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ABSTRACT

Conventional full-waveform inversion (FWI) using the
least-squares norm as a misfit function is known to suffer from
cycle-skipping issues that increase the risk of computing a lo-
cal rather than the global minimum of the misfit. The quadratic
Wasserstein metric has proven to have many ideal properties
with regard to convexity and insensitivity to noise. When
the observed and predicted seismic data are considered to
be two density functions, the quadratic Wasserstein metric cor-
responds to the optimal cost of rearranging one density into the
other, in which the transportation cost is quadratic in distance.
Unlike the least-squares norm, the quadratic Wasserstein met-
ric measures not only amplitude differences but also global

phase shifts, which helps to avoid cycle-skipping issues. We
have developed a new way of using the quadratic Wasserstein
metric trace by trace in FWI and compare it with the global
quadratic Wasserstein metric via the solution of the Monge-
Ampere equation. We incorporate the quadratic Wasserstein
metric technique into the framework of the adjoint-state method
and apply it to several 2D examples. With the corresponding ad-
joint source, the velocity model can be updated using a quasi-
Newton method. Numerical results indicate the effectiveness
of the quadratic Wasserstein metric in alleviating cycle-skipping
issues and sensitivity to noise. The mathematical theory and
numerical examples demonstrate that the quadratic Wasserstein
metric is a good candidate for a misfit function in seismic
inversion.

INTRODUCTION

Full-waveform inversion (FWI) was originally proposed three
decades ago in an attempt to obtain high-resolution subsurface
properties based on seismic waveforms (Lailly, 1983; Tarantola,
1984). Over the past few decades, there have been many encourag-
ing results using FWI in the seismic processing of marine and land
data (Virieux and Operto, 2009; Sirgue et al., 2010). FWI iteratively
updates a subsurface model and computes the corresponding
synthetic data to reduce the data misfit between the synthetic and
recorded seismic data.

The objective of FWI is to match the synthetic and recorded data
in a comprehensive way such that all information in the waveforms
is accounted for in the data misfit. If we denote the predicted data by
f and the observed data by g, then the unknown velocities are
determined by minimizing the mismatch d(f, g).

FWI has the potential to generate high-resolution subsurface
models but suffers from the ill posedness of the inverse problem.
This issue can be handled by considering multiple data components
ranging from low to high frequency (Bunks et al., 1995) or by
adding regularization terms (Gholami and Siahkoohi, 2010; Esser
et al., 2015; Qiu et al., 2016).

The least-squares norm L? is the most widely used misfit func-
tion in FWI but suffers from cycle skipping and sensitivity to noise.
Other norms have been proposed in the literature including the L'
norm, the Huber norm (Ha et al., 2009), and hybrid L'/L? norms
(Brossier et al., 2010). These misfit functions follow the same path
of dealing with the predicted and observed data independently.

Differences between the predicted velocity model and true model
produce a misfit in the data, which is the information FWI uses to
update the velocity model. This motivates us to take a different view
of the predicted and observed data by considering a “map” connect-

Manuscript received by the Editor 8 December 2016; revised manuscript received 18 August 2017; published ahead of production 10 October 2017; published

online 05 January 2018.

The University of Texas at Austin, Department of Mathematics, Austin, Texas, USA. E-mail: yunanyang @math.utexas.edu; engquist@ices.utexas.edu.
’The University of Texas at Austin, Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, Austin, Texas, USA. E-mail:

junzhesun@utexas.edu.

3New Jersey Institute of Technology, Department of Mathematical Sciences, University Heights, Newark, New Jersey, USA. E-mail: bdfroese @njit.edu.

© 2018 Society of Exploration Geophysicists. All rights reserved.

R43



Downloaded 01/19/18 to 209.166.122.63. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

R44 Yang et al.

ing them (Ma and Hale, 2013). The idea of mapping synthetic data
to observed data with stationary and nonstationary filters in the time
domain has been promoted recently (Warner and Guasch, 2014;
Zhu and Fomel, 2016). Although the misfits in these two
approaches are not critical metrics between two objects in math-
ematics, they demonstrate the advantages and feasibility of map-
based ideas.

Optimal transport has become a well-developed topic in math-
ematics since it was first proposed by Monge (1781). Due to their
ability to incorporate differences in intensity and spatial informa-
tion, optimal transport-based metrics for modeling and signal
processing have recently been adopted in a variety of applications
including image retrieval, cancer detection, and machine learning
(Kolouri et al., 2016).

The idea of using optimal transport for seismic inversion was first
proposed by Engquist and Froese (2014). The Wasserstein metric is
a concept based on optimal transportation (Villani, 2003). Here, we
treat our data sets of seismic signals as density functions of two
probability distributions, which can be imagined as the distributions
of two piles of sand with equal mass. Given a particular cost func-
tion, different plans of transporting one pile into the other lead to
different costs. The plan with the lowest cost is the optimal map, and
this lowest cost is the Wasserstein metric. In computer science, the
metric is often called the “earth mover’s distance.” Here, we will
focus on the quadratic cost functions. The corresponding misfit
is the quadratic Wasserstein metric W,.

Following the idea that changes in velocity cause a shift or “trans-
port” in the arrival time, Engquist et al. (2016) demonstrate the ad-
vantageous mathematical properties of the quadratic Wasserstein
metric W, and provide rigorous proofs that lay a solid theoretical
foundation for this new misfit function. In this paper, we continue
the study of the quadratic Wasserstein metric with more focus on its
applications to FWI. We also develop a fast and robust trace-by-
trace technique.

After the paper of Engquist and Froese (2014), researchers in
geophysics started to work on other optimal transport-related misfit
functions (Métivier et al., 2016a, 2016b, 2016¢). The Kantorovich-
Rubinstein (KR) norm in their papers is a relaxation of the
1-Wasserstein distance, which is another optimal transport metric
with the absolute value cost function. The advantage of the KR
norm is that it does not require data to satisfy nonnegativity or mass
balance conditions.

The Wasserstein distance measures the difference between
nonnegative measures or functions with equal mass. These are
not natural constraints for seismic signals, and thus they first have
to be normalized. In our earlier work, we separated the positive and
negative part of the signals to achieve nonnegativity. The resulting
signal was then divided by its integral. This worked well in our ear-
lier test cases, but it is less effective for the larger scale problems
with the adjoint-state method studied here. In this paper, we apply a
linear transformation to the signals to satisfy the requirements of
optimal transport. This, on the other hand, is effective in spite of
the fact that it results in a measure that is not convex concerning
simple shifts.

In one dimension, the optimal transport problem can be solved
explicitly, which allows for accurate and efficient computations.
However, computation becomes much more challenging in higher
dimensions. Several numerical methods have been proposed, but
these still have limitations for extremely large scale realistic data

sets, e.g., those in seismic inversion. Numerical methods based
on the Benamou-Brenier fluid formulation introduce an extra time
dimension to the problem, which increases the computational cost
(Benamou and Brenier, 2000). Optimal transport via entropic regu-
larization is computationally efficient but with very low accuracy in
the computed map (Benamou et al., 2015). The numerical solution
may become unstable when the regularization term is small because
it is close to the original optimal transport problem. Methods based
on linear programming have the disadvantage of doubling the di-
mension of the underlying problem (Oberman and Ruan, 2015;
Schmitzer, 2016). For the quadratic Wasserstein distance, the opti-
mal map can be computed via the solution of a Monge-Ampere
partial differential equation (PDE) (Benamou et al., 2014). This ap-
proach has the advantage of drawing on the more well-developed
field of numerical PDEs. The drawback to the PDE approach is that
data must be sufficiently regular for solutions to be well defined. To
remain robust on realistic examples, these methods effectively
smooth the seismic data, which can lead to a loss of high-frequency
information. For illustration in this paper, we will perform compu-
tations using a Monge-Ampere solver for synthetic examples. Even
in 2D, some limitations are apparent. This is expected to become
even more of a problem in higher dimensions and motivates our
introduction of a trace-by-trace technique that relies on the exact
1D solution. The trace-by-trace technique is currently more prom-
ising for practical problems, as is evidenced in our computational
examples.

In this paper, we briefly review the theory of optimal transport
and revisit the mathematical properties of W, that were proved by
Engquist et al. (2016), including the convexity and insensitivity to
noise. Next, we apply the quadratic Wasserstein metric W, as misfit
function in two different ways: trace-by-trace comparison and entire
data set comparison. The trace-by-trace strategy and global strategy
lead to different formulations of the misfit computation and the
adjoint source (Plessix, 2006). The trace-by-trace technique is
new, and the results for inversion are very encouraging. The com-
putational cost is low and similar to that of the classic L?> method.
Finally, after introducing the adjoint source formulas, we show the
application of FWI using the W, metric on three synthetic models:
the Camembert, the Marmousi, and the 2004 BP models. Discus-
sions and comparisons between the FWI results using W, and L
metrics illustrate that the W, metric is very promising for overcom-
ing the cycle-skipping issue in FWIL

THEORY
Formulation

Conventional FWI defines a least-squares waveform misfit as
1
d(f.g) = Jo(m) =33 / £ (x,15m) = g(x,, 1) Pdr, (1)
r

where ¢ is the observed data, f is the simulated data, x, are the
receiver locations, and m is the model parameter. This formulation
can also be extended to the case with multiple shots. We get the
modeled data f(x, #; m) by solving a wave equation with a finite-
difference method (FDM) in the space and time domain.

In this paper, we propose using the quadratic Wasserstein metric
W, as an alternative misfit function to measure the difference
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between the synthetic data f and observed data g. There are two
ways to apply this idea: trace-by-trace W, and global W,.

We can compare the data trace by trace and use the quadratic
Wasserstein metric W, in 1D to measure the misfit. The overall
misfit is then

Ji(m) = W3(f(xp t5m), g(x,. 1)), 2

where R is the total number of traces.

In the global case, we compare the full data sets and consider the
whole synthetic data f and observed data g as objects with the
general quadratic Wasserstein metric W5:

Jo(m) = W3(f(x,. t:m). g(x,.1)). 3)

We treat the misfit J(m) as a function of the model parameter .
Our aim is to find the model parameter m* that minimizes the ob-
jective function, i.e., m* = argmin J(m). This is a PDE-constrained
optimization problem, and we use a gradient-based iterative scheme
to update the model m.

Background

Optimal transport originated in 1781 with the French mathema-
tician Monge. This problem seeks the minimum cost required to
transport the mass of one distribution into another given a cost func-
tion. More specifically, we consider two probability measures u and
v defined on spaces X and Y, respectively. For simplicity, we regard
X and Y as subsets of RY. Measures u and v have density functions f
and g: du = f(x)dx and dv = g(y)dy. In applications, f(x) can
represent the height of a pile of sand at location x, the gray scale
of one pixel x for an image, or as here the amplitude of a seismic
waveform at mesh grid point x.

Although they must share the same total mass, measures y and v
are not the same; i.e., f # g. We want to redistribute “sand” from u
into v, and it requires effort. The cost function c(x,y) maps pairs
(x,y) € XX Y to R U {400}, which denotes the cost of transport-
ing one unit mass from location x to y. The most common choices
of ¢(x,y) include |x —y| and |x — y|>. Once we find a transport
plan T:X — Y such that for any measurable set B CY,
v[B] = u[T~'(B)], the cost corresponding to this plan 7 is

I(T.f.g.c) = / ¢(x. T() f(x)dx. @

Although there are many maps 7 that can perform the relocation,
we are interested in finding the optimal map that minimizes the total
cost

I(f,g,c) = inf / c(x, T(x))f(x)dx, )
TeM Jx
where M is the set of all maps that rearrange f into g.
Thus, we have informally defined the optimal transport problem,
the optimal map as well as the optimal cost, which is also called the
Wasserstein distance:

Definition 1 (The Wasserstein distance). We denote by P, (X)
the set of probability measures with finite moments of order p.
For allp € [1, ),

1

W) = (infrens [ b= TPaute) ). v ep, ()
(6)

M is the set of all maps that rearrange the distribution p into v.

In this paper, we focus on the case of a quadratic cost function:
c(x,y) = |x — y|>. The mathematical definition of the distance
between the distributions f:X — R* and g:Y — R™ can then be
formulated as

Wi = inf [ r-TEP W @)

where M is the set of all maps that rearrange the distribution f into
g (for details, see Villani, 2003). The optimal transport formulation
requires nonnegative distributions and equal total masses that are
not natural for seismic signals. We will discuss this in the section
on data normalization below.

Optimal transport on the real line

For f and g in one dimension, it is possible to exactly solve the
optimal transportation problem (Villani, 2003) in terms of the
cumulative distribution functions

X
Fo = [ fanco) = [ goa @
-0 —00

In fact, the optimal map is just the unique monotone rearrange-
ment of the density f into g (Figure 1a). To compute the quadratic
Wasserstein metric W,, we need the cumulative distribution func-
tions F and G (Figure 1b) and their inverses F~! and G~! (Figure 1c)
as the following theorem states.

Theorem 1 (Optimal transportation for a quadratic cost
on R). Let 0 <f,g < oo be two probability density functions,
each supported on a connected subset of R. Then the optimal
map fromftogisT =G ' oF.

For the synthetic data f and the observed data g from one trace,
we assume that they are continuous in time without loss of general-
ity. After proper normalization signals f and g can be rescaled to be
positive, supported on [0,1], and have a total mass of one. From the
theorem above, we derive another formulation for the 1D quadratic
Wasserstein metric:

W3(f.g) = /0 -G FW)P . ©)

Optimal transport in higher dimensions

The simple exact formula for 1D optimal transportation does not
extend to optimal transportation in higher dimensions. Never-
theless, it can be computed by relying on two important properties
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of the optimal mapping T(x): conservation of mass and cyclical
monotonicity. From the definition of the problem, 7(x) maps
f into g. The change of variables formula formally leads to the re-
quirement

f(x) = g(T(x)) det(VT(x)). (10)

The optimal map takes on additional structure in the special case
of a quadratic cost function: It is cyclically monotone (Knott and
Smith, 1984; Brenier, 1991).

a) 2 ;
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Figure 1. (a) One-dimensional densities f and g. (b) Cumulative
distribution functions F and G and (c) inverse distribution function
F~! and G™! for densities f and g.

Definition 2 (cyclical monotonicity). WesaythatT:X — Y
is cyclically monotonic if for any m € N*, x; € X,1 <i <m,

m m
D i -TE)P <D = Tlxiny)P (11)
i=1 i=1
or equivalently

(T(x;),x; —x;_1) 20 (12)
=1

13

where xy = X,

In addition, a cyclically monotone mapping is formally equiva-
lent to the gradient of a convex function (Knott and Smith, 1984;
Brenier, 1991). Making the substitution 7'(x) = Vu(x) into the
constraint (equation 10) leads to the Monge-Ampere equation

f(x)

det(D*u(x)) = SVulx)’

uis convex. (13)

To compute the misfit between distributions f and g, we first
compute the optimal map 7(x) = Vu(x) via the solution of this
Monge-Ampere equation coupled to the nonhomogeneous Neumann
boundary condition

Vu(x)-n=x-n, x€odX. (14)

The squared Wasserstein metric is then given by

Wi(f.g) = / FOlx - Vu@)Pdx.  (5)

Convexity

As demonstrated by Engquist et al. (2016), the squared Wasser-
stein metric has several properties that make it attractive as a choice
of misfit function. One highly desirable feature is its convexity for
data shifts, dilation, and partial amplitude change, which occur
naturally in seismic waveform inversion.

We recall the overall setup for FWIL, in which we have a fixed
observation g and a simulation f(m) that depends on unknown
model parameters m. The model parameters are recovered via
the minimization

m* = argmin{W3(f(m), )} (16)

To perform this minimization effectively and efficiently, we desire
the distance W2(f(m), g) to be convex in the model parameter m.

This is certainly not the case for all possible functions f(m), but it
is true for many settings that occur naturally in seismic inversion.
For example, variations in the wave velocity lead to simulations
f(m) that are derived from shifts,

flxs) = glx+sn), neR”, (17)

or dilations,
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flx;A) = g(Ax).,AT = A, A >0, (18)

applied to the observation g. Variations in the strength of a reflecting
surface or the focusing of seismic waves can also lead to local re-
scalings of the form

. _ JPax), x€E
fap) = {g(x), xe€R"\E. (19)

Proving the convexity of W3 follows nicely from the interpreta-
tion of the misfit as a transportation cost, with the underlying trans-
portation cost exhibiting a great deal of structure. In particular, the
cyclical monotonicity of the transport map T(x) leads readily to
estimates of

Wi(f(Am; + (1 = A)m,),g), 0<i<l, (20)

which in turn yields the desired convexity results. The convexity
was studied in detail by Engquist et al. (2016), where the following
theorem was proved.

Theorem 2 (convexity of the squared Wasserstein metric [Eng-
quistet al., 2016]).  The squared Wasserstein metric W3(f (m), g) is
convex with respect to the model parameters m corresponding to a
shift s in (17), the eigenvalues of a dilation matrix A in (18), or the
local rescaling parameter f in (19).

Insensitivity to noise

When performing FWI with real data, it is natural to experience
noise in the measured signal. Consequently, it is imperative that a
misfit function is robust regarding noise. As demonstrated by Eng-
quist et al. (2016), the Wasserstein metric is substantially less sen-
sitive to noise than the traditional L? norm.

The property again follows from the interpretation of W3 as a
transportation cost. Intuitively, noise added to the data will increase
the distance |T'(x) — x| that mass moves at some points x, but it will
also decrease this distance at other points. Thus, the overall effect of
noise on the total transportation cost

[(f(x)|T(x) — x|?dx 1)

will be negligible.

This is simplest to calculate in one dimension. For example, we
can consider the setting from Engquist et al. (2016). Here, the data f
and g are given on a grid with a total of N data points along each
dimension. At each grid point, the difference f — g is given by a
random variable drawn from a uniform distribution of the form
Ul—c, c] for some constant c¢. Regardless of the number of data
points, noise of this type is expected to have a large effect on
the L? distance,

Ellf = gll,» = O(1). (22)
Using the exact formula for the 1D optimal transport plan, we can

also directly compute the expected value of the squared Wasserstein
metric:

1

E%%@—O@) (23)

Thus, even if the noise is very strong (with order-one amplitude), its
effect on the misfit is negligible if there are a large number of data
points.

Although there is no exact formula to exploit in higher dimen-
sions, we can place a bound on the expected effects of noise by
considering a sequence of 1D optimal transport problems. That
is, we can produce a sequence of mappings T;(x), j = 1, ..., n that
optimally rearrange the mass along the jth dimension (see Figure 2).
These 1D maps can again be expressed exactly. The resulting
composite map

T(x) =Ty e Ty oo T1(x) (24)

will be mass preserving, but not optimal. As described by Engquist
et al. (2016), this leads to the estimate

EW(f.g) = E / SOl = T(x)dx

< E/f(x)|x -T(x)? = O(i}) (25)

Thus, for typical seismic data, the effect of noise is expected to have
a negligible effect on the behavior of the squared Wasserstein
metric.

NUMERICAL SCHEME

In this section, we describe the numerical schemes we use to
compute the W, misfit. We also explain the adjoint source that
is needed for efficient inversion on geophysical data.

Data normalization

In optimal transport theory, there are two main requirements for
signals f and g: positivity and mass balance. Because these are
not expected for seismic signals, some data preprocessing is needed
before we can implement Wasserstein-based FWI. In Engquist
and Froese (2014) and Engquist et al. (2016), the signals were
separated into positive and negative parts f* = max{f,0},
f~ = max{—f,0} and scaled by the total mass (f) = [, f(x)dx.
Inversion was accomplished using the modified misfit function:

a)1 b) 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0

0 0.5 1 0 0.5 1

Figure 2. (a) The optimal map for each row: T, = T, for x; < x <
X;;1 and (b) the optimal map in the y direction: 7.
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) ) @

Although this approach preserves the desirable theoretical prop-
erties of convexity to shifts and noise insensitivity, it is not easy to
combine with the adjoint-state method and more realistic examples.
We require the scaling function to be differentiable so that it is easy
to apply the chain rule when calculating the Fréchet derivative and it
is also better suited for the Monge-Ampere solver.

There are other different ways to rescale the data sets so that they
become positive. For example, we can square the data as ]‘ = f2or
extract the envelope of the data. The convexity concerning shifts are
preserved by these methods, but we have lost some information in
the gradient. In the squaring case, the gradient of W, with respect to
f is zero when f is zero, which can cause severe difficulties in
recovering reflections. The envelope approach, on the other hand,
loses important phase information.

In this paper, we propose normalization via a linear transforma-
tion and rescaling. We begin by selecting a constant ¢ such that
f+c¢>0and g+ c > 0. In the experiments, c is chosen approx-
imately 1.1 times |gp,|. This constant is fixed in inversion. After
shifting the signals to ensure positivity, we rescale so all signals
share a common total mass. Thus, we obtain the modified data
f = P(f) and § = P(g) where

a) ; W, and L2 misfit function

-2 -1 0 1 2

Shift
b) W, misfit

1o
505
=

/ 2.5
o 2
0.4 0.6 /\“\\/\\,\“’4 Yo

0.8 115

Figure 3. (a) The L? and W, misfits between a Ricker wavelet f
and its shift f(x — s) and (b) misfit sensitivity with respect to model
parameters v, and a.

fre

PO=ra

27

This normalization has several advantages. First, the number and
location of local maximum and minimum are maintained. In addi-
tion, it has high regularity, which is important for the adjoint-state
method. The normalization function P(f) does not change signifi-
cantly from iteration to iteration because of the mean zero property
of the data, which aids in convergence. There is, however, a serious
concern in that this normalization results in a misfit function that is
not convex for simple shifts (Figure 3a) even if the W, misfit is
slightly better than that of L2.

We use an example from Métivier et al. (2016c) to empirically
demonstrate a convexity result in a higher dimensional model
domain with the linear normalization proposed in this paper. The
model velocity is increasing linearly in depth as wv(x,z) =
vy + az, where v, is the starting velocity on the surface, a is the
vertical gradient, and z is the depth. The model is 17 km in width
and 3.5 km in depth. We place 681 receivers on the top with a 25 m
fixed acquisition and one source in the top middle with a Ricker
wavelet centered at 5 Hz.

The reference for (v, @) is (2 km/s, 0.7 s~), and we plot the
misfit curves with @ € [0.4, 1] and v, € [1.75,2.25] on 41 X 45 grid
in Figure 3b. It is globally convex with respect to two model var-
iables. We compare the convexity of L?> and W, in one variable
when the value of the other variable is wrong (Figure 4). The L?
results have local minima, whereas the curves for W, are convex.

a) Sensitivity of v, for wrong a
1 : ;
—_— W0
= 08} —2
k7]
IS
o 067
[0
N
£ 04
5]
z
0.2 ¢
0 L ) L
1.8 1.9 2 2.1 2.2
Yo
b) Sensitivity of o at wrong v,
1 - .
— VZO
% —L
IS
e}
NO5)
T
£
@]
z
0 s
0.4 0.6 0.8 1

a

Figure 4. (a) Misfit sensitivity with respect to vy at @ = 0.535 and
(b) misfit sensitivity with respect to a at vy = 1.8523 km/s.
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Our empirical experience is that this linear normalization works
remarkably well on realistic examples, but we believe further re-
search is desirable in solving this problem and increasing the under-
standing of convergence properties.

To simplify notation, we will hereafter use f and g denoting their
normalized version f and g in equation 27.

Compare trace by trace: W3(f,g) in 1D

We first describe the scheme used for the 1D Wasserstein met-
ric, which we use to compare the data trace by trace for an overall
misfit:

R

d(f.9) =Y W3(f(x,. 1), g(x,. 1)), (28)

r=1

where x, denotes the receiver location.

Computation of the objective function

In this setting, if the last time record for a receiver is at T, we
can use the exact formula (equation 9) to express the 1D quadratic
Wasserstein metric as

a Original signals
100 gna’ &g

80

60
40

Time (s)

Figure 5. (a) Original synthetic signal f and observed signal g and
(b) normalized synthetic signal f and observed signal g that satisfy
the requirements of optimal transport.

mmmzlmwvﬂﬂmwmm (29)

where F and G are the cumulative distribution functions for f and g,
respectively, F(1) = [1f,G(1) = [ig.

This will be approximated in a discrete setting, that is, assuming
that f and g are given at a discrete set of points t = (to,t;, ..., 2,)7
in the time domain. We compute F and G using numerical integra-
tion. For each value y, because G is monotone increasing, we can
find 7, and 7, such that G(z,) <y < G(t,,) in O(log(N)) com-
plexity by binary search and N is the number of data samples in
each trace. For y in this range we can estimate G™! (y) = ¢, ;. Here,
we will also do numerical interpolation between ¢, and ¢, for
better accuracy.

Using FD matrices, we can express the discrete 1D quadratic
Wasserstein metric as

d(f.9) = (1= G™" o (1)) diag(f) (1 = G~ « (1)),
(30)

where G~! o F is the optimal map that transports f onto g.

After summing over all the traces, we obtain the final misfit
between the synthetic data and observed data: d(f,g) => %,
d\(f. g,). By exploiting the explicit solution for optimal transport
on the real line, we can compute the misfit in O(N) complexity.

a) <1074 W, adjoint source

Time (s)
b) L2 adjoint source
100 : .

50 r
0
-50
-100

0

Time (s)

Figure 6. (a) Adjoint source of W3(f,g) with respect to f and
(b) adjoint source of L2(f, g) with respect to f.
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Computation of adjoint source

‘We also derive the Fréchet derivative of the misfit, which acts as
the adjoint source in the adjoint-state method.

The first variation of the squared Wasserstein metric for the 1D
case is

-1
&d, = [Udiag (—2f(t) %y(y)

dt) (t—G™ ' o F(1))
F(1)
+diag(t—G 1o F(1))(t—G'o F(t))] Téfdt, (31

where U is the upper triangular matrix whose nonzero components
are 1.
By the inverse function theorem, we have

s=G~1oF(1)

The adjoint source term for the discrete 1D quadratic Wasserstein
metric can be computed as

a) True velocity
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Figure 7. (a) True velocity and (b) initial velocity for the Camem-
bert model.

[ =2f(1)d . 1
Vd, (1) = {Udlag <g(;{%> +diag(t— G« F(1))

(t—G™ ' F(1))dt. (33)

One can refer to the Appendix for a step-by-step derivation of the
continuous Frechet derivative (A-7).

Compare globally: W3(f, g) in higher dimensions

Second, we wish to examine the effects of comparing the data f
and g globally via a single, higher dimensional optimal transporta-
tion computation.

Computation of the objective function

In this case, there is no simple exact formula for the Wasserstein
metric. Instead, we will compute it via the solution of the Monge-
Ampere equation:

det(D2u(x)) = f(x)/g(Vu(x)) + {u). x€X

Vu(x)-n=x-n, xeoXx (34)
uisconvex.
a) W, adjoint source (trace by trace)
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Figure 8. (a) Adjoint source of W, processed trace by trace and
(b) adjoint source for global W, for the Camembert model.
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The squared quadratic Wasserstein metric is then given by
W9 = [ W= VuPdx  GS)
X

We solve the Monge-Ampere equation numerically using an al-
most-monotone FDM relying on the following reformulation of the
Monge-Ampere operator, which automatically enforces the convex-
ity constraint (Froese, 2012).

det(D%u) = {Dlr%;?ev{max{uv] v, 0} max{u,, , 0}

+ min{u,,,, .0} + min{u,, ,,.0}}, (36)

where V is the set of all orthonormal bases for R>.

Equation 36 can be discretized by computing the minimum over
finitely many directions {vy,v,}, which may require the use of a
wide stencil. For simplicity and brevity, we describe a low-order
version of the scheme and refer to Froese (2012) and Froese and
Oberman (2013) for complete details. In practice, this simplified
scheme is sufficient for obtaining accurate inversion results.

a) L2 adioint source
km)

=

L2 inversion
x (km)

Velocity (km/s)

Figure 9. (a) Adjoint source for L? for the Camembert model and
(b) inversion result using L? as misfit function

The scheme relies on the finite-difference operators
1

[Dxlxl u]ij = W

(pprj+wimyj—2u; ),

1
Dy, uli; = W(“i,;’ﬂ +ug iy = 2u; ),

1
[Dxlxzu]ij = _4dx2 (”i+1,j+1 T U T Wi -1 Mi—l,j+1)v
1
[Dyulij = 5 (i j = i),
1
[Dr,ulij = 5 (Wijar = tijo1),

1
[Dyul;; = W(“m,;’ﬂ gy = 2uy),
1
[Dospsttlyy = 5 igrjor + i jor = 201),

Dyl =~

ij m(um,jﬂ — Uiy jo1)s (37)

In the low-order version of the scheme, the minimum in equa-
tion 36 is approximated using only two possible values. The first
uses directions aligning with the grid axes:

a) W, inversion (trace by trace)
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Figure 10. (a) Inversion result for W, processed trace by trace and
(b) inversion result for global W, for the Camembert model.
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MA,[u] = max{D, , u,6} max{D, , u,o}
+min{D, , u,6} + min{D, , u,5}
— f/9(Dy,u, Dy,u) — uy. (38)

Here, dx is the resolution of the grid, 6 (bounded below by KAx/2)
is a small parameter that bounds the second derivatives away from
zero, Uy is the solution value at a fixed point in the domain, and K is
the Lipschitz constant in the y-variable of f(x)/g(y).

For the second value, we rotate the axes to align with the corner
points in the stencil, which leads to

MA;[u] =max{D,,u,5} max{D.,.u,5}
+ min{D,,u,5} + min{D,.,.u,5}

e il

\/Q(DDM+DULM),\/§

(Dyu— DDJ.M)> —ugy. (39)

Then, the monotone approximation of the Monge-Ampere
equation is

My [u] = — min{MA,[u]. MA;[u]} =0.  (40)

We also define a second-order approximation, obtained from a
standard centered difference discretization,

a) True velocity
x (km)

Velocity (km/s)

Velocity (km/s)

Figure 11. (a) True velocity and (b) inital velocity for the true
Marmousi model.

MN[”] = _((Dxlxl ”)(szxzu) - (Dxlxz”2))
+f/g(Dx1u7Dx2u) +u0 =0. (41)

These are combined into an almost-monotone approximation of the
form

M ] = My [u] + S <w> L@

where ¢ is a small parameter and the filter S is given by

x x| <1

0 x| >2
—x+2 1<x<L2
-x—-2 -2<x<-1

S(x) = 43)

The Neumann boundary condition is implemented using standard
one-sided differences. As described by Froese (2012) and Engquist
et al. (2016), the (formal) Jacobian VM [u] of the scheme can be
obtained exactly. In particular, it is known to be sparse and diago-
nally dominant.

This FD approximation effectively replaces the Monge-Ampere
equation with a large system of nonlinear algebraic equations,

a) L2 adjoint source
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b) W, adjoint source (globally)
X (km)
0 1 2 3
0
1.5
0.2 ;
0.4 0.5
206 0
= -0.5
0.8 -
1 -1.5
12 2
. x107#

Figure 12. Adjoint source of (a) L? and (b) global W, for the scaled
Marmousi model.
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which can be solved using Newton’s method. Computing the New-
ton updates requires inverting sparse M matrices, which can be done
efficiently. The number of Newton iterations required depends
weakly on the smoothness of the data and the resulting solution u.
In numerical experiments carried out by Froese (2012), the total
computational complexity required to solve the Monge-Ampere
equation varied from O(N) to O(N'?) where N was the total
number of grid points.

Once the discrete solution u, is computed, the squared Wasser-
stein metric is approximated via

n

W3(f.9) ~ Y _(x; — Dy uy) diag(f)(x; = Dyuy).  (44)

j=1
Computation of adjoint source

In Engquist et al. (2016), we consider the linearization of the dis-
cretized version of the Wasserstein metric. Using the FD matrices
introduced, we can express the discrete Wasserstein metric as

— D us) diag(f)(x; = Dyus),  (45)

a) L2 inversion
X (km)
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b) W, inversion (globally)
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Figure 13. Inversion results of (a) L? and (b) global W, for the
scaled Marmousi model.

where n is the data dimension; the potential u/ satisfies the discrete
Monge-Ampere equation

Mlu] = 0. (46)

The first variation of the squared Wasserstein metric is
n
8d = =2 (D, 6u)"diag(f)(x; — Dy uy)
j=1

+Z — D, up)Tdiag(8f)(x; — Dy uy).  (47)

Linearizing the Monge-Ampere equation, we have to the first
order

VMplus)ou = 5f. (48)

Here, VM is the (formal) Jacobian of the discrete Monge-Ampere
equation, which is already being inverted in the process of solving
the Monge-Ampere equation via Newton’s method. Then, the gra-
dient of the discrete squared Wasserstein metric can be expressed as

a) W, adjoint source (trace by trace)
x (km)
0 1 2 3

t(s)

b) W, inversion (trace by trace)
X (km)

z (km)

I SR A N )
(&)} (6] [&)]
Velocity (km/s)

-
o

Figure 14. (a) Adjoint source of trace-by-trace W, and (b) the in-
version result for the scaled Marmousi model.
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Vd =Y [-2VM7! [uy)" D! diag(f)
j=1

+ dlag(xj - ij Mf)](x] - ij uf) (49)

Notice that once the Monge-Ampere equation itself has been
solved, this gradient is easy to compute because it only requires
the inversion of a single matrix that is already being inverted as
a part of the solution of the Monge-Ampere equation.

Theorem 3. (Convergence to viscosity solution [Froese,
2012, theorem 4.4]). Let the Monge-Ampére equation (34) have
a unique viscosity solution, and let g > 0 be Lipschitz continuous
on Re. Then the solutions of the scheme (42) converge to the vis-
cosity solution of (34) with a formal discretization error of O(Lh?)
where L is the Lipschitz constant of g and h is the resolution of
the grid.

We remark that the numerical error of the solver is affected by the
Lipschitz constant of function g as well as the grid spacing. In the
discrete setting, we achieve good accuracy if g is highly resolved
data input such that 4 is small.

COMPUTATIONAL RESULTS

In this section, we apply the quadratic Wasserstein metric W,
to several synthetic data models. We provide results for two

a) L2 gradient
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b) W, gradient (trace by trace)
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Figure 15. The gradient in the first iteration of (a) L? and (b) trace-
by-trace W, inversion for the true Marmousi model.

approaches to using W,: trace-by-trace comparison and using the
entire data sets as objects. These are compared with results pro-
duced by using the least-squares norm L? to measure the misfit.

Due to limitations of current Monge-Ampere solvers, we will
present global W,-based FWI on smaller scale models with L?
and trace-by-trace W, results for comparison (the third and fifth
test). We also show experiments of the trace-by-trace approach
on the true or larger scale benchmark to demonstrate its robustness.
In the inversion process, we avoid the use of techniques such as
adding regularization and smoothing the gradient to see the effec-
tiveness of this new misfit.

1D case study

We begin with a simple test case from Engquist and Froese
(2014) and focus on two Ricker wavelet signals, one a time shift
of the other. We regard these two signals as observed data g(7)
and synthetic data f(t;s) = g(¢ —s) as shown in Figure 5. This
is a case in which the quadratic Wasserstein metric W, is applied
to 1D signals.

The adjoint source for L? and W, misfits between these two
signals is very different as shown in Figure 6. The adjoint source
for W, is very similar to the adjoint source of the KR norm applied
on this 1D case; see Figure 4 of Métivier et al. (2016¢) for more
details. This illustrates the character of optimal transport-based

a) L2 inversion
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Figure 16. Inversion results of (a) L% and (b) trace-by-trace W, for
the true Marmousi model.
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misfit functions, which shift mass from the synthetic data to
observed data in a way that corrects the phase difference between
f and g. The L? norm, on the other hand, only seeks to correct the
amplitude difference, which is the origin of the cycle skipping.

We observe that the adjoint source of W, is smoother than the
adjoint source of the KR norm (Figure 4 in Métivier et al.,
2016¢) and it has no discontinuous component. The smoothness
of the adjoint source is ideal for quasi-Newton methods, e.g., the
L-BFGS algorithm, which is designed to minimize smooth func-
tions. It is also numerically more stable to back propagate in time
to compute the gradient updates.

Camembert model

FWI with least-squares norm L> minimization (Tarantola and Val-
ette, 1982) is effective when the initial model is close to the true model.
However, if the initial model is far from the true model, the L? misfit
may suffer from local minima because it uses a point-by-point com-
parison that records the oscillatory and nonlinear features of the data.
The difficulty of local minima in seismic inversion was demonstrated
with the so-called Camembert example (Gauthier et al., 1986).

We repeat the experiments with three different misfit functions
for FWI: W, applied trace by trace, W, applied globally, and the
traditional L? least-squares norm. The comparison among these
three different misfit functions illustrate the advantages of the quad-
ratic Wasserstein metric W,.

We set the Camembert-shaped inclusion as a circle with radius
0.6 km located in the center of the rectangular velocity model. The
velocity is 3.6 km/s inside and 3 km/s outside the circle as shown
in Figure 7a. The inversion starts from an initial model with homo-
geneous velocity 3 km/s everywhere as shown in Figure 7b. We
place 11 equally spaced sources on the top at 50 m depth and 201
receivers on the bottom with 10 m fixed acquisition. The discreti-
zation of the forward wave equation is 10 m in the x- and z-direc-
tions and 10 ms in time. The source is a Ricker wavelet with a peak
frequency of 10 Hz, and a high-pass filter is applied to remove the
frequency components from 0 to 2 Hz.

Figures 8a, 8b, and 9a show the adjoint sources of trace-by-trace
W,, global W,, and the L? misfit functions, respectively. Figure 9b
shows the inversion result obtained with the traditional L? least-squares
norm. It converges to a local minimum after 100 iterations using the
L-BFGS optimization method. The inversion using the 1D optimal
transport to calculate the misfit trace by trace successfully recovers
the shape of the inclusion (Figure 10a). Because the data are two
dimension (in the time and spatial domains), an alternative approach
is to find the optimal transport map between these
two data sets instead of slicing them into traces.

Figure 10b shows the final inversion result respec-

direction updating the velocity model, which leads to local minima
and cycle skipping. This is an example of the global W, inversion
result (Figure 10b) being more accurate than the trace-by-trace re-
sults (Figure 10a) regarding the L? error in the computed velocity
profile.
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Figure 17. (a) The difference of data to be fit and the prediction

with the initial model and (b) the final data residual of trace-by-trace
W, for the true Marmousi model.

Convergence rates for true Marmousi model

tively of comparing the two data sets via a global
optimal map. Both approaches converge to reason- _08
ably good results in 10 iterations using the L-BFGS k3
optimization method. E 06
Although Figure 9a looks similar in shape to % 0.4
Figure 8 at first glance, the adjoint source of 2
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Figure 18. The convergence curves for trace-by-trace W,- and L>-based inversion of the
true Marmousi model.
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Scaled Marmousi model with global W, misfit
computation

Our second 2D synthetic experiment is the Marmousi model.
First, we use a scaled Marmousi model to compare the inversion
between global W, and the conventional L?> misfit function.
Figure 11a shows the P-wave velocity of the true Marmousi model,
but in this experiment, we use a scaled model that is 1 km deep and
3 km wide. The inversion starts from an initial model that is the true
velocity smoothed by a Gaussian filter with a deviation of 40, which
is highly smoothed and far from the true model (a scaled version of
Figure 11b). We place 11 evenly spaced sources on top at the 50 m
depth and 307 receivers on top at the same depth with a 10 m fixed
acquisition. The discretization of the forward wave equation is 10 m
in the x- and z-directions and 10 ms in time. The source is a Ricker
wavelet with a peak frequency of 15 Hz, and a band-pass filter is
applied to remove the frequency components from O to 2 Hz.

We compute the W, misfit via a global optimal map between the
entire 2D data sets by solving the Monge-Ampere equation.
Figures 12b and 13b show the adjoint source and final inversion
results, respectively. Inversions are terminated after 200 L-BFGS
iterations. Figure 13a shows the inversion result using the traditional
L? least-squares method after 200 L-BFGS iterations. The inversion
result of global W, avoids the problem of local minima suffered by

a) Noisy data comparison on one trace
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Figure 19. (a) Noisy and clean data and (b) inversion result with
noisy data.

the conventional L?> metric, whose result demonstrates spurious
high-frequency artifacts due to a point-by-point comparison of
amplitude. Figure 14a and 14b shows the adjoint source and final
inversion results, respectively, for the trace-by-trace W, metric of
the scaled Marmousi model. Trace-by-trace result has better
resolution and less noise than the global approach. We will further
compare these two in the next section.

True Marmousi model with trace-by-trace W, misfit
computation

The next experiment is to invert true Marmousi model by the
conventional L? and the trace-by-trace W, misfit. Figure 11a shows
the P-wave velocity of the true Marmousi model, which is 3 km in
depth and 9 km in width. The inversion starts from an initial model
that is the true velocity smoothed by a Gaussian filter with a
deviation of 40 (Figure 11b). We place 11 evenly spaced sources
on top at 150 m depth in the water layer and 307 receivers on
top at the same depth with a 30 m fixed acquisition. The discreti-
zation of the forward wave equation is 30 m in the x- and
z-directions and 30 ms in time. The source is a Ricker wavelet with
a peak frequency of 5 Hz, and a high-pass filter is applied to remove
the frequency components from 0 to 2 Hz.
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Figure 20. (a) Vertical velocity profiles after 100 iterations of trace-
by-trace W, and (b) vertical velocity profiles of 200 iterations
L?- and W,-based inversion starting from (a).
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We compute the W, misfit trace by trace. For each receiver, we
first normalize the data sets and then solve the optimal transport
problem in 1D. With the explicit formula, the computation time
is close to L2. The final adjoint source (dW3(f, g))/df is a combi-
nation of the Fréchet derivative (dW3(f(x,), g(x,)))/(df(x,)) of all
the receivers. Figure 15a and 15b shows the gradients in the first
iteration of two misfits, respectively.

Starting from a highly smoothed initial model, in the first itera-
tion W, already focuses on the “peak” of the Marmousi model as
seen from Figure 15b. The darker area in the gradient matches many
features in the velocity model (Figure 11a). However, the gradient
of L? is quite uniform contrary to the model features. Inversions are
terminated after 300 L-BFGS iterations. Figure 16a shows the in-
version result using the traditional L? least-squares method, and
Figure 16b shows the final result using the trace-by-trace W, misfit
function. Again, the result of the L?> metric has spurious high-fre-
quency artifacts, whereas W, correctly inverts most details in the
true model. The data residuals before and after trace-by-trace
W,-based FWI are presented in Figure 17. The convergence curves
in Figure 18 show that W, reduces the relative misfit to 0.1 in 20
iterations, whereas L2 converges slowly to a local minimum.

Inversion with the noisy data

One of the ideal properties of the quadratic Wasserstein metric is
the insensitivity to noise (Engquist et al., 2016). We repeat the

a) True velocity
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Figure 21. (a) True velocity and (b) inital velocity for the BP
model.

previous experiment with a noisy reference by adding a uniform
random iid noise to the data from the true velocity (Figure 19a).
The signal-to-noise ratio (S/N) is —3.47dB. In optimal transport,
the effect of noise is, in theory, negligible due to the strong cancel-
lation between the nearby positive and negative noise.

All the settings remain the same as the previous experiment
except the observed data. After 96 iterations, the optimization con-
verges to a velocity presented in Figure 19b. Although the result has
lower resolution than Figure 16b, it still recovers most features of
the Marmousi model correctly. When the noise power is much
larger than the signal power, the quadratic Wasserstein metric still
converges reasonably well, which again demonstrates its insensitiv-
ity to noise.

L*-based FWI starting from W, enhanced initial
model

Next, we perform FWI by first using the W, norm to overcome
cycle skipping, then using the LZ?-norm to increase the resolution.
Starting from the initial model (Figure 11b) W,-based FWI recovers
most features greater than 2 km correctly after 100 iterations (see
Figure 20a). We then start from this model and run another 200
iterations of L2- and W,-based inversion to check their performance

a) L2 adjoint source
X (km)
0 2 4 6
100
50
0
\
-50
b) W, adjoint source (globally)
X (km)
0 2 4 6
4
2
0
-2
-4
-6
-8
x107*

Figure 22. Adjoint sources of (a) the L? for the BP model and
(b) the global W,.
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on increasing resolution (Figure 20b). The L? and W, iterations re-
cover most features of the Marmousi model (Figure 11a) correctly.
The L2-norm is slightly better than W, in accuracy for the deeper
part, but its L? relative error of the velocity (0.0057) is larger than
the error from the W, misfit (0.0027). One can use the trace-by-
trace W,-norm to build a good starting model and later switch
to L? norm to recover the high-wavenumber components.

2004 BP model with global W, misfit computation

For this experiment, we compare global W, and conventional L?
as misfit functions for a modified BP 2004 model (Figure 21a). Part
of the model is representative of the complex geology in the deep-
water Gulf of Mexico. The main challenges in this area are related
to obtaining a precise delineation of the salt and recover information
on the subsalt velocity variations (Billette and Brandsberg-Dahl,
2005). The inversion starts from an initial model with a smoothed
background without the salt (Figure 21b). We put 11 equally spaced
sources on top at a 50 m depth and 641 receivers on top at a 50 m
depth with a 10 m fixed acquisition. The discretization of the for-
ward wave equation is 10 m in the x- and z-directions and 10 ms in
time. The source is a Ricker wavelet with a peak frequency of 5 Hz,
and a band-pass filter is applied to keep the frequency components
from 3 to 9 Hz. The total acquisition time is restricted to 2 s to focus
on recovering the upper portion of the salt structure.
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Figure 23. Inversion results (a) for L? and (b) for global W, for the
BP model.

As before, we solve the Monge-Ampere equation numerically to
compute the global W, misfit. Figure 22a and 22b shows the adjoint
source for two misfit functions. Inversions are stopped after
100 L-BFGS iterations. Figure 23b shows the inversion result
for W,, which recovered the top salt reasonably well. The L? metric
(Figure 23a), on the other hand, converged to a model that has a
low-velocity anomaly immediately beneath the top salt, which is
typical of the cycle skipping commonly encountered in FWIL
Figure 24a and 24b shows the adjoint source and final inversion
results, respectively, for the trace-by-trace W, metric applied to
the scaled BP model. Trace-by-trace result has less noise and more
accuracy on the salt body than the global approach in Figure 23b.
We will discuss this issue in detail in the next section.

2004 BP model with trace-by-trace W, misfit
computation

In our last experiment, we compare trace-by-trace W, and
conventional L? as misfit functions for another modified BP
2004 model. Different from the previous experiment, the model
is much larger as 6 km deep and 16 km wide (Figure 25a), similar
to BP example in Métivier et al. (2016b). The inversion starts from
an initial model with smoothed background without the salt (Fig-
ure 25b). We put 11 equally spaced sources on top at 250 m depth in
the water layer and 321 receivers on top at the same depth with a

a) W, adjoint source (trace by trace)
x (km)
0 2 4 6

b) W, inversion (trace by trace)
x (km)
0 2 4 6

z (km)
Velocity (km/s)

Figure 24. (a) Adjoint source of trace-by-trace W, and (b) the in-
version result for the scaled BP model.
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50 m fixed acquisition. The discretization of the forward wave equa-
tion is 50 m in the x- and z-directions and 50 ms in time. The source
is a Ricker wavelet with a peak frequency of 5 Hz, and a band-pass
filter is applied to keep a 3-9 Hz frequency. The total acquisition
time is 10 s.

Again we compute the W, misfit trace by trace by solving the
optimal transport problem in 1D as the Marmousi model and the
Camembert model. Figure 26a and 26b shows the gradient in the first
iteration of inversion using two misfit functions, respectively.

Starting from a smoothed initial model without the salt, in the
first iteration W, inversion concentrates on the upper salt of the
BP model (Figure 26b). The darker area in the gradient matches
the salt part in the velocity model (Figure 25a). However, the gra-
dient of L? is not very informative. Inversions are terminated after
300 L-BFGS iterations. Inversion with trace-by-trace W, misfit suc-
cessfully constructed the shape of the salt bodies (Figure 27b),
whereas FWI with the conventional L? failed to recover boundaries
of the salt bodies as shown in Figure 27a. The data residuals before
and after trace-by-trace W,-based FWI are presented in Figure 28.
Trace-by-trace W, reduces the relative misfit to 0.1 in 20 iterations,
whereas L2 converges slowly to a local minimum (Figure 29).

DISCUSSION ON TWO WAYS OF USING W,

The computational complexity of performing 1D optimal trans-
port is extremely low compared with the cost of solving the Monge-

a) True velocity
X (km)

Velocity (km/s)

b) Initial velocity
X (km)

Velocity (km/s)

Figure 25. (a) True velocity and (b) initial velocity for the second
BP model.

Ampere equation, which treats the synthetic and observed data as
two objects and solves a 2D optimal transport problem. From ob-
servation of the running time in our experiments, inversion with the
trace-by-trace W, misfit requires less than 1.1 times the run time
required by inversion with the simple (and ineffective) L2 misfit.
Inversion using global W, comparison works for smaller scale mod-
els. It is more expensive because in each iteration we solve the
Monge-Ampere equation numerically to compute the misfit. The
total inversion takes 3—4 times the run time of the FWI with L2
misfit in the experiments.

Figures 14a and 24a indicate one disadvantage of using W, trace
by trace. The nonphysical variations in amplitude and nonuniform
background of the adjoint source are caused by the fact that we re-
scale the data trace by trace to satisfy positivity and conservation of
mass. On the one hand, this may lead to nonuniform contributions
of data misfits to the velocity update during the inversion process.
Therefore, more careful treatment of the scaling in the trace-by-
trace scheme may improve the convergence result being demon-
strated in this study. On the other hand, in the experiments of
the true Marmousi model and the second 2004 BP model, the gra-
dients (Figures 15b and 26b) do not have strong artifacts or non-
physical variation in the first iteration even if the corresponding
adjoint sources are irregular with strong horizontal variations. It will

a) L2 gradient
x (km)

b) W, gradient
X (km)

0.25

0.2

0.15

0.1

0.05

Figure 26. The gradient in the first iteration of (a) L? and (b) trace-
by-trace W, inversion for the second BP model.
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be interesting to study about the structure of the adjoint source in the
success of FWIL

To compute the W, misfit globally, we solve a 2D optimal trans-
port problem based on the Monge-Ampere equation formulation.
The numerical method for the Monge-Ampere equation (Froese
and Oberman, 2013) is proved to be convergent but requires the
target profile g to be Lipschitz continuous, and the discretization
error is proportional to the Lipschitz constant of g as theorem
3 states. A coarse discretization of the wavefield g will have a large
value of Lh?, if the Lipschitz constant is large. Because the error
estimate is of the order O(Lh?), this indicates a low accuracy in the
numerical solution. In practice, the grid will have to be very well-
refined, which means small . before we are able to achieve mean-
ingful results. This means that for accurate results, enough data
points are needed to effectively resolve steep gradients in the data;
otherwise, the solver effectively regularizes the data before solving
the Monge-Ampere equation. This was evident in the example of
the Marmousi model: The solver was much more robust to the
scaled velocity benchmarks that provided better resolution of the
fronts in the data. The trace-by-trace approach, on the other hand,
can make use of exact formulas for 1D optimal transportation,
which allows for accurate computations even when the data are
highly nonsmooth.

The oscillatory artifacts in Figures 10b, 13b, and 23b likely origi-
nate from a combination of the numerical PDE solution discussed

a) L2 inversion
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Figure 27. Inversion results of (a) L2 and (b) trace-by-trace W, for
the second BP model.

above and the insensitivity to noise of the W, measure. The fact that
W, is insensitive to noise is good for noisy measurements, but not
for artifacts in the velocity model. This could, for example, be
handled by total variation regularization (Rudin et al., 1992). We
have chosen to present the raw results without pre or postprocess-
ing. The trace-by-trace technique is also insensitive to noise, though
to a lesser extent because there is cancellation only along one
dimension. The 2D approach seems to have a slight edge for the
Camembert model. The L? error between the converged velocity
and the true model velocity with global W, is 25% smaller than
in the trace-by-trace case.

In the sixth experiment of the computation result, we start with a
rough model built by 100 iterations of trace-by-trace W,. After the
same number of iterations, the W, inversion result attained a lower
model error than L? inversion, but in the vertical velocity profile L?
has better accuracy than the trace-by-trace W,. The W, norm can
build a good initial model to help overcome the cycle-skipping
problem. One can start with the trace-by-trace W, results in
L?-based FWI with higher frequency sources for better resolution
and inversion of the high-wavenumber component.

a) Inital data residual
X (km)
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b) Final data residual
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200
0
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Figure 28. (a) The difference of data to be fit and the prediction
with initial model and (b) the final data residual of trace-by-trace
W, for the second BP model.
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Convergence rates for second BP model
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Figure 29. The convergence curves for trace-by-trace W,- and L2-based inversion of the

second BP model.

CONCLUSION

We have developed a high-resolution FWI technique based on
optimal transport and the quadratic Wasserstein metric W,. Here,
the W, misfit is coupled to efficient adjoint source computation
for the optimization. Our earlier work with W, was limited to a
few degrees of freedom, but here we have presented successful in-
version of the Marmousi, the 2004 BP, and the so-called Camembert
models. This novel technique avoids cycle skipping as is demon-
strated by numerical examples. The 2D W, misfit is calculated
by solving a relevant Monge-Ampere equation and the latest
version of the solver is outlined. We also show comparable results
from a trace-by-trace comparison with a W, misfit. This is as fast as
the standard L2-based FWI in terms of computation time, but it is
more accurate and converges faster for cycle-skipping cases.

Our results clearly point to the quadratic Wasserstein metric as a
potentially excellent choice for a misfit function in FWI. There are
many possible directions for future improvements. In the 1D and 2D
studies, the scaling or normalization of the signals play an important
role. The linear normalization was by far the best for the large-scale
inversion but does not satistfy the requirements of the theoretical
result of convexity from shifts. This should be further investigated,
and even better normalizations would be ideal. Extending the 1D
trace-by-trace misfit to 1D comparisons along additional directions
is also possible. This has been successfully tried in other applica-
tions under the name of the sliced Wasserstein distance.
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APPENDIX A
DERIVATION OF EQUATION 33

We assume that f() and g(¢) are continuous density functions in
[0,T), and F(¢) = [1f(z)dr and G(¢) = [} g(r)dr. Now, we per-
turb f by an amount §f and investigate the resulting change in equa-
tion 29 as a functional of f:

+ / = G F@)Par (e + O(3F)). (A)

Because G is monotone increasing, so is G~!. We have the follow-
ing Taylor expansion of G™':

G~V(F(t) + 8F (1))

SF (1) + 0((81)*). (A-4)

y=F(1)

Substituting equation A-4 back into equation A-3, we obtain the
first variation:

ow= ["(["-as-67 ) 2L yF(S)f(S)dS>

Sf (r)dt, (A-5)

+ [N Epaa. @)

0

Thus, the Fréchet derivative of equation 29 with respect to f is

2 Ty -1
DAL ([ 2t aey 25 e

+|t=G! (F(t))|2) dt. (A-7)

In our numerical scheme, we discretize equation A-7 and derive
equations 31 and 33.
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