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Hessian estimates for convex solutions to quadratic Hessian equation
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Abstract

We derive Hessian estimates for convex solutions to quadratic Hessian equation by compactness argument.
© 2018 Elsevier Masson SAS. All rights reserved.

Résumé

Nous dérivons des estimations de Hessian pour des solutions convexes a 1’équation de Hessian quadratique par argument de
compacité.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this note, we prove a priori Hessian estimates for convex solutions to the Hessian equation

ot (Dzu) —o )= Y hyeedy =1

1<ij<--<ix=<n
with k = 2. Here A;s are the eigenvalues of the Hessian D?u.

Theorem 1.1. Let u be a smooth solution to o) (Dzu) =1 on Bg (0) C R" with D*u > [5 —J2/[n(n— 1)]] I for
any 8§ > 0. Then

D% ()] < g (IDull 509 /R 7).

where g (t, n) is a finite and positive function for each positive t and dimension n.
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By Trudinger’s gradient estimates for o} equations [10], we can bound D?y in terms of the solution u in Bag (O]
as

D% )] = g (Il ssg00 /R 1)

Recall any solution to the Laplace equation o (Dzu) = Au =1 enjoys a priori Hessian estimates; yet there are
singular solutions to the three dimensional Monge—Ampere equation o3 (Dzu) = det D?>u = 1 by Pogorelov [8], which
automatically generalize to singular solutions to oy (Dzu) =1 with k > 3 in higher dimensions n > 4.

A long time ago, Heinze [6] achieved a Hessian bound for solutions to equation o» (Dzu) = 1 in dimension two by
two dimension techniques. Not so long time ago, Hessian bound for o3 (Dzu) = 1 in dimension three was obtained
via the minimal surface feature of the “gradient” graph (x, Du (x)) in the joint work with Warren [13]. Along this
“integral” way, Qiu [9] has proved Hessian estimates for solutions to the three dimensional quadratic Hessian equation
with C1! variable right hand side. Hessian estimates for convex solutions to general quadratic Hessian equations have
also been obtained via a new pointwise approach by Guan and Qiu [5]. Hessian estimates for solutions to Monge—
Ampere equation o, (D2u) = det D?u = 1 and Hessian equations oy (Dzu) =1 (k > 2) in terms of the reciprocal
of the difference between solutions and their boundary values, were derived by Pogorelov [8] and Chou—Wang [4],
respectively, using Pogorelov’s pointwise technique. Lastly, we also mention Hessian estimates for solutions to oy as
well as oy /0, equations in terms of certain integrals of the Hessian by Urbas [11,12], Bao—Chen—Guan-Ji [1].

Our argument towards Hessian bound for a semiconvex solution to o7 (Dzu) = 1 is through a compactness one. If
the Hessian blows up at the origin, then the slope of the “gradient” graph y = Du (x) or (x, Du (x)) already blows up
everywhere. But one cannot see this impossible picture directly (Step 1). After a Legendre—Lewy transformation of
the solution u (x) so that the new solution w (y) has bounded nonnegative Hessian; the new corresponding equation
is uniformly elliptic (for any large negative lower bound for the original Hessian D?u); and the new equation is
concave (only under the particular lower Hessian bound D%u > [6 —2/Tn(n = D]] I) (Step 2). By the standard
Evans—Krylov—Safonov theory, the smooth “gradient” graph (Dw (y), y) = (x, Du (x)) has a zero slope at the origin
(Step 3). Employing the constant rank theorem of Caffarelli-Guan—Ma [2], the zero slope of the “gradient” graph
(Dw (y), y) propagates everywhere. The impossible picture of (x, Du (x)) with infinite slope everywhere becomes
clear (Step 4). In passing, we remark that in dimension two, the solution is already convex and the new equation is
just the Laplace equation, in turn, our compactness argument is elementary.

Finally, the Hessian estimates for general solutions to quadratic Hessian equation o7 (Dzu) = 1 in higher dimension
n > 4 still remain an issue to us.

2. Proof

We prove Theorem 1.1 by a compactness argument. By scaling v (x) = u (Rx) /R?, we assume R = 1. Denote
K=2/[n(n—-1)].
Step 1. Otherwise, there exist a sequence of solutions uy to o7 (Dzu) =1 such that
| Dugllpoopyy < | Dullzoo(p,yy »
(6 —K) I < D?uy,
and (convergence)

| D?uy (0)] — oo,

Dug— Dus in L' (BY), K7

where us € W1 (By) and By denotes the m dimensional ball B} (0) C By =B} (0) CR" forallm=1,--- ,n.
The L' convergence (possibly passing to a sub-convergent sequence, still denoted by uy; we only need m = 1) comes
from the compact Sobolev embedding for semiconvex ux € W>! (B") — W1 (B]"), as

/‘Dzuk-l-K)de/(Auk+nK)dxSC(”)[||DM||L°O(BI)+1]'

m m
Bl Bl
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Remark. Another way to see the above L! convergence for H"~™ almost all (xp41,---,x,) in By NR*™™ ig
the following. From our equation, v/|A|> +2 = Aug, then fBl |D%ug|dx < fBl Augdx < C (n) | Dugllp5p,) <
C (n) | Dul| oo p,)- (We just assume || Dug | pooyp,y < | Dutllpoop,)-) Now the compact Sobolev embedding coupled
with Fubini theorem implies the “almost everywhere” L' convergence.

Step 2. As in [3], we make Legendre—Lewy transformation of solutions uj (x) to solutions wy (y) of a new
uniformly elliptic and concave equation with bounded Hessian from both sides, so that we can extract smoother
convergent limit. The Legendre—Lewy transformation is the Legendre transformation of wy (x) = uy (x) + K |x|? /2;
see [7]. Geometrically we re-present the “gradient” graph G : y = Dwy, (x), or (x, Dwy (x)) C R" x R" over y-space
as another “gradient” graph in R?". Note that the (canonical) angles between the tangent planes of G and x-space are

arctan (A; + K) € [arctan§, %)

by the semiconvexity assumption A; > § — K. From this angle condition and the symmetry of (Dzw)_l, it follows
that G can still be represented as a “gradient” graph x = Dwg (y), or (Dwy (y), y) over ball Bs (0) in y-space, here
we may and assume Duy (0) = 0; further the (canonical) angles between the tangent planes of G and y-space are

_ b5 T
arctan A; = 77 arctan (A; + K) € (0, 77 arctand],

where ;s are the eigenvalues of the Hessian D?wy.
Therefore, the function wy, () satisfies in Bs (0)

-1 1
0 < D2y = (Dzu +K) <51

and

(3 (000)) =22

on2() -DK'

where A;s are the eigenvalues of the Hessian D%y,

As proved in [3, pp. 661-663], we have

i) the level set T'={4| ¢ (1) =1/[(n — 1) K1} is convex;

ii) the normal vector Dgq of the level set I" is uniformly inside the positive cone for A; € [O, 8 ’1];

iii) all but one among A;s are uniformly bounded, equivalently all but one among A;s have a uniform positive lower
bound, then o,,_» ()_») has a uniform positive lower bound.

Thus wy, satisfies a uniformly elliptic and concave equation.

Step 3. By the Evans—Krylov—Safonov theory, there are a subsequence of wy, still denoted by wy, and we, €
C>* (Bsy2 (0)) with @ = a (n, 8) > 0 such that

Wk = Woo in C*% (Bs12(0)),
then
q ()1 (Dzwoo)) =1/[(n— 1) K],
Dzd)oo (y) = 0, also one and only one eigenvalue of Dzu_)oo, say, D11we 15 0 at 0.

Step 4. By the constant rank theorem of Caffarelli-Guan—Ma [2, Theorem 1.1 and Remark 1.7] (which leads to a
qualitative lower Hessian bound for concave equations), D1jWeso (y) = 0 in a neighborhood of 0. Restrict to (x1, y1)
space, the “gradient” graph of (Dws (y) , y) takes the form

(D1oo (y1, ') . y1) = (¢, y1) = (x1, Diutoo (x1,x") + Kx1) near (0,0).

This is impossible, as (xl, Diuso (x1 , x/) + le) isan L1 graph (for almost all x’ € R"~! without using the semicon-
vexity assumption) from Step 1.
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