


ing them (Ma and Hale, 2013). The idea of mapping synthetic data

to observed data with stationary and nonstationary filters in the time

domain has been promoted recently (Warner and Guasch, 2014;

Zhu and Fomel, 2016). Although the misfits in these two

approaches are not critical metrics between two objects in math-

ematics, they demonstrate the advantages and feasibility of map-

based ideas.

Optimal transport has become a well-developed topic in math-

ematics since it was first proposed by Monge (1781). Due to their

ability to incorporate differences in intensity and spatial informa-

tion, optimal transport-based metrics for modeling and signal

processing have recently been adopted in a variety of applications

including image retrieval, cancer detection, and machine learning

(Kolouri et al., 2016).

The idea of using optimal transport for seismic inversion was first

proposed by Engquist and Froese (2014). The Wasserstein metric is

a concept based on optimal transportation (Villani, 2003). Here, we

treat our data sets of seismic signals as density functions of two

probability distributions, which can be imagined as the distributions

of two piles of sand with equal mass. Given a particular cost func-

tion, different plans of transporting one pile into the other lead to

different costs. The plan with the lowest cost is the optimal map, and

this lowest cost is the Wasserstein metric. In computer science, the

metric is often called the “earth mover’s distance.” Here, we will

focus on the quadratic cost functions. The corresponding misfit

is the quadratic Wasserstein metric W2.

Following the idea that changes in velocity cause a shift or “trans-

port” in the arrival time, Engquist et al. (2016) demonstrate the ad-

vantageous mathematical properties of the quadratic Wasserstein

metric W2 and provide rigorous proofs that lay a solid theoretical

foundation for this new misfit function. In this paper, we continue

the study of the quadratic Wasserstein metric with more focus on its

applications to FWI. We also develop a fast and robust trace-by-

trace technique.

After the paper of Engquist and Froese (2014), researchers in

geophysics started to work on other optimal transport-related misfit

functions (Métivier et al., 2016a, 2016b, 2016c). The Kantorovich-

Rubinstein (KR) norm in their papers is a relaxation of the

1-Wasserstein distance, which is another optimal transport metric

with the absolute value cost function. The advantage of the KR

norm is that it does not require data to satisfy nonnegativity or mass

balance conditions.

The Wasserstein distance measures the difference between

nonnegative measures or functions with equal mass. These are

not natural constraints for seismic signals, and thus they first have

to be normalized. In our earlier work, we separated the positive and

negative part of the signals to achieve nonnegativity. The resulting

signal was then divided by its integral. This worked well in our ear-

lier test cases, but it is less effective for the larger scale problems

with the adjoint-state method studied here. In this paper, we apply a

linear transformation to the signals to satisfy the requirements of

optimal transport. This, on the other hand, is effective in spite of

the fact that it results in a measure that is not convex concerning

simple shifts.

In one dimension, the optimal transport problem can be solved

explicitly, which allows for accurate and efficient computations.

However, computation becomes much more challenging in higher

dimensions. Several numerical methods have been proposed, but

these still have limitations for extremely large scale realistic data

sets, e.g., those in seismic inversion. Numerical methods based

on the Benamou-Brenier fluid formulation introduce an extra time

dimension to the problem, which increases the computational cost

(Benamou and Brenier, 2000). Optimal transport via entropic regu-

larization is computationally efficient but with very low accuracy in

the computed map (Benamou et al., 2015). The numerical solution

may become unstable when the regularization term is small because

it is close to the original optimal transport problem. Methods based

on linear programming have the disadvantage of doubling the di-

mension of the underlying problem (Oberman and Ruan, 2015;

Schmitzer, 2016). For the quadratic Wasserstein distance, the opti-

mal map can be computed via the solution of a Monge-Ampère

partial differential equation (PDE) (Benamou et al., 2014). This ap-

proach has the advantage of drawing on the more well-developed

field of numerical PDEs. The drawback to the PDE approach is that

data must be sufficiently regular for solutions to be well defined. To

remain robust on realistic examples, these methods effectively

smooth the seismic data, which can lead to a loss of high-frequency

information. For illustration in this paper, we will perform compu-

tations using a Monge-Ampère solver for synthetic examples. Even

in 2D, some limitations are apparent. This is expected to become

even more of a problem in higher dimensions and motivates our

introduction of a trace-by-trace technique that relies on the exact

1D solution. The trace-by-trace technique is currently more prom-

ising for practical problems, as is evidenced in our computational

examples.

In this paper, we briefly review the theory of optimal transport

and revisit the mathematical properties of W2 that were proved by

Engquist et al. (2016), including the convexity and insensitivity to

noise. Next, we apply the quadratic Wasserstein metricW2 as misfit

function in two different ways: trace-by-trace comparison and entire

data set comparison. The trace-by-trace strategy and global strategy

lead to different formulations of the misfit computation and the

adjoint source (Plessix, 2006). The trace-by-trace technique is

new, and the results for inversion are very encouraging. The com-

putational cost is low and similar to that of the classic L2 method.

Finally, after introducing the adjoint source formulas, we show the

application of FWI using the W2 metric on three synthetic models:

the Camembert, the Marmousi, and the 2004 BP models. Discus-

sions and comparisons between the FWI results using W2 and L2

metrics illustrate that the W2 metric is very promising for overcom-

ing the cycle-skipping issue in FWI.

THEORY

Formulation

Conventional FWI defines a least-squares waveform misfit as

dðf; gÞ ¼ J0ðmÞ ¼ 1

2

X

r

Z

jfðxr; t;mÞ − gðxr; tÞj2dt; (1)

where g is the observed data, f is the simulated data, xr are the

receiver locations, and m is the model parameter. This formulation

can also be extended to the case with multiple shots. We get the

modeled data fðx; t;mÞ by solving a wave equation with a finite-

difference method (FDM) in the space and time domain.

In this paper, we propose using the quadratic Wasserstein metric

W2 as an alternative misfit function to measure the difference
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between the synthetic data f and observed data g. There are two

ways to apply this idea: trace-by-trace W2 and global W2.

We can compare the data trace by trace and use the quadratic

Wasserstein metric W2 in 1D to measure the misfit. The overall

misfit is then

J1ðmÞ ¼
X

R

r¼1

W2
2ðfðxr; t;mÞ; gðxr; tÞÞ; (2)

where R is the total number of traces.

In the global case, we compare the full data sets and consider the

whole synthetic data f and observed data g as objects with the

general quadratic Wasserstein metric W2:

J2ðmÞ ¼ W2
2ðfðxr; t;mÞ; gðxr; tÞÞ: (3)

We treat the misfit JðmÞ as a function of the model parameter m.

Our aim is to find the model parameter m� that minimizes the ob-

jective function, i.e., m� ¼ argmin JðmÞ. This is a PDE-constrained
optimization problem, and we use a gradient-based iterative scheme

to update the model m.

Background

Optimal transport originated in 1781 with the French mathema-

tician Monge. This problem seeks the minimum cost required to

transport the mass of one distribution into another given a cost func-

tion. More specifically, we consider two probability measures μ and

ν defined on spaces X and Y, respectively. For simplicity, we regard

X and Y as subsets ofRd. Measures μ and ν have density functions f

and g: dμ ¼ fðxÞdx and dν ¼ gðyÞdy. In applications, fðxÞ can

represent the height of a pile of sand at location x, the gray scale

of one pixel x for an image, or as here the amplitude of a seismic

waveform at mesh grid point x.

Although they must share the same total mass, measures μ and ν

are not the same; i.e., f ≠ g. We want to redistribute “sand” from μ

into ν, and it requires effort. The cost function cðx; yÞ maps pairs

ðx; yÞ ∈ X × Y to R ∪ fþ∞g, which denotes the cost of transport-

ing one unit mass from location x to y. The most common choices

of cðx; yÞ include jx − yj and jx − yj2. Once we find a transport

plan T∶X → Y such that for any measurable set B ⊂ Y,

ν½B� ¼ μ½T−1ðBÞ�, the cost corresponding to this plan T is

IðT; f; g; cÞ ¼
Z

X

cðx; TðxÞÞfðxÞdx: (4)

Although there are many maps T that can perform the relocation,

we are interested in finding the optimal map that minimizes the total

cost

Iðf; g; cÞ ¼ inf
T∈M

Z

X

cðx; TðxÞÞfðxÞdx; (5)

where M is the set of all maps that rearrange f into g.

Thus, we have informally defined the optimal transport problem,

the optimal map as well as the optimal cost, which is also called the

Wasserstein distance:

Definition 1 (The Wasserstein distance). We denote byPpðXÞ
the set of probability measures with finite moments of order p.

For all p ∈ ½1;∞Þ,

Wpðμ;νÞ¼
�

infT∈M

Z

Rn

jx−TðxÞjpdμðxÞ
�1

p

; μ;ν∈PpðXÞ:

(6)

M is the set of all maps that rearrange the distribution μ into ν.

In this paper, we focus on the case of a quadratic cost function:

cðx; yÞ ¼ jx − yj2. The mathematical definition of the distance

between the distributions f∶X → Rþ and g∶Y → Rþ can then be

formulated as

W2
2ðf; gÞ ¼ inf

T∈M

Z

X

jx − TðxÞj2fðxÞdx; (7)

whereM is the set of all maps that rearrange the distribution f into

g (for details, see Villani, 2003). The optimal transport formulation

requires nonnegative distributions and equal total masses that are

not natural for seismic signals. We will discuss this in the section

on data normalization below.

Optimal transport on the real line

For f and g in one dimension, it is possible to exactly solve the

optimal transportation problem (Villani, 2003) in terms of the

cumulative distribution functions

FðxÞ ¼
Z

x

−∞
fðtÞdt; GðyÞ ¼

Z

y

−∞
gðtÞdt: (8)

In fact, the optimal map is just the unique monotone rearrange-

ment of the density f into g (Figure 1a). To compute the quadratic

Wasserstein metric W2, we need the cumulative distribution func-

tionsF andG (Figure 1b) and their inversesF−1 andG−1 (Figure 1c)

as the following theorem states.

Theorem 1 (Optimal transportation for a quadratic cost

on R). Let 0 < f ; g < ∞ be two probability density functions,

each supported on a connected subset of R. Then the optimal

map from f to g is T ¼ G−1 ∘ F.
For the synthetic data f and the observed data g from one trace,

we assume that they are continuous in time without loss of general-

ity. After proper normalization signals f and g can be rescaled to be

positive, supported on [0,1], and have a total mass of one. From the

theorem above, we derive another formulation for the 1D quadratic

Wasserstein metric:

W2
2ðf; gÞ ¼

Z

1

0

jx − G−1ðFðxÞÞj2fðxÞdx: (9)

Optimal transport in higher dimensions

The simple exact formula for 1D optimal transportation does not

extend to optimal transportation in higher dimensions. Never-

theless, it can be computed by relying on two important properties

Quadratic Wasserstein metric for FWI R45
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of the optimal mapping TðxÞ: conservation of mass and cyclical

monotonicity. From the definition of the problem, TðxÞ maps

f into g. The change of variables formula formally leads to the re-

quirement

fðxÞ ¼ gðTðxÞÞ detð∇TðxÞÞ: (10)

The optimal map takes on additional structure in the special case

of a quadratic cost function: It is cyclically monotone (Knott and

Smith, 1984; Brenier, 1991).

Definition 2 (cyclical monotonicity). We say that T∶X → Y

is cyclically monotonic if for any m ∈ Nþ, xi ∈ X; 1 ≤ i ≤ m,

X

m

i¼1

jxi − TðxiÞj2 ≤
X

m

i¼1

jxi − Tðxi−1Þj2 (11)

or equivalently

X

m

i¼1

hTðxiÞ; xi − xi−1i ≥ 0 (12)

where x0 ≡ xm.

In addition, a cyclically monotone mapping is formally equiva-

lent to the gradient of a convex function (Knott and Smith, 1984;

Brenier, 1991). Making the substitution TðxÞ ¼ ∇uðxÞ into the

constraint (equation 10) leads to the Monge-Ampère equation

detðD2uðxÞÞ ¼ fðxÞ
gð∇uðxÞÞ ; u is convex: (13)

To compute the misfit between distributions f and g, we first

compute the optimal map TðxÞ ¼ ∇uðxÞ via the solution of this

Monge-Ampère equation coupled to the nonhomogeneous Neumann

boundary condition

∇uðxÞ · n ¼ x · n; x ∈ ∂X: (14)

The squared Wasserstein metric is then given by

W2
2ðf; gÞ ¼

Z

X

fðxÞjx − ∇uðxÞj2dx: (15)

Convexity

As demonstrated by Engquist et al. (2016), the squared Wasser-

stein metric has several properties that make it attractive as a choice

of misfit function. One highly desirable feature is its convexity for

data shifts, dilation, and partial amplitude change, which occur

naturally in seismic waveform inversion.

We recall the overall setup for FWI, in which we have a fixed

observation g and a simulation fðmÞ that depends on unknown

model parameters m. The model parameters are recovered via

the minimization

m� ¼ argmin
m

fW2
2ðfðmÞ; gÞg: (16)

To perform this minimization effectively and efficiently, we desire

the distance W2
2ðfðmÞ; gÞ to be convex in the model parameter m.

This is certainly not the case for all possible functions fðmÞ, but it
is true for many settings that occur naturally in seismic inversion.

For example, variations in the wave velocity lead to simulations

fðmÞ that are derived from shifts,

fðx; sÞ ¼ gðxþ sηÞ; η ∈ R
n; (17)

or dilations,

0

0.5

1

1.5

2a)

b)

c)

f

g

0 1 2 3 4

0 1 2 3 4
0

0.2

0.4
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0.8

1
 and  
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0 0.2 0.4 0.6 0.8 1
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1

2
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 and  gf

–1

F
–1

G –1

Figure 1. (a) One-dimensional densities f and g. (b) Cumulative
distribution functions F and G and (c) inverse distribution function
F−1 and G−1 for densities f and g.
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fðx;AÞ ¼ gðAxÞ; AT ¼ A; A > 0; (18)

applied to the observation g. Variations in the strength of a reflecting

surface or the focusing of seismic waves can also lead to local re-

scalings of the form

fðx; βÞ ¼
�

βgðxÞ; x ∈ E

gðxÞ; x ∈ R
n
\ E:

(19)

Proving the convexity of W2
2 follows nicely from the interpreta-

tion of the misfit as a transportation cost, with the underlying trans-

portation cost exhibiting a great deal of structure. In particular, the

cyclical monotonicity of the transport map TðxÞ leads readily to

estimates of

W2
2ðfðλm1 þ ð1 − λÞm2Þ; gÞ; 0 < λ < 1; (20)

which in turn yields the desired convexity results. The convexity

was studied in detail by Engquist et al. (2016), where the following

theorem was proved.

Theorem 2 (convexity of the squaredWasserstein metric [Eng-

quist et al., 2016]). The squared Wasserstein metricW2
2ðf ðmÞ; gÞ is

convex with respect to the model parameters m corresponding to a

shift s in (17), the eigenvalues of a dilation matrix A in (18), or the

local rescaling parameter β in (19).

Insensitivity to noise

When performing FWI with real data, it is natural to experience

noise in the measured signal. Consequently, it is imperative that a

misfit function is robust regarding noise. As demonstrated by Eng-

quist et al. (2016), the Wasserstein metric is substantially less sen-

sitive to noise than the traditional L2 norm.

The property again follows from the interpretation of W2
2 as a

transportation cost. Intuitively, noise added to the data will increase

the distance jTðxÞ − xj that mass moves at some points x, but it will

also decrease this distance at other points. Thus, the overall effect of

noise on the total transportation cost

Z

X

fðxÞjTðxÞ − xj2dx (21)

will be negligible.

This is simplest to calculate in one dimension. For example, we

can consider the setting from Engquist et al. (2016). Here, the data f

and g are given on a grid with a total of N data points along each

dimension. At each grid point, the difference f − g is given by a

random variable drawn from a uniform distribution of the form

U½−c; c� for some constant c. Regardless of the number of data

points, noise of this type is expected to have a large effect on

the L2 distance,

Ekf − gkL2 ¼ Oð1Þ: (22)

Using the exact formula for the 1D optimal transport plan, we can

also directly compute the expected value of the squared Wasserstein

metric:

EW2
2ðf; gÞ ¼ O

�

1

N

�

: (23)

Thus, even if the noise is very strong (with order-one amplitude), its

effect on the misfit is negligible if there are a large number of data

points.

Although there is no exact formula to exploit in higher dimen-

sions, we can place a bound on the expected effects of noise by

considering a sequence of 1D optimal transport problems. That

is, we can produce a sequence of mappings TjðxÞ, j ¼ 1; : : : ; n that

optimally rearrange the mass along the jth dimension (see Figure 2).

These 1D maps can again be expressed exactly. The resulting

composite map

~TðxÞ ¼ Tn ∘ Tn−1 ∘ · · · ∘ T1ðxÞ (24)

will be mass preserving, but not optimal. As described by Engquist

et al. (2016), this leads to the estimate

E ~Wðf; gÞ ¼ E

Z

fðxÞjx − TðxÞj2dx

≤ E

Z

fðxÞjx − ~TðxÞj2 ¼ O

�

1

N

�

: (25)

Thus, for typical seismic data, the effect of noise is expected to have

a negligible effect on the behavior of the squared Wasserstein

metric.

NUMERICAL SCHEME

In this section, we describe the numerical schemes we use to

compute the W2 misfit. We also explain the adjoint source that

is needed for efficient inversion on geophysical data.

Data normalization

In optimal transport theory, there are two main requirements for

signals f and g: positivity and mass balance. Because these are

not expected for seismic signals, some data preprocessing is needed

before we can implement Wasserstein-based FWI. In Engquist

and Froese (2014) and Engquist et al. (2016), the signals were

separated into positive and negative parts fþ ¼ maxff; 0g,
f− ¼ maxf−f; 0g and scaled by the total mass hfi ¼ ∫

X
fðxÞdx.

Inversion was accomplished using the modified misfit function:

0 0.5 1
0

0.2

0.4

0.6

0.8

1a) b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 2. (a) The optimal map for each row: Tx ¼ Ti for xi < x ≤
xiþ1 and (b) the optimal map in the y direction: Ty.
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W2
2

�

fþ

hfþi ;
gþ

hgþi

�

þW2
2

�

f−

hf−i ;
g−

hg−i

�

: (26)

Although this approach preserves the desirable theoretical prop-

erties of convexity to shifts and noise insensitivity, it is not easy to

combine with the adjoint-state method and more realistic examples.

We require the scaling function to be differentiable so that it is easy

to apply the chain rule when calculating the Fréchet derivative and it

is also better suited for the Monge-Ampère solver.

There are other different ways to rescale the data sets so that they

become positive. For example, we can square the data as ~f ¼ f2 or

extract the envelope of the data. The convexity concerning shifts are

preserved by these methods, but we have lost some information in

the gradient. In the squaring case, the gradient ofW2 with respect to

f is zero when f is zero, which can cause severe difficulties in

recovering reflections. The envelope approach, on the other hand,

loses important phase information.

In this paper, we propose normalization via a linear transforma-

tion and rescaling. We begin by selecting a constant c such that

f þ c > 0 and gþ c > 0. In the experiments, c is chosen approx-

imately 1.1 times jgminj. This constant is fixed in inversion. After

shifting the signals to ensure positivity, we rescale so all signals

share a common total mass. Thus, we obtain the modified data
~f ¼ PðfÞ and ~g ¼ PðgÞ where

PðfÞ ≡ f þ c

hf þ ci : (27)

This normalization has several advantages. First, the number and

location of local maximum and minimum are maintained. In addi-

tion, it has high regularity, which is important for the adjoint-state

method. The normalization function PðfÞ does not change signifi-
cantly from iteration to iteration because of the mean zero property

of the data, which aids in convergence. There is, however, a serious

concern in that this normalization results in a misfit function that is

not convex for simple shifts (Figure 3a) even if the W2 misfit is

slightly better than that of L2.

We use an example from Métivier et al. (2016c) to empirically

demonstrate a convexity result in a higher dimensional model

domain with the linear normalization proposed in this paper. The

model velocity is increasing linearly in depth as vðx; zÞ ¼
v0 þ αz, where v0 is the starting velocity on the surface, α is the

vertical gradient, and z is the depth. The model is 17 km in width

and 3.5 km in depth. We place 681 receivers on the top with a 25 m

fixed acquisition and one source in the top middle with a Ricker

wavelet centered at 5 Hz.

The reference for ðv0; αÞ is (2 km∕s, 0.7 s−1), and we plot the

misfit curves with α ∈ ½0.4; 1� and v0 ∈ ½1.75; 2.25� on 41 × 45 grid

in Figure 3b. It is globally convex with respect to two model var-

iables. We compare the convexity of L2 and W2 in one variable

when the value of the other variable is wrong (Figure 4). The L2

results have local minima, whereas the curves for W2 are convex.
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Figure 3. (a) The L2 and W2 misfits between a Ricker wavelet f
and its shift fðx − sÞ and (b) misfit sensitivity with respect to model
parameters v0 and α.
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Our empirical experience is that this linear normalization works

remarkably well on realistic examples, but we believe further re-

search is desirable in solving this problem and increasing the under-

standing of convergence properties.

To simplify notation, we will hereafter use f and g denoting their

normalized version ~f and ~g in equation 27.

Compare trace by trace: W2

2
�f ; g� in 1D

We first describe the scheme used for the 1D Wasserstein met-

ric, which we use to compare the data trace by trace for an overall

misfit:

dðf; gÞ ¼
X

R

r¼1

W2
2ðfðxr; tÞ; gðxr; tÞÞ; (28)

where xr denotes the receiver location.

Computation of the objective function

In this setting, if the last time record for a receiver is at T0, we

can use the exact formula (equation 9) to express the 1D quadratic

Wasserstein metric as

W2
2ðf; gÞ ¼

Z

T0

0

jt − G−1ðFðtÞÞj2fðtÞdt; (29)

where F andG are the cumulative distribution functions for f and g,

respectively, FðtÞ ¼ ∫ t
0f;GðtÞ ¼ ∫ t

0g.

This will be approximated in a discrete setting, that is, assuming

that f and g are given at a discrete set of points t ¼ ðt0; t1; : : : ; tnÞT
in the time domain. We compute F and G using numerical integra-

tion. For each value y, because G is monotone increasing, we can

find tn and tnþ1 such that GðtnÞ < y ≤ Gðtnþ1Þ in OðlogðNÞÞ com-

plexity by binary search and N is the number of data samples in

each trace. For y in this range we can estimateG−1ðyÞ ¼ tnþ1. Here,

we will also do numerical interpolation between tn and tnþ1 for

better accuracy.

Using FD matrices, we can express the discrete 1D quadratic

Wasserstein metric as

d1ðf; gÞ ¼ ðt − G−1 ∘ FðtÞÞTdiagðfÞðt − G−1 ∘ FðtÞÞdt;
(30)

where G−1 ∘ F is the optimal map that transports f onto g.

After summing over all the traces, we obtain the final misfit

between the synthetic data and observed data: dðf; gÞ ¼ P

R
r¼1

d1ðfr; grÞ. By exploiting the explicit solution for optimal transport

on the real line, we can compute the misfit in OðNÞ complexity.
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Figure 5. (a) Original synthetic signal f and observed signal g and
(b) normalized synthetic signal f and observed signal g that satisfy
the requirements of optimal transport.
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Computation of adjoint source

We also derive the Fréchet derivative of the misfit, which acts as

the adjoint source in the adjoint-state method.

The first variation of the squared Wasserstein metric for the 1D

case is

δd1 ¼
�

Udiag

�

−2fðtÞ dG
−1ðyÞ
dy

�

�

�

�

FðtÞ
dt

�

ðt − G−1 ∘ FðtÞÞ

þ diagðt − G−1 ∘ FðtÞÞðt − G−1 ∘ FðtÞÞ
�

T

δfdt; (31)

where U is the upper triangular matrix whose nonzero components

are 1.

By the inverse function theorem, we have

dG−1ðyÞ
dy

�

�

�

�

y¼FðtÞ
¼ 1

dGðsÞ
ds

�

�

�

�

s¼G−1∘FðtÞ

¼ 1

gðG−1 ∘ FðtÞÞ : (32)

The adjoint source term for the discrete 1D quadratic Wasserstein

metric can be computed as

∇d1ðtÞ ¼
�

Udiag

�

−2fðtÞdt
gðG−1 ∘FðtÞÞ

�

þ diagðt−G−1 ∘ FðtÞÞ
�

ðt−G−1 ∘ FðtÞÞdt: (33)

One can refer to the Appendix for a step-by-step derivation of the

continuous Frechet derivative (A-7).

Compare globally: W2

2
�f ; g� in higher dimensions

Second, we wish to examine the effects of comparing the data f

and g globally via a single, higher dimensional optimal transporta-

tion computation.

Computation of the objective function

In this case, there is no simple exact formula for the Wasserstein

metric. Instead, we will compute it via the solution of the Monge-

Ampère equation:

8

<

:

detðD2uðxÞÞ ¼ fðxÞ∕gð∇uðxÞÞ þ hui; x ∈ X

∇uðxÞ · n ¼ x · n; x ∈ ∂X
u is convex:

(34)
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Figure 7. (a) True velocity and (b) initial velocity for the Camem-
bert model.
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The squared quadratic Wasserstein metric is then given by

W2
2ðf; gÞ ¼

Z

X

fðxÞjx − ∇uðxÞj2dx: (35)

We solve the Monge-Ampère equation numerically using an al-

most-monotone FDM relying on the following reformulation of the

Monge-Ampère operator, which automatically enforces the convex-

ity constraint (Froese, 2012).

detþðD2uÞ ¼ min
fv1;v2g∈V

fmaxfuv1;v1 ; 0gmaxfuv2;v2 ; 0g

þminfuv1;v1 ; 0g þminfuv2;v2 ; 0gg; (36)

where V is the set of all orthonormal bases for R2.

Equation 36 can be discretized by computing the minimum over

finitely many directions fν1; ν2g, which may require the use of a

wide stencil. For simplicity and brevity, we describe a low-order

version of the scheme and refer to Froese (2012) and Froese and

Oberman (2013) for complete details. In practice, this simplified

scheme is sufficient for obtaining accurate inversion results.

The scheme relies on the finite-difference operators

½Dx1x1
u�ij ¼

1

dx2
ðuiþ1;j þ ui−1;j − 2ui;jÞ;

½Dx2x2
u�ij ¼

1

dx2
ðui;jþ1 þ ui;j−1 − 2ui;jÞ;

½Dx1x2
u�ij ¼

1

4dx2
ðuiþ1;jþ1 þ ui−1;j−1 − uiþ1;j−1 − ui−1;jþ1Þ;

½Dx1
u�ij ¼

1

2dx
ðuiþ1;j − ui−1;jÞ;

½Dx2
u�ij ¼

1

2dx
ðui;jþ1 − ui;j−1Þ;

½Dvvu�ij ¼
1

2dx2
ðuiþ1;jþ1 þ ui−1;j−1 − 2ui;jÞ;

½Dv⊥v⊥u�ij ¼
1

2dx2
ðuiþ1;j−1 þ uiþ1;j−1 − 2ui;jÞ;

½Dvu�ij ¼
1

2
ffiffiffi

2
p

dx
ðuiþ1;jþ1 − ui−1;j−1Þ; (37)

In the low-order version of the scheme, the minimum in equa-

tion 36 is approximated using only two possible values. The first

uses directions aligning with the grid axes:
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Figure 9. (a) Adjoint source for L2 for the Camembert model and
(b) inversion result using L2 as misfit function

0

a)

b)

0.5 1 1.5 2

x (km)

0

0.5

1

1.5

z
 (

k
m

)

3

3.1

3.2

3.3

3.4

3.5

3.6

V
e
lo

c
it
y
 (

k
m

/s
)

W2 inversion (trace by trace)

W2 inversion (globally)

0 0.5 1 1.5 2

x (km)

0

0.5

1

1.5

z
 (

k
m

)

3

3.1

3.2

3.3

3.4

3.5

3.6

V
e
lo

c
it
y
 (

k
m

/s
)

Figure 10. (a) Inversion result for W2 processed trace by trace and
(b) inversion result for global W2 for the Camembert model.
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MA1½u� ¼ maxfDx1x1
u; δgmaxfDx2x2

u; δg
þminfDx1x1

u; δg þminfDx2x2
u; δg

− f∕gðDx1
u;Dx2

uÞ − u0: (38)

Here, dx is the resolution of the grid, δ (bounded below by KΔx∕2)
is a small parameter that bounds the second derivatives away from

zero, u0 is the solution value at a fixed point in the domain, and K is

the Lipschitz constant in the y-variable of fðxÞ∕gðyÞ.
For the second value, we rotate the axes to align with the corner

points in the stencil, which leads to

MA2½u� ¼maxfDvvu;δgmaxfDv⊥v⊥u;δg
þminfDvvu;δgþminfDv⊥v⊥u;δg

− f∕g
�

1
ffiffiffi

2
p ðDvuþDv⊥uÞ;

1
ffiffiffi

2
p ðDvu−Dv⊥uÞ

�

−u0: (39)

Then, the monotone approximation of the Monge-Ampère

equation is

MM½u� ≡ −minfMA1½u�;MA2½u�g ¼ 0: (40)

We also define a second-order approximation, obtained from a

standard centered difference discretization,

MN ½u� ≡ −ððDx1x1
uÞðDx2x2

uÞ − ðDx1x2
u2ÞÞ

þ f∕gðDx1
u;Dx2

uÞ þ u0 ¼ 0: (41)

These are combined into an almost-monotone approximation of the

form

MF½u� ≡MM½u� þ εS

�

MN ½u� −MM½u�
ε

�

; (42)

where ε is a small parameter and the filter S is given by

SðxÞ ¼

8

>

>

<

>

>

:

x jxj ≤ 1

0 jxj ≥ 2

−xþ 2 1 ≤ x ≤ 2

−x − 2 −2 ≤ x ≤ −1:

(43)

The Neumann boundary condition is implemented using standard

one-sided differences. As described by Froese (2012) and Engquist

et al. (2016), the (formal) Jacobian ∇MF½u� of the scheme can be

obtained exactly. In particular, it is known to be sparse and diago-

nally dominant.

This FD approximation effectively replaces the Monge-Ampère

equation with a large system of nonlinear algebraic equations,
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Figure 11. (a) True velocity and (b) inital velocity for the true
Marmousi model.
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Figure 12. Adjoint source of (a) L2 and (b) globalW2 for the scaled
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which can be solved using Newton’s method. Computing the New-

ton updates requires inverting sparseM matrices, which can be done

efficiently. The number of Newton iterations required depends

weakly on the smoothness of the data and the resulting solution u.

In numerical experiments carried out by Froese (2012), the total

computational complexity required to solve the Monge-Ampère

equation varied from OðNÞ to OðN1.3Þ where N was the total

number of grid points.

Once the discrete solution uh is computed, the squared Wasser-

stein metric is approximated via

W2
2ðf; gÞ ≈

X

n

j¼1

ðxj −Dxj
uhÞTdiagðfÞðxj −Dxj

uhÞ: (44)

Computation of adjoint source

In Engquist et al. (2016), we consider the linearization of the dis-

cretized version of the Wasserstein metric. Using the FD matrices

introduced, we can express the discrete Wasserstein metric as

dðfÞ ¼
X

n

j¼1

ðxj −Dxj
ufÞTdiagðfÞðxj −Dxj

ufÞ; (45)

where n is the data dimension; the potential uf satisfies the discrete

Monge-Ampère equation

M½uf� ¼ 0: (46)

The first variation of the squared Wasserstein metric is

δd ¼ −2
X

n

j¼1

ðDxj
δuÞTdiagðfÞðxj −Dxj

ufÞ

þ
X

n

j¼1

ðxj −Dxj
ufÞTdiagðδfÞðxj −Dxj

ufÞ: (47)

Linearizing the Monge-Ampère equation, we have to the first

order

∇MF½uf�δu ¼ δf: (48)

Here, ∇MF is the (formal) Jacobian of the discrete Monge-Ampère

equation, which is already being inverted in the process of solving

the Monge-Ampère equation via Newton’s method. Then, the gra-

dient of the discrete squared Wasserstein metric can be expressed as
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Figure 13. Inversion results of (a) L2 and (b) global W2 for the
scaled Marmousi model.
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Figure 14. (a) Adjoint source of trace-by-trace W2 and (b) the in-
version result for the scaled Marmousi model.
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∇d ¼
X

n

j¼1

½−2∇M−1
F ½uf�TDT

xj
diagðfÞ

þ diagðxj −Dxj
ufÞ�ðxj −Dxj

ufÞ: (49)

Notice that once the Monge-Ampère equation itself has been

solved, this gradient is easy to compute because it only requires

the inversion of a single matrix that is already being inverted as

a part of the solution of the Monge-Ampère equation.

Theorem 3. (Convergence to viscosity solution [Froese,

2012, theorem 4.4]). Let the Monge-Ampère equation (34) have

a unique viscosity solution, and let g > 0 be Lipschitz continuous

on Rd. Then the solutions of the scheme (42) converge to the vis-

cosity solution of (34) with a formal discretization error ofOðLh2Þ
where L is the Lipschitz constant of g and h is the resolution of

the grid.

We remark that the numerical error of the solver is affected by the

Lipschitz constant of function g as well as the grid spacing. In the

discrete setting, we achieve good accuracy if g is highly resolved

data input such that h is small.

COMPUTATIONAL RESULTS

In this section, we apply the quadratic Wasserstein metric W2

to several synthetic data models. We provide results for two

approaches to using W2: trace-by-trace comparison and using the

entire data sets as objects. These are compared with results pro-

duced by using the least-squares norm L2 to measure the misfit.

Due to limitations of current Monge-Ampère solvers, we will

present global W2-based FWI on smaller scale models with L2

and trace-by-trace W2 results for comparison (the third and fifth

test). We also show experiments of the trace-by-trace approach

on the true or larger scale benchmark to demonstrate its robustness.

In the inversion process, we avoid the use of techniques such as

adding regularization and smoothing the gradient to see the effec-

tiveness of this new misfit.

1D case study

We begin with a simple test case from Engquist and Froese

(2014) and focus on two Ricker wavelet signals, one a time shift

of the other. We regard these two signals as observed data gðtÞ
and synthetic data fðt; sÞ ¼ gðt − sÞ as shown in Figure 5. This

is a case in which the quadratic Wasserstein metric W2 is applied

to 1D signals.

The adjoint source for L2 and W2 misfits between these two

signals is very different as shown in Figure 6. The adjoint source

for W2 is very similar to the adjoint source of the KR norm applied

on this 1D case; see Figure 4 of Métivier et al. (2016c) for more

details. This illustrates the character of optimal transport-based
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Figure 15. The gradient in the first iteration of (a) L2 and (b) trace-
by-trace W2 inversion for the true Marmousi model.
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Figure 16. Inversion results of (a) L2 and (b) trace-by-trace W2 for
the true Marmousi model.
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misfit functions, which shift mass from the synthetic data to

observed data in a way that corrects the phase difference between

f and g. The L2 norm, on the other hand, only seeks to correct the

amplitude difference, which is the origin of the cycle skipping.

We observe that the adjoint source of W2 is smoother than the

adjoint source of the KR norm (Figure 4 in Métivier et al.,

2016c) and it has no discontinuous component. The smoothness

of the adjoint source is ideal for quasi-Newton methods, e.g., the

L-BFGS algorithm, which is designed to minimize smooth func-

tions. It is also numerically more stable to back propagate in time

to compute the gradient updates.

Camembert model

FWI with least-squares norm L2 minimization (Tarantola and Val-

ette, 1982) is effective when the initial model is close to the true model.

However, if the initial model is far from the true model, the L2 misfit

may suffer from local minima because it uses a point-by-point com-

parison that records the oscillatory and nonlinear features of the data.

The difficulty of local minima in seismic inversion was demonstrated

with the so-called Camembert example (Gauthier et al., 1986).

We repeat the experiments with three different misfit functions

for FWI: W2 applied trace by trace, W2 applied globally, and the

traditional L2 least-squares norm. The comparison among these

three different misfit functions illustrate the advantages of the quad-

ratic Wasserstein metric W2.

We set the Camembert-shaped inclusion as a circle with radius

0.6 km located in the center of the rectangular velocity model. The

velocity is 3.6 km∕s inside and 3 km∕s outside the circle as shown
in Figure 7a. The inversion starts from an initial model with homo-

geneous velocity 3 km∕s everywhere as shown in Figure 7b. We

place 11 equally spaced sources on the top at 50 m depth and 201

receivers on the bottom with 10 m fixed acquisition. The discreti-

zation of the forward wave equation is 10 m in the x- and z-direc-

tions and 10 ms in time. The source is a Ricker wavelet with a peak

frequency of 10 Hz, and a high-pass filter is applied to remove the

frequency components from 0 to 2 Hz.

Figures 8a, 8b, and 9a show the adjoint sources of trace-by-trace

W2, global W2, and the L2 misfit functions, respectively. Figure 9b

shows the inversion result obtained with the traditionalL2 least-squares

norm. It converges to a local minimum after 100 iterations using the

L-BFGS optimization method. The inversion using the 1D optimal

transport to calculate the misfit trace by trace successfully recovers

the shape of the inclusion (Figure 10a). Because the data are two

dimension (in the time and spatial domains), an alternative approach

is to find the optimal transport map between these

two data sets instead of slicing them into traces.

Figure 10b shows the final inversion result respec-

tively of comparing the two data sets via a global

optimal map. Both approaches converge to reason-

ably good results in 10 iterations using the L-BFGS

optimization method.

Although Figure 9a looks similar in shape to

Figure 8 at first glance, the adjoint source of

W2-based misfit functions only have negative-

positive components (the “black-white” curves in

Figure 8) whereas the adjoint source for L2 has

positive-negative-positive components (“white-

black-white” curves in Figure 9a). Thus, it

provides L2-based inversion with an incorrect

direction updating the velocity model, which leads to local minima

and cycle skipping. This is an example of the global W2 inversion

result (Figure 10b) being more accurate than the trace-by-trace re-

sults (Figure 10a) regarding the L2 error in the computed velocity

profile.
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Figure 17. (a) The difference of data to be fit and the prediction
with the initial model and (b) the final data residual of trace-by-trace
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Scaled Marmousi model with global W2 misfit
computation

Our second 2D synthetic experiment is the Marmousi model.

First, we use a scaled Marmousi model to compare the inversion

between global W2 and the conventional L2 misfit function.

Figure 11a shows the P-wave velocity of the true Marmousi model,

but in this experiment, we use a scaled model that is 1 km deep and

3 km wide. The inversion starts from an initial model that is the true

velocity smoothed by a Gaussian filter with a deviation of 40, which

is highly smoothed and far from the true model (a scaled version of

Figure 11b). We place 11 evenly spaced sources on top at the 50 m

depth and 307 receivers on top at the same depth with a 10 m fixed

acquisition. The discretization of the forward wave equation is 10 m

in the x- and z-directions and 10 ms in time. The source is a Ricker

wavelet with a peak frequency of 15 Hz, and a band-pass filter is

applied to remove the frequency components from 0 to 2 Hz.

We compute the W2 misfit via a global optimal map between the

entire 2D data sets by solving the Monge-Ampère equation.

Figures 12b and 13b show the adjoint source and final inversion

results, respectively. Inversions are terminated after 200 L-BFGS

iterations. Figure 13a shows the inversion result using the traditional

L2 least-squares method after 200 L-BFGS iterations. The inversion

result of global W2 avoids the problem of local minima suffered by

the conventional L2 metric, whose result demonstrates spurious

high-frequency artifacts due to a point-by-point comparison of

amplitude. Figure 14a and 14b shows the adjoint source and final

inversion results, respectively, for the trace-by-trace W2 metric of

the scaled Marmousi model. Trace-by-trace result has better

resolution and less noise than the global approach. We will further

compare these two in the next section.

True Marmousi model with trace-by-trace W2 misfit
computation

The next experiment is to invert true Marmousi model by the

conventional L2 and the trace-by-traceW2 misfit. Figure 11a shows

the P-wave velocity of the true Marmousi model, which is 3 km in

depth and 9 km in width. The inversion starts from an initial model

that is the true velocity smoothed by a Gaussian filter with a

deviation of 40 (Figure 11b). We place 11 evenly spaced sources

on top at 150 m depth in the water layer and 307 receivers on

top at the same depth with a 30 m fixed acquisition. The discreti-

zation of the forward wave equation is 30 m in the x- and

z-directions and 30 ms in time. The source is a Ricker wavelet with

a peak frequency of 5 Hz, and a high-pass filter is applied to remove

the frequency components from 0 to 2 Hz.
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Figure 19. (a) Noisy and clean data and (b) inversion result with
noisy data.
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We compute the W2 misfit trace by trace. For each receiver, we

first normalize the data sets and then solve the optimal transport

problem in 1D. With the explicit formula, the computation time

is close to L2. The final adjoint source ðdW2
2ðf; gÞÞ∕df is a combi-

nation of the Fréchet derivative ðdW2
2ðfðxrÞ; gðxrÞÞÞ∕ðdfðxrÞÞ of all

the receivers. Figure 15a and 15b shows the gradients in the first

iteration of two misfits, respectively.

Starting from a highly smoothed initial model, in the first itera-

tion W2 already focuses on the “peak” of the Marmousi model as

seen from Figure 15b. The darker area in the gradient matches many

features in the velocity model (Figure 11a). However, the gradient

of L2 is quite uniform contrary to the model features. Inversions are

terminated after 300 L-BFGS iterations. Figure 16a shows the in-

version result using the traditional L2 least-squares method, and

Figure 16b shows the final result using the trace-by-trace W2 misfit

function. Again, the result of the L2 metric has spurious high-fre-

quency artifacts, whereas W2 correctly inverts most details in the

true model. The data residuals before and after trace-by-trace

W2-based FWI are presented in Figure 17. The convergence curves

in Figure 18 show that W2 reduces the relative misfit to 0.1 in 20

iterations, whereas L2 converges slowly to a local minimum.

Inversion with the noisy data

One of the ideal properties of the quadratic Wasserstein metric is

the insensitivity to noise (Engquist et al., 2016). We repeat the

previous experiment with a noisy reference by adding a uniform

random iid noise to the data from the true velocity (Figure 19a).

The signal-to-noise ratio (S/N) is −3.47dB. In optimal transport,

the effect of noise is, in theory, negligible due to the strong cancel-

lation between the nearby positive and negative noise.

All the settings remain the same as the previous experiment

except the observed data. After 96 iterations, the optimization con-

verges to a velocity presented in Figure 19b. Although the result has

lower resolution than Figure 16b, it still recovers most features of

the Marmousi model correctly. When the noise power is much

larger than the signal power, the quadratic Wasserstein metric still

converges reasonably well, which again demonstrates its insensitiv-

ity to noise.

L2-based FWI starting from W2 enhanced initial
model

Next, we perform FWI by first using the W2 norm to overcome

cycle skipping, then using the L2-norm to increase the resolution.

Starting from the initial model (Figure 11b)W2-based FWI recovers

most features greater than 2 km correctly after 100 iterations (see

Figure 20a). We then start from this model and run another 200

iterations of L2- andW2-based inversion to check their performance

True velocity

x (km)

0

0.2

0.4

0.6

0.8

1

1.2

z
 (

k
m

)

1.5

2

2.5

3

3.5

4

4.5

V
e
lo

c
it
y
 (

k
m

/s
)

Initial velocity

0

a)

b)

2 4 6

0 2 4 6
x (km)

0

0.2

0.4

0.6

0.8

1

1.2

z
 (

k
m

)

1.5

2

2.5

3

3.5

4

4.5

V
e
lo

c
it
y
 (

k
m

/s
)

Figure 21. (a) True velocity and (b) inital velocity for the BP
model.
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on increasing resolution (Figure 20b). The L2 and W2 iterations re-

cover most features of the Marmousi model (Figure 11a) correctly.

The L2-norm is slightly better than W2 in accuracy for the deeper

part, but its L2 relative error of the velocity (0.0057) is larger than

the error from the W2 misfit (0.0027). One can use the trace-by-

trace W2-norm to build a good starting model and later switch

to L2 norm to recover the high-wavenumber components.

2004 BP model with global W2 misfit computation

For this experiment, we compare global W2 and conventional L2

as misfit functions for a modified BP 2004 model (Figure 21a). Part

of the model is representative of the complex geology in the deep-

water Gulf of Mexico. The main challenges in this area are related

to obtaining a precise delineation of the salt and recover information

on the subsalt velocity variations (Billette and Brandsberg-Dahl,

2005). The inversion starts from an initial model with a smoothed

background without the salt (Figure 21b). We put 11 equally spaced

sources on top at a 50 m depth and 641 receivers on top at a 50 m

depth with a 10 m fixed acquisition. The discretization of the for-

ward wave equation is 10 m in the x- and z-directions and 10 ms in

time. The source is a Ricker wavelet with a peak frequency of 5 Hz,

and a band-pass filter is applied to keep the frequency components

from 3 to 9 Hz. The total acquisition time is restricted to 2 s to focus

on recovering the upper portion of the salt structure.

As before, we solve the Monge-Ampère equation numerically to

compute the globalW2 misfit. Figure 22a and 22b shows the adjoint

source for two misfit functions. Inversions are stopped after

100 L-BFGS iterations. Figure 23b shows the inversion result

forW2, which recovered the top salt reasonably well. The L
2 metric

(Figure 23a), on the other hand, converged to a model that has a

low-velocity anomaly immediately beneath the top salt, which is

typical of the cycle skipping commonly encountered in FWI.

Figure 24a and 24b shows the adjoint source and final inversion

results, respectively, for the trace-by-trace W2 metric applied to

the scaled BP model. Trace-by-trace result has less noise and more

accuracy on the salt body than the global approach in Figure 23b.

We will discuss this issue in detail in the next section.

2004 BP model with trace-by-trace W2 misfit
computation

In our last experiment, we compare trace-by-trace W2 and

conventional L2 as misfit functions for another modified BP

2004 model. Different from the previous experiment, the model

is much larger as 6 km deep and 16 km wide (Figure 25a), similar

to BP example in Métivier et al. (2016b). The inversion starts from

an initial model with smoothed background without the salt (Fig-

ure 25b). We put 11 equally spaced sources on top at 250 m depth in

the water layer and 321 receivers on top at the same depth with a
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Figure 23. Inversion results (a) for L2 and (b) for globalW2 for the
BP model.
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Figure 24. (a) Adjoint source of trace-by-trace W2 and (b) the in-
version result for the scaled BP model.
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50 m fixed acquisition. The discretization of the forward wave equa-

tion is 50 m in the x- and z-directions and 50 ms in time. The source

is a Ricker wavelet with a peak frequency of 5 Hz, and a band-pass

filter is applied to keep a 3–9 Hz frequency. The total acquisition

time is 10 s.

Again we compute the W2 misfit trace by trace by solving the

optimal transport problem in 1D as the Marmousi model and the

Camembert model. Figure 26a and 26b shows the gradient in the first

iteration of inversion using two misfit functions, respectively.

Starting from a smoothed initial model without the salt, in the

first iteration W2 inversion concentrates on the upper salt of the

BP model (Figure 26b). The darker area in the gradient matches

the salt part in the velocity model (Figure 25a). However, the gra-

dient of L2 is not very informative. Inversions are terminated after

300 L-BFGS iterations. Inversion with trace-by-traceW2 misfit suc-

cessfully constructed the shape of the salt bodies (Figure 27b),

whereas FWI with the conventional L2 failed to recover boundaries

of the salt bodies as shown in Figure 27a. The data residuals before

and after trace-by-trace W2-based FWI are presented in Figure 28.

Trace-by-trace W2 reduces the relative misfit to 0.1 in 20 iterations,

whereas L2 converges slowly to a local minimum (Figure 29).

DISCUSSION ON TWO WAYS OF USING W2

The computational complexity of performing 1D optimal trans-

port is extremely low compared with the cost of solving the Monge-

Ampère equation, which treats the synthetic and observed data as

two objects and solves a 2D optimal transport problem. From ob-

servation of the running time in our experiments, inversion with the

trace-by-trace W2 misfit requires less than 1.1 times the run time

required by inversion with the simple (and ineffective) L2 misfit.

Inversion using globalW2 comparison works for smaller scale mod-

els. It is more expensive because in each iteration we solve the

Monge-Ampère equation numerically to compute the misfit. The

total inversion takes 3–4 times the run time of the FWI with L2

misfit in the experiments.

Figures 14a and 24a indicate one disadvantage of usingW2 trace

by trace. The nonphysical variations in amplitude and nonuniform

background of the adjoint source are caused by the fact that we re-

scale the data trace by trace to satisfy positivity and conservation of

mass. On the one hand, this may lead to nonuniform contributions

of data misfits to the velocity update during the inversion process.

Therefore, more careful treatment of the scaling in the trace-by-

trace scheme may improve the convergence result being demon-

strated in this study. On the other hand, in the experiments of

the true Marmousi model and the second 2004 BP model, the gra-

dients (Figures 15b and 26b) do not have strong artifacts or non-

physical variation in the first iteration even if the corresponding

adjoint sources are irregular with strong horizontal variations. It will
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Figure 25. (a) True velocity and (b) initial velocity for the second
BP model.
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be interesting to study about the structure of the adjoint source in the

success of FWI.

To compute the W2 misfit globally, we solve a 2D optimal trans-

port problem based on the Monge-Ampère equation formulation.

The numerical method for the Monge-Ampère equation (Froese

and Oberman, 2013) is proved to be convergent but requires the

target profile g to be Lipschitz continuous, and the discretization

error is proportional to the Lipschitz constant of g as theorem

3 states. A coarse discretization of the wavefield g will have a large

value of Lh2, if the Lipschitz constant is large. Because the error

estimate is of the order OðLh2Þ, this indicates a low accuracy in the

numerical solution. In practice, the grid will have to be very well-

refined, which means small h before we are able to achieve mean-

ingful results. This means that for accurate results, enough data

points are needed to effectively resolve steep gradients in the data;

otherwise, the solver effectively regularizes the data before solving

the Monge-Ampère equation. This was evident in the example of

the Marmousi model: The solver was much more robust to the

scaled velocity benchmarks that provided better resolution of the

fronts in the data. The trace-by-trace approach, on the other hand,

can make use of exact formulas for 1D optimal transportation,

which allows for accurate computations even when the data are

highly nonsmooth.

The oscillatory artifacts in Figures 10b, 13b, and 23b likely origi-

nate from a combination of the numerical PDE solution discussed

above and the insensitivity to noise of theW2 measure. The fact that

W2 is insensitive to noise is good for noisy measurements, but not

for artifacts in the velocity model. This could, for example, be

handled by total variation regularization (Rudin et al., 1992). We

have chosen to present the raw results without pre or postprocess-

ing. The trace-by-trace technique is also insensitive to noise, though

to a lesser extent because there is cancellation only along one

dimension. The 2D approach seems to have a slight edge for the

Camembert model. The L2 error between the converged velocity

and the true model velocity with global W2 is 25% smaller than

in the trace-by-trace case.

In the sixth experiment of the computation result, we start with a

rough model built by 100 iterations of trace-by-trace W2. After the

same number of iterations, the W2 inversion result attained a lower

model error than L2 inversion, but in the vertical velocity profile L2

has better accuracy than the trace-by-trace W2. The W2 norm can

build a good initial model to help overcome the cycle-skipping

problem. One can start with the trace-by-trace W2 results in

L2-based FWI with higher frequency sources for better resolution

and inversion of the high-wavenumber component.
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Figure 27. Inversion results of (a) L2 and (b) trace-by-trace W2 for
the second BP model.
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with initial model and (b) the final data residual of trace-by-trace
W2 for the second BP model.
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CONCLUSION

We have developed a high-resolution FWI technique based on

optimal transport and the quadratic Wasserstein metric W2. Here,

the W2 misfit is coupled to efficient adjoint source computation

for the optimization. Our earlier work with W2 was limited to a

few degrees of freedom, but here we have presented successful in-

version of the Marmousi, the 2004 BP, and the so-called Camembert

models. This novel technique avoids cycle skipping as is demon-

strated by numerical examples. The 2D W2 misfit is calculated

by solving a relevant Monge-Ampère equation and the latest

version of the solver is outlined. We also show comparable results

from a trace-by-trace comparison with aW2 misfit. This is as fast as

the standard L2-based FWI in terms of computation time, but it is

more accurate and converges faster for cycle-skipping cases.

Our results clearly point to the quadratic Wasserstein metric as a

potentially excellent choice for a misfit function in FWI. There are

many possible directions for future improvements. In the 1D and 2D

studies, the scaling or normalization of the signals play an important

role. The linear normalization was by far the best for the large-scale

inversion but does not satisfy the requirements of the theoretical

result of convexity from shifts. This should be further investigated,

and even better normalizations would be ideal. Extending the 1D

trace-by-trace misfit to 1D comparisons along additional directions

is also possible. This has been successfully tried in other applica-

tions under the name of the sliced Wasserstein distance.
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APPENDIX A

DERIVATION OF EQUATION 33

We assume that fðtÞ and gðtÞ are continuous density functions in
½0; T0�, and FðtÞ ¼ ∫ t

0fðτÞdτ and GðtÞ ¼ ∫ t
0gðτÞdτ. Now, we per-

turb f by an amount δf and investigate the resulting change in equa-

tion 29 as a functional of f:

W2
2ðf; gÞ þ δW ¼

Z

T0

0

jt − G−1ðFðtÞ

þ δFðtÞÞj2ðfðtÞ þ δfðtÞÞdt; (A-1)

¼
Z

T0

0

jt − G−1ðFðtÞ þ δFðtÞÞj2fðtÞdt;

(A-2)

þ
Z

T0

0

jt − G−1ðFðtÞÞj2δfðtÞdtþOððδfÞ2Þ: (A-3)

Because G is monotone increasing, so is G−1. We have the follow-

ing Taylor expansion of G−1:

G−1ðFðtÞ þ δFðtÞÞ

¼ G−1ðFðtÞÞ þ dG−1ðyÞ
dy

�

�

�

�

y¼FðtÞ
δFðtÞ þOððδfÞ2Þ: (A-4)

Substituting equation A-4 back into equation A-3, we obtain the

first variation:

δW¼
Z

T0

0

�
Z

T0

t

−2ðs−G−1ðFðsÞÞdG
−1ðyÞ
dy

�

�

�

�

y¼FðsÞ
fðsÞds

�

δfðtÞdt; (A-5)

þ
Z

T0

0

jt − G−1ðFðtÞÞj2δfðtÞdt: (A-6)

Thus, the Fréchet derivative of equation 29 with respect to f is

dW2
2ðf; gÞ
df

¼
�
Z

T0

t

−2ðs − G−1ðFðsÞÞ dG
−1ðyÞ
dy

�

�

�

�

y¼FðsÞ
fðsÞds

þ jt − G−1ðFðtÞÞj2
�

dt: (A-7)

In our numerical scheme, we discretize equation A-7 and derive

equations 31 and 33.
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