
COMMUNICATIONS ON doi:10.3934/cpaa.2018036
PURE AND APPLIED ANALYSIS
Volume 17, Number 2, March 2018 pp. 671–707

CONVERGENT APPROXIMATION OF NON-CONTINUOUS

SURFACES OF PRESCRIBED GAUSSIAN CURVATURE

Brittany Froese Hamfeldt

Department of Mathematical Sciences, New Jersey Institute of Technology
University Heights, Newark, NJ 07102, USA

(Communicated by Hongjie Dong)

Abstract. We consider the numerical approximation of surfaces of prescri-
bed Gaussian curvature via the solution of a fully nonlinear partial differential
equation of Monge-Ampère type. These surfaces need not be continuous up
to the boundary of the domain and the Dirichlet boundary condition must be
interpreted in a weak sense. As a consequence, sub-solutions do not always lie

below super-solutions, standard comparison principles fail, and existing conver-
gence theorems break down. By relying on a geometric interpretation of weak
solutions, we prove a relaxed comparison principle that applies only in the in-
terior of the domain. We provide a general framework for proving existence
and stability results for consistent, monotone finite difference approximations
and modify the Barles-Souganidis convergence framework to show convergence
in the interior of the domain. We describe a convergent scheme for the pres-

cribed Gaussian curvature equation and present several challenging examples
to validate these results.

1. Introduction. The Gaussian curvature of a hypersurface is given by the pro-
duct of the principle curvatures of the surface. When a hypersurface in R

n+1 can be
locally characterised as the graph of a C2 function (x, u(x)), the Gaussian curvature
at the point x is given by

κ(x) =
det(D2u(x))

(1 + |∇u(x)|2)(n+2)/2
. (1)

This characterisation is closely related to the Darboux equation, which can be
used to describe the isometric embedding of a Riemannian manifold into R

3 [8,
26]. Curvatures of this type also arise in problems involving surface evolution [37],
surface fairing [16], image processing [38], and optimal transportation [35].

A widely-studied problem is to find a convex surface u(x) on a convex domain Ω ∈
R

n whose Gaussian curvature is equal to a prescribed function κ : Ω → [0,∞) [42].
The Dirichlet problem for the equation of prescribed Gaussian curvature is given
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by the following fully nonlinear elliptic partial differential equation (PDE).










det(D2u(x)) = κ(x)(1 + |∇u(x)|2)(n+2)/2, x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

u is convex.

(2)

This belongs to the class of Monge-Ampère type equations,

det(D2u(x)) = f(x, u(x),∇u(x)). (3)

These have been studied extensively and a wealth of results are available relating to
well-posedness, regularity, and applications [5, 11, 29, 42, 43]. In general, equations
of this type do not possess classical solutions, and it is necessary to rely on some
notion of weak solution: either generalised [2] or viscosity solutions [27]. In fact, for
the prescribed Gaussian curvature equation, it is easy to construct examples where
even the Dirichlet boundary data cannot be enforced in a classical sense. Instead,
the desired weak solution is the supremum of all solutions that lie below the given
boundary data.

Recently, the numerical solution of particular Monge-Ampère equations has re-
ceived a great deal of attention, with several new methods being proposed. An early
method by Oliker used a geometric argument to construct coarse approximations
that converge to the generalised solution of a simple Monge-Ampère equation [36].
Many other recent methods for Monge-Ampère equations either lack any proof of
convergence or require additional regularity assumptions [10, 15, 17, 18, 30, 39, 40].
The powerful Barles-Souganidis convergence framework has recently inspired the
development of several monotone (elliptic) approximation schemes [7, 21, 31]. Ho-
wever, complete proofs of convergence to weak solutions are typically not available
due to the difficulty of handling boundary conditions. In particular, the Barles-
Souganidis approach requires the PDE, with boundary conditions interpreted in
a weak sense, to satisfy a very strong form of a comparison principle. This com-
parison principle is often difficult to verify, and in many problems it is actually
demonstrably false. For the non-classical Dirichlet problem considered in this arti-
cle, it is easy to demonstrate that the form of the comparison principle required by
currently available convergence proofs does not hold.

1.1. Contributions of this work. The primary goal of this article is to describe
a robust framework for approximating generalised surfaces of prescribed Gaussian
curvature, with Dirichlet boundary conditions interpreted in a weak sense. As a
secondary goal, we provide very general results on solution existence and stability
for elliptic approximation schemes, as well as results on the convergence of grid
functions, which addresses a gap in the literature that has conventionally been
handled on a case-by-case basis or simply assumed as a hypothesis. Our hope is
that these contributions will serve as a foundation for producing convergent schemes
for more general boundary value problems for fully nonlinear equations.

To accomplish these goals, we address the following specific challenges.

1. The equation is augmented by an additional condition that the solution be
convex. Thus it is necessary to develop numerical methods that also enforce
this condition in an appropriate (approximate) sense. We rigorously establish
that the constrained PDE can be replaced by an equivalent unconstrained
PDE that automatically selects the convex solution. This reduces the problem
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to the more tractable task of building a convergent numerical method for an
unconstrained PDE.

2. The theory of viscosity solutions provides a powerful framework for proving
the convergence of numerical methods for fully nonlinear elliptic equations.
In order to make use of this theory, we need to show that generalised surfaces
of prescribed Gaussian curvature can be characterised as viscosity solutions
of a well-posed PDE. While it is known how to define viscosity solutions of
the Gaussian curvature equation, general uniqueness results are not available
for non-continuous solutions. We use a geometric interpretation of the convex
solutions of the PDE to prove new results on the existence and uniqueness
of viscosity solutions, as well as their equivalence to generalised surfaces of
prescribed Gaussian curvature.

3. Existing convergence proofs rely on a strong form of the comparison princi-
ple [6], which is actually false in our setting. However, we prove that this
equation satisfies a weaker form of the comparison principle that applies only
in the interior of the domain. We then modify the usual Barles-Souganidis
proof to demonstrate convergence of suitable approximation schemes in the
interior of the domain (as well as convergence in Lp for 1 ≤ p <∞).

4. For the modified Barles-Souganidis framework to apply, it is important that
schemes have a solution and that solutions are bounded in L∞. We describe a
general approach to proving existence and stability of elliptic approximation
schemes. These results are valid under the mild condition that it is possible
to construct strict classical sub- and super-solutions of the underlying PDE.
In particular, we show that this is possible for the equation of prescribed
Gaussian curvature.

5. With a general convergence framework in place, we turn to the construction
of schemes that satisfy the necessary conditions. For interior points, it is pos-
sible to make use of existing numerical methods [20, 21]. However, when the
Dirichlet boundary condition is interpreted in a weak sense, the actual boun-
dary values of a solution are not known a priori. Remarkably, we demonstrate
that it is sufficient to enforce the boundary condition in a strong sense. We
show that this satisfies the necessary consistency condition and interior con-
vergence is guaranteed, though a boundary layer is possible when solutions
are discontinuous.

We conclude this article by implementing a provably convergent meshfree finite
difference method and providing results for several challenging examples.

2. Weak solutions. We begin by reviewing basic notions of weak solution: (1)
the generalised solution, which we want to construct and (2) the viscosity solution,
which is more amenable to numerical analysis. One of the goals of this work is to
show that these weak solutions are equivalent, so that numerical convergence results
for viscosity solutions will also apply to generalised surfaces of prescribed Gaussian
curvature. This equivalence is established in Theorems 5 and 8.

2.1. Generalised solutions. The existence of a convex surface with Gaussian
curvature κ(x) is not guaranteed for arbitrary functions κ ≥ 0. In particular, the
total curvature must be bounded by the volume of the unit ball in R

n.
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Lemma 2.1 (Necessary condition for existence [2]). A necessary condition for the
existence of a solution of (2) is for the prescribed curvature to satisfy

∫

Ω

κ(x) dx ≤
∫

Rn

(1 + |p|2)−(n+2)/2. (4)

This condition is not sufficient to guarantee that a classical C2 solution exists [41].
Instead, some notion of weak solution is needed to make sense of solutions of the
Monge-Ampère equation. One approach is the generalised solution, which defines
weak solutions in terms of the measure generated by the subgradient of the solution.

Definition 2.2 (Generalised solution). A convex function u : Ω → R is a generali-
sed solution of the prescribed Gaussian curvature equation if for every measurable
set E ⊂ Ω

∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp =

∫

E

κ(x) dx

where ∂u is the subgradient of u.

It may also be impossible to enforce the Dirichlet boundary data in a classi-
cal sense. Instead, Bakelman [2] described a weaker notion of Dirichlet boundary
conditions for this problem.

Definition 2.3 (Weak formulation of boundary conditions). A convex function
u satisfies the Dirichlet problem (2) if u satisfies the Monge-Ampère PDE in a
generalised sense,

lim sup
x→y

u(x) ≤ g(y), y ∈ ∂Ω, (5)

and if v is any other generalised solution of the Monge-Ampère PDE that also
satisfies (5) then v ≤ u on Ω.

This weaker notion of Dirichlet boundary conditions leads to an existence result
for the problem of prescribed Gaussian curvature. For clarity, we first state our
hypotheses on the data, which will be used throughout this paper.

Hypothesis 2.4 (Conditions on data).

(H1) Ω is a uniformly convex, bounded, open domain.
(H2) The boundary data g ∈ C0(∂Ω).
(H3) The curvature κ : Ω̄ → [0,∞) is continuous and bounded.
(H4) The data satisfies the strict compatibility condition

∫

Ω

κ(x) dx <

∫

Rn

(1 + |p|2)−(n+2)/2 dp.

Lemma 2.5 (Existence of generalised solution [2, Theorem 1]). If Hypothesis 2.4
holds, the Monge-Ampère equation (2) has a unique generalised solution that satis-
fies the Dirichlet boundary conditions in the weak sense.

Remark 2.6. The generalised solution is convex and therefore continuous in the in-
terior Ω, but need not be continuous up to the boundary even if the Dirichlet data g
is continuous. For example, when κ(x) = 0, the solution is the convex envelope of
the boundary data [32], which need not be continuous up to the boundary [28].
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2.2. Viscosity solutions. We will make use of an alternative (equivalent) form of
weak solution, the viscosity solution, which will inform the convergent approxima-
tion schemes we construct.

The Monge-Ampère equation belongs to a class of PDEs known as degenerate
elliptic equations, which take the form

F (x, u(x),∇u(x), D2u(x)) = 0.

Definition 2.7 (Degenerate elliptic). The operator F : Ω × R × R
n × Sn → R is

degenerate elliptic if

F (x, u, p,X) ≤ F (x, v, p, Y )

whenever u ≤ v and X ≥ Y .

The notion of the viscosity solution has become a very powerful tool for analysing
fully nonlinear degenerate elliptic PDEs [14]. The definition relies on a maximum
principle argument that moves derivatives onto smooth test functions. The usual
definition of a viscosity solution must be modified slightly for the Monge-Ampère
equation, which is elliptic only the space of convex functions. This requires a slight
alteration to the test functions that must be checked.

For brevity, we introduce the notation

R(p) = (1 + |p|2)(n+2)/2. (6)

Then we can denote the operator F : Ω × R × R
n × Sn → R corresponding to

equation (2) by

F (x, z, p,X) = − det(X) + κ(x)R(p). (7)

Convex viscosity solutions of the equation

F (x, u(x),∇u(x), D2u(x)) = 0 (8)

are defined as follows.

Definition 2.8 (Viscosity sub-solution). A convex upper semi-continuous function
u is a viscosity sub-solution of (8) in Ω if for every φ ∈ C2(Ω), whenever u− φ has
a local maximum at x ∈ Ω, then

F (x, u(x),∇φ(x), D2φ(x)) ≤ 0.

Definition 2.9 (Viscosity super-solution). A convex lower semi-continuous function
u is a viscosity super-solution of (8) in Ω if for every φ ∈ C2(Ω), whenever u − φ
has a local minimum at x ∈ Ω and D2φ(x) ≥ 0, then

F (x, u(x),∇φ(x), D2φ(x)) ≥ 0.

Remark 2.10. In the definition of the viscosity super-solution, the space of test
functions is restricted to smooth, locally convex functions. In the definition of the
sub-solution, it is not necessary to require test functions to be convex, although local
convexity near x follows automatically from the fact that u − φ has a maximum.
We choose to use different test function spaces for the sub- and super-solutions
here because this will allow us to maintain the same test function spaces when we
consider a modified version of the operator (9).

Definition 2.11 (Viscosity solution). A convex function u : Ω → R is a viscosity
solution of (8) if it is both a sub-solution and a super-solution.
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For the moment we ignore the issue of boundary conditions and focus on the
behaviour of solutions in the interior of the domain. On open sets, viscosity solutions
are equivalent to generalised solutions.

Theorem 1 (Equivalence of weak solutions). Let κ : Ω → [0,∞) be continuous
and bounded. Then a convex function u is a viscosity solution of the prescribed
Gaussian curvature equation (1) if and only if it is a generalised solution.

While this equivalence is known for Monge-Ampère type equations [44, § 4.1.4], a
detailed proof in the particular case of the prescribed Gaussian curvature equation
is not readily found in the literature. For completeness, we provide a proof in
Appendix A. We note that this proof makes use of several classical concepts that
will be introduced throughout the paper. However, it does not depend on any of
our key theorems except for Lemma 4.10, which is itself a simple consequence of
the definition of the subgradient.

3. Convexity constraint. The equation (2) for prescribed Gaussian curvature is
elliptic only on the space of convex functions, and convexity of the solution needs
to be included as an additional constraint. It is not immediately evident how to
develop practical numerical methods that enforce this constraint. Instead, we seek
an alternative, globally elliptic PDE operator that automatically selects the convex
solution of the Monge-Ampère equation.

Multiple globally elliptic reformulations are possible. One option is to write the
Monge-Ampère equation in the form of a Hamilton-Jacobi-Bellman equation. When
the right-hand-side does not depend on the gradient (R(p) = 1) the two-dimensional
form of the equation becomes

max
A(x)∈S+

1

{−tr(A(x)D2u(x)) + 2
√

det(A(x))κ(x)} = 0.

This was the approach used in the numerical method of [13], who showed that this
is equivalent to the Monge-Ampère equation when solutions are smooth.

Alternatively, we can follow [19] and introduce a modified determinant operator
into the Monge-Ampère equation:

det+(D2u) =

n
∏

j=1

max{λj(D2u), 0}+
n
∑

j=1

min{λj(D2u), 0}

where
λ1(D

2u) ≤ . . . ≤ λn(D
2u)

are the eigenvalues of the matrix D2u. For smooth u, this is equivalent to det(D2u)
when u is an admissible (convex) function, and produces a negative result otherwise.

Equivalence of these reformulations in the sense of viscosity solutions was not
previously established. For ease of analysis, we will use an alternate form, though
we expect these ideas can be extended to other reformulations of the Monge-Ampère
equation. We replace the PDE operator (8) with the following.

F (x, z, p,X) = max







−
n
∏

j=1

max{λj(X), 0}+ κ(x)R(p),−λ1(X)







. (9)

We remark that since the desired solution formally has a positive semi-definite
Hessian (i.e. 0 ≤ λ1 ≤ . . . ≤ λn), the equation

− λ1(X) = 0 (10)
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defines the boundary of the constraint set. Equation (10) is equivalent to the
constrained equation

− det(X) = 0, 0 ≤ λ1(X) ≤ . . . ≤ λn(X), (11)

which is the prescribed Gaussian curvature equation corresponding to κ = 0. In-
tuitively, then, setting the operator (9) equal to zero requires that either

n
∏

j=1

max{λj(X), 0} = κ(x)R(p), λ1(X) ≥ 0

or

λ1(X) = 0, 0 =

n
∏

j=1

max{λj(X), 0} ≥ κ(x)R(p) ≥ 0.

In either case, setting X = D2u, we recover a convex solution of the prescribed
Gaussian curvature equation.

We now rigorously establish this equivalence in the context of viscosity solutions.
For brevity in the following exposition, we will define the function det+ : Sn →
[0,∞) by

det+(X) ≡
n
∏

j=1

max{λj(X), 0} =

{

det(X), X ≥ 0

0, otherwise.
(12)

The definition of the viscosity solution for this operator is the same as Defini-
tion 3.3 except that we allow for the possibility of non-convex sub(super)-solutions.

Definition 3.1 (Viscosity sub-solution). An upper semi-continuous function u is a
viscosity sub-solution of (9) in Ω if for every φ ∈ C2(Ω), whenever u−φ has a local
maximum at x ∈ Ω, then

F (x, u(x),∇φ(x), D2φ(x)) ≤ 0.

Definition 3.2 (Viscosity super-solution). A lower semi-continuous function u is
a viscosity super-solution of (9) in Ω if for every φ ∈ C2(Ω), whenever u− φ has a
local minimum at x ∈ Ω and D2φ(x) ≥ 0, then

F (x, u(x),∇φ(x), D2φ(x)) ≥ 0.

Definition 3.3 (Viscosity solution). A function u : Ω → R is a viscosity solution
of (9) if it is both a sub-solution and a super-solution.

Theorem 2 (Global ellipticity). The convexified Monge-Ampère operator (9) is
globally degenerate elliptic.

Proof. It is sufficient to show that the operator is a non-increasing function of the
eigenvalues λ1(X), . . . , λn(X) [12].

Both the modified function det+(X) and the smallest eigenvalue λ1(X) are non-
decreasing functions of the eigenvalues of the symmetric matrix X, and thus the
combination

max







−
n
∏

j=1

max{λj(X), 0}+ κ(x)R(p),−λ1(X)







is a non-increasing function of the eigenvalues and the operator is degenerate elliptic.
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A key advantage of this formulation is that it automatically forces the solution
to be convex instead of requiring this condition to be included as an additional
constraint in the definition. In particular, all sub-solutions of this new formulation
are convex, which means that viscosity solutions must also be convex.

Lemma 3.4 (Sub-solutions are convex). Let u be an upper semi-continuous sub-
solution of the convexified Monge-Ampère equation (9). Then u is convex.

Proof. Choose x0 ∈ Ω and φ ∈ C2 such that u − φ has a local maximum at x0.
Since u is a sub-solution of (9),

max{−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)),−λ1(D2φ(x0))} ≤ 0.

An immediate consequence of this is that −λ1(D2φ(x0)) ≤ 0 and therefore u is also
a sub-solution of

−λ1(D2u(x)) = 0.

This is precisely the hypothesis of [32, Theorem 1], which establishes the convexity
of u.

One of our goals is to establish that viscosity solutions of the convexified equa-
tion are equivalent to viscosity solutions of the original equation. The two different
notions of sub- and super-solutions are not strictly equivalent since the convexi-
fied operator allows for non-convex super-solutions. However, we can demonstrate
that the concepts of sub- and super-solutions are equivalent on the set of convex
functions. Combined with the fact that sub-solutions are always convex, this is suf-
ficient for proving that the two different notions of viscosity solution are equivalent
(Theorem 3).

Lemma 3.5. A convex function u is a sub-solution of the original Monge-Ampère
equation (8) if and only if it is a sub-solution of the convexified Monge-Ampère
equation (9).

Proof. Choose any φ ∈ C2 and x0 ∈ Ω such that u− φ has a local maximum at x0.
Since u is convex, there exists some q ∈ ∂u(x0) and we can define the supporting
hyperplane

p(x) = u(x0) + q · (x− x0) ≤ u(x).

For x near x0 we have

p(x)− φ(x) ≤ u(x)− φ(x) ≤ u(x0)− φ(x0) = p(x0)− φ(x0).

Thus p − φ is also maximised at x0, which requires D2φ(x0) ≥ D2p(x0) = 0. This
in turn implies that −λ1(D2φ(x0)) ≤ 0 and det+(D2φ(x0)) = det(D2φ(x0)). Under
these constraints, the condition that u is a sub-solution of (9):

max{−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)),−λ1(D2φ(x0))} ≤ 0,

is equivalent to the condition that u is a sub-solution of (8):

− det(D2φ(x0)) + κ(x0)R(∇φ(x0)) ≤ 0.

Lemma 3.6. A convex function u is a super-solution of the original Monge-Ampère
equation (8) if and only if it is a super-solution of the convexified Monge-Ampère
equation (9).
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Proof. Choose any φ ∈ C2 and x0 ∈ Ω such that u − φ is minimised at x0 and
D2φ(x0) ≥ 0. As in the previous lemma, this restriction on φ ensures that the
condition

max{−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)),−λ1(D2φ(x0))} ≥ 0

is equivalent to

− det(D2φ(x0)) + κ(x0)R(∇φ(x0)) ≥ 0.

Lemmas 3.4-3.6 lead immediately to the equivalence of the two different formu-
lations of the Monge-Ampère equation.

Theorem 3 (Equivalence of viscosity solutions). A function u is a convex viscosity
solution of the original Monge-Ampère equation (8) if and only if it is a viscosity
solution of the convexified Monge-Ampère equation (9).

4. Generalised Dirichlet problem. One of the advantages of working with vis-
cosity solutions is that boundary conditions can be included in the operator, which
allows for a weak interpretation of Dirichlet boundary conditions [14]. A key result
that we will build to throughout this section is that a viscosity interpretation of the
boundary conditions recovers the desired weak interpretation given in Definition 2.3.

4.1. Boundary conditions. The weak solution we are seeking is permitted to lie
below the Dirichlet data. Thus it is necessary to relax the usual notion of super-
solution so as to allow these to satisfy this weak interpretation of the boundary
conditions. In order to accomplish this, we introduce the modified PDE operators

F∗(x, z, p,X) =

{

max{−det+(X) + κ(x)R(p),−λ1(X)}, x ∈ Ω

min{z − g(x),max{−det+(X) + κ(x)R(p),−λ1(X)}}, x ∈ ∂Ω,

(13)

F ∗(x, z, p,X) =

{

max{−det+(X) + κ(x)R(p),−λ1(X)}, x ∈ Ω

max{z − g(x),max{−det+(X) + κ(x)R(p),−λ1(X)}}, x ∈ ∂Ω.

(14)
Sub- and super-solutions of the Dirichlet problem (2) are defined as follows.

Definition 4.1 (Viscosity sub(super)-solutions). A bounded upper (lower) semi-
continuous function u is a viscosity sub(super)-solution of (2) if for every φ ∈ C2(Ω̄),
whenever u− φ has a local maximum (minimum) at x ∈ Ω̄, then

F
(∗)
∗ (x, u(x),∇φ(x), D2φ(x)) ≤ (≥)0.

Remark 4.2. In the definition of a super-solution, it is sufficient to use test functi-
ons φ satisfying D2φ(x0) > 0. For other smooth test functions, −λ1(D2φ(x0)) > 0
and the conditions F ∗ ≥ 0 is automatically satisfied regardless of the behaviour of
u.

Originally, we required a viscosity solution to be both upper and lower semi-
continuous, and therefore continuous. However, viscosity solutions of the Dirichlet
problem need not be continuous up to the boundary, so this condition needs to
be relaxed. We can do this by making use of the semi-continuous envelopes of a
candidate solution [14].
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Definition 4.3 (Semi-continuous envelopes). Let u : Ω → R be a bounded function.
Then for x ∈ Ω̄ its upper and lower semi-continuous envelopes are defined respecti-
vely by

u∗(x) = lim sup
y→x

u(y), u∗(x) = lim inf
y→x

u(y).

Definition 4.4 (Viscosity solution). A bounded function u : Ω → R is a viscosity
solution of (2) if u∗ is a sub-solution and u∗ is a super-solution.

Example 1. To illustrate the non-classical nature of the Dirichlet condition, we
consider the one-dimensional Gaussian curvature equation with constant unit cur-
vature:

F (x, u, ux, uxx) =











−uxx + (1 + u2x)
3/2, x ∈ (0, 1)

u+ 1, x = 0

u− 1, x = 1.

(15)

Note that in this case,
∫ 1

0

κ(x) dx = 1 < 2 =

∫ ∞

−∞

(1 + p2)−3/2 dp,

so this problem satisfies the existence and uniqueness requirements of Lemma 2.5.
We claim that the viscosity solution lies on the surface of the unit ball,

u(x) = −
√

1− x2,

which does not satisfy the Dirichlet boundary condition u(1) = 1. See Figure 1(a).
A simple calculation verifies that the equation is satisfied in a classical sense on

[0, 1). It remains to verify the conditions for a viscosity solution at x = 1.
Clearly, u is a sub-solution since at x = 1, any test function φ will satisfy

F∗(1, u(1), φx(1), φxx(1)) ≤ u(1)− 1 = −1 < 0.

Next we check the super-solution property at x = 1. To do so, we need to consider
all functions φ ∈ C2 such that u−φ has a minimum at x = 1. However, ux → ∞ as
x→ 1−, which means that no such smooth test function exists and there is nothing
to check.

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

u(x)
g(x)

(a)

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

usub(x)
g(x)

(b)

Figure 1. (a) A viscosity solution with constant Gaussian curva-
ture that does not achieve the Dirichlet boundary conditions and
(b) a sub-solution that lies above this viscosity solution.
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While the viscosity formulation does not require solutions to achieve the Dirichlet
data, it does place some conditions on the behaviour of the solution near the boun-
dary. These conditions are outlined in the following two lemmas and Corollary 4.7.
In particular, we find that sub-solutions must lie below the Dirichlet data, except
possibly at a small number of points. Viscosity solutions are always bounded above
by the boundary data, though they are permitted to lie strictly below the Dirichlet
boundary conditions. This means that super-solutions cannot be required to lie
above the Dirichlet boundary conditions; however, this traditional property can be
violated only at points where the gradient is unbounded.

Lemma 4.5 (Behaviour of sub-solutions at boundary). Let u be an upper semi-
continuous sub-solution of (2) with data satisfying Hypothesis 2.4. Then (u∗)

∗ ≤ g
on ∂Ω.

Proof. Choose any x0 ∈ ∂Ω and small ε > 0. Since Ω is convex, there exists a
supporting hyperplane to the domain at x0. We let n(x0) be the unit outward
normal to any such hyperplane. Since Ω is uniformly convex, there exists some
α > 0 such that for any x ∈ Ω̄ with |x− x0| sufficiently small,

−n(x0) · (x− x0) ≥ α |x− x0|2 .
Denote by B the open ball B(x0, ε). For any x ∈ ∂B ∩ Ω̄ and sufficiently large

γ > 0,
P (x) ≡ u(x0)− γn(x0) · (x− x0) ≥ u(x0) + γαε2 > max

∂B∩Ω̄
u.

Since u is upper semi-continuous, there exists some

z ∈ argmax
B̄∩Ω̄

{u− P}.

We note that u − P < 0 on ∂B and u(x0) − P (x0) = 0. Thus z /∈ ∂B and u − P
has a local maximum at z with u(z)− P (z) ≥ 0.

Consider any x ∈ B ∩ Ω. As the intersection of two convex sets, B ∩ Ω is also
convex. Since x is in the interior of this convex set, it can be expressed as λ1x1+λ2x2
for some x1 ∈ ∂B ∩ Ω, x2 ∈ B ∩ Ω and λ1, λ2 > 0 with λ1 + λ2 = 1. We have
u(x1)−P (x1) < 0 since x1 is on the boundary of the ball. Then using the fact that
u is convex (Lemma 3.4) and P is affine, we can calculate

u(x)− P (x) = u(λ1x1 + λ2x2)− P (λ1x1 + λ2x2)

≤ λ1(u(x1)− P (x1)) + λ2(u(x2)− P (x2))

< λ2(u(x2)− P (x2))

≤ u(z)− P (z).

Therefore z ∈ B ∩ ∂Ω.
As Ω is uniformly convex, there exists β > 0 such that whenever x ∈ Ω̄,

(x− z) · n(z) ≤ −β |x− z|2 .
Define the test function

φ(x) = P (x)− (x− z) · n(z)− β |x− z|2 ∈ C2.

We notice that

u(x)− φ(x) ≤ u(x)− P (x) ≤ u(z)− P (z) = u(z)− φ(z).

Thus u− φ has a local maximum at z. Since u is a sub-solution, this requires

F∗(z, u(z),∇φ(z), D2φ(z)) ≤ 0.
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However, by construction, λ1(D
2φ(z)) = −2β < 0 so that

max{−det+(D2φ(z)) + κ(z)R(∇φ(z)),−λ1(D2φ(z))} > 0.

Since u is a sub-solution, we require

u(z)− g(z) ≤ 0.

We have shown that for any ε > 0, there exists some z ∈ B(x0, ε)∩ ∂Ω such that
u(z) ≤ g(z). Since g is continuous, we conclude that u∗(x0) ≤ g(x0) for x0 ∈ ∂Ω.

Since u is convex, u∗ = u = u∗ in Ω and u∗ is convex on Ω̄. Consider some
x0 ∈ ∂Ω. For any ε > 0, there exists some xε ∈ Ω such that xε → x0 and

u(xε) ≤ u∗(x0) + ε ≤ g(x0) + ε.

Now we define the following neighbourhood of of x0:

C = {y | y = λ1xε + λ2z, λ1, λ2 > 0, λ1 + λ2 = 1, z ∈ B(x0, |x0 − xε|)}.
Then there exists some yε ∈ C ⊂ B(x0, ε) ∩ Ω such that

u(yε) ≥ (u∗)
∗(x0)− ε.

Moreover, we can find zε ∈ B(x0, ε) ∩ ∂Ω such that for some λ1, λ2 > 0 with
λ1 + λ2 = 1, yε = λ1xε + λ2zε. Then we can compute

(u∗)
∗(x0)− ε ≤ u(yε) ≤ λ1u(xε) + λ2u∗(zε) ≤ λ1 (g(x0) + ε) + λ2g(zε).

Taking ε→ 0 we obtain
(u∗)

∗(x0) ≤ g(x0).

Lemma 4.6 (Behaviour of super-solutions at boundary). Let u be a lower semi-
continuous super-solution of (2) with data satisfying Hypothesis 2.4. Then at each
x0 ∈ ∂Ω, either u(x0) ≥ g(x0) or the subgradient ∂u(x0) is empty.

Proof. Let x0 ∈ ∂Ω and suppose that both u(x0) < g(x0) and there exists some
p ∈ ∂u(x0). Consider any supporting hyperplane to the domain at x0 and let n
be the unit outward normal to this hyperplane. Since Ω is uniformly convex, there
exists some constant α > 0 such that for small enough |x− x0| with x ∈ Ω̄,

(x− x0) · n ≤ −α |x− x0|2 .
Now we choose any γ > 0 and consider the test function

φ(x) = u(x0) + p · (x− x0) + (x− x0) · n+
α

2
|x− x0|2 +

γ

2
((x− x0) · n)2 .

By the definition of p, we have

u(x0) + p · (x− x0) ≤ u(x).

From the definition of α we know that
1

2
(x− x0) · n+

α

2
|x− x0|2 ≤ 0.

Finally, as long as |x− x0| < 1/γ we have

1

2
(x− x0) · n+

γ

2
((x− x0) · n(x0))2 ≤ 0.

Putting these results together, we obtain

φ(x) ≤ u(x)

near x0, with φ(x0) = u(x0). Thus u− φ has a local minimum at x0.



APPROXIMATION OF SURFACES OF PRESCRIBED GAUSSIAN CURVATURE 683

We also note that φ ∈ C2 and

∇φ(x0) = p+ n,

D2φ(x0) = αI + γnnT > 0.

Then for sufficiently large γ:

−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)) = − det(αI + γnnT ) + κ(x0)R(p+ n) < 0,

−λ1(D2φ(x0)) < 0,

u(x0)− g(x0) < 0

so that

F ∗(x0, u(x0),∇φ(x0), D2φ(x0)) < 0,

which contradicts the fact that u is a super-solution.

As an immediate consequence of Lemmas 4.5-4.6 and Definition 4.4, we obtain
the sense in which a viscosity solution satisfies the Dirichlet boundary conditions.

Corollary 4.7 (Boundary conditions for viscosity solutions). Let u be a viscosity
solution of (2) with data satisfying Hypothesis 2.4. Then at every x0 ∈ ∂Ω either
u∗(x0) = u∗(x0) = g(x0) or u∗(x0) ≤ u∗(x0) ≤ g(x0) with ∂u∗(x0) empty.

4.2. Existence of a viscosity solution. Next we begin to establish the well-
posedness of this viscosity formulation. This section culminates in Theorem 5,
which demonstrates that at least one viscosity solution exists—in particular, the
generalised solution is a viscosity solution.

We start by describing the Perron method for constructing a viscosity solution,
which satisfies the Dirichlet boundary conditions in the weak sense and need not
be continuous.

Theorem 4 (Perron construction of viscosity solution). Assume that Ω, g, and
κ satisfy Hypothesis 2.4. If u1 is an upper semi-continuous sub-solution and u2 a
lower semi-continuous super-solution with u1 ≤ u2 on Ω̄ then

w = sup{W : Ω → R | u1 ≤W ≤ u2, W ∈ USC, W ∗ is a sub-solution}
is a viscosity solution of (2).

The result is technical and essentially equivalent to [5, Theorem 4.1]. To keep
the key contributions of this section clear, we postpone the proof to Appendix B.

A simple consequence of this technique is the fact that the maximal sub-solution
is a viscosity solution.

Corollary 4.8 (Maximal sub-solution). Let Ω, g, and κ satisfy Hypothesis 2.4.
Suppose that the set

U = {u : Ω → R | u ∈ USC, u∗ is a sub-solution of (2)}
is non-empty. Then

w = sup{u ∈ U}
is a viscosity solution of (2).

Proof. Choose any u ∈ U and let v = c be a constant function with c ≥ sup g.
Clearly u ≤ v since all sub-solutions are convex and lie below the Dirichlet data
(Lemma 3.4). We claim that v is a super-solution since it lies above the Dirichlet
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data and, in the interior, there are no admissible test functions satisfyingD2φ(x0) >
0. Then by Perron’s method (Theorem 4),

w ≡ sup{W | u ≤W ≤ v, W ∈ USC, W ∗ is a sub-solution}
= sup{W |W ∈ USC, W ∗ is a sub-solution}

is a viscosity solution.

Theorem 5 (Existence of viscosity solution). Under Hypothesis 2.4, the generalised
solution of (2) is also a viscosity solution of (2).

Proof. Let u be the generalised solution of the Dirichlet problem. By Theorems 1
and 3, u is a viscosity solution in Ω. Since additionally lim supu ≤ g on ∂Ω, u∗ is
a viscosity sub-solution of the Dirichlet problem.

The existence of a viscosity sub-solution ensures the existence of a maximal sub-
solution w by Corollary 4.8, with u ≤ w.

Again by Theorems 1 and 3, w is a generalised solution in Ω. Since w ≤ g on ∂Ω
and u is the maximal such generalised solution, we must have w ≤ u.

We conclude that the generalised solution to the Dirichlet problem is also a
viscosity solution of the Dirichlet problem.

4.3. Uniqueness and comparison. Next, we need to demonstrate that this vis-
cosity solution is unique. We first note that the condition

∫

Ω

κ(x) dx <

∫

Rn

(1 + |p|2)−(n+2)/2

is necessary for the uniqueness of the viscosity solution. To see why, we return to
our earlier one-dimensional example, posed on a larger domain.

Example 2.

F (x, u, ux, uxx) =

{

−uxx + (1 + u2x)
3/2, x ∈ (−1, 1)

u, x = ±1.
(16)

This time, the inequality is not strict:
∫ 1

−1

κ(x) dx = 2 =

∫ ∞

−∞

(1 + p2)−3/2 dp.

We claim that for any a ≥ 0, the function

u(x) = −
√

1− x2 − a

is a viscosity solution. As before, this is a classical solution in the interior (−1, 1).
On the boundary, u(x) ≤ 0 so it is also a sub-solution. Finally, we note that
u′(x) becomes unbounded at the boundary and it is therefore impossible to place any
smooth test function φ below u at ±1. Thus the super-solution condition is trivially
satisfied at the boundary. We conclude that strict inequality in the condition of
Lemma 2.5 must be needed to guarantee uniqueness of the viscosity solution.

An important property of many elliptic equations is the comparison principle,
which immediately implies uniqueness of the solution.

Definition 4.9 (Comparison principle). A PDE has a comparison principle if whe-
never u is an upper semi-continuous sub-solution and v a lower semi-continuous
super-solution of the equation, then u ≤ v on Ω̄.
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The comparison principle plays an important role in developing convergent ap-
proximation schemes using the Barles-Souganidis framework [6]. As we shall see,
our equation equipped with a weak Dirichlet condition does not satisfy a comparison
principle in the traditional sense.

Example 3. To see why this must be the case, we return to the one-dimensional
example considered in section 4.1. We have already seen that the function u =
−
√
1− x2 is a viscosity solution, and therefore a viscosity super-solution as well.
Now we claim that the upper semi-continuous function

v(x) =

{

−
√
1− x2, x ∈ [0, 1)

1, x = 1

is a sub-solution; see Figure 1(b). As before, the appropriate conditions are trivially
satisfied for x ∈ (0, 1] and we need only check x = 1. Now any test function φ will
satisfy

F∗(1, v(1), φx(1), φxx(1)) ≤ v(1)− 1 = 0.

We conclude that v is a sub-solution, u a super-solution, and v(1) > u(1). Thus
this equation cannot satisfy a comparison principle in the sense of Definition 4.9.

Instead, we will develop a relaxed comparison principle, which will be used to
produce a convergence proof via a modification of the usual framework.

Proofs of comparison principles are not available for general elliptic PDEs and
often rely on particular details of the structure of a given PDE operator. While
the prescribed Gaussian curvature equation does not satisfy the structure condition
typically used to prove comparison [14], Ishii and Lions have shown comparison for a
class of Monge-Ampère equations that satisfy a much weaker structure condition [27,
Theorem V.2]. An immediate consequence of this result is a comparison principle
for our equation of interest.

Theorem 6 (Classical comparison principle for Gaussian curvature). Suppose
κ : Ω → [0,∞) is continuous and bounded and let u, v be respectively sub- and
super-solutions of the PDE for prescribed Gaussian curvature (2). If u ≤ v on ∂Ω
then u ≤ v on Ω̄.

This yields a uniqueness result for the Monge-Ampère equation if a solution exists
that satisfies the Dirichlet boundary conditions in a classical sense. However, if we
want to interpret the boundary conditions in the weak sense of (5), the comparison
principle only applies to continuous functions and not to general semi-continuous
sub- and super-solutions [14]. Modified comparison principles for non-continuous
solutions have been proved for Hamilton-Jacobi equations by exploiting the control
interpretation of the problem, but this approach does not apply to our setting [4].
Instead, we will use the geometric interpretation of the generalised solution to de-
monstrate uniqueness of the viscosity solution, then use this to prove a modified
comparison principle that is valid only in the interior of the domain. In section 6,
this comparison principle will be used to prove the convergence of appropriate ap-
proximations to the solution of (2).

Theorem 7 (Interior comparison principle for weak Dirichlet problem). Assume
Hypothesis 2.4 holds. If u is a bounded upper semi-continuous sub-solution and v
a bounded lower semi-continuous super-solution of (2) then u ≤ v on Ω.
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The proof of this theorem is deferred until the end of this section. We first
build up some necessary machinery. A key ingredient is the fact that the sub-
gradients of two ordered functions must themselves be ordered under appropriate
boundary conditions. This result is known when the two functions are identical at
the boundary [24, Lemma 1.4.1]. We prove a similar result under a much weaker
condition, requiring that at all boundary points either the functions are equal or the
gradient of the lower function is unbounded. As this result is used in the proof of
Theorem 1, we emphasise that it is a consequence of the definition of the subgradient
and does not depend on any other results of this article.

Lemma 4.10 (Subgradient sets are ordered). Let u, v be lower semi-continuous
and u ≤ v on an open set E. Suppose also that at each boundary point x0 ∈ ∂E
either v(x0) = u(x0) or ∂u(x0) is empty. Then ∂v(E) ⊂ ∂u(E).

Proof. Choose any x0 ∈ E and p ∈ ∂v(x0) and define the value

a ≡ sup
x∈E

{v(x0) + p · (x− x0)− u(x)} ≥ 0. (17)

We claim that
v(x0) + p · (x− x0)− a

is a supporting hyperplane to u.
Since u is lower semi-continuous, there exists some x1 ∈ Ē such that

a = v(x0) + p · (x1 − x0)− u(x1).

This enables us to rewrite the definition of a in (17) as

u(x) ≥ v(x0) + p · (x− x0)− a = u(x1) + p · (x− x1)

for every x ∈ E. Therefore p ∈ ∂u(x1). We still need to demonstrate that x1 ∈ E
is an interior point.

We recall that since p ∈ ∂v(x0),

v(x1) ≥ v(x0) + p · (x1 − x0) = u(x1) + a.

Case 1: a > 0. Then v(x1) > u(x1). Suppose that x1 ∈ ∂E. Since u(x1) 6= v(x1)
it must be the case that ∂u(x1) is empty, which contradicts the fact that p ∈ ∂u(x1).
We conclude that x1 ∈ E and p ∈ ∂u(E).

Case 2: a = 0. Then for every x ∈ E,

u(x) ≥ v(x0) + p · (x− x0) ≥ u(x0) + p · (x− x0)

and p ∈ ∂u(x0) ⊂ ∂u(E).

We will make use of additional structure of the subgradient that lets us compare
the boundaries of different subgradient maps.

Lemma 4.11 (Boundaries of subgradient images). Let v, w be convex functions
and suppose that for some set E, ∂w(E) ⊂ ∂v(E) and |∂w(E)| = |∂v(E)|. Then
the boundaries of the subgradient images satisfy ∂{∂w(E)} ⊂ ∂{∂v(E)}.
Proof. Choose any p ∈ ∂{∂w(E)}. Then there exists some x0 ∈ Ē such that p ∈
∂w(x0). By hypothesis we also have p ∈ ∂v(E). We suppose that p ∈ int{∂v(E)}
and seek a contradiction.

Under this assumption, we can find an open set F such that p ∈ F ⊂ ∂v(E).
Then we consider the points in F that are not contained in the subgradient of w,

G = {q ∈ F | q /∈ ∂w(E)}.
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We notice that G is non-empty and p ∈ ∂G. Moreover, we have that int{∂w(E)} =

int{∂w(E)} as a simple consequence of the structure of the subgradient map (see,
e.g., [9, Corollary 2.5.3])and thus |G| > 0.

Now we have

∂w(E) ∪G ⊂ ∂w(E) ∪ F ⊂ ∂v(E)

with ∂w(E) ∩G = φ. Thus we obtain

|∂v(E)| ≥ |∂w(E)|+ |G| > |∂w(E)| ,
which is a contradiction. Therefore p ∈ ∂{∂v(E)}.

Using these properties of subgradients, we now demonstrate that the viscosity
solution is unique.

Theorem 8 (Viscosity solution is unique). Assume Hypothesis 2.4 holds. Let u be
the maximal sub-solution of (2) and let v be any viscosity solution. Then u = v on
Ω.

Proof. By Theorem 5, u is a viscosity solution. Note that v ≤ u necessarily since u
is maximal. Additionally, at all boundary points x0 ∈ ∂Ω, either ∂v∗(x0) is empty
or v∗(x0) = v∗(x0) = u∗(x0) = u∗(x0) = g(x0); see Corollary 4.7.

Choose any x0 ∈ Ω and consider the function

w(x) = u(x)− u(x0) + v(x0) ≤ u(x).

Notice that ∂w(x) = ∂u(x). Now define the set

E = {x ∈ Ω | w(x) ≥ v(x)}.
Case 1: x0 /∈ ∂E. Then w − v has a minimum at x0 or is constant nearby and

∂v(x0) ⊂ ∂w(x0).
Case 2: x0 ∈ ∂E. Now for any z ∈ ∂E either w∗(z) = v∗(z) or w∗(z) > v∗(z)

with z ∈ ∂Ω. In the latter case, we must have v∗(z) < u∗(z) ≤ u∗(z) ≤ g(z) so that
∂v∗(z) is empty (Lemma 4.6). Thus the hypotheses of Lemma 4.10 are satisfied and
∂w(E) ⊂ ∂v(E).

We also note that both w and v are generalised solutions of the prescribed Gauss-
ian curvature equation, which means that

∫

∂v(E)

(1 + |p|2)−(n+2)/2 dp =

∫

∂w(E)

(1 + |p|2)−(n+2)/2 dp.

We conclude that |∂v(E)| = |∂w(E)|.
Now let p ∈ ∂w(x0) with p close to subgradient values coming from the interior of

the set E. That is, there exists a sequence xn ∈ E, pn ∈ ∂w(xn) such that xn → x0
and pn → p. By Lemma 4.11, there must be another boundary point z ∈ ∂E such
that p ∈ ∂v(z) and for every x ∈ Ω:

w(x) ≥ w(x0) + p · (x− x0)

v(x) ≥ v(z) + p · (x− z).

A consequence of this is that for every x /∈ E,

v(x) > w(x) ≥ w(x0) + p · (x− x0) = v(x0) + p · (x− x0).

We suppose that p /∈ ∂v(x0) and seek a contradiction. In particular, this means
that there exists some y ∈ E such that

v(y) < v(x0) + p · (y − x0) = w(x0) + p · (y − x0).



688 B. F. HAMFELDT

Combining these inequalities, we obtain

w(x0) + p · (y − x0) > v(y) ≥ v(z) + p · (y − z) = w(z) + p · (y − z).

Rearranging this yields

w(z) < w(x0) + p · (z − x0),

which contradicts the definition of p ∈ ∂w(x0). Thus we must have p ∈ ∂v(x0).
We conclude that at all points x ∈ Ω, the intersection ∂v(x)∩∂w(x) is non-empty

and thus ∂v(x) = ∂w(x) = ∂u(x) [1, Corollary 1.5]. Therefore u(x) − v(x) = c is
constant.

Since u is the maximal solution, c ≥ 0. If c > 0, then v∗(x) < u∗(x) ≤ g(x) at all
points on the boundary ∂Ω. From Lemma 4.6, ∂v∗(x) must be empty at all points
on the boundary. Then since v is convex, we must have ∂v(Ω) = R

n. Since v is a
generalised solution of the prescribed Gaussian curvature equation we can compute

∫

Rn

(1 + |p|2)−(n+2)/2 dp =

∫

∂v(Ω)

(1 + |p|2)−(n+2)/2 dp

=

∫

Ω

κ(x) dx <

∫

Rn

(1 + |p|2)−(n+2)/2 dp.

This is a contradiction, which means that c = 0 and v = u.

Now we are able to establish the interior comparison principle for general semi-
continuous functions.

Proof of Theorem 7. Since u, v are bounded, for sufficiently large M > 0 we have

u−M ≤ v.

As u is a sub-solution, u−M is as well.
By Theorems 4 and 8, the unique viscosity solution of (2) can be expressed as

w(x) = sup{W (x) | u−M ≤W ≤ v, W ∗ is a sub-solution}.

By Corollary 4.8, w is the maximal sub-solution so that u ≤ w. Thus this
characterisation implies that in Ω,

u ≤ w ≤ v.

5. Convergence of elliptic schemes. With a solid theoretical understanding of
the generalised Dirichlet problem in place, we now turn our attention to developing
criteria that should be satisfied by a convergent numerical method. We begin by
developing a framework that applies to general elliptic PDEs with an interior com-
parison principle, under the mild condition that it is possible to construct strict
classical sub- and super-solutions. In section 6, we will use this framework to de-
velop and analyse a convergent numerical method for the equation of prescribed
Gaussian curvature.
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5.1. Properties of schemes. Consider a set of discretisation points Gh ⊂ Ω̄,
which can be a finite difference grid or a more general point cloud. Here h is a
small parameter relating to the grid resolution. In particular, we expect that as
h→ 0, the domain becomes fully resolved in the sense that

lim
h→0

sup
y∈Ω

min
x∈Gh

|x− y| = 0. (18)

To produce consistent, monotone approximations near the boundary, we will
later require a sufficiently high boundary resolution hB ,

hB = sup
y∈∂Ω

min
x∈Gh∩∂Ω

|x− y| (19)

with hB � h.
We consider finite difference schemes that have the form

Fh(x, u(x), u(x)− u(·)) = 0, x ∈ Gh (20)

where u : Gh → R is a grid function.
Our convergence framework requires schemes to be consistent, monotone, and

Lipschitz continuous.

Definition 5.1 (Consistency). The scheme (20) is consistent with the PDE

F (x, u(x),∇u(x), D2u(x)) = 0, x ∈ Ω̄ (21)

if for any smooth function φ and x ∈ Ω̄,

lim sup
h→0,y→x,z∈Gh→x,ξ→0

Fh(z, φ(y) + ξ, φ(y)− φ(·)) ≤ F ∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
h→0,y→x,z∈Gh→x,ξ→0

Fh(y, φ(y) + ξ, φ(y)− φ(·)) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 5.2 (Monotonicity). The scheme (20) is monotone if Fh is a non-
decreasing function of its final two arguments.

Definition 5.3 (Lipschitz). The scheme (20) is Lipschitz if Fh is locally Lipschitz
continuous in its final two arguments.

These properties ensure that the approximation schemes inherit the basic struc-
ture of the underlying elliptic PDE. In particular, we note that monotone (elliptic)
finite difference schemes enjoy a discrete comparison principle.

Lemma 5.4 (Discrete comparison principle [33, Theorem 5]). Let Fh be a mono-
tone scheme and Fh(x, u(x), u(x)−u(·)) < Fh(x, v(x), v(x)−v(·)) for every x ∈ Gh.
Then u(x) ≤ v(x) for every x ∈ Gh.

Remark 5.5. Because the inequality in this discrete comparison principle is strict,
it does not guarantee solution uniqueness. For some monotone schemes, it is not
possible to find u, v such that Fh[u] < Fh[v] at every grid point.

5.2. Existence and stability. For elliptic finite difference schemes that are also
proper (i.e. Fh is a strictly increasing function of its second argument) and globally
Lipschitz continuous, the results of [33] establish that solutions exist and are stable.
In this section, we prove similar results for schemes that do not satisfy these extra
conditions. We will instead require a mild assumption on the underlying PDE,
which must have a strict classical sub- and super-solution. A bounded solution of
the scheme can then be constructed using a discrete verion of Perron’s method.
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Definition 5.6 (Strict classical sub(super)-solution). A function u ∈ C2 is a strict
classical sub(super)-solution of the PDE (21) if there exists some µ > 0 such that

F ∗(x, u(x),∇u(x), D2u(x)) ≤ −µ
(

F∗(x, u(x),∇u(x), D2u(x)) ≥ µ
)

for every x ∈ Ω̄.

Remark 5.7. For many elliptic PDEs, strict sub- and super-solutions can be obtai-
ned from simple quadratic functions. It is slightly more involved in our setting be-
cause the right-hand side of (2) can be unbounded. However, we will demonstrate
in section 6 that standard elliptic theory can be used to construct appropriate sub-
and super-solutions.

Lemma 5.8 (Existence). Let Fh be a consistent, monotone, Lipschitz scheme.
Suppose also that there exist functions v, w ∈ C2(Ω̄) such that v is a strict sub-
solution and w a strict super-solution of the underlying PDE. Then for sufficiently
small h > 0, the approximation scheme (20) has a solution.

Proof. First we note that by consistency, we can restrict v, w to the grid and obtain

Fh(x, v(x), v(x)− v(·)) < 0, Fh(x,w(x), w(x)− w(·)) > 0

for any x ∈ Gh and sufficiently small h. By the discrete comparison principle
(Lemma 5.4), v ≤ w.

Now define the grid function

u = sup
{

U | U(x) ≤ w(x), Fh(x, U(x), U(x)− U(·)) < 0, ∀x ∈ Gh
}

, (22)

which is well-defined since v satisfies both of the constraints. We claim that u is a
solution of (20).

Consider any x ∈ Gh and ε > 0. From the definition of u, there exists a strict
discrete sub-solution uε such that

uε(x) > u(x)− ε, uε(·) ≤ u(·).
Then we can use the monotonicity of the scheme to compute

0 > Fh(x, uε(x), uε(x)− uε(·))
≥ Fh(x, u(x)− ε, u(x)− ε− uε(·))
≥ Fh(x, u(x)− ε, u(x)− ε− u(·)).

Since Fh is Lipschitz, we can take ε→ 0 to obtain

Fh(x, u(x), u(x)− u(·)) ≤ 0

and thus u is a sub-solution of the scheme.
Next we suppose that there is some y ∈ Gh such that F (y, u(y), u(y)− u(·)) < 0.

We will show that we can construct a larger sub-solution. Choose ε > 0 and consider

ũ(x) =

{

u(x), x 6= y

u(x) + ε, x = y.

We will verify that this is a sub-solution of the scheme. First consider x 6= y. Since
ũ(x) = u(x) and ũ(y) > u(y), monotonicity of the scheme yields

Fh(x, ũ(x), ũ(x)− ũ(·)) ≤ Fh(x, u(x), u(x)− u(·)) ≤ 0.

Additionally, for small enough ε > 0, the Lipschitz continuity of the scheme yields

Fh(y, ũ(y), ũ(y)− ũ(·)) = Fh(y, u(y) + ε, u(y) + ε− u(·)) < 0.
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Thus uε is a sub-solution of the scheme with max{uε − u} = ε > 0. This
contradicts the definition of u as the maximal sub-solution in (22) and we conclude
that

Fh(x, u(x), u(x)− u(·)) = 0, x ∈ Gh.

As a simple consequence of the discrete comparison principle, we can also obtain
bounds on the solution of the scheme.

Lemma 5.9 (Stability). Let Fh be a consistent, monotone, Lipschitz scheme and
let uh be a solution of (20). Suppose also that there exist functions v, w ∈ C2(Ω̄)
such that v is a strict sub-solution and w a strict super-solution of the underlying
PDE. Then there exists a constant M > 0, independent of h, such that ‖uh‖∞ ≤M
for sufficiently small h > 0.

Proof. As in the previous lemma, v and w are strict sub- and super-solutions of the
scheme for small enough h > 0. By the discrete comparison principle (Lemma 5.4),
we have v ≤ uh ≤ w and thus ‖uh‖∞ ≤ max{‖v‖∞, ‖w‖∞}.

5.3. Convergence. The concepts of consistency, monotonicity, stability, and in-
terior comparison can now be used to prove that elliptic approximation schemes
converge to the viscosity solution of the underlying PDE. This is accomplished
through a slight modification of the well-known Barles-Souganidis convergence fra-
mework. While the proof below is similar to those in [6, 22], those works implicitly
required the approximation scheme to be defined throughout the domain.

Here we are interested in schemes that are defined only on a finite set of dis-
cretisation points. In order to modify the convergence proof accordingly, we need
to extend the discrete grid solution into the entire domain Ω̄. To this end, we let
Uh : Gh → R be a solution of the approximation scheme on the grid. Using this,
we define the piecewise constant extension

uh(x) = max

{

Uh(y) | y ∈ Gh, |y − x| = min
z∈Gh

|z − x|
}

. (23)

This is simply a nearest neighbours extension, which accounts for the situation
where multiple discretisation points are equidistant.

Theorem 9 (Convergence of Schemes). Consider a degenerate elliptic PDE (21)
on a bounded domain Ω. Suppose that the PDE operator satisfies an interior com-
parison principle and that there exist strict classical sub- and super-solutions to the
PDE. Let Fh be any consistent, monotone, Lipschitz scheme and Uh any solution
of the scheme. Then for any interior point x ∈ Ω, the piecewise constant extension
uh(x) converges locally uniformly to the viscosity solution of the underlying PDE
as h→ 0.

Remark 5.10. The above theory provides existence but not necessarily uniqueness
of solutions Uh to the scheme Fh = 0. However, all solutions converge in the limit
as h→ 0.

Remark 5.11. As in [22], it is sufficient to use a perturbation of a monotone
scheme, which allows for the construction of convergent, formally higher-order ap-
proximations.

Remark 5.12. If the PDE satisfies a comparison principle in the closure of the
domain, then the scheme converges in Ω̄.
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Proof of Theorem 9. The key to the proof is to extend the approximation operator
Fh from the grid onto the entire domain.

Define

ū(x) = lim sup
h→0,y→x

uh(y) ∈ USC(Ω̄),

u(x) = lim inf
h→0,y→x

uh(y) ∈ LSC(Ω̄).

Clearly u(x) ≤ ū(x) everywhere in Ω̄.
From Lemma 5.9, both ū and u are bounded.
Consider any x0 ∈ Ω̄ and φ ∈ C2 such that x0 is a strict global maximum of

ū − φ with ū(x0) = φ(x0). Maxima of upper semi-continuous functions are stable
and thus it is possible to find subsequences

hn → 0, yn → x0, uhn(yn) → ū(x0)

where yn is a maximiser of uhn − φ. See, for example [22, Lemma 2].
Since uh is a nearest neighbours extension of the grid solution and h measures

the resolution of the underlying grid or point cloud (18), we can also find zn ∈ Gh

such that zn → x0 and uhn(zn) = uhn(yn). Defining ξn = uhn(yn)− φ(yn) → 0, we
have

uhn(yn) = ū(x0) + ξn

From the definition of the various subsequences, we also obtain

uhn(zn)− uhn(·) = uhn(yn)− uhn(·) ≥ φ(yn)− φ(·).
Then with a slight modification of [6], we can use monotonicity to verify that

0 = Fhn(zn, u
hn(zn), u

hn(zn)− uhn(·))
≥ Fhn(zn, φ(yn) + ξn, φ(yn)− φ(·)).

From consistency of the approximation, we obtain

0 ≥ lim inf
n→∞

Fhn(zn, φ(yn) + ξn, φ(yn)− φ(·))

≥ lim inf
h→0,y→x0,z∈Gh→x0,ξ→0

Fhn(z, φ(y) + ξ, φ(y)− φ(·))

≥ F∗(x0, φ(x0),∇φ(x0), D2φ(x0)).

Thus ū is a sub-solution of the PDE. We can similarly show that u a super-solution.
If u is the viscosity solution of the PDE then u∗ is a sub-solution and u∗ is a

super-solution. For x ∈ Ω, two applications of the comparison principle yields

u(x) ≤ u∗(x) ≤ u(x) ≤ ū(x) ≤ u∗(x) ≤ u(x).

We conclude that u = ū = u in Ω and therefore uh(x) converges to the viscosity
solution at interior points x ∈ Ω.

Moreover, since

lim inf
h→0,y→x

u(y) = u(x) = lim sup
h→0,y→x

u(y),

convergence is locally uniform.

An immediate consequence of this result is convergence in Lp.

Corollary 5.13 (Convergence in Lp). Under the hypotheses of Theorem 10, uh

converges to u in Lp for any 1 ≤ p <∞.
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Proof. Choose any ε > 0 and let Ωε be an ε-neighbourhood of the boundary ∂Ω:

Ωε = {x ∈ Ω | dist(x, ∂Ω) < ε}.
Since ‖uh‖∞ < M (Lemma 5.9) and Ω is bounded, we can bound the Lp error by

lim
h→0

‖u− uh‖pp = lim
h→0

(

∫

Ω\Ωε

∣

∣u(x)− uh(x)
∣

∣

p
dx+

∫

Ωε

∣

∣u(x)− uh(x)
∣

∣

p
dx

)

≤ |Ω\Ωε| lim
h→0

sup
Ω\Ωε

∣

∣u(x)− uh(x)
∣

∣

p
+ (M + sup |u|)p |Ωε|

= (M + sup |u|)p |Ωε| .
Since Ω is bounded, we can take ε→ 0 to obtain

lim
h→0

‖u− uh‖pp = 0.

6. Numerical method for prescribed Gaussian curvature. Now we can use
the results of the previous sections to produce a provably convergent method for
computing generalised solutions of the prescribed Gaussian curvature equation. For
simplicity and brevity, we will describe the scheme in 2D, although the techniques
and proofs can be adapted to higher dimensions.

6.1. Discretisation in interior. We begin by reviewing the techniques needed to
produce a monotone discretisation of the equation.

At interior points, we can rely on a slight modification of monotone schemes that
have previously been proposed for the solution of Monge-Ampère equations. We
briefly describe the monotone scheme that we use for the prescribed Gaussian cur-
vature equation, and refer to [20, 21] for further details. This requires constructing
monotone approximations for the terms

−det+(D2u(x)), κ(x)R(∇u(x)), −λ1(D2u(x)).

Monotone approximations for the determinant of the Hessian have been tho-
roughly described in [21]. Briefly, this approximation is based on the characterisa-
tion

−det+(D2u) = − min
{ν1...νn}∈V

n
∏

i=1

max{uνiνi
, 0}

where V is the set of all orthogonal coordinate systems in R
n and uνν is the second

directional derivative of u in the direction ν.
Instead of considering all orthogonal coordinate systems, we consider a finite

subset V h of V , which necessarily introduces some angular resolution error dθ into
the scheme. In our implementation, we consider the subset

V h = {(cos(j dθ), sin(j dθ)), (− sin(j dθ), cos(j dθ))}, j = 1, . . . ,
π

2dθ

where we take dθ ≈ 2πh1/4.
If the direction ν is of the form xj − xi where xi and xj are different grid points

on a Cartesian grid, then the second derivatives can be discretised using centred
differences.

uνν(x0) ≈
1

|ν|2
(u(x0 + ν) + u(x0 − ν)− 2u(x0)) .
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For more general directions or grids, the scheme can be modified as in [20]. To
accomplish this, we consider a search neighbourhood of radius

δ = h(1 + csc(dθ/2)),

which ensures the existence of a stencil with the required angular resolution. Neig-
hbouring grid points can be written in polar coordinates (r, φ) with respect to the
axes defined by the lines x0+ tν, x0+ tν

⊥. We seek one neighbouring discretisation
point in each quadrant described by these axes, with each neighbour aligning as
closely as possible with the line x0 + tν. That is, we select the neighbours

xj ∈ argmin
{

sin2 φ | (r, φ) ∈ Gh ∩B(x0, δ) is in the jth quadrant
}

for j = 1, . . . , 4. See Figure 2. Because of the “wide-stencil” nature of these approx-
imations (since the search radius δ � h), care must be taken near the boundary. In
order to preserve consistency up to the boundary, it is necessary that the boundary
be more highly resolved than the interior (hB � h).

θ

x1

x3

x2

x4

x0

(a)

∂Ω

x2

x3

x4

x1

x0 θ

(b)

Figure 2. A finite difference stencil chosen from a point cloud
(a) in the interior and (b) near the boundary.

Then a consistent, monotone approximation of uνν is

Dh
ννu(x0) =

4
∑

j=1

aj(u(xj)− u(x0))

where we use the polar coordinate characterisation of the neighbours to define

Sj = rj sinφj , Cj = rj cosφj

and the coefficients are given by

a1 =
2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a2 =
2S3(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a3 =
−2S2(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)

a4 =
−2S1(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1S4 − C2

4S1)− (C1S4 − C4S1)(C2
3S2 − C2

2S3)
.
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Using this, we define the following discrete approximation to the first term in the
convexified Monge-Ampère operator:

deth(D2u(x0)) = min
{ν1,ν2}∈V h

n
∏

i=1

max{Dh
νiνi

u(x0), 0}

Next, we consider the term

κ(x)R(∇u(x)) = κ(x)(1 + |∇u(x)|2)(n+2)/2.

Since the curvature κ is non-negative, it is only necessary to consider a monotone
discretisation of the gradient term. In this case, we can make use of the structure of
the function R and use a monotone scheme for |∇u| that has previously been used
to solve the Eikonal equation [45]. When the grid is uniform, the approximation is

|∇u(xi)|2 ≈
n
∑

i=1

max

{

u(x)− u(x+ hei)

h
,
u(x)− u(x− hei)

h
, 0

}2

.

More generally, we can consider the four neighbours xij , j = 1, . . . , 4 that best align
with the coordinate direction ei. Using the above notation,

∣

∣Dhu(x0)
∣

∣

2
=

n
∑

i=1

max
{

bi1(u(x
i
1)− u(x0)) + bi4(u(x

i
4)− u(x0)),

bi2(u(x
i
2)− u(x0)) + bi3(u(x

i
3)− u(x0)), 0

}2

where the cofficients are given by

b1 =
S4

S1C4 − C1S4
b2 = − S3

S2C3 − C2S3

b3 =
S2

S2C3 − C2S3
b4 = − S1

S1C4 − C1S4
.

Finally, we discretise the term

−λ1(D2u).

Following Oberman [34], we can rewrite the smallest eigenvalue as

λ1(D
2u) = min

|ν|=1
uνν .

As with the Monge-Ampère equation, we can approximate this using a finite set of
directions.

λh1 (D
2u(x0)) = min

{

Dh
νiνi

u(x0) | νi = i dθ, i = 1, . . . ,
π

dθ

}

.

Finally, we can define the overall approximation scheme at interior points x ∈
Gh ∩ Ω by

Fh(x, u(x), u(x)− u(·))

=max

{

−deth(D2u(x)) + κ(x)
(

1 +
∣

∣Dhu(x)
∣

∣

2
)(n+2)/2

,−λh1 (D2u(x))

}

,
(24)

which involves only the monotone operations of addition, multiplication, and com-
puting the maximum. As long as the boundary of the domain is sufficiently well-
resolved (with spatial resolution on the order of h dθ), the resulting scheme is con-
sistent and monotone [20, Theorem 16]. We note that the formal discretisation
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error is on the order of O(
√
h), though formally higher-order schemes can also be

constructed via filtered methods [22].

6.2. Discretisation at boundary. We also need to define the approximation
scheme at the boundary. At first glance, this appears very challenging since the
correct boundary values are not known a priori and the weak formulation is influ-
enced by the behaviour of higher-derivatives at the boundary. Remarkably, though,
it is sufficient to enforce the Dirichlet boundary condition in a strong sense:

Fh(x, u(x), u(x)− u(·)) = u(x)− g(x), x ∈ Gh ∩ ∂Ω. (25)

If the weak solution of the PDE is discontinuous at the boundary, this will ne-
cessarily introduce a boundary layer into the solution. However, our interior con-
vergence result (and Lp convergence) will still hold. To demonstrate this, it is
necessary to show that the strong form of the boundary condition actually satisfies
the necessary consistency condition.

Lemma 6.1 (Consistency with the weak Dirichlet problem). The approximation
scheme Fh defined by (24)-(25) is consistent, monotone, and Lipschitz.

Proof. From [20, Theorem 16], the scheme is consistent and monotone in Ω. It
is also trivially monotone on ∂Ω. By construction, the scheme is Lipschitz as it
involves only addition, multiplication, and computing the maximum of operators.
It remains to verify consistency at the boundary.

Consider x ∈ ∂Ω, smooth φ, and sequences hn → 0, yn ∈ Gh ∩ ∂Ω, zn ∈ Gh ∩ Ω,
wn ∈ Ω̄ such that hn → 0 and yn, zn, wn → x. For sequences that approach x along
the boundary we have

lim
n→∞,ξ→0

Fhn(yn, φ(wn) + ξ, φ(wn)− φ(·)) = lim
n→∞,ξ→0

(φ(wn) + ξ − g(yn))

= φ(x)− g(x).

For sequences that approach x from the interior, we can use the consistency and
Lipschitz continuity of the interior approximation to calculate

lim
n→∞,ξ→0

Fhn(zn, φ(wn) + ξ, φ(wn)− φ(·))

= max{−det+(D2φ(x)) + κ(x)(1 + |∇φ(x)|2)(n+2)/2,−λ1(D2φ(x))}
= F (x, φ(x),∇φ(x), D2φ(x)).

Combining these results yields

lim sup
h→0,w→x,z∈Gh→x,ξ→0

Fh(z, φ(w) + ξ, φ(w)− φ(·))

= max
{

φ(x)− g(x), F (x, φ(x),∇φ(x), D2φ(x))
}

= F ∗(x, φ(x),∇φ(x), D2φ(x)).

We can similarly verify the condition on the limit inferior of the scheme, which
establishes consistency in the sense of Definition 5.1.

6.3. Convergence. We now establish that the generalised finite difference met-
hod (24)-(25) correctly approximates generalised solutions of the prescribed Gauss-
ian curvature equation. We begin by demonstrating that the scheme is well-posed,
which requires us to construct strict sub- and super-solutions of the PDE.
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Lemma 6.2 (Strict classical super-solution). Under the conditions of Hypothe-
sis 2.4, the equation of prescribed Gaussian curvature has a strict classical super-
solution.

Proof. We propose the function

w(x) = −|x|2
2

+M1, M1 > max
x∈∂Ω

{

|g(x)|+ |x|2
2

}

> 0.

At interior points, we substitute w into the PDE (9) to obtain

F (x,w(x),∇w(x), D2w(x)) ≥ −λ1(D2w(x)) = 1 > 0.

At boundary points we have

F ∗(x,w(x),∇w(x), D2w(x)) ≥ w(x)− g(x) > max
y∈∂Ω

{|g(y)|} − g(x) > 0,

which establishes w as a strict super-solution.

Lemma 6.3 (Strict classical sub-solution). Under the conditions of Hypothesis 2.4,
the equation of prescribed Gaussian curvature has a strict classical sub-solution.

Proof. Our approach is to increase the curvature and smooth the data in order to
produce a smooth, strict sub-solution of the PDE.

Since the given curvature κ satisfies the strict compatibility condition of Hypot-
hesis 2.4, we can choose γ > 0 such that

∫

Ω

(κ(x) + γ) dx <

∫

Rn

(1 + |p|2)−(n+2)/2 dp.

For any ε > 0, we can define an enlarged, uniformly continuous domain that
includes an ε-neighbourhood of the original uniformly continuous domain:

Ωε = {x ∈ R
n | dist(x, Ω̄) < ε}.

We can also extend the curvature κ into this domain via

κε(x) = (κ (ProjΩ̄x) + γ)min

{

1

ε
dist(x, ∂Ωε), 1

}

.

Notice that κε > 0 in Ωε, κε = 0 on ∂Ωε, and κε = κ + γ in Ω. We can further
mollify this to produce a C2 curvature function κ̃ε satisfying

|κ̃ε − κε| < ε.

For sufficiently small ε > 0, we have both of the following conditions:

κ̃ε(x) > κ(x), x ∈ Ω
∫

Ωε

κ̃ε(x) dx <

∫

Rn

(1 + |p|2)−(n+2)/2 dp.

We also choose a constant
g0 < min

x∈∂Ω
g(x).

This smoothed data ensures that the following PDE has a smooth convex solu-
tion v [23, Corollary 17.25].

{

det(D2v(x)) = κ̃ε(x)(1 + |∇v(x)|2)(n+2)/2, x ∈ Ωε

v(x) = g0, x ∈ ∂Ωε.

We note that since v is convex, it attains its maximum on the boundary and thus
v ≤ g0 in Ωε.
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Now we verify that v is a sub-solution of (9). Consider first interior points x ∈ Ω.
Since v is convex and its curvature satisfies κ̃ε(x) > κ(x) ≥ 0, we have

−λ1(D2v(x)) < 0.

The other term in the maximum is

−det+(D2v(x)) + κ(x)R(∇v(x)) < −det(D2v(x)) + κ̃ε(x)R(∇v(x)) = 0.

We conclude that

max
{

−det+(D2v(x)) + κ(x)R(∇v(x)),−λ1(D2v(x))
}

< 0.

Now we combine these two lemmas with our earlier equivalence results (The-
orems 5 and 8), the interior comparison principle (Theorem 7), well-posedness
(Lemma 5.8) and convergence (Theorem 9) criteria for schemes, and the consis-
tency, monotonicity, and Lipschitz continuity of the scheme (Lemma 6.1). The
main result of this article is the following.

Theorem 10 (Convergence). Consider the Gaussian curvature equation (2) with
data satisfying Hypothesis 2.4 and let u(x) be the unique generalised solution of the
equation. For sufficiently small h > 0, the approximation scheme (24)-(25) has a
solution Uh, which defines a nearest neighbour extension uh(x) via (23). Consider
any x ∈ Ω. Then as h→ 0, uh(x) → u(x).

6.4. Examples. We conclude by presenting several computational examples that
demonstrate that this monotone scheme does indeed correctly compute surfaces of
prescribed Gaussian curvature. The examples we present are two-dimensional, non-
classical viscosity solutions, but the convergence results presented in this article are
valid in any dimension.

Each of the following examples is posed on a domain Ω ⊂ R
2 that consists of

the half of the unit disc where x > 0. The equations are discretised on a uniform
Cartesian grid with spacing h inside the domain, augmented by approximately
4/h3/2 points on the boundary ∂Ω. The resulting point cloud is pictured in Figure 3.
The discrete equations were solved in Matlab using an explicit iterative scheme as
in [34].

Our purpose here is to validate the convergence of monotone schemes rather than
to produce an optimal method. However, we expect that the techniques of [?] can
be adapted to produce significantly more accurate almost-monotone schemes that
are higher-order in smooth parts of the domain, while utilising meshes that are
adapted to produce higher resolution near boundary layers.

6.4.1. Lipschitz (C0,1). The first example we consider is given by

u(x, y) = |−x sin(π/10) + y cos(π/10)| , κ(x, y) = 0.

This example, which is Lipschitz continuous but not differentiable, is pictured in
Figure 4(a). We note that the line of non-differentiability does not align with
any grid direction. Because the curvature vanishes, the ellipticity of the Monge-
Ampère equation (2) is everywhere degenerate. Nevertheless, the monotone scheme
converges to the correct solution as is seen in Table 1.

We remark that for such a singular example, the error is not expected to decrease
monotonically to zero as the grid is refined. This is because the directions that we
resolve are distributed uniformly on the unit ball. While the number of directions
is increased as the grid is refined, it is possible that a direction that is present on
a coarse grid (but not on the next refinement) may happen to align well with the
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Figure 3. Computational point cloud with h = 2−3.

Table 1. Error in computed solutions.

C0,1 C0 Non-continuous
h ‖u− uh‖∞ ‖u− uh‖∞ ‖u− uh‖∞ ‖u− uh‖1
2−3 9.45× 10−2 1.94× 10−1 3.55× 10−1 2.12× 10−1

2−4 9.27× 10−2 1.61× 10−1 3.33× 10−1 1.83× 10−1

2−5 6.48× 10−2 1.28× 10−1 3.05× 10−1 1.60× 10−1

2−6 6.41× 10−2 1.09× 10−1 2.90× 10−1 1.33× 10−1

2−7 3.18× 10−2 8.80× 10−2 2.74× 10−1 9.53× 10−2

singularity, which can lead to an unusually low error. However, we do expect the
error to converge to zero as the grid is refined. This is observed in Table 1.

6.4.2. Unbounded gradient (C0). For our second example, we consider the constant-
curvature surface of the unit ball

u(x, y) = −
√

1− x2 − y2, κ(x, y) = 1.

This solution is continuous, but the gradient blows up along a portion of the boun-
dary; see Figure 4(b). Despite the low regularity of this solution, the monotone
scheme correctly computes this weak solution. See Table 1.

6.4.3. Dirichlet data not attained. Finally, we consider a modification of the previ-
ous example that does not satisfy the Dirichlet boundary conditions in a classical
sense. We again look for a surface of constant unit curvature with the data

g(x, y) = −
√

1− x2 − y2 +
1

4
x, κ(x, y) = 1.

The exact solution is again the surface of the unit ball,

u(x, y) = −
√

1− x2 − y2,

which does not agree with g(x, y) on much of the boundary. See Figure 4(c) for
the computed solution, which lies strictly above the true solution (Figure 4(b))
at the boundary because of the strong implementation of the Dirichlet boundary
conditions.

In this case, it is not possible to obtain convergence in L∞ since the computed
solution must contain an error of 0.25 at the boundary. The resulting boundary
layer is evident in the plot of error in Figure 4(d). However, as predicted by Corol-
lary 5.13, we do observe convergence in L1 despite the highly non-classical nature
of this example. See Table 1.
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(a) (b)

(c) (d)

Figure 4. Computed approximations (h = 2−7) to solutions that
(a) are Lipschitz continuous (6.4.1), (b) have an unbounded gra-
dient (6.4.2), and (c) do not achieve the Dirichlet data (6.4.3).
(d) Error in discontinuous solution.

7. Conclusions. In this article, we developed a proof that surfaces of prescribed
Gaussian curvature can be constructed through the use of monotone approximations
of a Monge-Ampère type equation.

Typical convergence proofs for the approximation of weak (viscosity) solutions
of nonlinear degenerate elliptic equations require on a comparison principle that
ensures that sub-solutions lie below super-solutions. However, this is demonstrably
false for our equation equipped with Dirichlet boundary conditions, which must be
interpreted in a weak sense and which allow for solutions that are discontinuous at
the boundary.

By relying on a geometric interpretation of the Monge-Ampère equation, we
proved that a comparison principle does hold in the interior of the domain. This
result relied on the fact that the sub-gradients of viscosity solutions can be ordered
even when the boundary conditions are not satisfied in the classical sense. Using
this comparison result, we modified the traditional Barles-Souganidis framework
to prove that consistent, monotone schemes are well-posed and converge to the
non-continuous viscosity solution, though possibly with a boundary layer.

To validate these results, we implemented a monotone scheme for the prescri-
bed Gaussian curvature equation in two-dimensions. Convergence to the viscosity
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solution was observed for challenging examples including a Lipschitz continuous so-
lution, a solution with unbounded gradient, and a solution that did not satisfy the
boundary conditions in a classical sense.

The monotone scheme presented here is low-accuracy, but formally higher-order
filtered schemes can be constructed as in [22]. The schemes can also be adapted to
non-uniform meshes as in [20]. A natural extension would be to introduce filtered
schemes that are one-sided and highly resolved near the boundary in an attempt to
reduce the effects of the boundary layer.

Another possible direction for future work is the development of faster solution
methods. Fast solvers based on Newton’s method [21] or policy iteration [13] involve
the solution of sub-problems that have the structure of linear elliptic equations, with
coefficients depending on the Hessian of the current approximation to the solution.
These solvers have been found to be remarkably effective even for problems with
degeneracy, though this typically leads to a loss of mesh-independent convergence.
However, in the problems considered in this article, solutions have very low regula-
rity (i.e. not even continuous). Consequently, the ellipticity constants can become
unbounded, the resulting systems are ill-conditioned, and methods can require many
iterations to converge.

Appendix A. Equivalence of weak solutions. In this appendix, we modify
the results of [24] in order to prove Theorem 1, which asserts that generalised and
viscosity solutions of (1) are equivalent on open sets.

Lemma A.1 (Generalised solutions are viscosity solutions). Consider a domain
Ω and curvature κ satisfying the conditions of Hypothesis 2.4. Let u be a convex
generalised solution of (1). Then u is a viscosity solution of (1).

Proof. We demonstrate here that u is a viscosity sub-solution. The proof that it is
a super-solution, and therefore a viscosity solution, is similar.

Choose any x0 ∈ Ω and φ ∈ C2 such that u − φ has a strict local maximum at
x0. As in the proof of Lemma 3.5, this implies that there is some δ > 0 such that
u(x) < φ(x) and D2φ(x) ≥ 0 whenever 0 < |x− x0| ≤ δ. We define the positive
constant

m = min
δ/2≤|x−x0|≤δ

{φ(x)− u(x)} > 0.

Now choose any 0 < ε < m and define the set

Sε = {x | |x− x0| ≤ δ, u(x) + ε > φ(x)}.
We notice that whenever δ/2 ≤ |x− x0| ≤ δ, we must have φ(x) − u(x) ≥ m > ε
and x /∈ Sε. We conclude that Sε is contained in the smaller ball

Sε ⊂ B(x0, δ/2).

Now for any z ∈ ∂Sε, we can construct sequences xn ∈ Sε, yn /∈ Sε such that
both converge to the boundary point z: xn, yn → z. By the continuity of u and φ,
we must have

u(x) + ε = φ(x), x ∈ ∂Sε.

Since u + ε > φ in Sε with equality on the boundary ∂Sε, we can apply [24,
Lemma 1.4.1] to obtain

∂u(Sε) = ∂(u+ ε)(Sε) ⊂ ∂φ(Sε).
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Combined with the fact that u is a generalised solution, we obtain
∫

Sε

κ(x) dx =

∫

∂u(Sε)

(1 + |p|2)−(n+2)/2 dp

≤
∫

∂φ(Sε)

(1 + |p|2)−(n+2)/2 dp

=

∫

Sε

(1 + |∇φ(x)|2)−(n+2)/2 det(D2φ(x)) dx.

As this holds for all sufficiently small ε > 0, we can use the continuity of φ to obtain

− det(D2φ(x0)) + κ(x0)(1 + |∇φ(x0)|2)(n+2)/2 dx ≤ 0,

which implies that u is a viscosity sub-solution.

Lemma A.2 (Viscosity solutions are generalised solutions). Consider a domain
Ω and curvature κ satisfying the conditions of Hypothesis 2.4. Let u be a convex
viscosity solution of (1). Then u is a generalised solution of (1).

Proof. Choose any uniformly convex set E such that Ē ⊂ Ω. Since u is convex,
u ∈ C0,1(Ē). We will verify that

∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp =

∫

E

κ(x) dx.

Super-solution. First we construct a super-solution of u. For ε > 0, define the
smaller set

Eε = {x ∈ E | dist(x, ∂E) > ε}.
Next we define the modified curvature function

κε(x) =
1

ε
κ (x)min {dist(x, ∂E), ε} ≤ κ(x).

We note that κ = κε in Eε.
Now we let vε be the convex generalised solution of

{

− det(D2vε(x)) + κε(x)(1 + |∇vε(x)|2)(n+2)/2, x ∈ E

vε(x) = u(x), x ∈ ∂E.
(26)

By [3, Theorem 11.8], the solution continuously attains the boundary data: vε ∈
C0(Ē) and vε(x) = u(x) on ∂E. Additionally, by Lemma A.1, vε is a viscosity
solution (and thus super-solution) of (26).

Then we can consider any x0 ∈ E and φ ∈ C2 such that D2v(x0) > 0 and vε − φ
has a local minimum at x0. Since vε is a super-solution of (26), we must have

0 ≤ − det(D2φ(x0)) + κε(x0)(1 + |∇φ(x0)|2)(n+2)/2

≤ − det(D2φ(x0)) + κ(x0)(1 + |∇φ(x0)|2)(n+2)/2.

Thus vε is also a super-solution of the original equation (2).
Since vε is a super-solution, u a sub-solution, and vε = u on ∂E, we can use the

classical comparison principle (Theorem 6, which is a special case of [27, Theorem
V.2]) to deduce that

vε(x) ≥ u(x), x ∈ Ē.

This allows us to order the subgradients of these functions using [24, Lemma 1.4.1]:

∂vε(E) ⊂ ∂u(E).
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Now we can compute
∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp ≥
∫

∂vε(E)

(1 + |p|2)−(n+2)/2 dp

=

∫

E

κε(x) dx

=

∫

E

κ(x) dx+

∫

E\Eε

(κε(x)− κ(x)) dx

≥
∫

E

κ(x) dx− 2 |E\Eε| sup
E
κ.

Since κ is bounded, we can take ε→ 0 to obtain
∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp ≥
∫

E

κ(x) dx. (27)

Sub-solution. Secondly, we construct a sub-solution by letting w be the convex
generalised solution of

{

− det(D2w(x)) + κε(x)(1 + |∇w(x)|2)(n+2)/2, x ∈ E

w(x) = u(x), x ∈ ∂E.
(28)

From Lemma A.1, w is a viscosity solution (and therefore sub-solution) of (28) in
E. Since w satisfies the Dirichlet boundary condition in the sense of Definition 2.3,
we must have w ≤ u on ∂E. We can again apply the classical comparison principle
to conclude that w ≤ u on Ē.

Since w satisfies the boundary condition in the generalised sense, we have that
at each point x ∈ ∂E either w∗(x) = u(x) or the subgradient ∂w∗(x) is empty; see
Lemma 3.6 and Remark (iii) of [43]. Thus we can use Lemma 4.10 to order the
subgradients:

∂u(E) ⊂ ∂w(E).

From here, we can easily compute
∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp ≤
∫

∂w(E)

(1 + |p|2)−(n+2)/2 dp =

∫

E

κ(x) dx. (29)

Combining Equations (27) and (29), we obtain
∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp =

∫

E

κ(x) dx

for any uniformly convex set E ⊂ Ω.
If E ⊂ Ω is non-uniformly convex, we can find a sequence of uniformly convex

sets Ej ⊂ E such that |E\Ej | → 0. Since κ is bounded, we obtain
∫

∂u(E)

(1 + |p|2)−(n+2)/2 dp ≥
∫

Ej

κ(x) dx→
∫

E

κ(x) dx.

The reverse inequality is proved similarily.
Finally, we can choose a generic F ⊂ Ω. For ε > 0, there exist non-overlapping

convex sets Fj such that
⋃

j

Fj ⊂ F and

∣

∣

∣

∣

∣

F\⋃
j

Fj

∣

∣

∣

∣

∣

< ε. Then the measure satisfies

∫

∂u(F )

(1 + |p|2)−(n+2)/2 dp ≥
∑

j

∫

Fj

κ(x) dx ≥
∫

F

κ(x) dx− ε sup
Ω
κ.
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The reverse inequality is similar. Then taking ε→ 0, we obtain
∫

∂u(F )

(1 + |p|2)−(n+2)/2 dp =

∫

F

κ(x) dx

and u is a generalised solution.

Appendix B. Perron’s Method. In this appendix, we expand on the proof of
Perron’s method (Theorem 4), expanding on the results of [5, Theorem 4.1].
Theorem 4 (Perron construction of viscosity solution). Assume that Ω, g, and
κ satisfy Hypothesis 2.4. If u1 is an upper semi-continuous sub-solution and u2 a
lower semi-continuous super-solution with u1 ≤ u2 on Ω̄ then

w = sup{W : Ω → R | u1 ≤W ≤ u2, W ∈ USC, W ∗ is a sub-solution}

is a viscosity solution of (2).

Proof of Theorem 4. We notice that any admissible function W appearing in the
above definition is defined only in the interior Ω. Since W ∗ is a sub-solution, it
is convex (Lemma 3.4), and therefore W = W ∗ is continuous in Ω and satisfies
W ∗ = (W∗)

∗ in Ω̄. By Lemma 4.5, W ∗ is a sub-solution in the conventional sense
(i.e. W ∗ ≤ g on ∂Ω). Thus we can use standard arguments to show that w∗ is a
sub-solution and w∗ ≤ g on ∂Ω. From Lemma 3.4, w∗ is convex and w∗ = w in Ω.

It remains to show that w∗ is a super-solution. This is a standard argument for a
classical Dirichlet problem, which requires super-solutions to satisfy w∗ ≥ g on ∂Ω,
but is non-standard in our setting because we allow super-solutions to lie below the
given Dirichlet data. We verify the super-solution condition at every x0 ∈ Ω̄ and
consider three possibilities.

Case 1: w∗(x0) = u2(x0). Choose any φ ∈ C2 such that D2φ(x0) > 0 and w∗−φ
has a local minimum at x0. In this case

u2(x)− φ(x) ≥ w∗(x)− φ(x) ≥ w∗(x0)− φ(x0) = u2(x0)− φ(x0)

and u2 − φ also has a local minimum at x0. Then since u2 is a super-solution,

F ∗(x0, w∗(x0),∇φ(x0), D2φ(x0)) ≥ 0

as required.
Case 2: Interior points x0 ∈ Ω with w∗(x0) < u2(x0). Suppose the super-

solution condition is violated. Then there exists some φ ∈ C2 such that φ(x0) =
w∗(x0), φ(x) ≤ w∗(x) nearby, and

−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)) < 0.

Note that the non-negativity of κ and R then requires that D2φ(x0) > 0. We will
derive a contradiction by constructing a sub-solution v∗ lying between u1 and u2
such that v(x0) > w(x0), which contradicts the maximality of w.

For sufficiently small r, ε, γ > 0 define

v(x) =

{

max{φ(x) + ε− γ
2 |x− x0|2 , w(x)} |x− x0| < r

w(x), |x− x0| ≥ r.

As long as the parameters are small enough, v will satisfy the following conditions.

• v ≥ w ≥ u1. This follows trivially from the definition of v.
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• v ≤ u2. Let δ = u2(x0) − φ(x0) = u2(x0) − w∗(x0) > 0. Since u2 is lower
semi-continuous and φ is smooth, taking r sufficiently small ensures that

u2(x) ≥ u2(x0)−
δ

3
, φ(x) ≤ φ(x0) +

δ

3

whenever |x− x0| < r. This in turn ensures that for sufficiently small r, ε,

u2(x) ≥ φ(x) +
δ

3
≥ φ(x) + ε− γ

2
|x− x0|2

and therefore u2(x) ≥ v(x).
• −det+(D2φ(x)− γI) + κ(x)R(∇φ(x)− γ(x− x0)) < 0 for |x− x0| < r. This
is guaranteed for small enough γ and r since φ ∈ C2 and

−det+(D2φ(x0)) + κ(x0)R(∇φ(x0)) < 0.

• v is convex. Since φ is smooth and uniformly convex in a neighbourhood of
x0, v is the maximum of two convex functions and is therefore convex.

Now we verify that v∗ is a sub-solution. As long as r is sufficiently small, it is
only necessary to check the conditions in Ω, where v∗ = v and w∗ = w. Choose
any z ∈ Ω and ψ ∈ C2 such that v − ψ has local maximum at z. There are two
possibilities depending on which function is active in the definition of v.

Case 2a: v(z) = w(z). In this case

w(z)− ψ(z) = v(z)− ψ(z) ≥ v(x)− ψ(x) ≥ w(x)− ψ(x).

Since w−ψ has a maximum at z and w is a sub-solution, the required condition is
satisfied.

Case 2b: v(z) > w(z). This means that nearby, v(x) = φ(x) + ε− γ
2 |x− x0|2 ∈

C2. Furthermore, this is only possible for |z − x0| < r. Then since v − ψ has a
maximum at z,

∇φ(z)− γ(z − x0) = ∇ψ(z), D2φ(z)− γI ≤ D2ψ(z).

Consequently,

F (z, v(z),∇ψ(z), D2ψ(z)) ≤ −det+(D2ψ(z)) + κ(z)R(∇ψ(z))
≤ −det+(D2φ(z)− γI) + κ(z)R(∇φ(z)− γ(z − x0))

< 0.

This demonstrates that v is a sub-solution satisfying u1 ≤ v ≤ u2 and v(x0) >
w(x0), which contradicts the maximality of w. Therefore the super-solution condi-
tion must be satisfied at interior points.

Case 3: Boundary points x0 ∈ ∂Ω with w∗(x0) < u2(x0). We suppose again that
w∗ violates the super-solution condition at x0, which is only possible if w∗(x0) <
g(x0) (Lemma 4.6). Then we can perform the same construction as in the previous
case to generate a new function v:

v(x) =

{

max{φ(x) + ε− γ
2 |x− x0|2 , w∗(x)}, |x− x0| < r

w∗(x), |x− x0| ≥ r.

As above, v∗ is a sub-solution in Ω.
Now we consider z ∈ ∂Ω. Recall that φ(x0) = w∗(x0) < g(x0). Since φ and g

are continuous, sufficiently small ε and r ensure that

φ(z) + ε− γ

2
|z − x0|2 < g(z), |z − x0| < r.
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Thus

v∗(z) ≤ max
{

φ(z) + ε− γ

2
|z − x0|2 , w∗(z)

}

≤ g(z)

and v∗ is a sub-solution.
Finally, we observe that for sufficiently small |x− x0|, v(x) ≥ w∗(x0) + ε/2 and

therefore v∗(x0) > w∗(x0). This, in turn, requires that v(x) > w(x) for some x ∈ Ω,
which contradicts the maximality of w.

We conclude that the function w∗ generated by the Perron construction must a
super-solution and therefore w is a viscosity solution of (2).
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