J Sci Comput (2018) 75:1282-1306 @ CrossMark
https://doi.org/10.1007/510915-017-0586-5

Higher-Order Adaptive Finite Difference Methods
for Fully Nonlinear Elliptic Equations

Brittany Froese Hamfeldt'® - Tiago Salvador?

Received: 23 June 2017 / Revised: 11 October 2017 / Accepted: 14 October 2017 /
Published online: 24 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We introduce generalised finite difference methods for solving fully nonlinear
elliptic partial differential equations. Methods are based on piecewise Cartesian meshes
augmented by additional points along the boundary. This allows for adaptive meshes and
complicated geometries, while still ensuring consistency, monotonicity, and convergence.
We describe an algorithm for efficiently computing the non-traditional finite difference sten-
cils. We also present a strategy for computing formally higher-order convergent methods.
Computational examples demonstrate the efficiency, accuracy, and flexibility of the methods.

Keywords Finite difference methods - Fully nonlinear elliptic partial differential equations -
Adaptive methods - Higher-order methods

Mathematics Subject Classification 35J15 - 35J60 - 35J96 - 65N06 - 65N12 - 65N50

1 Introduction

In this article we design generalised finite difference methods for a large class of fully non-
linear degenerate elliptic partial differential equations (PDEs). The approximation schemes
are almost-monotone, which allows us to exploit the Barles-Souganidis convergence frame-

The first author was partially supported by NSF DMS-1619807. The second author was partially supported
by NSERC Discovery Grant RGPIN-2016-03922 and by Fundag¢@o para a Ciéncia e Tecnologia (FCT)
Doctoral Grant (SFRH/BD/84041/2012).

B Brittany Froese Hamfeldt
bdfroese @njit.edu

Tiago Salvador
saldanha@umich.edu

Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights,
Newark, NJ 07102, USA

2 Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0586-5&domain=pdf
http://orcid.org/0000-0002-0729-8191

J Sci Comput (2018) 75:1282-1306 1283

work. A key feature of these methods is the use of piecewise Cartesian grids, augmented by
additional discretisation points along the boundary. Because of the underlying structure of
the grids, the methods we design overcome several hurdles that exist for current numerical
methods. (1) The non-standard finite difference stencils can be constructed efficiently. (2) The
monotone approximation schemes preserve consistency near the boundary. (3) Higher-order
schemes are easily designed. (4) Complicated geometries are easily handled.

1.1 Background

Fully nonlinear elliptic partial differential equations (PDEs) arise in numerous applica-
tions including reflector/refractor design [22], meteorology [10], differential geometry [8],
astrophysics [17], seismology [12], mesh generation [7], computer graphics [27], and math-
ematical finance [16]. Realistic applications often involve complicated domains and highly
non-smooth data. Thus the development of robust numerical methods that are compatible
with adaptive mesh refinement is a priority.

In recent years, the numerical solution of these equations has received a great deal of
attention, and several new methods have been developed including finite difference meth-
ods [3,15,23,28,30], finite element methods [1,5,6,29], least squares methods [11], and
methods involving fourth-order regularisation terms [14]. However, these methods are not
designed to compute weak solutions. When the ellipticity of the equation is degenerate or no
smooth solution exists, methods become very slow, are unstable, or converge to an incorrect
solution.

Using a framework developed by Barles and Souganidis [2], provably convergent (mono-
tone) methods have recently been constructed for several fully nonlinear equations using wide
finite difference stencils [26]. Recently, the idea of wide stencil schemes has been adapted
to produce monotone approximations for a large class of fully nonlinear elliptic operators
posed on very general meshes or points clouds [20]. However, constructing the necessary
finite difference stencils is a very expensive process, and the resulting approximations have
only O(v/h) accuracy.

1.2 Contributions of This Work

The goal of this article is to design higher-order, adaptive, convergent finite difference meth-
ods for the solution of the degenerate elliptic PDE

F(x,u(x), Dzu(x)) = max Fp(x,u(x), uge(x)) =0, (1)
0€l0,27)

where ugg denotes the second directional derivative of u in the direction ey = (cos 9, sin6) €
R?. This includes a wide range of PDE operators including monotone functions of the eigen-
values of the Hessian matrix D%u and general convex functions of the Hessian matrix [13,
Proposition 5.3]. We note that the maxima can also be taken over a subset of directions by
simply setting Fy = —1 for directions that are not active in the PDE operator. The methods
described in this article can also be trivially adapted to include minima and other monotone
functions of the operators Fy.

We remark that the PDE operator can also include Lipschitz continuous dependence on
the gradient Vu. Monotone approximation of first-order operators is fairly well-established
and does not require the wide-stencil structure that is necessary to correctly discretise
second-order operators. In this article, we omit terms involving the gradient for the sake
of compactness and clarity.

@ Springer

1284 J Sci Comput (2018) 75:1282-1306

We take as a starting point the meshfree finite difference approximations developed in [20].
Given a set of discretisation points G, that work introduced a generalised finite difference
approximation of (1) of the form

Fy | xiu(xi), Y aije)—u@x)|=0. xegd. @)

p l’naX2
e AC[0,27) JeNG6)

Above, the set of neighbours A/ (i, 0) gives indices of several points that are near x; and align
closely with the ey direction. In the original paper, these sets of neighbours are computed
through brute force, by finding and inspecting all nodes lying within a distance Vh of each
other.

In this article, we describe the construction of piecewise Cartesian meshes using a quadtree
structure, which is augmented by additional discretisation points along the boundary in order
to preserve consistency. We demonstrate that the resulting set of discretisation points satisfies
the conditions required by [20, Theorem 13]. This ensures that it is possible to build monotone
(convergent) approximations. Moreover, the structure of these quadtrees allows for easy
mesh adaptation, with refinement criteria that can either be specified a priori or determined
automatically from the quality of the solution of (2).

By exploiting the underyling structure of the quadtree meshes, we design an efficient
method for constructing the set of neighbours A (i, 6) required by our generalised finite
difference stencils. This leads to a much faster numerical method for approximating solutions
of (1) that can easily handle singular solutions, complicated geometries, and highly non-
uniform meshes.

Finally, we describe a strategy for producing higher-order almost-monotone methods
using the framework of [21]. This requires combining the monotone scheme with a formally
higher-order approximation. By utilising the structure and symmetry within the quadtree
mesh, we obtain a simple strategy for constructing higher-order schemes in the interior of
the domain. Near the boundary, where these simple schemes no longer exist, we propose a
least-squares approach to constructing higher-order schemes.

1.3 Contents

In Sect.2, we review the theory of generalised finite difference approximations for fully
nonlinear elliptic equations. In Sect.3, we describe our strategy for constructing meshes
and finite difference stencils. In Sect. 4, we describe a higher-order implementation of these
methods. In Sect. 5, we present several computational examples. Finally, in Sect. 6, we provide
conclusions and perspectives.

2 Generalised Finite Difference Schemes

In this section we review existing results on the construction and convergence of numerical
methods for fully nonlinear elliptic equations.

2.1 Weak Solutions
One of the challenges associated with the approximation of fully nonlinear PDE:s is the fact

that classical (smooth) solutions may not exist. It thus becomes necessary to interpret PDEs
using some notion of weak solution, and the numerical methods that are used need to respect

@ Springer

J Sci Comput (2018) 75:1282-1306 1285

this notion of weak solution. The most common concept of weak solution for this class
of PDE:s is the viscosity solution, which involves transferring derivatives onto smooth test
functions via a maximum principle argument [9].

The PDEs we consider in this work belong to the class of degenerate elliptic equations,

F(x,u(x), D’u(x)) =0, xe £ CR>. 3)

Definition 1 (Degenerate elliptic) The operator F : 2 x R x §? — R is degenerate elliptic
if

F(x,u,X) < F(x,v,Y)
wheneveru <vand X > Y.

‘We note that the operator is also defined on the boundary 952 of the domain, which allows
both the PDE and the boundary conditions to be contained within Eq. (3). For example, if
Dirichlet data u(x) = g(x) is given on the boundary, the elliptic operator at the boundary
will be defined by

F(x,u(x), D?u(x)) = u(x) — g(x), x € ds.

The PDE operators (1) that we consider in this work are degenerate elliptic if they are
non-decreasing functions of their second argument (1) and non-increasing functions of all
subsequent arguments (which involve second directional derivatives).

Since degenerate elliptic equations need not have classical solutions, solutions need to
be interpreted in a weak sense. The numerical methods developed in this article are guided
by the very powerful concept of the viscosity solution [9]. Checking the definition of the
viscosity solution requires checking the value of the PDE operator for smooth test functions
lying above or below the semi-continuous envelopes of the candidate solution.

Definition 2 (Upper and lower semi-continuous envelopes) The upper and lower semi-
continuous envelopes of a function u(x) are defined, respectively, by
u*(x) = limsupu(y),
y—)X

Uy (x) = liminf u(y).
y—>x

Definition 3 (Viscosity subsolution (supersolution)) Anupper (lower) semi-con_tinuous func-
tion u is a viscosity subsolution (supersolution) of (1) if for every ¢ € C 2(§2), whenever
u — ¢ has a local maximum (minimum) at x € §2, then

F (x, u(x), D*¢(x)) < ()0.

Definition 4 (Viscosity solution) A function u is a viscosity solution of (1) if u* is a subso-
lution and u, a supersolution.

An important property of many elliptic equations is the comparison principle, which
immediately implies uniqueness of the solution.

Definition 5 (Comparison principle) A PDE has a comparison principle if whenever u is

an upper semi-continuous subsolution and v a lower semi-continuous supersolution of the
equation, then u < v on £2.

@ Springer

1286 J Sci Comput (2018) 75:1282-1306

2.2 Convergence of Elliptic Schemes

In order to construct convergent approximations of elliptic operators, we will rely on the
framework provided by Barles and Souganidis [2] and further developed by Oberman [24].
We consider finite difference schemes that have the form

FOo,u(x), u(x) —u() =0 “

where € is a small parameter.
The convergence framework requires notions of consistency and monotonicity, which we
define below.

Definition 6 (Consistency) The scheme (4) is consistent with the Eq. (1) if for any smooth
function ¢ and x € £2,

limsup ~ FE(y,p(y) +& ¢(0) — ¢()) < F*(x,9(x), Vo(x), D*¢(x)),

e—>0t,y—>x,E->0

liminf ~ FE(y,p(y) +&, () — ¢() = Fulx, p(x), Vo (x), D*p(x)).
e—>0t,y—>x,6—>0

Definition 7 (Monotonicity) The scheme (4) is monotone if F€ is a non-decreasing function

of its final two arguments.

Schemes that satisfy these two properties respect the notion of the viscosity solution
at the discrete level. In particular, these schemes preserve the maximum principle and are
guaranteed to converge to the solution of the underlying PDE.

Theorem 1 (Convergence [24]) Let u be the unique viscosity solution of the PDE (1), where
F is a degenerate elliptic operator with a comparison principle. Let the finite difference
approximation F€ be consistent and monotone and let u¢ be any solution of the scheme (4),
with bounds independent of €. Then u¢ converges uniformly to u as € — 0.

The above theorem assumes existence of a bounded solution to the approximation scheme.
This is typically straightforward to show for a consistent, monotone approximation of a well-
posed PDE, though the precise details can vary slightly and rely on available well-posedness
theory for the PDE in question.

Theorem 2 (Existence and Stability [19, Lemmas 35-36]) Let F€ be a consistent, monotone
scheme that is Lipschitz in its last two arguments. Suppose also that there exist strict classical
sub- and super-solutions to the PDE (3). Then for small enough € > 0, the scheme (4) has a
solution u¢. Moreover, there exists a constant M > 0 such that |u€|cc < M for sufficiently
small € > 0.

In many cases, simple quadratic functions will serve as the sub- and super-solutions
required by Theorem 2. For more complicated PDE operators, particularly those with a non-
trivial dependence on the gradient Vu, the theory of classical solutions of the equation can
often be used to show the existence of these sub- and super-solutions.

2.3 Meshfree Finite Difference Approximations

In [20], a new generalised finite difference method was introduced for approximating fully
nonlinear second order elliptic operators on point clouds. We review the key results of that
work, which will be foundational to the higher-order adaptive methods that will be developed
in the remainder of this article.

@ Springer

J Sci Comput (2018) 75:1282-1306 1287

(b)

Fig. 1 A finite difference stencil chosen from a point cloud a in the interior and b near the boundary

Definition 8 (Notation)

(N1) £ C R?is a bounded domain with Lipschitz boundary 2.

(N2) G C Qisa point cloud consisting of the points x;,i =1, ..., N.
(N3) h = sup mig |x — y| is the spatial resolution of the point cloud. In particular, every
xef2 Ve

ball of radius 4 contained in £2 contains at least one discretisation point x;.

(N4) hp = sup min |x — y| is the resolution of the point cloud on the boundary. In
xe€d2 YEGNIL

particular, every ball of radius i p centred at a boundary point x € 92 contains at
least one discretisation point x; € G N 32 on the boundary.

(N5) § = min _inf |x — y]|is the distance between the set of interior discretisation points
xXeNRNG yedsf2

and the boundary. In particular, if x; € GN 2 and x; € 942, then the distance between
x; and x; is at least é.

(N6) d¢ is the angular resolution used to approximate the second directional derivatives
upg .

(N7) d6 is the angular resolution used to approximate the nonlinear operator.

(N8) e is the search radius associated with the point cloud.

Discretising the PDE requires approximating second directional derivatives ugy at each
interior discretisation point x; € G. To accomplish this, we consider all points x; € G N
B(x;, €) within a search neighbourhood of radius € centred at x;. Discretisation points within
this neighbourhood can be written in polar coordinates (r, ¢) with respect to the axes defined
by the lines xo + ¢ (cos 8, sin 0), xo + ¢ (— sin 8, cos). We seek one neighbouring discretisa-
tion point in each quadrant described by these axes, with each neighbour aligning as closely
as possible with the line xo + tv, where v = (cos 8, sin #). That is, we select the neighbours

Xj € argmin Isin2 ¢ | (r,p) € g'n B(xg, €) is in the jth quadrant} (5)

for j = 1,...,4. See Fig. 1. We say that a stencil with angular resolution d¢ exists for the
point cloud G if for all interior discretisation points, the four discretisation points x; € G
defined by (5) exist and satisfy d¢ = max{¢,}.

Because of the “wide-stencil” nature of these approximations (since the search radius
€ > h), care must be taken near the boundary. In order to preserve consistency up to

@ Springer

1288 J Sci Comput (2018) 75:1282-1306

the boundary, it is necessary that the boundary be more highly resolved than the interior
(hp < h). In particular, this means that a simple Cartesian mesh (or piecewise Cartesian
mesh) is not sufficient for producing consistent schemes up to the boundary.

Then a consistent, monotone approximation of ugg is

4
Djyu(xo) = Y _ a;j(u(x;) — u(xo))
j=1
where we use the polar coordinate characterisation of the neighbours to define
S;=rjsing;, Cj=rjcosg;

and the coefficients are given by
_ 254(C38; — C283)
T (C38 — C283)(CI8s — C181) — (C184 — CaS(C3S2 — C383)
. 253(C1 84 — C481)
(G385 — C283)(C7Ss — C381) — (C1S4 — C4S1)(C3S: — C383)
i = —25(C184 — C481)

(C3852 = C283)(CiSa — C381) — (C1Sy — CaS1)(C382 — C353)

0y = —281(C38, — C2.83) .
(C3852 = C283)(CiSa — C3S1) — (C1S4 — C4S1)(C3852 — C353)
In general, the PDE requires evaluating second directional derivatives in all possible

directions. Instead, we consider a finite subset A = {jd@ |j=0,..., L%J} C [0,2m)

with a resolution d6.
Then we can substitute these coefficients into (2) to obtain the scheme:

ai

az

Fi[u] = max Fy ""’“("")’,Z aijou(x) —u(x;) | =0, x €g. (©6)
JEN(i,0)

We recall the convergence result from [20, Theorem 18].

Theorem 3 (Convergence) Let F be a degenerate elliptic operator with a comparison prin-
ciple that is Lipschitz continuous in ugg for each 6 € [0, 21r) and let u be the unique viscosity
solution of the PDE (1). Suppose also that (1) has a strict classical sub- and super-solution.
Consider a sequence of point clouds G", with parameters defined as in Definition 8, which
satisfy the following conditions.

The spatial resolution k" — 0 as n — o0.

The boundary resolution satisfies h'y /8" — 0 as n — oc.

The search radius satisfies both € — 0 and h" /e — 0 as n — oo.
— The angular resolution d6" — 0 as h"* — 0.

Then for sufficiently large n, the approximation scheme (6) admits a solution u" and u"
converges uniformly to u as n — 0o.

We note that the angular resolution that emerges from the scheme satisfies d¢ =
O(max{h/e, hp/8}) (Fig.2). For a uniform grid, a natural choice of parameters is € =
OWh), hg = OH3/?), 8 = Oh), d0 = O(V/h). This leads to a formally optimal discreti-
sation error of O (/).

We remark also that these parameters can be defined locally instead of globally in order
to accommodate highly non-uniform meshes.

@ Springer

J Sci Comput (2018) 75:1282-1306 1289

o0

Zo
(a) (b)

Fig. 2 The angular resolution of a generalised finite difference stencil

14|15
16 (17

10 11

12 13

Fig. 3 A quadtree and the corresponding subdivision. The internal nodes are represented with circles and the
leaves with squares

3 Construction of Meshes and Stencils

In this section, we explain how we use augmented quadtrees [4, Chapter 14] to build piecewise
Cartesian meshes with additional discretisation points on the boundary. We organise this
section as follows. In Sect.3.1, we recall the basic structure of a quadtree. In Sect.3.2 we
explain how we augment the quadtree to deal with the boundary. In Sect. 3.4, we explain how
the quadtrees are used to efficiently find the stencils. Finally, in Sect.3.3 we discuss mesh
adaptation.

3.1 Quadtrees

Quadtrees are based on a simple idea: a square can be divided into four smaller squares which
correspond to the four quadrants of the square. A quadtree is then a rooted tree in which every
internal node has four children and every node in the tree corresponds to a square. A square
with no children is called a leaf square. See Fig. 3.

@ Springer

1290 J Sci Comput (2018) 75:1282-1306

Fig. 4 Black squares are part of the quadtree but not used since they are not inside the domain. Grey squares
intersect the boundary. White squares are inside the domain

Quadtrees can then easily be used to build uniform and non-uniform meshes: the squares’
vertices are the mesh points. This structure is appealing because it is general enough to allow
for local mesh adaptation, while still maintaining enough structure to efficiently build the
finite difference stencils. Indeed, as we will see in Sect. 3.4, the quadtree structure allow us
to significantly reduce the number of mesh points inspected when constructing our stencils.
However, the quadtree in and of itself is not ideal for handling complicated geometries as
the mesh points are restricted to be vertices of the squares. We observe that the global spatial
resolution / of a quadtree corresponds to the length-scale of the largest leaf square. However,
the quadtree can be highly non-uniform and the local spatial resolution near a particular point
may be much less than 4.

3.2 Meshing the Boundary

Quadtrees alone are not enough for the schemes proposed here: the boundary requires addi-
tional treatment. As discussed in Sect.2, the boundary must be more highly resolved than
the interior to maintain consistency of the numerical method. As a result, we cannot restrict
the mesh points to be the vertices of the squares in the quadtree.

To overcome this, we build augmented quadtrees: each leaf square that intersects the
boundary is marked as such and additional mesh points that lie on the boundary are added
and associated with this boundary leaf square. The immediate advantage of this approach is
that mesh points may lie exactly on the boundary, which allows us to handle complicated
geometries with ease. In addition, by keeping track of which boundary leaf square the mesh
points belong to, we preserve one of the key properties of the quadtree: knowledge of the rel-
ative position of the mesh points. This allows for efficient construction of the finite difference
stencils.

We make the following general assumption: each edge of a leaf square intersects the
boundary at most once. This is a reasonable assumption that simply entails that our quadtree
must be sufficiently refined near the boundary. See Fig. 4, where each edge of the grey squares
intersects the boundary at most once.

The only question left to address is exactly how many additional boundary mesh points one
must add to guarantee the existence of a consistent stencil. This is addressed in Theorem 3,
which requires that the boundary resolution go to zero more quickly than the resolution of

@ Springer

J Sci Comput (2018) 75:1282-1306 1291

the “standard” quadtree, hp = o(h), and more quickly than the gap between the boundary
and the interior nodes, hp = 0(8). Note that these conditions need only be satisfied locally
rather than globally.

We define a simple algorithm that enlarges a given point cloud so that the condition
hp < 28tan(df/2) is satisfied locally (see Algorithm 1). This ensures that the angular
resolution of the finite difference approximations is commensurate with the angular resolution

h
used to approximate the nonlinear operator: d¢ < 2tan™! (2—(1;) < d6 (Fig.2).

Algorithm 1 Building augmented quadtrees

1: for each boundary leaf square S do
2: Add the points in 35 N 342 to the point cloud G.
: Compute X =£2NGNS.

3
4: Compute § = minyex minyegens [* — yl-

5: Compute the arc length, /, of the curve 92 N S.

6: Compute the desired boundary resolution 4 p = 44 tan(d6/2).
7: Select [I/h g points lying on the curve 952 N S.

8: Add these points to the point cloud G.

9: end for

In Fig. 4, the meshes obtained by applying Algorithm 1 to the point cloud obtained from
a quadtree of depth 4 are displayed. The fan-shaped domain illustrates the advantages of
the local criteria: the boundary is only highly resolved when there are interior mesh points
nearby.

These augmented quadtrees enable us to construct convergent (consistent and monotone)
finite difference approximations.

Lemma 1 (Approximation with augmented quadtrees) Consider a sequence of augmented
quadtrees G" constructed via Algorithm 1 with spatial resolution h, — 0. Consider also a
sequence of search radii €" = O/h") and angular resolutions d6" = O(Vh"). Then G"
satisfies the hypotheses of Theorem 3.

Proof We need only verify that ', /8" — 0; the remaining conditions of Theorem 3 are
trivially satisfied.
We recall that both /'y and 8" can be defined locally. Indeed, for each boundary leaf square
S we can let
hy = su min —vy|, 8%= min inf —yl.
B.S xeagms yeG"N3RNS =l o XeR0G" yed2NS =l
By construction, Algorithm 1 ensures that i’y (/8¢ = O(dog) — 0.
Moreover, it is sufficient to verify these conditions at boundary leaf squares; other interior
squares will produce larger values of 8 and smaller values of iy /5. O

3.3 Refinement, Adaptivity and Balance

The use of quadtrees also provides a natural means of doing mesh adaptation. A refinement
criteria can either be specified a priori or determined automatically from the quality of the
solution.

InFig. 5, we provide an example of a priori refinement: the mesh is refined near the corners
of the domain.

@ Springer

1292 J Sci Comput (2018) 75:1282-1306

(a) (b)

Fig. 5 A priori refinement near the corners of the domain: a unbalanced quadtree and b its balanced version

Simply refining the quadtree can lead to a very unbalanced quadtree when large squares
adjoin several smaller squares. This is an undesirable property for our meshes as it makes
the construction of high-order schemes significantly more difficult. Therefore, we always
maintain a balanced quadtree: any two neighbouring squares differ by at most a factor of
two in length scale (see Fig.5). Balancing a quadtree can be done efficiently; we refer to [4,
Theorem 14.4] for details.

3.4 Generating the Stencil

We explain how quadtrees are used to efficiently find the neighbours for each interior mesh
point. The main idea is the following: given the quadtree structure we know the relative
position of the mesh points and can significantly restrict the number of nodes we examine.

Consider a direction v = (cos 8, sin6) and the line xo + ¢v. Without loss of generality,
assume the line has positive slope as in Fig.6. We describe the procedure for finding the
required neighbours of xq lying in the first and fourth quadrants.

Algorithm 2 Finding the neighbours of xo € G in the first and fourth quadrant.

1: Identify the leaf square that has xq as its southwest vertex. This can be done efficiently since, when
constructing the quadtree, a record is maintained of the (four) leaf squares that have each interior x(as a
vertex.

2: Identify which edge(s) of this square intersect the line xq + #v, selecting the edge that yields the smaller
value of ¢, t,,,;,, (i.e. the first edge to intersect this ray).

3: Identify the neighbouring leaf squares that share this edge, selecting the one that intersects the line xg + #v
att = tyin-

4: Identify the edge of this square that intersects the line xg + tv att = t,,i,.

5: Consider the two endpoints yj, y, of this edge as potential neighbours, one lying in the first quadrant and
one in the fourth quadrant.

6: Repeat steps 2-5, continually adding nodes to the list of potential neighbours, until the ray xo + 7v exits
the search region (# > €) or we encounter a boundary leaf square.

7: If the procedure terminates at a boundary leaf square, add to the list of potential neighbours all boundary
nodes associated with this square.

From the list of potential neighbours in each quadrant, the precise neighbours used in the
stencil are determined via (5). See Fig. 6, for a close-up of the neighbours search in a uniform
(left) and non-uniform (right) mesh.

@ Springer

J Sci Comput (2018) 75:1282-1306 1293

(a)

Fig. 6 Potential neighbours of xo € G (black x-mark) as a result of Algorithm 2 are marked with a circle,
with the selected neighbours in black. All remaining mesh points are marked with an x-mark. The grey squares
are the ones considered in Algorithm 2

Referring to Fig. 6a, we provide a rough estimate on the improvement this algorithm yields
for auniform N x N grid with grid spacing s = O(1/N).Recall that the search region is a disc
of radius €. The brute force algorithm used in [20] examines O((e/ h)?) neighbours, while
the algorithm proposed above using quadtrees examines only O(e/ h) neighbours. Given the
typical choice € = O(+/h), the cost of constructing the stencil at each point is reduced from
O(N) to O(+v/N). A similar speed-up is seen for the piecewise Cartesian meshes produced
by the quadtree.

4 Higher-Order Methods

We also introduce a technique for building formally higher-order approximations on highly
non-uniform/unstructured grids. We focus on second-order schemes, which is typically suffi-
cient for applications, but the same ideas can be easily be extended to higher-order schemes.

4.1 Filtered Schemes

The meshfree finite difference approximation discussed in Sect. 2 is low accuracy; formally
it is at best O(+/h). However it can be used as the foundation for higher-order convergent
filtered schemes as in [21]. The main idea is to blend a monotone convergent scheme with a
non-monotone accurate scheme and retain the advantages of both: stability and convergence
of the former, and higher accuracy of the latter.

To accomplish this, we let F4[u] be any higher-order scheme and Fjs[u] be a monotone
approximation scheme, both defined on the same mesh. The filtered scheme is then defined
as

Frlu] = Fy[u] + hS (M)

hOl

@ Springer

1294 J Sci Comput (2018) 75:1282-1306

Fig. 7 A regular node and

. e e UNW unN UNE
respective stencil for a uniform
Cartesian grid
uUWw u up
usw us USE
where the filter S is given by
X, x| <1,
0, x| =2,
S(x) = -
—x+2, 1<x<2,
—-x—-2, =2<x<-1.

Aslongasa > 0, this approximation converges to the viscosity solution of the PDE under the
same conditions as the monotone scheme converges. The underlying reason is that this scheme
is a small perturbation of a monotone scheme and the proof of the Barles-Souganidis theorem
is easily modified to accommodate this. Moreover, if 2% is larger than the discretisation error
of the monotone scheme, the formal accuracy of the filtered scheme is the same as the formal
accuracy of the non-monotone scheme.

4.2 Higher-Order Schemes in Interior

We discuss how to build high-order schemes for the non-uniform meshes proposed in Sect. 3.
In this section, we focus on interior mesh points away from the boundary.

Defining higher-order schemes for (1) reduces to defining higher-order approximations
tO Uyy, ttyy and u,,. We will focus on building second order approximations, although the
ideas are easily generalised. For a uniform Cartesian grid, such as in Fig. 7, these are widely
known and are given by

uw +ug —2u
u.xx ~ - A s

h2
_untus— 2u
Uy =7 >

__ UNE + Usw — UNW — USE
Uyy N an? .

In a uniform cartesian grid, all the nodes are regular nodes; i.e., each node is the vertex
of four different squares like the one depicted in Fig. 7. However, the meshes proposed here
are non-uniform and in general not all nodes will be regular nodes. We need also consider
dangling nodes, which occur midway along the shared edge of two equally-sized squares, one
of which is subdivided. Thus additional work is required to define the higher-order schemes.

As explained in Sect. 3, the meshes are generated using quadtrees that are kept balanced
(the lengths of neighbouring squares differ by at most a factor of two). Thus each interior

@ Springer

J Sci Comput (2018) 75:1282-1306 1295

Fig. 8 A dangling node in the x

g . . UNW UN UNE
variable and respective stencil for
the higher-order scheme
u
usw us Uusgp
UNW uUN UNE
u
usw us UsE

mesh point can be associated to one of five different configurations. These are depicted in
Figs.7, 8, and 9. The generic element chosen to represent each configuration is one where
each square is a leaf square. In general, one or more of the smaller squares may have children
in the quadtree; i.e., they may be subdivided into smaller squares. We consider these to
be redundant when constructing the high-order schemes. Considering all possible different
configurations would only increase the complexity of the schemes with no additional benefits
as the schemes would remain asymptotically second order; only the asymptotic error constant
could be improved.
For the configurations in Fig. 8, we use the following approximations

. —2un —2us + uNw + uUNg + use + usw

Hox 212 ’
uy +us —2u
Uyy N 4———,
p h2
__ UNE + Usw — UNW — USE
Upy A T .
As for the configurations in Fig.9, we have
uw +ug —2u
Uyx ~ 4T7
_ —2uw —2ug +unw + ung + usg + usw
Uyy ~ 2 ’
. UNE + Usw — UNW — USE
Uyy A 2 .

The standard Taylor expansion argument shows that the above expressions are second order
accurate.

Finally, we explain how one can efficiently determine the configuration of each interior
mesh point. As mentioned in Sect. 3.4, for each interior mesh point a record is kept of the
four leaf squares that the interior mesh point as a vertex. Thus the configuration is easily
determined by determining the depth of the neighbouring squares and respective parent
squares in the quadtree.

@ Springer

1296 J Sci Comput (2018) 75:1282-1306

Fig. 9 A dangling node in the y

. . . UNW UNE UNW UNE
variable and respective stencil for
the higher-order scheme
wuw u uUp wuw u uUp
usw UsSE usw UsSE

4.3 Least-Squares Constructions Near Boundary

In this section, we discuss how to construct second order schemes at interior points near the
boundary. When near the boundary, the construction of the schemes cannot reduce to the
cases considered in the previous section: in general, not all the neighbouring mesh points
will be the vertices of squares and some will lie on the boundary, which we allow to have a
complicated geometry. Thus additional care is needed. Here we describe a general strategy
for building high-order schemes.

Let {xi}f\'z | denote neighbouring mesh points to the interior mesh point xo with
lxi — xo0lloo = O(h). Using Taylor expansion we obtain, foreachi =1,..., N,

uG) —uGo) = Y %(a“u)(xowom“),

O<|a|<3
where we are using the multi-index notation. Hence

N
3" aiux) — u(x)) = 9 u(x) + O(h?)

i=1

if the {a; }lN: | solve the linear system

N
(x;i — x0)”
> Tt %= La=p)

i=1
for0 < |x| < 3.

To approximate second derivatives to second order, we expect to require N = 9 neigh-
bours.

Designing second order schemes is now reduced to determining the neighbouring mesh
points and solving the respective linear system. However, since we are particularly interested
in the case where some of the neighbouring mesh points lie on the boundary, which may
have a complicated geometry, it is hard to make any a priori claim regarding the invertability
and conditioning of the linear system. It is important to point out that we are interested
in obtaining any particular solution. As we saw in the previous section, depending on the
derivative being approximated and the location of the neighbouring mesh points, the number
of neighbouring mesh points required changes.

We are now ready to describe the strategy implemented to construct the higher-order
schemes. First, we determine which configuration we are in. If all the vertices of squares

@ Springer

J Sci Comput (2018) 75:1282-1306 1297

neighbouring xo are mesh points, we use the approximations described in the previous section.
Otherwise, we build the linear system above using all mesh points x; that lie within squares
adjoining xo (some will lie on the boundary of the domain and will not be vertices of the
squares). In general, we will have N > 9, but the linear system may still have no solution
or be ill-conditioned. If that is the case, we consider additional neighbouring mesh points
by adding the mesh points that belong to neighbouring squares. In general, we end up with
an under-determined system and we select the least squares solution. In practice, adding
additional neighbouring mesh points was not always required, and it was never required
more than once. Thus the high-order scheme has stencil width O (%) and preserves the formal
discretisation error of O (h?).

S Computational Examples
5.1 Monge-Ampere Equation

We consider the Monge—Ampere equation

—det(D*u)+ f =0, xe R
u=g, X € 082

u is convex.

The PDE is only elliptic in the space of convex functions. However, as in [18], we can use
the globally elliptic extension

. 9%u 9%u . 9%u 9%u
— min max { —, 0 ¢ max 27,0 + min —2,0 + max 27,0
0€l0./2) deg deg1n/2 deg deh 1 n/2
+f=0.

We will consider four different domains given by £2 = {(x, y) € R | ¢(x, y) < 0} where
¢ is given by

(@) (circle) p(x,y) =x>+y>—1,

(b) (ellipse) ¢ (x, y) = x> +2y> — 1,

(¢) (diamond) ¢ (x, y) = |x|+|y| — 1,

(d) (diamond stretched) ¢ (x, y) = |x| + [2y] — 1.

Example 1 We consider first the following C? solution of the Monge—Ampere equation

x2+v2

uGe,y)=e 7, fr,y)=+xyHe T

Results are displayed in Table 1. On each domain, the filtered implementation recovers
the desired second-order accuracy even though the boundary nodes do not belong to the
structured piecewise Cartesian mesh. The Monge—Ampere equation is intimately related to
the computation of optimal transport maps. For these applications, it is the gradient of the
solution that is of interest, rather than the potential function itself. Notice that due to the
use of the quadtree structure and the way we deal we discretize the boundary, each interior
node always has neighbouring nodes along the x and y directions. Therefore the gradient
can be approximated with standard finite differences. In the particular case of the Monge—
Ampere equation here, the mesh is uniform except near the boundary and thus the gradient

@ Springer

1298

J Sci Comput (2018) 75:1282-1306

Table 1 Convergence results for the €2 solution of the Monge—Ampere equation

N h Monotone Filtered
Max error and order, Example 1 (circle)
101 2.500 x 1071 1.739 x 1072 - 7.008 x 1073
349 1.250 x 107! 5.678 x 1073 1.61 2.219 x 1073 1.66
1149 6.250 x 1072 2.781 x 1073 1.03 6.183 x 1074 1.84
4297 3.125 x 1072 1.876 x 1073 0.57 1.701 x 1074 1.86
15,741 1.563 x 102 1.630 x 1073 0.20 4320 x 1073 1.98
58,553 7.813 x 1073 1.566 x 103 0.06 1.082 x 1073 2.00
230,725 3.906 x 103 1.008 x 1073 0.64 2.704 x 1070 2.00
Max error and order, Example 1 (ellipse)
79 2.500 x 101 9.467 x 1073 - 8.905 x 1073
257 1.250 x 10! 3.028 x 1073 1.64 1.232 x 1073 2.85
901 6.250 x 1072 1.264 x 1073 1.26 3.627 x 1074 1.76
3151 3.125 x 1072 8.276 x 1074 0.61 1.012 x 1074 1.84
11,305 1.563 x 102 7.443 x 1074 0.15 2.602 x 1072 1.96
42,947 7.813 x 1073 7.238 x 1074 0.04 6.512 x 107° 2.00
166,749 3.906 x 1073 4554 x 1074 0.67 1.628 x 1070 2.00
Max error and order, Example 1 (diamond)
57 2.500 x 107! 6.214 x 1073 - 7.245 x 1073 -
209 1.250 x 1071 2.677 x 1073 1.22 1.439 x 1073 233
673 6.250 x 1072 9.714 x 1074 1.46 3.561 x 1074 2.01
2497 3.125 x 1072 2.805 x 1074 1.79 8.881 x 107> 2.00
9345 1.563 x 1072 3.029 x 1074 —0.11 2218 x 1073 2.00
36,097 7.813 x 103 1.903 x 1074 0.67 5.544 x 107° 2.00
139,777 3.906 x 1073 1.571 x 1074 0.28 1.386 x 1070 2.00
Max error and order, Example 1 (diamond stretched)
61 2.500 x 107! 2.598 x 1073 - 1.892 x 1073 -
153 1.250 x 107! 8.006 x 1074 1.70 5214 x 1074 1.86
497 6.250 x 1072 2.797 x 1074 1.52 1.356 x 10~4 1.94
1633 3.125 x 1072 1.523 x 1074 0.88 3.428 x 1073 1.98
5569 1.563 x 1072 7.681 x 1073 0.99 8.597 x 107° 2.00
20,609 7.813 x 1073 2.360 x 1072 1.70 2.151 x 107¢ 2.00
76,033 3.906