Saleh Kalantari

Evaluating Educational Settings pomelunersy
through Biometric Data and Josha Stanton i

Virtual Response Testing

University of Houston

Pamela Banner
Yale University

Neurological Relations
to the Architectural Portable and User-friendly
Virtual Immersion Components EEG Recording Toolset for Data Analysis

o'

uli &

ABSTRACT
The physical design of the learning environment has been shown to contribute significantly 1 Overview of the research study.

to student performance and educational outcomes. However, the existing literature on Participants’ responses were
measured while they interacted

this topic relies primarily on generalized observations rather than on rigorous empirical with architectural designs in a
testing. Broad trends in environmental impacts have been noted, but there is a lack of virtual environment.
detailed evidence about how specific design variables can affect learning performance. The

goal of this study was to apply a new approach in examining classroom design innovations.

We developed a protocol to evaluate the effectiveness of classroom designs by measuring

the physical responses of study participants as they interacted with different designs using

a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers

to identify potential problems and successes in their work prior to its being physically

constructed. The results of our initial pilot study indicated that this approach could yield

important results about human responses to classroom design, and that the virtual envi-

ronment seemed to be a reliable testing substitute when compared against real classroom

environments. In addition to leading toward practical conclusions about specific classroom

design variables, this project provides a new kind of research method and toolset to test

the potential human impacts of a wide variety of architectural innovations.
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INTRODUCTION

The process of designing the built environment is becoming
more complex in today's world. Current technology
encourages designers to introduce increasing amounts of
innovation into their work. While this innovation often leads
to exciting and effective results, it also takes us away from
tried-and-true solutions into relatively uncharted territory.
This opens up the possibility of design mistakes that can
reduce, rather than improve, a building's usefulness for its
human occupants.

Scholars have demonstrated that the characteristics

of the built environment can have significant effects on
human well-being. Specific design components have been
correlated with health outcomes (Truong and Ma 2006;
Wheaton et al. 2015), as well as with human efficiency and
productivity (Day 2017). Renewed interest in human-cen-
tered design in recent decades has led researchers to
document the contributions of architectural design for
reducing stress, improving mood, and enhancing visual
memory, among other benefits (Ulrich et al. 1991; Sallis et
al. 2006). Numerous additional studies have investigated
different architectural styles and design choices and how
they affect human experiences (Choo et al. 2017; Vecchiato
et al. 2015; Vartanian et al. 2013; Roe et al. 2013; Shin et al.
2014; Kuller et al. 2009).

When innovative designs are created, it is difficult to accu-
rately evaluate their full human effects, whether positive
or negative, until after the buildings are constructed and
put into use. This presents contemporary designers with
a dilemma. How can we harness the best potential of the
innovation allowed by today's technology while avoiding
costly and potentially harmful mistakes?

Our research addresses this issue by evaluating the effects
of building design on human factors, such as stress, anxiety,
and visual memory, prior to the building's construction. We
accomplished this by rigorously measuring our partici-
pants’ physical and conscious reactions as they interacted
with various architectural designs using virtual reality
technology. The goal in this experiment was to show that
virtual “test runs” can help designers to identify potential
problems as well as successful innovations in their work
prior to any extensive investment in physically constructing
the designs.

LEARNING ENVIRONMENTS

The specific architectural context that we chose for this
experiment is the classroom environment. Previous
research has shown that student performance can be
significantly affected by physical design factors, and that
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poor-quality learning environments can create barriers to
education such as impaired concentration, boredom, and
claustrophobia (Chan and Richardson 2005). A high-quality
learning environment, in contrast, has been shown to
support student engagement and inquiry (Martin 2010).

Despite the well-established link between learning envi-
ronments and student outcomes, the specific physical
elements within these environments that affect students
the most have not been rigorously broken down and
empirically investigated. Paul Temple observed that, “Where
connections between the built environment and educa-
tional activities are made, the basis for doing so tends to

be casual observation and anecdotes rather than firm
evidence” (Temple 2007). Many other researchers have
indicated a need for more rigorous studies to investigate
the specific elements of the physical environment that might
be important from a design perspective to help support
student achievement (Woolner et al. 2007; Kaup et al. 2013).

The previous work that has been done in this area suggests,
at best, some general themes in the optimal design of
learning spaces. Perhaps the most dominant theme in the
recent research literature is that educational spaces need
to be flexible, both pedagogically and physically, so that they
can be adjusted to reflect the nuances of different knowl-
edge areas and learning styles (Butin 2000). This theme
reflects the growing understanding among teachers that
there is great educational value in active and collaborative
learning, detailed student-faculty interactions, and oppor-
tunities for intellectual creativity. Along with this emerging
new pedagogy comes an increased interest in transforming
the physical environment of traditional classrooms so that
it can more easily accommodate collaborative and active
learning in a technology-rich setting (Brooks et al. 2012).

Other general factors that have been associated with
better student performance include educational environ-
ments that incorporate more “naturalness” (in light, sound,
temperature, air quality, and links to nature) (Daisey et al.
2003; Wargocki and Wyon 2007); learning environments
that create a greater sense of individuality, ownership, and
flexibility (Zeisel et al. 2003; Ulrich 2004); and environments
that provide greater stimulation and sensory impact (Kuller
et al. 2009; Fisher et al. 2014). The detailed investigation

of these factors remains a relatively new and undeveloped
area in the design literature, and nearly all of the existing
work describes a hope that future investigations can adopt
more rigorous empirical methods to further isolate the
relevant factors and their impact on student experiences.
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2 Overview of the study design.

3 The experimental setup for data recording: (a) EEG electrode locations, (b)
EOG electrode locations, and (c) all sensor equipment as worn by a study
participant.

RESEARCH METHODS AND EQUIPMENT

In creating the current study, we wanted to develop a
standardized and intuitive toolset with the potential to be
used in many other architectural research projects. The
goal was to allow designers to test new ideas and evaluate
the effects of different designs on human experiences and
responses. For this purpose, we developed a protocol to
use virtual reality experiences in conjunction with nonin-
vasive biophysical measurements and self-reporting.

This allowed us to objectively analyze the participants’
responses to changes in specific design variables.

An overview of the experimental process is shown in
Figure 1 and 2. The participants were first informed about
the purpose of the study and allowed a few minutes to try
out the virtual reality equipment and its controls. They
then filled out a basic demographic questionnaire, which
asked for non-personally-identifiable information such

as age, gender, occupation, race, ethnicity, drug use, and
neurological conditions. The purpose of collecting drug
and neurological data was to screen for factors that might
affect the biophysical measurements. After completing
the initial questionnaire, the participants donned the
measurement equipment, and their baseline data was
recorded in a standard (real) classroom. They then used
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the virtual-reality platform to explore a variety of different
design modifications. They performed a variety of learning
tasks in these environments, while changes in their
biometric readings were recorded. Finally, after the phys-
ical measurements were completed, the participants filled
out an exit survey to collect their subjective evaluations of
the virtual reality experience and the classroom designs.

To obtain measurements of their physical responses,

the participants were instrumented with a non-invasive
electroencephalography (EEG) cap to record electrical
activity in their brains; electro-oculography sensors (EOG)
to record eye motions; electrocardiogram sensors (EKG)
to record their heartbeat; a galvanic sensor response
(GSR) unit to record skin conductance; and a tri-axial head
accelerometer to record their head motions. All of this
biological data was recorded at 500 Hz and synchronized
using the 84-channel ActiCHamp module (Brain Products
GmbH, Germany) with Ag/AgCl active electrodes. A total of
63 electrodes were used (57 for EEG, 4 for EOG, and 2 for
EK@). Figure 3 shows the electrode placement on a study
participant.

In preparation for the study, the participants were asked to
refrain from using any hair products that might increase
the impedance at the scalp/electrode interface (condi-
tioner, hair gel, etc.). Each subject’'s head circumference
was measured to allow for the selection of an appropriately
sized EEG cap. Prior to donning the cap, the skin on the

face around the eyes, the temples, and the earlobes were
gently cleaned with alcohol wipes to remove any dirt and
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4 The design features of (a) the 5 The research participants
real classroom that were modi- completed learning tasks in
fied in the virtual environments (a) the real classroom and
included (b) ceiling height, (c) (b) a virtual rendering of the
room width, and (d) window classroom.
placements.
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skin oils. The cap was carefully aligned on the participants’
heads according to standard protocol (with the FP1 and
FP2 electrodes at 10% of the distance from the nasion to the
inion along the midsaggital plane, and the Cz electrode at
the vertex of the head). After donning the cap, a conductive
electrolyte gel was applied between the electrode tips and
the scalp to reduce the interface impedance. The imped-
ance was maintained below 50 kQ for all participants, and
in most cases it was reduced to below 20 kQ.

The biometric data were recorded using the BrainVision
Recorder software (Brain Products GmbH, Germany).

The 57 EEG channels were arranged according to the
international 10-20 system. The Lab Streaming Layer
program (developed by C. Kothe at the Swartz Center for
Computational Neuroscience, U.C. San Diego) was used to
synchronize this biometric data with the participants’ activi-
ties and responses within the virtual environment.

EXPERIMENTAL PROTOCOL

The experiments were conducted in a real classroom,
combined with a virtual rendering of the classroom that
allowed the researchers to make targeted design changes
(Figure 4 and 5). The initial stages of the experiment took
place without the use of a VR headset. To establish baseline
data, the participants were first asked to sit quietly facing
a blank computer monitor for one minute. They were then
asked to sit quietly with their eyes closed for one minute.
Finally, the participants were asked to complete several
memory-oriented tasks using the standard equipment in
the real classroom. These tasks included the Stroop atten-
tion test, a spatial-memory test, an arithmetic test, and a
Benton visual-retention test.

After completing these tasks in the real classroom and then
taking a short break, the participants donned virtual-re-
ality headsets (these were placed over their EEG caps). The
virtual environments that they encountered were similar
to the real classroom but incorporated targeted changes
to specific design variables. The type of design changes
that the participants encountered in the virtual classrooms
included different ceiling heights, different window place-
ments, and different wall textures. The participants were
asked to complete the same memory-oriented tasks while
immersed in these virtual spaces (Figure 6).

RESULTS OF THE PILOT STUDY

Our initial pilot test was carried out with only one study
participant, and with one design alteration (the addition
of windows to the classroom). Despite the limited nature
of this data, the pilot test yielded promising results and
demonstrated that the collected biometric data has
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6 The memory-oriented tasks completed by the participants included (a) the Stroop attention test, (b) a spatial memory test, (c) an arithmetic test, and (d) the

Benton visual retention test.

the potential to provide valuable insights about human
responses to design variables. The pilot study data is
summarized in Figure 7, showing a comparison between
baseline states, activities carried out in the real classroom,
activities in an identical virtual classroom, and activities in
a virtual classroom with added windows. The data indicate
a sharp increase in stress responses during the memo-
ry-oriented activities, as compared to the passive baseline.
However, the magnitude of these stress responses was

smaller in the virtual classroom with windows as compared

to the virtual classroom without windows.

Another notable finding in our pilot test was that the partic-
ipant's responses were very similar in the real classroom
and in the identical virtual classroom (without any design
changes). This suggests that the virtual replication can
likely be viewed as a suitable substitute for testing the real
design.

The full results of this study have not yet been rigorously
analyzed. In future work, we will continue to collect and
analyze data from larger numbers of research participants
to obtain rigorous results and finalize conclusions about
the effect of each design variable. This will allow us to put
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forth strong and empirically grounded findings about the
specific classroom variables that we are studying, and also
to fully validate the equipment and research protocol for
use in additional design studies.

CONCLUSION

This project demonstrated a new and practical toolset

to evaluate the human impacts of architectural design
innovations. The research responds to a growing call in
the field for evidence-based design and for an inexpensive
means of evaluating the potential human effects of new
designs. Our research addressed this challenge by devel-
oping a prototype brain-body imaging interface that can
be used in conjunction with virtual immersion. This allows
participants' conscious and unconscious reactions to new
architectural designs to be evaluated prior to the building's
physical construction.

To test the idea, we developed a generalizable research
protocol and conducted an initial study. Although the
full study and data analysis has not yet been completed,
the results of our pilot tests demonstrated the value of
this approach. We found that the biometric equipment
could yield important results about human responses to
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7 Data obtained from the pilot study participant for five conditions (indicated in columns): baseline eyes open, baseline eyes closed, real classroom, virtual
classroom, and virtual classroom with added windows. The figure rows show (a) the initial 5 s of data from selected EEG, EOG, EKG and head-acceleration
channels; (b) total alpha (8—12 Hz) and theta (4—8 Hz) power in all EEG channels, and (c) raw and tonic GSR (skin conductivity) signals.

architecture, and that the virtually replicated environment
seemed to be a reliable testing substitute for the final
constructed design.

Current information technology has allowed many fields
to benefit from "big data” analysis in their optimization of
resources. However, design fields are somewhat lacking
in this area, due to the difficulty of obtaining quantitative
data about human responses to design and the tremen-

dous investment required to construct and test new
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architectural ideas. Our research method has the potential
to provide designers, educators, and psychologists with

an important new toolset for developing data resources to
evaluate the relationship between architectural form and
human experience. The construction of a broad, amal-
gamated data-set based on these evaluations, following a
shared research protocol, could contribute significantly

to the optimization of design and the quality of our built
environment.,
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