
J Sci Comput (2018) 75:1282–1306
https://doi.org/10.1007/s10915-017-0586-5

Higher-Order Adaptive Finite Difference Methods
for Fully Nonlinear Elliptic Equations

Brittany Froese Hamfeldt1 · Tiago Salvador2

Received: 23 June 2017 / Revised: 11 October 2017 / Accepted: 14 October 2017 /
Published online: 24 October 2017
© Springer Science+Business Media, LLC 2017

Abstract We introduce generalised finite difference methods for solving fully nonlinear
elliptic partial differential equations. Methods are based on piecewise Cartesian meshes
augmented by additional points along the boundary. This allows for adaptive meshes and
complicated geometries, while still ensuring consistency, monotonicity, and convergence.
We describe an algorithm for efficiently computing the non-traditional finite difference sten-
cils. We also present a strategy for computing formally higher-order convergent methods.
Computational examples demonstrate the efficiency, accuracy, and flexibility of the methods.
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Adaptive methods · Higher-order methods
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1 Introduction

In this article we design generalised finite difference methods for a large class of fully non-
linear degenerate elliptic partial differential equations (PDEs). The approximation schemes
are almost-monotone, which allows us to exploit the Barles-Souganidis convergence frame-
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work. A key feature of these methods is the use of piecewise Cartesian grids, augmented by
additional discretisation points along the boundary. Because of the underlying structure of
the grids, the methods we design overcome several hurdles that exist for current numerical
methods. (1) The non-standard finite difference stencils can be constructed efficiently. (2) The
monotone approximation schemes preserve consistency near the boundary. (3) Higher-order
schemes are easily designed. (4) Complicated geometries are easily handled.

1.1 Background

Fully nonlinear elliptic partial differential equations (PDEs) arise in numerous applica-
tions including reflector/refractor design [22], meteorology [10], differential geometry [8],
astrophysics [17], seismology [12], mesh generation [7], computer graphics [27], and math-
ematical finance [16]. Realistic applications often involve complicated domains and highly
non-smooth data. Thus the development of robust numerical methods that are compatible
with adaptive mesh refinement is a priority.

In recent years, the numerical solution of these equations has received a great deal of
attention, and several new methods have been developed including finite difference meth-
ods [3,15,23,28,30], finite element methods [1,5,6,29], least squares methods [11], and
methods involving fourth-order regularisation terms [14]. However, these methods are not
designed to compute weak solutions. When the ellipticity of the equation is degenerate or no
smooth solution exists, methods become very slow, are unstable, or converge to an incorrect
solution.

Using a framework developed by Barles and Souganidis [2], provably convergent (mono-
tone)methods have recently been constructed for several fully nonlinear equations usingwide
finite difference stencils [26]. Recently, the idea of wide stencil schemes has been adapted
to produce monotone approximations for a large class of fully nonlinear elliptic operators
posed on very general meshes or points clouds [20]. However, constructing the necessary
finite difference stencils is a very expensive process, and the resulting approximations have
only O(

√
h) accuracy.

1.2 Contributions of This Work

The goal of this article is to design higher-order, adaptive, convergent finite difference meth-
ods for the solution of the degenerate elliptic PDE

F(x, u(x), D2u(x)) ≡ max
θ∈[0,2π)

Fθ (x, u(x), uθθ (x)) = 0, (1)

where uθθ denotes the second directional derivative of u in the direction eθ = (cos θ, sin θ) ∈
R2. This includes a wide range of PDE operators including monotone functions of the eigen-
values of the Hessian matrix D2u and general convex functions of the Hessian matrix [13,
Proposition 5.3]. We note that the maxima can also be taken over a subset of directions by
simply setting Fθ = −1 for directions that are not active in the PDE operator. The methods
described in this article can also be trivially adapted to include minima and other monotone
functions of the operators Fθ .

We remark that the PDE operator can also include Lipschitz continuous dependence on
the gradient ∇u. Monotone approximation of first-order operators is fairly well-established
and does not require the wide-stencil structure that is necessary to correctly discretise
second-order operators. In this article, we omit terms involving the gradient for the sake
of compactness and clarity.
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We take as a starting point themeshfree finite difference approximations developed in [20].
Given a set of discretisation points G, that work introduced a generalised finite difference
approximation of (1) of the form

max
θ∈A⊂[0,2π)

Fθ

⎛
⎝xi , u(xi ),

∑
j∈N (i,θ)

ai, j,θ (u(xi ) − u(x j ))

⎞
⎠ = 0, xi ∈ G. (2)

Above, the set of neighboursN (i, θ) gives indices of several points that are near xi and align
closely with the eθ direction. In the original paper, these sets of neighbours are computed
through brute force, by finding and inspecting all nodes lying within a distance

√
h of each

other.
In this article, we describe the construction of piecewiseCartesianmeshes using a quadtree

structure, which is augmented by additional discretisation points along the boundary in order
to preserve consistency.We demonstrate that the resulting set of discretisation points satisfies
the conditions required by [20, Theorem13]. This ensures that it is possible to buildmonotone
(convergent) approximations. Moreover, the structure of these quadtrees allows for easy
mesh adaptation, with refinement criteria that can either be specified a priori or determined
automatically from the quality of the solution of (2).

By exploiting the underyling structure of the quadtree meshes, we design an efficient
method for constructing the set of neighbours N (i, θ) required by our generalised finite
difference stencils. This leads to amuch faster numerical method for approximating solutions
of (1) that can easily handle singular solutions, complicated geometries, and highly non-
uniform meshes.

Finally, we describe a strategy for producing higher-order almost-monotone methods
using the framework of [21]. This requires combining the monotone scheme with a formally
higher-order approximation. By utilising the structure and symmetry within the quadtree
mesh, we obtain a simple strategy for constructing higher-order schemes in the interior of
the domain. Near the boundary, where these simple schemes no longer exist, we propose a
least-squares approach to constructing higher-order schemes.

1.3 Contents

In Sect. 2, we review the theory of generalised finite difference approximations for fully
nonlinear elliptic equations. In Sect. 3, we describe our strategy for constructing meshes
and finite difference stencils. In Sect. 4, we describe a higher-order implementation of these
methods. In Sect. 5,we present several computational examples. Finally, in Sect. 6,we provide
conclusions and perspectives.

2 Generalised Finite Difference Schemes

In this section we review existing results on the construction and convergence of numerical
methods for fully nonlinear elliptic equations.

2.1 Weak Solutions

One of the challenges associated with the approximation of fully nonlinear PDEs is the fact
that classical (smooth) solutions may not exist. It thus becomes necessary to interpret PDEs
using some notion of weak solution, and the numerical methods that are used need to respect
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this notion of weak solution. The most common concept of weak solution for this class
of PDEs is the viscosity solution, which involves transferring derivatives onto smooth test
functions via a maximum principle argument [9].

The PDEs we consider in this work belong to the class of degenerate elliptic equations,

F(x, u(x), D2u(x)) = 0, x ∈ Ω̄ ⊂ R2. (3)

Definition 1 (Degenerate elliptic) The operator F : Ω̄ ×R×S2 → R is degenerate elliptic
if

F(x, u, X) ≤ F(x, v, Y )

whenever u ≤ v and X ≥ Y .

We note that the operator is also defined on the boundary ∂Ω of the domain, which allows
both the PDE and the boundary conditions to be contained within Eq. (3). For example, if
Dirichlet data u(x) = g(x) is given on the boundary, the elliptic operator at the boundary
will be defined by

F(x, u(x), D2u(x)) = u(x) − g(x), x ∈ ∂Ω.

The PDE operators (1) that we consider in this work are degenerate elliptic if they are
non-decreasing functions of their second argument (u) and non-increasing functions of all
subsequent arguments (which involve second directional derivatives).

Since degenerate elliptic equations need not have classical solutions, solutions need to
be interpreted in a weak sense. The numerical methods developed in this article are guided
by the very powerful concept of the viscosity solution [9]. Checking the definition of the
viscosity solution requires checking the value of the PDE operator for smooth test functions
lying above or below the semi-continuous envelopes of the candidate solution.

Definition 2 (Upper and lower semi-continuous envelopes) The upper and lower semi-
continuous envelopes of a function u(x) are defined, respectively, by

u∗(x) = lim sup
y→x

u(y),

u∗(x) = lim inf
y→x

u(y).

Definition 3 (Viscosity subsolution (supersolution))Anupper (lower) semi-continuous func-
tion u is a viscosity subsolution (supersolution) of (1) if for every φ ∈ C2(Ω̄), whenever
u − φ has a local maximum (minimum) at x ∈ Ω̄ , then

F (∗)∗ (x, u(x), D2φ(x)) ≤ (≥)0.

Definition 4 (Viscosity solution) A function u is a viscosity solution of (1) if u∗ is a subso-
lution and u∗ a supersolution.

An important property of many elliptic equations is the comparison principle, which
immediately implies uniqueness of the solution.

Definition 5 (Comparison principle) A PDE has a comparison principle if whenever u is
an upper semi-continuous subsolution and v a lower semi-continuous supersolution of the
equation, then u ≤ v on Ω̄ .
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2.2 Convergence of Elliptic Schemes

In order to construct convergent approximations of elliptic operators, we will rely on the
framework provided by Barles and Souganidis [2] and further developed by Oberman [24].

We consider finite difference schemes that have the form

Fε(x, u(x), u(x) − u(·)) = 0 (4)

where ε is a small parameter.
The convergence framework requires notions of consistency and monotonicity, which we

define below.

Definition 6 (Consistency) The scheme (4) is consistent with the Eq. (1) if for any smooth
function φ and x ∈ Ω̄ ,

lim sup
ε→0+,y→x,ξ→0

Fε(y, φ(y) + ξ, φ(y) − φ(·)) ≤ F∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
ε→0+,y→x,ξ→0

Fε(y, φ(y) + ξ, φ(y) − φ(·)) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 7 (Monotonicity) The scheme (4) is monotone if Fε is a non-decreasing function
of its final two arguments.

Schemes that satisfy these two properties respect the notion of the viscosity solution
at the discrete level. In particular, these schemes preserve the maximum principle and are
guaranteed to converge to the solution of the underlying PDE.

Theorem 1 (Convergence [24]) Let u be the unique viscosity solution of the PDE (1), where
F is a degenerate elliptic operator with a comparison principle. Let the finite difference
approximation Fε be consistent and monotone and let uε be any solution of the scheme (4),
with bounds independent of ε. Then uε converges uniformly to u as ε → 0.

The above theorem assumes existence of a bounded solution to the approximation scheme.
This is typically straightforward to show for a consistent, monotone approximation of a well-
posed PDE, though the precise details can vary slightly and rely on available well-posedness
theory for the PDE in question.

Theorem 2 (Existence and Stability [19, Lemmas 35–36]) Let Fε be a consistent, monotone
scheme that is Lipschitz in its last two arguments. Suppose also that there exist strict classical
sub- and super-solutions to the PDE (3). Then for small enough ε > 0, the scheme (4) has a
solution uε . Moreover, there exists a constant M > 0 such that ‖uε‖∞ ≤ M for sufficiently
small ε > 0.

In many cases, simple quadratic functions will serve as the sub- and super-solutions
required by Theorem 2. For more complicated PDE operators, particularly those with a non-
trivial dependence on the gradient ∇u, the theory of classical solutions of the equation can
often be used to show the existence of these sub- and super-solutions.

2.3 Meshfree Finite Difference Approximations

In [20], a new generalised finite difference method was introduced for approximating fully
nonlinear second order elliptic operators on point clouds. We review the key results of that
work, which will be foundational to the higher-order adaptive methods that will be developed
in the remainder of this article.
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(a) (b)

Fig. 1 A finite difference stencil chosen from a point cloud a in the interior and b near the boundary

Definition 8 (Notation)

(N1) Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω .
(N2) G ⊂ Ω̄ is a point cloud consisting of the points xi , i = 1, . . . , N .
(N3) h = sup

x∈Ω

min
y∈G |x − y| is the spatial resolution of the point cloud. In particular, every

ball of radius h contained in Ω̄ contains at least one discretisation point xi .
(N4) hB = sup

x∈∂Ω

min
y∈G∩∂Ω

|x − y| is the resolution of the point cloud on the boundary. In

particular, every ball of radius hB centred at a boundary point x ∈ ∂Ω contains at
least one discretisation point xi ∈ G ∩ ∂Ω on the boundary.

(N5) δ = min
x∈Ω∩G inf

y∈∂Ω
|x− y| is the distance between the set of interior discretisation points

and the boundary. In particular, if xi ∈ G∩Ω and x j ∈ ∂Ω , then the distance between
xi and x j is at least δ.

(N6) dφ is the angular resolution used to approximate the second directional derivatives
uθθ .

(N7) dθ is the angular resolution used to approximate the nonlinear operator.
(N8) ε is the search radius associated with the point cloud.

Discretising the PDE requires approximating second directional derivatives uθθ at each
interior discretisation point xi ∈ G. To accomplish this, we consider all points x j ∈ G ∩
B(xi , ε)within a search neighbourhood of radius ε centred at xi . Discretisation points within
this neighbourhood can be written in polar coordinates (r, φ)with respect to the axes defined
by the lines x0 + t (cos θ, sin θ), x0 + t (− sin θ, cos θ). We seek one neighbouring discretisa-
tion point in each quadrant described by these axes, with each neighbour aligning as closely
as possible with the line x0 + tν, where ν = (cos θ, sin θ). That is, we select the neighbours

x j ∈ argmin
{
sin2 φ | (r, φ) ∈ Gh ∩ B(x0, ε) is in the j th quadrant

}
(5)

for j = 1, . . . , 4. See Fig. 1. We say that a stencil with angular resolution dφ exists for the
point cloud G if for all interior discretisation points, the four discretisation points x j ∈ G
defined by (5) exist and satisfy dφ = max{φ j }.

Because of the “wide-stencil” nature of these approximations (since the search radius
ε � h), care must be taken near the boundary. In order to preserve consistency up to
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the boundary, it is necessary that the boundary be more highly resolved than the interior
(hB � h). In particular, this means that a simple Cartesian mesh (or piecewise Cartesian
mesh) is not sufficient for producing consistent schemes up to the boundary.

Then a consistent, monotone approximation of uθθ is

Dh
θθu(x0) =

4∑
j=1

a j (u(x j ) − u(x0))

where we use the polar coordinate characterisation of the neighbours to define

S j = r j sin φ j , C j = r j cosφ j

and the coefficients are given by

a1 = 2S4(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a2 = 2S3(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a3 = −2S2(C1S4 − C4S1)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)

a4 = −2S1(C3S2 − C2S3)

(C3S2 − C2S3)(C2
1 S4 − C2

4 S1) − (C1S4 − C4S1)(C2
3 S2 − C2

2 S3)
.

In general, the PDE requires evaluating second directional derivatives in all possible
directions. Instead, we consider a finite subset A = {

jdθ | j = 0, . . . , � 2π
dθ

�} ⊂ [0, 2π)

with a resolution dθ .
Then we can substitute these coefficients into (2) to obtain the scheme:

Fi [u] ≡ max
θ∈A Fθ

⎛
⎝xi , u(xi ),

∑
j∈N (i,θ)

ai, j,θ (u(xi ) − u(x j ))

⎞
⎠ = 0, xi ∈ G. (6)

We recall the convergence result from [20, Theorem 18].

Theorem 3 (Convergence) Let F be a degenerate elliptic operator with a comparison prin-
ciple that is Lipschitz continuous in uθθ for each θ ∈ [0, 2π) and let u be the unique viscosity
solution of the PDE (1). Suppose also that (1) has a strict classical sub- and super-solution.
Consider a sequence of point clouds Gn, with parameters defined as in Definition 8, which
satisfy the following conditions.

– The spatial resolution hn → 0 as n → ∞.
– The boundary resolution satisfies hnB/δn → 0 as n → ∞.
– The search radius satisfies both εn → 0 and hn/εn → 0 as n → ∞.
– The angular resolution dθn → 0 as hn → 0.

Then for sufficiently large n, the approximation scheme (6) admits a solution un and un

converges uniformly to u as n → ∞.

We note that the angular resolution that emerges from the scheme satisfies dφ =
O(max{h/ε, hB/δ}) (Fig. 2). For a uniform grid, a natural choice of parameters is ε =
O(

√
h), hB = O(h3/2), δ = O(h), dθ = O(

√
h). This leads to a formally optimal discreti-

sation error of O(
√
h).

We remark also that these parameters can be defined locally instead of globally in order
to accommodate highly non-uniform meshes.
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(a) (b)

Fig. 2 The angular resolution of a generalised finite difference stencil
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Fig. 3 A quadtree and the corresponding subdivision. The internal nodes are represented with circles and the
leaves with squares

3 Construction of Meshes and Stencils

In this section,we explain howweuse augmented quadtrees [4, Chapter 14] to build piecewise
Cartesian meshes with additional discretisation points on the boundary. We organise this
section as follows. In Sect. 3.1, we recall the basic structure of a quadtree. In Sect. 3.2 we
explain how we augment the quadtree to deal with the boundary. In Sect. 3.4, we explain how
the quadtrees are used to efficiently find the stencils. Finally, in Sect. 3.3 we discuss mesh
adaptation.

3.1 Quadtrees

Quadtrees are based on a simple idea: a square can be divided into four smaller squares which
correspond to the four quadrants of the square. A quadtree is then a rooted tree in which every
internal node has four children and every node in the tree corresponds to a square. A square
with no children is called a leaf square. See Fig. 3.
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Fig. 4 Black squares are part of the quadtree but not used since they are not inside the domain. Grey squares
intersect the boundary. White squares are inside the domain

Quadtrees can then easily be used to build uniform and non-uniform meshes: the squares’
vertices are the mesh points. This structure is appealing because it is general enough to allow
for local mesh adaptation, while still maintaining enough structure to efficiently build the
finite difference stencils. Indeed, as we will see in Sect. 3.4, the quadtree structure allow us
to significantly reduce the number of mesh points inspected when constructing our stencils.
However, the quadtree in and of itself is not ideal for handling complicated geometries as
the mesh points are restricted to be vertices of the squares. We observe that the global spatial
resolution h of a quadtree corresponds to the length-scale of the largest leaf square. However,
the quadtree can be highly non-uniform and the local spatial resolution near a particular point
may be much less than h.

3.2 Meshing the Boundary

Quadtrees alone are not enough for the schemes proposed here: the boundary requires addi-
tional treatment. As discussed in Sect. 2, the boundary must be more highly resolved than
the interior to maintain consistency of the numerical method. As a result, we cannot restrict
the mesh points to be the vertices of the squares in the quadtree.

To overcome this, we build augmented quadtrees: each leaf square that intersects the
boundary is marked as such and additional mesh points that lie on the boundary are added
and associated with this boundary leaf square. The immediate advantage of this approach is
that mesh points may lie exactly on the boundary, which allows us to handle complicated
geometries with ease. In addition, by keeping track of which boundary leaf square the mesh
points belong to, we preserve one of the key properties of the quadtree: knowledge of the rel-
ative position of the mesh points. This allows for efficient construction of the finite difference
stencils.

We make the following general assumption: each edge of a leaf square intersects the
boundary at most once. This is a reasonable assumption that simply entails that our quadtree
must be sufficiently refined near the boundary. See Fig. 4, where each edge of the grey squares
intersects the boundary at most once.

The only question left to address is exactly howmany additional boundarymesh points one
must add to guarantee the existence of a consistent stencil. This is addressed in Theorem 3,
which requires that the boundary resolution go to zero more quickly than the resolution of
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the “standard” quadtree, hB = o(h), and more quickly than the gap between the boundary
and the interior nodes, hB = o(δ). Note that these conditions need only be satisfied locally
rather than globally.

We define a simple algorithm that enlarges a given point cloud so that the condition
hB ≤ 2δ tan(dθ/2) is satisfied locally (see Algorithm 1). This ensures that the angular
resolution of the finite difference approximations is commensuratewith the angular resolution

used to approximate the nonlinear operator: dφ � 2 tan−1
(
hB

2δ

)
≤ dθ (Fig. 2).

Algorithm 1 Building augmented quadtrees
1: for each boundary leaf square S do
2: Add the points in ∂S ∩ ∂Ω to the point cloud G.
3: Compute X = Ω ∩ G ∩ S.
4: Compute δ = minx∈X miny∈∂Ω∩S |x − y|.
5: Compute the arc length, l, of the curve ∂Ω ∩ S.
6: Compute the desired boundary resolution hB = 4δ tan(dθ/2).
7: Select �l/hB� points lying on the curve ∂Ω ∩ S.
8: Add these points to the point cloud G.
9: end for

In Fig. 4, the meshes obtained by applying Algorithm 1 to the point cloud obtained from
a quadtree of depth 4 are displayed. The fan-shaped domain illustrates the advantages of
the local criteria: the boundary is only highly resolved when there are interior mesh points
nearby.

These augmented quadtrees enable us to construct convergent (consistent and monotone)
finite difference approximations.

Lemma 1 (Approximation with augmented quadtrees) Consider a sequence of augmented
quadtrees Gn constructed via Algorithm 1 with spatial resolution hn → 0. Consider also a
sequence of search radii εn = O(

√
hn) and angular resolutions dθn = O(

√
hn). Then Gn

satisfies the hypotheses of Theorem 3.

Proof We need only verify that hnB/δn → 0; the remaining conditions of Theorem 3 are
trivially satisfied.

We recall that both hnB and δn can be defined locally. Indeed, for each boundary leaf square
S we can let

hnB,S = sup
x∈∂Ω∩S

min
y∈Gn∩∂Ω∩S

|x − y|, δnS = min
x∈Ω∩Gn

inf
y∈∂Ω∩S

|x − y|.

By construction, Algorithm 1 ensures that hnB,S/δ
n
S = O(dθnS ) → 0.

Moreover, it is sufficient to verify these conditions at boundary leaf squares; other interior
squares will produce larger values of δnS and smaller values of hnB,S/δ

n
S . ��

3.3 Refinement, Adaptivity and Balance

The use of quadtrees also provides a natural means of doing mesh adaptation. A refinement
criteria can either be specified a priori or determined automatically from the quality of the
solution.

In Fig. 5, we provide an example of a priori refinement: themesh is refined near the corners
of the domain.
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(a) (b)

Fig. 5 A priori refinement near the corners of the domain: a unbalanced quadtree and b its balanced version

Simply refining the quadtree can lead to a very unbalanced quadtree when large squares
adjoin several smaller squares. This is an undesirable property for our meshes as it makes
the construction of high-order schemes significantly more difficult. Therefore, we always
maintain a balanced quadtree: any two neighbouring squares differ by at most a factor of
two in length scale (see Fig. 5). Balancing a quadtree can be done efficiently; we refer to [4,
Theorem 14.4] for details.

3.4 Generating the Stencil

We explain how quadtrees are used to efficiently find the neighbours for each interior mesh
point. The main idea is the following: given the quadtree structure we know the relative
position of the mesh points and can significantly restrict the number of nodes we examine.

Consider a direction ν = (cos θ, sin θ) and the line x0 + tν. Without loss of generality,
assume the line has positive slope as in Fig. 6. We describe the procedure for finding the
required neighbours of x0 lying in the first and fourth quadrants.

Algorithm 2 Finding the neighbours of x0 ∈ G in the first and fourth quadrant.
1: Identify the leaf square that has x0 as its southwest vertex. This can be done efficiently since, when

constructing the quadtree, a record is maintained of the (four) leaf squares that have each interior x0 as a
vertex.

2: Identify which edge(s) of this square intersect the line x0 + tν, selecting the edge that yields the smaller
value of t , tmin (i.e. the first edge to intersect this ray).

3: Identify the neighbouring leaf squares that share this edge, selecting the one that intersects the line x0 + tν
at t = tmin .

4: Identify the edge of this square that intersects the line x0 + tν at t = tmin .
5: Consider the two endpoints y1, y2 of this edge as potential neighbours, one lying in the first quadrant and

one in the fourth quadrant.
6: Repeat steps 2–5, continually adding nodes to the list of potential neighbours, until the ray x0 + tν exits

the search region (t > ε) or we encounter a boundary leaf square.
7: If the procedure terminates at a boundary leaf square, add to the list of potential neighbours all boundary

nodes associated with this square.

From the list of potential neighbours in each quadrant, the precise neighbours used in the
stencil are determined via (5). See Fig. 6, for a close-up of the neighbours search in a uniform
(left) and non-uniform (right) mesh.
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(a) (b)

Fig. 6 Potential neighbours of x0 ∈ G (black x-mark) as a result of Algorithm 2 are marked with a circle,
with the selected neighbours in black. All remaining mesh points are marked with an x-mark. The grey squares
are the ones considered in Algorithm 2

Referring to Fig. 6a, we provide a rough estimate on the improvement this algorithm yields
for a uniform N×N gridwith grid spacing h = O(1/N ). Recall that the search region is a disc
of radius ε. The brute force algorithm used in [20] examines O((ε/h)2) neighbours, while
the algorithm proposed above using quadtrees examines onlyO(ε/h) neighbours. Given the
typical choice ε = O(

√
h), the cost of constructing the stencil at each point is reduced from

O(N ) to O(
√
N ). A similar speed-up is seen for the piecewise Cartesian meshes produced

by the quadtree.

4 Higher-Order Methods

We also introduce a technique for building formally higher-order approximations on highly
non-uniform/unstructured grids. We focus on second-order schemes, which is typically suffi-
cient for applications, but the same ideas can be easily be extended to higher-order schemes.

4.1 Filtered Schemes

The meshfree finite difference approximation discussed in Sect. 2 is low accuracy; formally
it is at best O(

√
h). However it can be used as the foundation for higher-order convergent

filtered schemes as in [21]. The main idea is to blend a monotone convergent scheme with a
non-monotone accurate scheme and retain the advantages of both: stability and convergence
of the former, and higher accuracy of the latter.

To accomplish this, we let FA[u] be any higher-order scheme and FM [u] be a monotone
approximation scheme, both defined on the same mesh. The filtered scheme is then defined
as

FF [u] = FM [u] + hαS

(
FA[u] − FM [u]

hα

)
,
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Fig. 7 A regular node and
respective stencil for a uniform
Cartesian grid

uSW uS uSE

uW u uE
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where the filter S is given by

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, |x | ≤ 1,

0, |x | ≥ 2,

− x + 2, 1 ≤ x ≤ 2,

− x − 2, − 2 ≤ x ≤ − 1.

As long as α > 0, this approximation converges to the viscosity solution of the PDE under the
same conditions as themonotone scheme converges. The underlying reason is that this scheme
is a small perturbation of a monotone scheme and the proof of the Barles-Souganidis theorem
is easily modified to accommodate this. Moreover, if hα is larger than the discretisation error
of the monotone scheme, the formal accuracy of the filtered scheme is the same as the formal
accuracy of the non-monotone scheme.

4.2 Higher-Order Schemes in Interior

We discuss how to build high-order schemes for the non-uniformmeshes proposed in Sect. 3.
In this section, we focus on interior mesh points away from the boundary.

Defining higher-order schemes for (1) reduces to defining higher-order approximations
to uxx , uyy and uxy . We will focus on building second order approximations, although the
ideas are easily generalised. For a uniform Cartesian grid, such as in Fig. 7, these are widely
known and are given by

uxx ≈ uW + uE − 2u

h2
,

uyy ≈ uN + uS − 2u

h2
,

uxy ≈ uNE + uSW − uNW − uSE
4h2

.

In a uniform cartesian grid, all the nodes are regular nodes; i.e., each node is the vertex
of four different squares like the one depicted in Fig. 7. However, the meshes proposed here
are non-uniform and in general not all nodes will be regular nodes. We need also consider
dangling nodes, which occurmidway along the shared edge of two equally-sized squares, one
of which is subdivided. Thus additional work is required to define the higher-order schemes.

As explained in Sect. 3, the meshes are generated using quadtrees that are kept balanced
(the lengths of neighbouring squares differ by at most a factor of two). Thus each interior
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Fig. 8 A dangling node in the x
variable and respective stencil for
the higher-order scheme

uSW uS uSE

u

uNW uN uNE

uSW uS uSE

u

uNW uN uNE

mesh point can be associated to one of five different configurations. These are depicted in
Figs. 7, 8, and 9. The generic element chosen to represent each configuration is one where
each square is a leaf square. In general, one or more of the smaller squares may have children
in the quadtree; i.e., they may be subdivided into smaller squares. We consider these to
be redundant when constructing the high-order schemes. Considering all possible different
configurations would only increase the complexity of the schemes with no additional benefits
as the schemeswould remain asymptotically second order; only the asymptotic error constant
could be improved.

For the configurations in Fig. 8, we use the following approximations

uxx ≈ −2uN − 2uS + uNW + uNE + uSE + uSW
2h2

,

uyy ≈ 4
uN + uS − 2u

h2
,

uxy ≈ uNE + uSW − uNW − uSE
2h2

.

As for the configurations in Fig. 9, we have

uxx ≈ 4
uW + uE − 2u

h2
,

uyy ≈ −2uW − 2uE + uNW + uNE + uSE + uSW
2h2

,

uxy ≈ uNE + uSW − uNW − uSE
2h2

.

The standard Taylor expansion argument shows that the above expressions are second order
accurate.

Finally, we explain how one can efficiently determine the configuration of each interior
mesh point. As mentioned in Sect. 3.4, for each interior mesh point a record is kept of the
four leaf squares that the interior mesh point as a vertex. Thus the configuration is easily
determined by determining the depth of the neighbouring squares and respective parent
squares in the quadtree.
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Fig. 9 A dangling node in the y
variable and respective stencil for
the higher-order scheme
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uNW uNE

uSW uSE

uW u uE

uNW uNE

4.3 Least-Squares Constructions Near Boundary

In this section, we discuss how to construct second order schemes at interior points near the
boundary. When near the boundary, the construction of the schemes cannot reduce to the
cases considered in the previous section: in general, not all the neighbouring mesh points
will be the vertices of squares and some will lie on the boundary, which we allow to have a
complicated geometry. Thus additional care is needed. Here we describe a general strategy
for building high-order schemes.

Let {xi }Ni=1 denote neighbouring mesh points to the interior mesh point x0 with
‖xi − x0‖∞ = O(h). Using Taylor expansion we obtain, for each i = 1, . . . , N ,

u(xi ) − u(x0) =
∑

0<|α|≤3

(xi − x0)α

α! (∂αu)(x0) + O(h4),

where we are using the multi-index notation. Hence

N∑
i=1

ai (u(xi ) − u(x0)) = ∂βu(x0) + O(h2)

if the {ai }Ni=1 solve the linear system

N∑
i=1

(xi − x0)α

α! ai = 1{α=β}

for 0 < |α| ≤ 3.
To approximate second derivatives to second order, we expect to require N = 9 neigh-

bours.
Designing second order schemes is now reduced to determining the neighbouring mesh

points and solving the respective linear system. However, since we are particularly interested
in the case where some of the neighbouring mesh points lie on the boundary, which may
have a complicated geometry, it is hard to make any a priori claim regarding the invertability
and conditioning of the linear system. It is important to point out that we are interested
in obtaining any particular solution. As we saw in the previous section, depending on the
derivative being approximated and the location of the neighbouring mesh points, the number
of neighbouring mesh points required changes.

We are now ready to describe the strategy implemented to construct the higher-order
schemes. First, we determine which configuration we are in. If all the vertices of squares
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neighbouring x0 aremesh points,we use the approximations described in the previous section.
Otherwise, we build the linear system above using all mesh points xi that lie within squares
adjoining x0 (some will lie on the boundary of the domain and will not be vertices of the
squares). In general, we will have N ≥ 9, but the linear system may still have no solution
or be ill-conditioned. If that is the case, we consider additional neighbouring mesh points
by adding the mesh points that belong to neighbouring squares. In general, we end up with
an under-determined system and we select the least squares solution. In practice, adding
additional neighbouring mesh points was not always required, and it was never required
more than once. Thus the high-order scheme has stencil widthO(h) and preserves the formal
discretisation error of O(h2).

5 Computational Examples

5.1 Monge–Ampère Equation

We consider the Monge–Ampère equation
⎧⎪⎨
⎪⎩

− det(D2u) + f = 0, x ∈ Ω

u = g, x ∈ ∂Ω

u is convex.

The PDE is only elliptic in the space of convex functions. However, as in [18], we can use
the globally elliptic extension

− min
θ∈[0,π/2)

{
max

{
∂2u

∂e2θ
, 0

}
max

{
∂2u

∂e2θ+π/2

, 0

}
+ min

{
∂2u

∂e2θ
, 0

}
+ max

{
∂2u

∂e2θ+π/2

, 0

}}

+ f = 0.

Wewill consider four different domains given byΩ = {(x, y) ∈ R2 | φ(x, y) < 0}where
φ is given by

(a) (circle) φ(x, y) = x2 + y2 − 1,
(b) (ellipse) φ(x, y) = x2 + 2y2 − 1,
(c) (diamond) φ(x, y) = |x | + |y| − 1,
(d) (diamond stretched) φ(x, y) = |x | + |2y| − 1.

Example 1 We consider first the following C2 solution of the Monge–Ampère equation

u(x, y) = e
x2+y2

2 , f (x, y) = (1 + x2 + y2)ex
2+y2 .

Results are displayed in Table1. On each domain, the filtered implementation recovers
the desired second-order accuracy even though the boundary nodes do not belong to the
structured piecewise Cartesian mesh. The Monge–Ampère equation is intimately related to
the computation of optimal transport maps. For these applications, it is the gradient of the
solution that is of interest, rather than the potential function itself. Notice that due to the
use of the quadtree structure and the way we deal we discretize the boundary, each interior
node always has neighbouring nodes along the x and y directions. Therefore the gradient
can be approximated with standard finite differences. In the particular case of the Monge–
Ampère equation here, the mesh is uniform except near the boundary and thus the gradient
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Table 1 Convergence results for the C2 solution of the Monge–Ampère equation

N h Monotone Filtered

Max error and order, Example 1 (circle)

101 2.500 × 10−1 1.739 × 10−2 – 7.008 × 10−3 –

349 1.250 × 10−1 5.678 × 10−3 1.61 2.219 × 10−3 1.66

1149 6.250 × 10−2 2.781 × 10−3 1.03 6.183 × 10−4 1.84

4297 3.125 × 10−2 1.876 × 10−3 0.57 1.701 × 10−4 1.86

15,741 1.563 × 10−2 1.630 × 10−3 0.20 4.320 × 10−5 1.98

58,553 7.813 × 10−3 1.566 × 10−3 0.06 1.082 × 10−5 2.00

230,725 3.906 × 10−3 1.008 × 10−3 0.64 2.704 × 10−6 2.00

Max error and order, Example 1 (ellipse)

79 2.500 × 10−1 9.467 × 10−3 – 8.905 × 10−3 –

257 1.250 × 10−1 3.028 × 10−3 1.64 1.232 × 10−3 2.85

901 6.250 × 10−2 1.264 × 10−3 1.26 3.627 × 10−4 1.76

3151 3.125 × 10−2 8.276 × 10−4 0.61 1.012 × 10−4 1.84

11,305 1.563 × 10−2 7.443 × 10−4 0.15 2.602 × 10−5 1.96

42,947 7.813 × 10−3 7.238 × 10−4 0.04 6.512 × 10−6 2.00

166,749 3.906 × 10−3 4.554 × 10−4 0.67 1.628 × 10−6 2.00

Max error and order, Example 1 (diamond)

57 2.500 × 10−1 6.214 × 10−3 – 7.245 × 10−3 –

209 1.250 × 10−1 2.677 × 10−3 1.22 1.439 × 10−3 2.33

673 6.250 × 10−2 9.714 × 10−4 1.46 3.561 × 10−4 2.01

2497 3.125 × 10−2 2.805 × 10−4 1.79 8.881 × 10−5 2.00

9345 1.563 × 10−2 3.029 × 10−4 − 0.11 2.218 × 10−5 2.00

36,097 7.813 × 10−3 1.903 × 10−4 0.67 5.544 × 10−6 2.00

139,777 3.906 × 10−3 1.571 × 10−4 0.28 1.386 × 10−6 2.00

Max error and order, Example 1 (diamond stretched)

61 2.500 × 10−1 2.598 × 10−3 – 1.892 × 10−3 –

153 1.250 × 10−1 8.006 × 10−4 1.70 5.214 × 10−4 1.86

497 6.250 × 10−2 2.797 × 10−4 1.52 1.356 × 10−4 1.94

1633 3.125 × 10−2 1.523 × 10−4 0.88 3.428 × 10−5 1.98

5569 1.563 × 10−2 7.681 × 10−5 0.99 8.597 × 10−6 2.00

20,609 7.813 × 10−3 2.360 × 10−5 1.70 2.151 × 10−6 2.00

76,033 3.906 × 10−3 2.756 × 10−5 − 0.22 5.379 × 10−7 2.00

is approximated with second order accurate centred finite differences. In Table2, we display
the accuracy of the gradient and observe a superconvergence phenomenon. Despite the fact
that we used a second-order scheme to solve theMonge–Ampère equation, this second-order
accuracy is observed in the computed gradient of the solution as well as in the solution itself.

Example 2 We consider also a C1 solution of the Monge–Ampère equation, for which the
ellipticity is degenerate in an open set.
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Table 2 Convergence results for the gradient of C2 solution of the Monge–Ampère equation

N h Monotone Filtered

Max error in ∇u and order, Example 1 (circle)

101 2.500 × 10−1 1.032 × 10−2 – 3.430 × 10−2 –

349 1.250 × 10−1 7.244 × 10−3 0.51 1.213 × 10−2 1.50

1149 6.250 × 10−2 1.079 × 10−2 − 0.58 6.447 × 10−3 0.91

4297 3.125 × 10−2 1.331 × 10−2 − 0.30 1.223 × 10−3 2.40

15,741 1.562 × 10−2 1.393 × 10−2 − 0.07 1.524 × 10−4 3.00

58,553 7.812 × 10−3 1.435 × 10−2 − 0.04 3.587 × 10−5 2.09

230,725 3.906 × 10−3 7.137 × 10−3 1.01 9.112 × 10−6 1.98

Max error in ∇u and order, Example 1 (ellipse)

79 2.500 × 10−1 2.289 × 10−2 – 3.247 × 10−2 –

257 1.250 × 10−1 6.595 × 10−3 1.79 9.866 × 10−3 1.72

901 6.250 × 10−2 5.930 × 10−3 0.15 6.864 × 10−3 0.52

3151 3.125 × 10−2 7.975 × 10−3 − 0.43 9.158 × 10−4 2.91

11,305 1.562 × 10−2 8.658 × 10−3 − 0.12 1.884 × 10−4 2.28

42,947 7.812 × 10−3 8.718 × 10−3 − 0.01 4.586 × 10−5 2.04

166,903 3.906 × 10−3 4.819 × 10−3 0.86 1.163 × 10−5 1.98

Max error in ∇u and order, Example 1 (diamond)

57 2.500 × 10−1 2.598 × 10−2 – 2.751 × 10−2 –

177 1.250 × 10−1 1.028 × 10−2 1.34 1.082 × 10−2 1.35

673 6.250 × 10−2 3.029 × 10−3 1.76 3.386 × 10−3 1.68

2369 3.125 × 10−2 2.908 × 10−3 0.06 9.483 × 10−4 1.84

8833 1.562 × 10−2 3.253 × 10−3 − 0.16 2.517 × 10−4 1.91

34,561 7.812 × 10−3 3.462 × 10−3 − 0.09 6.491 × 10−5 1.95

135,681 3.906 × 10−3 2.130 × 10−3 0.70 1.649 × 10−5 1.98

Max error in ∇u and order, Example 1 (diamond stretched)

45 2.500 × 10−1 3.417 × 10−2 – 3.501 × 10−2 –

153 1.250 × 10−1 1.228 × 10−2 1.48 1.222 × 10−2 1.52

433 6.250 × 10−2 3.600 × 10−3 1.77 3.618 × 10−3 1.76

1377 3.125 × 10−2 9.821 × 10−4 1.87 9.852 × 10−4 1.88

5057 1.562 × 10−2 8.367 × 10−4 0.23 2.571 × 10−4 1.94

18,561 7.812 × 10−3 8.703 × 10−4 − 0.06 6.566 × 10−5 1.97

70,401 3.906 × 10−3 6.430 × 10−4 0.44 1.659 × 10−5 1.98

u(x, y) = 1

2
max

{√
x2 + y2 − 0.2, 0

}2

, f (x, y) = max

{
1 − 0.2√

x2 + y2)
, 0

}
.

This solution is singular, and there is thus no realistic hope of attaining the formal
second-order discretisation error obtained from Taylor’s Theorem. Nevertheless, the method
converges and we observe roughly first-order accuracy (Table3). The reduced accuracy of
the estimated gradients (Table 4) is to be expected since the solution itself does not have

123



1300 J Sci Comput (2018) 75:1282–1306

Table 3 Convergence results for the C1 solution of the Monge–Ampère equation

N h Monotone Filtered

Max error and order, Example 2 (circle)

101 2.500 × 10−1 1.606 × 10−2 – 4.143 × 10−3 –

349 1.250 × 10−1 9.103 × 10−3 0.82 2.384 × 10−3 0.80

1149 6.250 × 10−2 5.706 × 10−3 0.67 1.733 × 10−3 0.46

4297 3.125 × 10−2 4.827 × 10−3 0.24 7.823 × 10−4 1.15

15,741 1.563 × 10−2 4.330 × 10−3 0.16 3.702 × 10−4 1.08

58,553 7.813 × 10−3 4.300 × 10−3 0.01 1.838 × 10−4 1.01

230,725 3.906 × 10−3 2.207 × 10−3 0.96 9.571 × 10−5 0.94

Max error and order, Example 2 (ellipse)

79 2.500 × 10−1 1.193 × 10−2 – 4.672 × 10−3 –

257 1.250 × 10−1 7.126 × 10−3 0.74 3.180 × 10−3 0.56

901 6.250 × 10−2 4.569 × 10−3 0.64 1.579 × 10−3 1.01

3151 3.125 × 10−2 3.924 × 10−3 0.22 8.300 × 10−4 0.93

11,305 1.563 × 10−2 3.519 × 10−3 0.16 3.747 × 10−4 1.15

42,947 7.813 × 10−3 3.497 × 10−3 0.01 1.741 × 10−4 1.11

166,749 3.906 × 10−3 1.774 × 10−3 0.98 8.052 × 10−5 1.11

Max error and order, Example 2 (diamond)

57 2.500 × 10−1 8.503 × 10−3 – 6.576 × 10−3 –

209 1.250 × 10−1 6.706 × 10−3 0.34 2.168 × 10−3 1.60

673 6.250 × 10−2 4.265 × 10−3 0.65 1.555 × 10−3 0.48

2497 3.125 × 10−2 3.441 × 10−3 0.31 7.661 × 10−4 1.02

9345 1.563 × 10−2 2.303 × 10−3 0.58 3.622 × 10−4 1.08

36,097 7.813 × 10−3 1.109 × 10−3 1.05 2.296 × 10−4 0.66

139,777 3.906 × 10−3 1.007 × 10−3 0.14 7.695 × 10−5 1.58

Max error and order, Example 2 (diamond stretched)

61 2.500 × 10−1 2.696 × 10−3 – 4.108 × 10−3 –

153 1.250 × 10−1 3.781 × 10−3 − 0.49 3.026 × 10−3 0.44

497 6.250 × 10−2 2.426 × 10−3 0.64 1.213 × 10−3 1.32

1633 3.125 × 10−2 1.820 × 10−3 0.41 1.233 × 10−3 − 0.02

5569 1.563 × 10−2 1.203 × 10−3 0.60 3.663 × 10−4 1.75

20,609 7.813 × 10−3 6.089 × 10−4 0.98 2.028 × 10−4 0.85

76,033 3.906 × 10−3 5.692 × 10−4 0.10 9.177 × 10−5 1.14

sufficient accuracy to justify the Taylor expansions used in either the discretisation of the
PDE or the approximation of the gradient.

5.2 Pucci Equation

We also demonstrate that our method works on more complicated domains. To do this, we
consider the Pucci equation
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Table 4 Convergence results for the gradient of C1 solution of the Monge–Ampère equation

N h Monotone Filtered

Max error in ∇u and order, Example 2 (circle)

101 2.500 × 10−1 2.861 × 10−2 – 3.465 × 10−2 –

349 1.250 × 10−1 1.097 × 10−2 1.38 1.514 × 10−2 1.19

1149 6.250 × 10−2 9.979 × 10−3 0.14 9.984 × 10−3 0.60

4297 3.125 × 10−2 7.942 × 10−3 0.33 4.185 × 10−3 1.25

15,741 1.562 × 10−2 7.232 × 10−3 0.14 3.058 × 10−3 0.45

58,553 7.812 × 10−3 7.305 × 10−3 − 0.01 3.135 × 10−3 − 0.04

230,725 3.906 × 10−3 3.635 × 10−3 1.01 2.229 × 10−3 0.49

Max error in ∇u and order, Example 2 (ellipse)

79 2.500 × 10−1 3.029 × 10−2 – 3.716 × 10−2 –

257 1.250 × 10−1 1.327 × 10−2 1.19 9.992 × 10−3 1.89

901 6.250 × 10−2 1.038 × 10−2 0.35 1.123 × 10−2 − 0.17

3151 3.125 × 10−2 8.408 × 10−3 0.30 4.787 × 10−3 1.23

11,305 1.562 × 10−2 7.688 × 10−3 0.13 4.179 × 10−3 0.20

42,947 7.812 × 10−3 7.724 × 10−3 − 0.01 3.081 × 10−3 0.44

166,903 3.906 × 10−3 3.859 × 10−3 1.00 2.142 × 10−3 0.52

Max error in ∇u and order, Example 2 (diamond)

57 2.500 × 10−1 2.907 × 10−2 – 3.419 × 10−2 –

177 1.250 × 10−1 1.097 × 10−2 1.41 1.513 × 10−2 1.18

673 6.250 × 10−2 9.985 × 10−3 0.14 9.960 × 10−3 0.60

2369 3.125 × 10−2 7.907 × 10−3 0.34 7.322 × 10−3 0.44

8833 1.562 × 10−2 7.206 × 10−3 0.13 3.465 × 10−3 1.08

34,561 7.812 × 10−3 7.287 × 10−3 − 0.02 3.747 × 10−3 − 0.11

135,681 3.906 × 10−3 3.617 × 10−3 1.01 3.234 × 10−3 0.21

Max error in ∇u and order, Example 2 (diamond stretched)

45 2.500 × 10−1 3.364 × 10−2 – 3.364 × 10−2 –

153 1.250 × 10−1 1.135 × 10−2 1.57 1.063 × 10−2 1.66

433 6.250 × 10−2 1.090 × 10−2 0.06 1.134 × 10−2 − 0.09

1377 3.125 × 10−2 9.230 × 10−3 0.24 5.322 × 10−3 1.09

5057 1.562 × 10−2 8.918 × 10−3 0.05 6.393 × 10−3 − 0.26

18,561 7.812 × 10−3 8.971 × 10−3 − 0.01 4.360 × 10−3 0.55

70,401 3.906 × 10−3 4.238 × 10−3 1.08 2.733 × 10−3 0.67

{
αλ+(D2u) + λ−(D2u) = 0, x ∈ Ω,

u = g, x ∈ ∂Ω,

where

λ+(D2u) = max
θ∈[0,2π ]

∂2u

∂e2θ
and λ−(D2u) = min

θ∈[0,2π ]
∂2u

∂e2θ
.
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For α > 0, the PDE is elliptic.
We will solve this in the irregular, non-convex, non-smooth domain in Fig. 4b, which can

be defined as Ω = {(x, y) ∈ R2 | φ(x, y) < 0} where φ is given by

φ(x, y) = min
{
c(1)
+ (x, y), c(1)

− (x, y), c(2)
+ (x, y), c(2)

− (x, y)
}

with

c(1)
± (x, y) =

(
x ± 1

2

)2

+ 5

(
y ± 1

4

)2

− 1

2
and

c(2)
± (x, y) = 5

(
x ± 1

4

)2

+
(
y ∓ 1

4

)2

− 1

2
.

In order to define a filtered scheme for the Pucci equation, we first need to define an
accurate scheme for it. Notice that, based on the work discussed in Sect. 4, it is enough to
rewrite the Pucci equation in terms of the Hessian entries. This can be accomplished in the
following way. For θ ∈ [0, 2π ],

uθθ = cos2(θ)uxx + sin2(θ)uyy + 2 sin(θ) cos(θ)uxy

and so

d

dθ
uθθ = − sin(2θ)(uxx − uyy) + 2 cos(2θ)uxy .

Hence

d

dθ
uθθ = 0 ⇐⇒ tan(2θ∗) = 2uxy

uxx − uyy
�⇒ θ∗ = 1

2
arctan

(
2uxy

uxx − uyy

)
.

Then

λ+(D2u) = max

⎧⎨
⎩

∂2u

∂e2θ∗
,

∂2u

∂e2
θ∗+ π

2

⎫⎬
⎭ and λ−(D2u) = min

⎧⎨
⎩

∂2u

∂e2θ∗
,

∂2u

∂e2
θ∗+ π

2

⎫⎬
⎭ .

Example 3 We consider the radial solution of the Pucci equation

u(x, y) = −ρ1−α, where ρ(x, y) =
√

(x + 2)2 + (y + 2)2

and α = 3.

Results are displayed in Table5. The results are similar to Example 1 of the Monge–
Ampère equation: despite the irregular, non-convex, non-smooth domain,we observe second-
order accuracy for the filtered scheme.

5.3 Computation Time

One of the reasons to use quadtrees to build non-uniform meshes was to efficiently find
the neighbours for the finite difference schemes. Here we compare the implementation with
quadtrees, discussed in depth in Sect. 3, with the simple but inefficient brute force approach
of [20]. Reduced CPU time is the ultimate goal, but not necessarily a robust measure of
efficiency as it depends on both hardware and software implementations. Here both imple-
mentations were vectorised whenever possible in order to optimise the code for MATLAB.
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Table 5 Convergence results for the radial solution of the Pucci equation

N h Monotone Filtered

Max error and order, Example 3 (fan-shape)

93 3.750 × 10−1 7.007 × 10−3 – 2.158 × 10−3 –

435 1.875 × 10−1 2.456 × 10−3 1.51 1.673 × 10−4 3.69

711 9.375 × 10−2 2.939 × 10−3 − 0.26 8.033 × 10−4 − 2.26

1853 4.688 × 10−2 5.189 × 10−4 2.50 9.827 × 10−6 6.35

6759 2.344 × 10−2 1.010 × 10−3 − 0.96 2.336 × 10−6 2.07

30,215 1.172 × 10−2 7.123 × 10−4 0.50 5.658 × 10−7 2.05

84,951 5.859 × 10−3 2.212 × 10−4 1.69 1.415 × 10−7 2.00
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Fig. 10 Number of mesh points versus CPU time in seconds to generate a mesh and find the respective stencil
for an ellipsoidal domain

Although it is still possible to further optimise the code, the CPU time should be a fair
indication of the improvement gained by using quadtrees.

In Fig. 10, we compare the number of mesh points versus the CPU time required to
generate the mesh and find the stencil. We let the domain Ω be the ellipse given by Ω =
{(x, y) ∈ R2 | x2 +2y2 < 1}. The results indicate that our new approach is optimal, with the
computation time required to construct the stencils being roughly proportional to the number
of mesh points. This represents an improvement of roughly one order over the original brute
force approach. In practice, we can generate a mesh and find the stencil based on a uniform
256 × 256 grid in roughly 50 s with the use of quadtrees, instead of over 6 minutes with the
previous brute force approach.

5.4 Adaptivity

In our next example, we demonstrate the improvements possible with adaptivity using our
generalised finite difference approximations.
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Fig. 11 Number of mesh points
vs error for Example 4
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Example 4 We consider the fully nonlinear convex envelope equation
{
max

{−λ−(D2u), u − g
} = 0, x ∈ Ω

u = 0.5, x ∈ ∂Ω,

where

λ−(D2u) = min
θ∈[0,2π ]

∂2u

∂e2θ
.

The equation is posed on an ellipse with semi-major axis equal to one and semi-minor
axis equal to one-half, which is rotated through an angle of φ = π/6. The obstacle g consists
of two cones,

g1(x, y) = (x cosφ + y sin φ + 0.5)2 + (−x sin φ + y cosφ)2

g2(x, y) = (x cosφ + y sin φ − 0.5)2 + (−x sin φ + y cosφ)2

g(x, y) = min {g1(x, y), g2(x, y), 0.5}
and the exact solution is

u(x, y) =
{
min {g1(x, y), g2(x, y)} , |x cosφ + y sin φ| ≥ 0.5

| − x sin φ + y cosφ|, |x cosφ + y sin φ| < 0.5.

We note that this solution is only Lipschitz continuous, and the equation must be understood
in a weak sense.

We defined the following refinement strategy. Given a solution a solution uh ,

1. Compute numerically
∥∥D2u

∥∥ =
√
u2xx + 2u2xy + u2yy .

2. Refine twice every square with a vertex such that h
∥∥D2u

∥∥ > 0.5.

This refinement strategy is inspired by the hybrid scheme proposed in [25].
A convergence plot is displayed in Fig. 11. We observe an improvement in accuracy from

roughlyO(N−0.38) toO(N−0.64). Moreover, the use of adaptivity leads to a clear qualitative
improvement in the computed solutions. This is evident in Fig. 12, which shows that the
solution obtained with the uniform mesh is visibly non-convex along the singularity, which
does not align with the grid. By resolving this singularity, the adaptive method produces a
solution that has a dramatically better quality.

123



J Sci Comput (2018) 75:1282–1306 1305

0
0.1

1

0.2

0.3

0.4

0.5

0.6

0

10.50-1 -0.5-1

(a)

0

0.1

1

0.2

0.3

0.4

0.5

0.6

0

10.50-1 -0.5-1
(b)

Fig. 12 Solutions of the convex envelope equation computed with the non-adaptive (left) and adaptive
approaches (right)

6 Conclusions

In this article, we described generalised finite difference methods for solving a large class
of fully nonlinear elliptic partial differential equations. These methods were inspired by the
meshfree methods described in [20], which are flexible and convergent, but very expensive
to implement.

Our meshes used a modified quadtree structure that used piecewise Cartesian grids in
the interior of the domain, augmented by a set of points lying exactly on the boundary.
The inclusion of the additional boundary points was needed to ensure convergence of the
numericalmethods. This type ofmesh also allows us to deal easilywith complicated boundary
geometries.

By relying on the underlying quadtree structure, we developed an algorithm for efficiently
constructing the mesh and finite difference stencils. This led to a dramatic improvement in
computational efficiency as compared to the original brute force approach.

We also described a strategy for constructing higher-order approximations, which still
fit within the convergence framework. In the interior of the domain, the quadtree structure
allows us to explicitly write out the higher-order finite difference schemes. This strategy
fails near the boundary, which can have a very complicated geometry. At these points, we
employed a least-squares approach to construct higher-order schemes.

We also used these methods to perform automatic mesh adaptation, which refines the
mesh near singularities in the computed solutions. This led to a dramatic qualitative and
quantitative improvement in computed solutions.

Acknowledgements We thank Adam Oberman for helpful discussions and support of this project.
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