be a continuous, degenerate elliptic operator. Then
the scheme (15) is a consistent approximation of (1).
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Proof Let u ∈ C2. Then

F̃i [u] = F(xi , ui ,Dθθui ; θ ∈ A)

= F

(
xi , ui ,

∂2ui
∂e2θ

+ O(r + dθ); θ ∈ A
)

= F

(
xi , ui ,

∂2ui
∂e2θ

; θ ∈ A
)

+ O(κ(r + dθ))

where κ is the modulus of continuity of F . �


Lemma 15 (Consistency) Let F be a continuous, degenerate elliptic operator. Then
the scheme (17) is a consistent approximation of (2).

Proof Let u ∈ C2. From [37, Lemma 5.3],

min
θ∈Ã

∂2u

∂e2θ
= λ−(D2u) + O(dθ2), max

θ∈Ã
∂2u

∂e2θ
= λ+(D2u) + O(dθ2).

Then

F̃i [u] = F

(
xi , ui ,min

θ∈Ã
Dθθui ,max

θ∈Ã
Dθθui

)

= F

(
xi , ui ,min

θ∈Ã
∂2ui
∂e2θ

+ O(r + dθ),max
θ∈Ã

∂2ui
∂e2θ

+ O(r + dθ)

)

= F
(
xi , ui , λ−(D2ui ) + O(r + dθ), λ+(D2ui ) + O(r + dθ)

)

= F
(
xi , ui , λ−(D2ui ), λ+(D2ui )

)
+ O(κ(r + dθ))

where κ is the modulus of continuity of F . �


Remark 16 If the nonlinear operator F is Lipschitz continuous and we make use of
the optimal scaling r, dθ = O(

√
h), the formal consistency error of the scheme is

O(
√
h).

Lemma 17 (Monotonicity) Let F be a continuous, degenerate elliptic operator. Then
the approximations (15) and (17) are monotone for sufficiently small dθ .

Proof The schemes at a point xi rely on approximations of the second directional
derivatives uθθ that are non-increasing in each ui − u j ; these can be constructed
by Theorem 13. The functions F are non-decreasing in the argument ui and non-
increasing in the uθθ . Thus they are non-decreasing in each ui − u j and therefore
monotone. �
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Theorem 18 (Convergence) Let F be a continuous, degenerate elliptic operator with
a comparison principle and let u be the unique viscosity solution of the PDE (1)
(or (2)). Consider a sequence of point clouds Gn, with parameters defined as in
Sect. 3.1, conditions.

– The spatial resolution hn → 0 as n → ∞.
– The desired angular resolution dθn is chosen so that both hn/dθn → 0 and
dθn → 0 as hn → 0.

– The boundary resolution hnB ≤ 2δn tan(dθn/2).

Let un be the solution of the approximation scheme (15) (or (17)). Then as n → ∞, un

converges uniformly to u.

Proof By Lemmas 14–17 the schemes are consistent and monotone. Therefore they
converge to the viscosity solution of the underlying PDE [2,36]. �


3.5 Filtered schemes

Oneof the apparent drawbacks of themeshfree approximation schemedescribed above
is its low accuracy—formally, it is at bestO(

√
h). Indeed, for certain non-degenerate

equations, schemes as accurate as O(h2) may be possible using regular grids, at least
in the absence of boundary effects [6]. One clear advantage of the meshfree schemes is
their ability to preserve consistency and order of accuracy near boundary points and in
complicated domains.More importantly, though, thesemonotone schemes can provide
the foundation for higher-order convergent filtered schemes as in [25]. This opens up
many possibilities (finite difference, finite element, etc.) for designing higher-order,
provably convergent schemes on general meshes or point clouds.

To accomplish this, we let FN [u] be any higher-order scheme, which need not
be monotone or even stable, and may be defined on a very general mesh. Using the
approach presented in this article, we can construct amonotone approximation scheme
FM [u] that is defined on the same mesh (or point cloud). These can be combined into
the filtered scheme

FF [u] = FM [u] + ε(h)S

(
Fh
A − Fh

M

ε(h)

)
(18)

where the filter S is given by

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x |x | ≤ 1

0 |x | ≥ 2

−x + 2 1 ≤ x ≤ 2

−x − 2 −2 ≤ x ≤ −1.

(19)

As long as ε(h) → 0 as h → 0, this approximation converges to the viscosity
solution of the PDE. Moreover, if ε(h) is larger than the discretisation error of the
monotone scheme, the formal accuracy of the filtered scheme is the same as the formal
accuracy of the non-monotone scheme.
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4 Computational examples

In this section, we provide several computational examples to demonstrate the correct-
ness and flexibility of our meshfree finite difference approximations. In each example,
N denotes the total number of discretisation points, which includes interior and bound-
ary points. Unless otherwise stated, we choose dθ = 2

√
h in each example.

4.1 Linear degenerate equation

For our first example, we consider the linear degenerate equation

{
−uνν(x, y) = 0, x2 + y2 < 1

u(x, y) = sin(2π(x − √
8y)), x2 + y2 = 1

(20)

where ν = (
√
8, 1). The exact solution is

u(x, y) = sin(2π(x − √
8y)),

which is plotted in Fig. 5a.
We note that this is an example of an operator for which no monotone, consistent

approximation can be constructed on a finite stencil on a Cartesian grid [35].
We first solve this equation using a point cloud generated by a uniform Cartesian

mesh restricted to the interior of the unit circle, which is augmented by O(h−3/2)

points uniformly distributed on the boundary of the circle; see Fig. 5b. The discretised
problem is a sparse, diagonally dominant linear system, which we solve using Matlab
backslash.

Next,wedemonstrate that our approximations converge evenonhighly unstructured
point clouds. To do this, we use randomly selected points in the interior of the unit
circle, augmented by additional points randomly distributed on the boundary; see
Fig. 5c. The point cloud is refined by randomly adding additional points.

We note that if interior points are located too close to the boundary, the parameter δ
can become extremely small, and it may not be possible to satisfy the condition on the
boundary resolution hB given in Theorem 18. To overcome this challenge (for both

(a)
−1 0 1
−1

−0.5

0

0.5

1

(b)
−1 0 1
−1

−0.5

0

0.5

1

(c)

Fig. 5 a Solution of the linear degenerate Eq. (20), b uniform point cloud, and c random point cloud
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Table 1 Convergence results for the linear degenerate equation (20)

Uniform point cloud Random point cloud

h N Max error Rate (N ) N Max error Rate (N )

2/32 1462 3.0 × 10−1 – 1459 7.5 × 10−1 –

2/64 5143 1.3 × 10−1 0.7 5138 2.6 × 10−1 0.9

2/128 18,435 5.8 × 10−2 0.6 18,430 1.1 × 10−1 0.7

2/256 67,423 2.2 × 10−2 0.7 67,412 2.6 × 10−2 1.1

2/512 251,349 6.1 × 10−3 1.0 251,335 7.2 × 10−3 1.0

uniform and random point clouds), we simply remove points if no monotone stencil
can be found within the given search radius r . This has the effect of removing points
that are too close to the boundary of the domain (thus increasing δ), and explains why
the total number of points N are slightly different in the two examples.

Convergence results for both tests are presented together in Table 1. In the case of
the Cartesian mesh, we observe convergence even though the approximation is not
consistent on any fixed stencil. However, because the search radius is large enough
to ensure decreasing angular resolution error, the predicted convergence is observed.
Although the randompoint cloud is highly unstructured,we again observe convergence
in this setting, with a rate that is nearly unchanged.

4.2 Convex envelope

In our second example, we demonstrate the convergence of ameshfree finite difference
approximation of the fully nonlinear convex envelope equation

{
max{−λ−(D2u), u − g} = 0, x ∈ Ω

u = 0.5, x ∈ ∂Ω.
(21)

The equation is posed on an ellipse with semi-major axis equal to one and semi-minor
axis equal to one-half, which is rotated through an angle of φ = π/6. The obstacle g
consists of two cones,

g1(x, y) =
√

(x cosφ + y sin φ + 0.5)2 + (−x sin φ + y cosφ)2

g2(x, y) =
√

(x cosφ + y sin φ − 0.5)2 + (−x sin φ + y cosφ)2

g(x, y) = min {g1(x, y), g2(x, y), 0.5}

and the exact solution is

u(x, y) =
{
min{g1(x, y), g2(x, y)}, |x cosφ + y sin φ| ≥ 0.5

|−x sin φ + y cosφ| , |x cosφ + y sin φ| < 0.5.
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Fig. 6 a Obstacle g and b solution u of the convex envelope equation (21)

See Fig. 6. We note that this solution is only Lipschitz continuous, and the equation
must be understood in a weak sense.

We perform computations using a uniform point cloud augmented by a uniform
discretisation of the boundary. The discrete system is solved using a policy iteration
procedure. To do this, we note that the PDE (21) (and its discretisation) can be written
in the form

max
α

{Lαu − gα} = 0

where the Lα are diagonally dominant linear operators—either the identity or second
directional derivatives. Then we can use the update scheme

αn = argmax
α

{Lαun − gα}
un+1 = (Lαn )−1gαn .

Computed results are presented in Table 2. Despite the very low regularity of this
example, the method converges, with a rate that appears close to the formal discreti-
sation error of O(

√
h).

Table 2 Convergence results
for the convex envelope
equation (21)

h N Max error Rate (h) Rate (N )

2/32 1191 3.9 × 10−2 – –

2/64 3873 5.9 × 10−2 −0.6 −0.3

2/128 13,069 2.7 × 10−2 1.1 0.6

2/256 45,529 1.5 × 10−2 0.9 0.5

2/512 163,081 1.1 × 10−2 0.4 0.2
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Fig. 7 a A point cloud, b obstacle g, and c computed solution u for the obstacle problem (22)

4.3 Obstacle problem

In our next example, we demonstrate the easewithwhich ourmeshfree approximations
can be used on complicated domains. To do this, we solve the obstacle problem

{
min {−Δu, u − g} = 0, x ∈ Ω

u = 0, x ∈ ∂Ω
(22)

on a domain Ω that contains both an exterior boundary and a highly-detailed interior
boundary. The point cloud (obtained from [34]), obstacle g, and computed solution u
are presented in Fig. 7. The nonlinear algebraic system was solved using policy itera-
tion as in the previous example.

4.4 Monge-Ampère equation

For our final example, we consider the Monge-Ampère equation

⎧⎪⎨
⎪⎩

− det(D2u) + f = 0, x ∈ Ω

u = g, x ∈ ∂Ω

u is convex.

(23)

This PDE is elliptic only on the space of convex functions. However, as in [22], we
can make use of the globally elliptic extension

− min
θ∈[0,π/2)

{
max

{
∂2u

∂e2θ
, 0

}
max

{
∂2u

∂e2θ+π/2

, 0

}

+min

{
∂2u

∂e2θ
, 0

}
+ min

{
∂2u

∂e2θ+π/2

, 0

}}
+ f = 0.

Aswith the approximations of the eigenvalues, thisminimum is approximated using
derivatives in finitely many (∼ π/dθ ) directions. We let the domain Ω be an ellipse
with semi-major axis of length one and semi-minor axis of length 1/

√
2. Computations
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are performed on a uniform point cloud augmented by a uniform discretisation of the
boundary. The nonlinear systems were solving using a damped Newton’s method as
in [24].

We consider two examples: a C2 solution defined by

u(x, y) = ex
2+y2 , f (x, y) = (1 + x2 + y2)ex

2+y2

and a C1 solution for which the ellipticity is degenerate in an open set,

u(x, y) = 1

2
max

{√
x2 + y2 − 0.2, 0

}2

, f (x, y) = max

{
1 − 0.2√

x2 + y2
, 0

}
.

These functions are displayed in Fig. 8.
We begin with the smooth example. Table 3 indicates that the approximations

converge, but as expected for this monotone scheme, the order of convergence is low.
This situation can be improved by using the monotone scheme as the foundation for

a higher-order filtered scheme of the form of (18). To do this, we use a second-order
accurate finite difference approximation FA of

−(uxxuyy − u2xy),

which is defined on the same (uniform) point cloud. As discussed in Sect. 3.5, the
formal discretisation error is independent of the size of the angular resolution dθ . We

Fig. 8 Right-hand side f and solution u for a, b C2 and c, d C1 solutions of the Monge-Ampère equa-
tion (23)
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Table 3 Convergence results for a C2 solution of the Monge-Ampère equation (23)

h Monotone Filtered

N Max error Rate (h) N Max error Rate (h)

2/32 1280 1.0 × 10−3 – 945 7.8 × 10−4 –

2/64 4298 4.1 × 10−4 1.33 3247 9.0 × 10−5 3.11

2/128 14,799 3.9 × 10−4 0.09 11,545 2.6 × 10−5 1.81

2/256 52,590 2.8 × 10−4 0.49 42,646 6.1 × 10−6 2.07

2/512 191,467 1.7 × 10−4 0.72 161,417 1.5 × 10−6 2.01

Table 4 Convergence results
for a C1 solution of the
Monge-Ampère equation (23)

h N Max error Rate (h)

2/32 945 3.0 × 10−3 –

2/64 3247 1.3 × 10−3 1.17

2/128 11,545 4.1 × 10−4 1.71

2/256 42,646 1.7 × 10−4 1.26

2/512 161,417 8.1 × 10−5 1.07

take advantage of this fact and choose a larger angular resolution of dθ = 2h1/3. This
allows for a smaller search radius r and a lower boundary resolution hB . The results
for this filtered scheme are also displayed in Table 3, which demonstrates that the
filtered method is both less expensive and significantly more accurate. In particular,
for a given spatial resolution h, fewer discretisation points are needed (because of the
reduced boundary resolution), and the observed accuracy is second-order in h.

We use the same filtered method to compute the C1 solution. This solution is
not classical and the ellipticity is degenerate; Newton’s method applied to the non-
monotone scheme on its own is not stable. However, by filtering with the monotone
scheme, we are able to obtain first-order convergence in h (Table 4).

5 Conclusions

We introduced new monotone meshfree finite difference methods for solving ellip-
tic equations that depend on either the eigenvalues of the Hessian or other second
directional derivatives. The key to accomplishing this is to select finite difference
stencils that align as closely as possible with the direction of interest, which can be
accomplished as long as the search neighbourhood is sufficiently large relative to the
resolution of the point cloud. These schemes are monotone, and we proved that they
converge to the viscosity solution of the associated PDE. They can also serve as the
foundation for provably convergent higher-order filtered methods.

The methods were implemented and tested on a degenerate linear elliptic equation,
the convex envelope equation, an obstacle problem, and the Monge-Ampère equation.
Numerical tests demonstrated convergence on highly unstructured (eg random) point
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clouds, complicated domains, degenerate examples, and problems where the solution
is only Lipschitz continuous.

Future work will extend these ideas to three dimensions and develop local criteria
for the search neighbourhoods in order to improve the benefits of adaptivity.
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