
Autonomous Robots
https://doi.org/10.1007/s10514-018-9770-1

STEAP: simultaneous trajectory estimation and planning

Mustafa Mukadam1 · Jing Dong1 · Frank Dellaert1 · Byron Boots1

Received: 1 December 2017 / Accepted: 22 May 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We present a unified probabilistic framework for simultaneous trajectory estimation and planning. Estimation and planning
problems are usually considered separately, however, within our framework we show that solving them simultaneously can be
more accurate and efficient. The key idea is to compute the full continuous-time trajectory from start to goal at each time-step.
While the robot traverses the trajectory, the history portion of the trajectory signifies the solution to the estimation problem,
and the future portion of the trajectory signifies a solution to the planning problem. Building on recent probabilistic inference
approaches to continuous-time localization and mapping and continuous-time motion planning, we solve the joint problem
by iteratively recomputing the maximum a posteriori trajectory conditioned on all available sensor data and cost information.
Our approach can contend with high-degree-of-freedom trajectory spaces, uncertainty due to limited sensing capabilities,
model inaccuracy, the stochastic effect of executing actions, and can find a solution in real-time. We evaluate our framework
empirically in both simulation and on a mobile manipulator.

Keywords Estimation · Motion planning · Replanning · Trajectory optimization · Probabilistic inference · Factor graphs ·
Gaussian processes

1 Introduction

Trajectory estimation and planning are both important capa-
bilities for autonomous robot navigation. Trajectory estima-
tion is fundamentally backward-looking: the robot estimates
a trajectory of previous states that are consistentwith a history
of noisy and incomplete sensor data. Conversely, planning is
fundamentally forward looking: starting from an estimate
of its current state, the robot optimizes a trajectory of future

Mustafa Mukadam and Jing Dong contributed equally to this article.

This is one of several papers published in Autonomous Robots
comprising the “Special Issue on Robotics Science and Systems”.

B Mustafa Mukadam
mmukadam3@gatech.edu

Jing Dong
jdong@gatech.edu

Frank Dellaert
frank@cc.gatech.edu

Byron Boots
bboots@cc.gatech.edu

1 Institute for Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, GA, USA

states tominimize a cost function and achieve a feasible solu-
tion.

In this work, we provide a unified approach to trajectory
estimation and planning. Our key insight is that both these
problems are inherently variants of trajectory optimization
and can therefore be combined to remove the redundancy
present in a traditional two step process. The idea is to com-
pute the complete continuous-time trajectory from start to
goal at each time-step, such that given the current time-step,
the solutions to the estimation problem (history of the tra-
jectory) and the planning problem (future of the trajectory)
automatically fall out. Additionally, performing this joint
optimization allows information to flow between estimation
and planning resulting in mutual benefits. This problem can
be quite difficult to solve; the robot must contend with a
potentially high-degree-of-freedom (DOF) trajectory space,
uncertainty due to limited sensing capabilities, model inac-
curacy, and the stochastic effect of executing actions. For the
solution to be practical, it must be generated in (faster than)
real-time.

We propose a solution to the problem of simultaneous
trajectory estimation and planning (STEAP) by viewing
trajectory optimization as probabilistic inference and build-
ing on recent approaches to continuous-time localization

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9770-1&domain=pdf
http://orcid.org/0000-0002-5683-1642

Autonomous Robots

and mapping (Anderson et al. 2015; Yan et al. 2017)
and continuous-time motion planning (Dong et al. 2016;
Mukadam et al. 2017c). We represent the continuous-time
trajectory as a function mapping time to robot states and
model the trajectory distribution as a Gaussian process (GP)
(Barfoot et al. 2014;Mukadamet al. 2016).At each time-step,
we incrementally (re)estimate the entire continuous-time tra-
jectory, as newsensor data or cost information is encountered,
by iteratively recomputing themaximum a posteriori (MAP)
trajectory conditioned on all the available sensor data and
cost information. In general, sensor data can include var-
ious measurements from proprioception (encoders, inertial
measurement unit (IMU), etc) or perception for external
information (cameras, LIDARs, etc). On the other hand,
cost information can include full or partial information know
before (start, goal,map of the environment, etc) or constraints
and information encountered during execution (changing
goal, orientation constraints on the end effector for a por-
tion of the trajectory when for example a cup with liqiud is
held, etc).

We formulate the STEAP problem on a single proba-
bilistic graphical model and seek the MAP function with
incremental inference (Kaess et al. 2012). This allows us to
exploit the underlying sparsity of the problem and avoid re-
solving it from scratch as new information is encountered. In
our approach the trajectory is only updated where required,
dramatically reducing the overall computational burden and
enabling a faster-than-real-time solution. We also provide
theoretical insight on the connections between our approach
and various methods in mapping, estimation, and planning in
the context of solving them as inference on graphical mod-
els. To better accommodate mobile manipulation problems,
we build on recent work by Anderson and Barfoot (2015) on
continuous-time trajectory estimation on SE(3) and extend
Dong et al. (2016) to plan trajectories on Lie groups. We
implement our framework for solving STEAP and perform
several experiments to evaluate our approach in simulation
and on the Vector mobile manipulator (Fig. 1), and show
that our framework is able to incrementally integrate real-
world sensor data and directly update its trajectory estimate
and motion plan in real-time. This paper is an extended and
revised version of our conference paper (Mukadam et al.
2017b). In particular,

– We summarize the incremental inference via Bayes trees
approach (Kaess et al. 2012) in Sect. 6, specifically in the
context of solving the STEAP problem.

– We provide a detailed explanation on formulating sparse
GPs on Lie groups (Dong et al. 2017a) in Sect. 7.

– We present updated experiments on a harder dataset for
the planar robot and new experiments with a 18-DOF
PR2 robot in simulation.

Fig. 1 The Vector mobile manipulator, with an omni-drive base and a
6-DOF Kinova JACO2 arm, is solving the STEAP problem. The task
involves picking up an object from the white table on the right and
dropping it off on thewhite table on the left. The semi-transparent robots
show the trajectory taken, while the solid robot is the goal configuration

– We provide further insight in to our approach by adding
a discussion on limitations and future work in Sect. 10.

2 Related work

By viewing trajectory estimation and motion planning as
inference, we are able to borrow and combine tools from
different areas of robotics. The Simultaneous Localization
and Mapping (SLAM) community has focused on efficient
optimization algorithms for many years. One of the more
successful approaches is the Smoothing andMapping (SAM)
family of algorithms (Dellaert and Kaess 2006) that formu-
lates SLAMas inference on a factor graph (Kschischang et al.
2001) and exploits the sparsity of the underlying large-scale
linear systems to perform inference efficiently. Given new
sensor data, incremental Smoothing and Mapping (iSAM)
(Kaess et al. 2008, 2012) exploits the structure of the prob-
lem to efficiently update the solution rather than resolving
the entire problem from scratch. Recently, Tong et al. (2013)
introduced a continuous-time formulation of the SAM prob-
lem, in which the robot trajectory is a function that maps any
time to a robot state. The problem of estimating this function
alongwith landmark locations has been dubbed simultaneous
trajectory estimation and mapping (STEAM). This approach
was further extended in Barfoot et al. (2014) to take advan-
tage of the sparse structure inherent in the STEAM problem,
inYan et al. (2017) to efficiently and incrementally update the
solution, and inDong et al. (2017b) to 4Dmapping problems.
The resulting algorithms speed up solution time and can be
viewed as continuous-time analogs of the original square-
root SAM algorithm in Dellaert and Kaess (2006) and the
iSAM2 algorithm in Kaess et al. (2012).

123

Autonomous Robots

While probabilistic inference is frequently used as a
foundation for state estimation and localization, it is only
recently that these techniques have been used for plan-
ning. The duality between linear estimation and control has
long been established (Kalman et al. 1960), but solutions
to estimation and control problems have, for the most part,
evolved independently within their own subfields. In the
last decade this has begun to change. The optimization-
inference duality has been shown to extend to planning and
optimal control (Todorov 2008) with some early work in
this direction looking at solving Markov decision processes
(MDP) (Attias 2003). Several researchers have recently
proposed a probabilistic inference perspective on planning
and control problems, leveraging expectation maximization
(Toussaint and Storkey 2006; Levine and Koltun 2013),
expectation propagation (Toussaint 2009), KL-minimization
(Rawlik et al. 2012), and efficient inference on factor
graphs (Dong et al. 2016; Mukadam et al. 2017c, a; Huang
et al. 2017; Rana et al. 2017). Interestingly, the incremen-
tal inference technique (Kaess et al. 2011) used in Dong
et al. (2016) to solve replanning problems is the same as
originally used in Kaess et al. (2012) to solve SLAM prob-
lems. We exploit this idea to solve our more general class
of simultaneous trajectory estimation and planning prob-
lems.

Efficient replanning algorithms for navigation are an
active area of research (Koenig and Likhachev 2005; Fer-
guson et al. 2006), but most previous work is difficult to
extend to real, high-dimensional systems, is computation-
ally expensive, or does not incorporate uncertainty in the
robot’s state estimate. Recent work in simultaneous localiza-
tion and planning (SLAP) attempts to unify robot localization
and planning, with early work using HMMs (Penny 2014),
more recent approaches designed for dynamic environments
(Agha-mohammadi et al. 2015; Rafieisakhaei et al. 2016),
and new approaches (Ta et al. 2014) that combine state esti-
mation and model predictive control (MPC) (Camacho and
Alba 2013). Unfortunately, these approaches are too com-
putationally expensive due to the MPC style re-evaluation
of the new plan, which is compounded with high DOF sys-
tems in cluttered environments. In this work, we tackle the
simultaneous trajectory estimation and planning (STEAP)
problem within a unified probabilistic inference framework.
The STEAP problem can be considered as a generalization
of the SLAP problem in that the goal of STEAP is to compute
the full continuous-time trajectory conditioned on observa-
tions and costs in both the past and the future. By contrast,
SLAP only computes the current state estimate and the new
plan.

3 Background: trajectory optimization as
probabilistic inference

Following previouswork on both STEAMproblems (Barfoot
et al. 2014; Yan et al. 2017) and Gaussian process motion
planning (Dong et al. 2016; Mukadam et al. 2017c), we
view the problem of estimating or optimizing continuous-
time trajectories as probabilistic inference. We represent the
trajectory as a continuous-valued function mapping time t to
robot states θ(t). The goal is to find themaximuma posteriori
(MAP) continuous-time trajectory given a prior distribution
on the space of trajectories and a likelihood function.

3.1 Trajectory prior

A prior distribution over trajectories can be defined as a
vector-valued Gaussian process θ(t) ∼ GP(μ(t),K(t, t ′)),
where μ(t) is a vector-valued mean function and K(t, t ′) is
a matrix-valued covariance function. For any collection of
times t = {t0, . . . , tN }, θ has a joint Gaussian distribution

θ
.= [

θ0 . . . θN
]� ∼ N (μ,K) (1)

with mean vector μ and covariance kernel K defined as

μ
.= [

μ(t0) . . . μ(tN)
]�
, K .= [K(ti , t j)]

∣
∣∣
i j,0≤i, j≤N

. (2)

The prior distribution is then defined by the GP mean μ and
covariance K

p(θ) ∝ exp

{
− 1

2
‖ θ − μ ‖2K

}
. (3)

The prior encodes information about the system that is
known a priori. For example, in robotic state estimation
problems, a structured GP prior may encourage trajectories
to follow known system dynamics, e.g. the robot velocity
changes smoothly (Barfoot et al. 2014; Tong et al. 2013). In
motion planning, the prior is selected to encourage higher-
order derivatives of the system configuration to beminimized
(Dong et al. 2016; Mukadam et al. 2017c). The prior we use
in our implementation is detailed in Sect. 5.1.1.

3.2 Likelihood function

The likelihood function encodes information about a partic-
ular problem instance. For example, in STEAM problems,
the likelihood function encourages posterior trajectories to
be consistent with proprioceptive or landmark observations
(Barfoot et al. 2014), while in motion planning problems the
likelihood function encourages posterior trajectories to be
collision-free (Dong et al. 2016).

123

Autonomous Robots

Let e be a collection of random binary events. Examples
of events include collision, receiving a sensor measurement,
or reaching a goal. The likelihood function is the conditional
distribution l(θ; e) = p(e|θ), which specifies the probability
of events e given a trajectory θ . We define the likelihood as
a distribution in the exponential family

l(θ; e) ∝ exp

{
− 1

2
‖ h(θ, e) ‖2Σ

}
(4)

where h(θ, e) can be any vector-valued cost function with
covariance matrix Σ . The specific likelihood used in our
implementation is detailed in Sect. 5.1.

3.3 Computing theMAP trajectory

The posterior distribution of the trajectory given the events
can be written in terms of the prior and the likelihood using
the Bayes rule

p(θ |e) ∝ p(θ)p(e|θ). (5)

Then, we can compute the maximum a posteriori (MAP)
trajectory

θ∗ = argmaxθ

{
p(θ |e)} = argmaxθ

{
p(θ)p(e|θ)

}
(6)

= argminθ

{ − log
(
p(θ)p(e|θ)

)}
(7)

= argminθ

{
1

2
‖ θ − μ ‖2K +1

2
‖ h(θ , e) ‖2Σ

}
(8)

where Eq. (8) follows from Eq. (3) and Eq. (4). The MAP
estimation problem can therefore be reduced to a nonlin-
ear least squares problem and can be solved with tools like
Gauss-Newton or Levenberg-Marquardt.

When solving estimation and planning simultaneously,we
encounter new measurements and/or cost information dur-
ing online execution, thus changing the likelihood. A naïve
approach to contending with this new information would be
to resolve the problem in Eq. (8) repeatedly. However, this is
very inefficient and computationally expensive for an online
setting. In the following sections, we formulate the inference
problem on graphical models that allow us to exploit the
underlying sparsity of the problem (Sects. 4–5), and then we
use incremental inference techniques that allow us to itera-
tively update the solution only where needed resulting in a
computationally efficient approach (Sect. 6).

4 Mapping, estimation, and planning with
factor graphs

TheMAP trajectory computation in Sect. 3.3 can be executed
efficiently by exploiting known structure in the problem. This

is accomplished by representing the posterior distribution as
a factor graph. With a factor graph (Kschischang et al. 2001)
any distribution can be factored into a product of functions
that is organized as a bipartite graph G = {Θ, F, E}. This
graph consists of variable nodes Θ

.= {θ0, . . . , θ N }, factor
nodes F

.= { f0, . . . , fM }, and edges E that connect the two
types of nodes.

In our case, the variables are a set of instantaneous robot
states along the trajectory, and the factors are conditional
probability distributions on variable subsets Θi of Θ . There-
fore, we can write the posterior distribution as a product of
the factors

p(θ |e) ∝
M∏

i=0

fi (Θi). (9)

The precisionmatrix of this distribution also encodes the con-
nectivity in the graph. Consequently, a sparse factor graph
structure yields a sparse precision matrix, which can be
exploited to make the computation in Eq. (8) efficient (Del-
laert and Kaess 2006).

We can further write the posterior distribution as a product
of prior factors and likelihood factors,

p(θ |e) ∝ p(θ)p(e|θ) ∝ f prior (Θ) f like(Θ). (10)

In the remainder of this section, we will use this general
formulation to illustrate relationships between prior work in
mapping, estimation, and planning. Then, we will extend
this idea and connect it with our proposed work in the next
section.
SAM We begin with the smoothing and mapping (SAM)
(Dellaert and Kaess 2006) problem, an early work that uses
factor graphs to address the state estimation and mapping
problem in robotics. The goal is to estimate the full poste-
rior trajectory in the past given all measurements. The factor
graph used in SAM is

p(θest |e) ∝ f prior f meas, (11)

where θest signifies the history portion of the trajectory to be
estimated, f prior = f prior (θ0) is the prior on the first state,
and f meas is the likelihoodof all sensormeasurements,which
itself factors as

f meas =
∏

i

f meas
i (Θi). (12)

Unary measurement factors can refer to odometer, GPS or
IMU measurements, while higher order factors on a subset
of states (Θi) often represent landmark observations.
STEAM Like SAM, simultaneous trajectory estimation and
mapping (STEAM) (Barfoot et al. 2014; Anderson and Bar-

123

Autonomous Robots

foot 2015) addresses trajectory estimation problems. The key
difference is that in STEAM, the trajectory is no longer
treated as a discrete sequence of states Θ , but rather a
continuous-time trajectory sampled from a GP. The prior is
a joint distribution on the full trajectory f prior = f gp(Θ),
yielding a factor graph

p(θest |e) ∝ f gp f meas . (13)

GPMP2 GPMP2 (Dong et al. 2016) is a probabilistic infer-
ence framework for solving planning problems. It utilizes the
GP trajectory representation from STEAM to find collision
free future trajectories that satisfy the GP prior. Unlike SAM
and STEAM, however, the likelihood is not based on sen-
sor measurements, but rather the likelihood of a trajectory
being free from collision with obstacles. The collision factor
is defined as

f obs =
∏

i

f obsi (θ i). (14)

A fixed start and goal state (this can also be an end effector
goal in workspace) is also required in planning problem, and
therefore can be incorporated in to the likelihood. So factors
to fix start and goal configurations are also employed

f f i x = f start (θ0) f
goal(θN). (15)

The full factor graph of GPMP2 is, therefore

p(θ plan|e) ∝ f gp f obs f f i x (16)

where θ plan signifies the future portion of the trajectory to
be planned.
SLAP In real robotics applications, it is frequently the case
that both estimation and planning problems must be solved.
One approach to tackling this problem is SLAP (Penny 2014;
Agha-mohammadi et al. 2015). Although previous work in
this area does not employ factor graphs, we reformulate
SLAP using them here to illustrate its relation to other prob-
lems. SLAP can be viewed as splitting the inference problem
into two factor graphs, an estimation graph and a planning
graph, defined by

p(θest |e) ∝ f prior f meas, (17)

p(θ plan|e) ∝ f prior f curr f obs f goal . (18)

If a continuous-time trajectory representation like GPs are
employed, we can replace f prior with f gp. SLAP solves
the estimation graph first to find an estimate of the current
state f curr (θcurr) and then uses it to initialize and solve the
planning problem.

We summarize the factorization of these various problems
in Table 1, with their factor graphs shown in Fig. 2.

Table 1 Summary of related problems

Method Problem solved Factorization

SAM Estimation + mapping f prior f meas

STEAM Estimation + mapping f gp f meas

GPMP2 Planning f gp f obs f f i x

SLAP Estimation + planning Estimation: f prior f meas

Planning: f prior f obs f f i x

STEAP Estimation + planning f gp f meas f obs f f i x

5 Simultaneous trajectory estimation and
planning

In this paper, we present simultaneous trajectory estimation
andplanning (STEAP),where the task is to perform inference
on the entire factor graph from start to goal at once, in contrast
to SLAP, which would solve the estimation and planning
graph sequentially.We optimize the full trajectory θ = θest∪
θ plan represented by the GP prior in Sect. 3.1 given all sensor
data and cost information collected in to a single likelihood.
Compared to prior work discussed in the previous section,
the likelihood here is interpreted more broadly to represent
events than happen in the past and in the future, all together.
The STEAP factor graph is defined as,

p(θ |e) ∝ f gp f meas f obs f f i x . (19)

We define these factors in Sect. 5.1. Given the current time-
step, the solutions to the estimation and planning problems
automatically fall out. During online execution as new mea-
surement or cost information is encountered, the likelihood,
and by extension the factor graph, can be updated appropri-
ately. Performing inference on the new graph then provides
the updated estimation and replanning solutions. We explain
this procedurewith a simple toy example in Sect. 5.2. STEAP
has the following major advantages:

(i) Optimization of a single graph allows information to
flowbetween the two sub-graphs of estimation and plan-
ning, which is not possible with SLAP. This increases
performance in both estimation and planning, and pro-
vides mutual benefit. The collision-free likelihood of
both the past and the future part of the graph encourages
the estimated past trajectory to remain in areas with-
out obstacles, since a successfully traversed trajectory
would not have passed through obstacles. This helps
contend with noisy (or drops in) raw measurements and
reduces trajectory estimation errors. Similarly, the tra-
jectory estimation information corrects the estimate of
the current robot position, providing feedback for the
planned future trajectory.

123

Autonomous Robots

fmeas
i

f gp
i

fmeas
i

(a)

f start
i f goal

f gp
i

f obs
i

(b)

f start f goal

f obs
i

f gp
i

fmeas
i

(c)

Fig. 2 Example factor graph representation of a STEAM, b GPMP2, and c STEAP. Gray node shows current time-step (Color figure online)

(ii) The number of variables in a STEAP factor graph does
not change much during execution i.e. only a few fac-
tors are added in each step. This allows for very efficient
incremental inference using the Bayes tree data struc-
ture (Kaess et al. 2011). Updating the solution with
Bayes trees only requires a small fraction of the runtime
compared to reoptimizing the full graph from scratch.
Additional discussion of incremental inference using the
Bayes tree is in Sect. 6.

5.1 STEAP factor definitions

5.1.1 The Gaussian process prior factor

A Gaussian RBF kernel defines a prior distribution of tra-
jectories with no pairwise independences. In other words,
all states are connected to a single GP prior factor, f gp =
f gp(Θ). This prior cannot be factored, and destroys the prob-
lem’s sparsity, making inference computationally expensive.
However, in the context of STEAM problems, Barfoot et al.
(2014) showed that certain types of GP priors generated by
linear time varying (LTV) stochastic differential equations
(SDEs), are sufficient to model Markovian robot trajecto-
ries. These priors are highly structured, and factor according
to

f gp =
∏

i

f gpi (θ i , θ i+1) (20)

where any GP prior factor connects to only its two neighbor-
ing states, forming a (Gauss–Markov) chain. This is shown in
Fig. 2a where states (white circle) form a chain by connect-
ing to GP prior factors (black circle). In GPMP2 (Dong et al.
2016), theGPprior on trajectories is generated by aLTV-SDE
defined on a vector space (Fig. 2b). GP priors have also been
formulated with non-linear SDEs (Anderson et al. 2015) and
on the SE(3) Lie group (Anderson and Barfoot 2015).

If the robot configuration is in vector space R
n , similar

to GPMP2, STEAP can use the GP prior defined in (Barfoot
et al. 2014). But we develop STEAP for mobile manipulators
that have their configuration space defined by a Lie group
product θ i ∈ SE(2)×R

n where n is the degree-of-freedom of

the arm and the SE(2) Lie group defines a planar translation
and rotation (yaw) for themobile base.We employ a constant
velocity i.e. noise-on-acceleration model to define a non-
linear SDE that generates our GP prior. See Sect. 7 for details
about the GP prior.

5.1.2 Obstacle factor

All obstacle factors are constructed similar to GPMP2 (Dong
et al. 2016) except that they are defined for the Lie group
configuration space. The obstacle factors evaluate collision
cost using a hinge loss function and a signed distance field
of the environment. See (Dong et al. 2016) for details.

5.1.3 Start and goal factor

These are multivariate Gaussian factors

f start (θ0) = exp

{
− 1

2
‖ θ0 − θ start ‖2Σ f i x

}
(21)

f goal(θN) = exp

{
− 1

2
‖ θN − θ goal ‖2Σ f i x

}
(22)

with the mean as the start or goal and a small covariance
Σ f i x , and are used to tie down the trajectory at the start and
goal locations. When the trajectory has finished execution,
the goal factor is replaced with the pose measurement factor
so that the final posterior update gives the final trajectory
estimate.

5.1.4 Measurement factor

There are many types of sensors that provide different mea-
surements, and thusmany types of measurement factors have
been proposed by the SLAMcommunity (Dellaert andKaess
2006). For example, measurements from an inertial mea-
surement unit (IMU) can be incorporated into the factor
graph with pre-integrated IMU factors (Forster et al. 2015),
and visual landmark measurements from a camera can be
incorporated with Schur complement factors (Carlone et al.
2014).

123

Autonomous Robots

Legend

Robot state

Current
time-step

GP prior factor

Start and goal
factor

Obstacle factor

Measurement
factor

step = 0

t0 t1 t2 t3 t4

step = 1

step = 2

step = 3

step = 4

Fig. 3 A simple example illustrates STEAP using a robot (gray) that
navigates to the goal (black circle) while avoiding obstacles. At each
step the right side shows the environment with ground-truth (green),

estimated (red), and replanned (blue) trajectories. The left side shows
the corresponding factor graph. See text for details (Color figure online)

For the sake of simplicity, in the remainder of this paper
we use a multivariate Gaussian measurement factor for the
state measurement

f meas
i (θ i) = exp

{
− 1

2
‖ θ i − μmeas

i ‖2Σmeas

}
(23)

where the measurement queried from sensors has mean
μmeas
i with covariance Σmeas . The multivariate Gaussian

is a typical noise assumption for many sensors. For exam-
ple, GPS can provide coordinate and velocity measurements
in Cartesian space with covariance (Leandro et al. 2005),
and 2D/3D laser scanners can provide a raw localization
with covariance from a 2D/3D point-cloud with the ICP
algorithm (Censi 2007). Note that, althoughwe only usemul-
tivariate Gaussian measurement factors in our examples and
evaluations, the STEAP framework is general and can incor-
porate any type of measurement factors.

5.2 A STEAP example

We use an example, illustrated in Fig. 3, to describe how
STEAP works using Algorithm 1 that is complemented by
the block diagram in Fig. 8. Note that the small size of the
graph in Fig. 3 is just for illustration, in practice our approach
can handle much larger graphs (see Sect. 9 for the graph
sizes used in our experiments). In this example, a robot with

stochastic dynamics starts at time-step t0 and needs to reach
the goal at time-step t4 while avoiding any obstacles.

First, we construct a factor graph that will reflect the prior
distribution. A small, sparse set of robot states are connected
via GP factors that collectively form the prior distribution of
a continuous-time trajectory. Then, we add a start and a goal
factor with a small covariance (to tie the trajectory down at
the start and goal) and obstacle factors. In practice, there are
alsomultiple binary obstacle factors present between any two
states (omitted here for clarity) that use GP interpolation to
project the cost between any two states back on to those states
and allow the trajectory to stay sparse but still reason about
obstacles between the sparse states (see Dong et al. 2016 for
details). The start, goal and obstacle factors together form
the likelihood. We can find the mode of the posterior shown
in blue at the top level of Fig. 3, which is inherently a special
case of our approach providing the solution to the GPMP2
motion planning problem, since no measurement factors are
present and there is no state estimation yet at this step.

Next, the planned solution between t0 and t1 is upsam-
pled to a desired resolution with GP interpolation, checked
for safety, and then executed on the robot. The ground-truth
trajectory is illustrated in green. Since the system is stochas-
tic, execution is noisy. We make an observation to generate
a measurement factor and insert it into the graph at t1. This
new factor is combined with the old likelihood to produce the

123

Autonomous Robots

Algorithm 1 STEAP
θ : trajectory, f : factors, T : Bayes tree

1: θ ini t = initializeTrajectory()
2: FG = createFactorGraph(f gp , f obs , f f i x)
3: θ = inference(FG, θ ini t)
4: T = createBayesTree(FG, θ)
5: for i = 0 to N − 1 do
6: θi :i+1 = interpolateGP(θ , i , i + 1, resolution)
7: if collisionFree(θi :i+1) then
8: execute(θi :i+1)
9: f meas

i+1 = localize()
10: θ , T = incrementalInference(θ , f meas

i+1 , T)
11: else
12: return failure
13: end if
14: end for
15: return success

updated likelihood. Using the Bayes tree to efficiently orga-
nize computation, we generate a new MAP solution. Note
that, in this case, the factor graph is changed by adding only
one measurement factor, so the incremental inference per-
formed using the Bayes tree will be very fast. The red portion
of the trajectory is an estimate of the trajectory traversed by
the robot until current time-step t1 and the blue portion of the
trajectory is the replanned solution to the goal. This whole
process is then repeated (steps are shown from top to bottom
in Fig. 3) until the robot reaches the goal at t4. At t4 again we
have a special case of our approach that provides a solution to
the trajectory estimation problem (STEAM), but with extra
obstacle factors.

6 Incremental inference with the Bayes tree
data structure

In Sect. 3.3, we discussed how to solve the MAP inference
problem as non-linear least squares optimization. But one
significant drawback of using non-linear optimization like
Gauss-Newton or Levenberg-Marquardt to solve inference
on factor graphs is that they are iterative methods, and with
every iteration the problem must be completely linearized
and resolved (the cost on every factor will be evaluated and
every variable is updated), even if the factor graph is mostly
unchanged.

To reduce these redundant calculations,Kaess et al. (2012)
proposed efficient incremental updates of non-linear least
square problems with the Bayes tree data structure. When
re-solving a graph with only minor changes (in variables
or factors), only the parts of the Bayes tree associated with
the changes will be updated, leaving most of the Bayes tree
unchanged.Byupdating the solution in this incrementalman-
ner, the efficiency of inference is significantly improved.

Since only a very small portion of the STEAP factor graph
changes (few variables with new measurement factors) at

each time-step, we convert the factor graph into a Bayes tree,
and update the tree incrementally. By utilizing this efficient
incremental inference technique we get a significant perfor-
mance boost, and easily achieve real-time performance, as
illustrated in our experiments.

In this section, we first give a brief overview of the Bayes
tree and its relation to factor graphs, discuss how to per-
form incremental inference on Bayes tree, and then give a
detailed example to show how to use a Bayes tree to perform
incremental inference for a STEAP problem. Readers are
encouraged to refer to the iSAM2 paper (Kaess et al. 2012)
for a more detailed and general explanation.

6.1 Building a Bayes tree from a factor graph

A Bayes tree is a directed tree-structured graphical model
which is derived from a Bayes net that has very close rela-
tion to junction tree. Both the Bayes tree’s and junction tree’s
nodes are cliques of a Bayes net, but the Bayes tree is directed
to reflect the conditional relations in factored probability den-
sity.

Before we officially define the Bayes tree, we first intro-
duce the variable elimination algorithm (Dellaert and Kaess
2006), which converts a factor graph into a Bayes net. For a
given factor graph, we first choose an ordering of variables.
Although any variable ordering works for the explanation
here, different orderings generate Bayes nets with different
numbers of edges, and, in general, a smaller number of edges
is better for reducing computation. Choosing the optimal
ordering is aNP-hard problem. To contendwith this problem,
several approximation heuristics have been proposed.We use
COLAMD (Davis et al. 2004) to estimate a close-to-optimal
ordering.

Given a factor graph and a variable ordering, we eliminate
each variable by Algorithm 2 and factorize the probability
density over all variables to

p(θ) =
∏

j

p(θ j |S j), (24)

where S j ⊂ θ is the separator of θ j . Note that the factor-
ized probability density in Eq. (24) meets the conditional
dependencies of a Bayes net, so, by elimination, we convert
a factor graph to a Bayes net. Fig. 4 shows an example of
running elimination Algorithm 2 on a GPMP2 planning fac-
tor graph with reverse variable ordering, which is actually
the optimal variable ordering in this case.

For a Bayes net generated by Algorithm 2, we extract
all cliques Ck from the Bayes net and build a Bayes tree
by defining each node by one clique Ck . For each node
of the Bayes tree, we further define the conditional den-
sity p(Fk |Sk), where Sk is the separator variables Sk , by
Sk = Ck ∩�k intersecting between Ck and Ck’s parent node

123

Autonomous Robots

θ0 θ1 θ2 θ3 θ4 θ0 θ1 θ2 θ3 θ4 θ0 θ1 θ2 θ3 θ4

θ0 θ1 θ2 θ3 θ4 θ0 θ1 θ2 θ3 θ4 θ0 θ1 θ2 θ3 θ4

(d) (e) (f)

(a) (b) (c)

Fig. 4 Example of applying variable elimination on a planning fac-
tor graph. Red arrows/factors indicate the parts that change in Bayes
net/factor graph respectively at step 5 of Algorithm 2. a Factor graph.

b Eliminating θ0. c Eliminating θ1. d Eliminating θ2. e Eliminating θ3.
f Eliminating θ4 and final Bayes net (Color figure online)

Algorithm 2 Variable elimination of factor graph
1: for all θ j , in ordering, do
2: Remove all factors fi connected to θ j from factor graph, define

S j = {all variables involved in all fi }.
3: f j (θ j , S j) = ∏

i fi (θ).
4: Factorize f j (θ j , S j) = p(θ j |S j) fnew(S j).
5: Add p(θ j |S j) in Bayes net, add fnew(S j) back in factor graph.
6: end for

Algorithm 3 Creating a Bayes tree from a Bayes net
1: for all p(θ j |S j), in reverse ordering, do
2: if S j = ∅ then
3: Start a tree with a root cliqueCr with pCr = p(θ j), Fr = {θ j }.
4: else
5: Find the parent clique Cp that contains the first eliminated

variable in S j is in Fp .
6: if Fp ∩ Sp ⊆ S j then
7: Add p(θ j |S j) in pCp , add θ j in Fp , and add S j in Sp .
8: else
9: Add a new clique C ′ in tree with pC ′ = p(θ j |S j), F ′ =

{θ j }, S′ = S j as a child node of Cp .
10: end if
11: end if
12: end for

�k , and the frontal variables Fk , by Fk = Ck\Sk . The clique
is written as Ck = Fk : Sk . The probability density of a
Bayes tree is defined by the joint density of all nodes

p(θ) =
∏

k

pCk (Fk |Sk). (25)

The algorithm to convert a Bayes net to a Bayes tree is sum-
marized in Algorithm 3, and the Bayes tree example of the
toy planning factor graph from Fig. 4 is illustrated in Fig. 5.
Here, the example is straightforward: the Bayes net has 4
cliques, {θ0, θ1}, {θ1, θ2}, {θ2, θ3} and {θ3, θ4}, so the Bayes
tree has 4 nodes.

6.2 Incremental inference on Bayes tree

Given aBayes tree generated from a factor graph,we can effi-
ciently add new factors and perform incremental inference.
One of the most important properties of the Bayes tree is that

Factor Graph Bayes Tree

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

Fig. 5 Example of a Bayes Tree of a planning factor graph

if a factor, involving a variable θi , is added in the Bayes tree,
only the cliques between the cliques containing θi and the
root of the tree (assume the root of the tree is at the top) will
be affected. The sub-tree below the cliques containing θi will
remain unchanged during incremental inference. This means
that by updating the Bayes tree a large part of the computa-
tion that is redundant and involves only untouched cliques,
can be prevented compared to solving a full new non-linear
least squares optimization problem.

The procedure to update a Bayes tree with new factors is
stated in Algorithm 4. Given a set of new factors, we first
find all the cliques which contain the variables involved in
those new factors, and reinterpret the sub-tree as a factor
graph. After adding new factors in the factor graph, we per-
form elimination on the factor graph to get the corresponding
Bayes net, and further convert the Bayes net in to a Bayes
tree. Finally, we attach the untouched sub-tree to the updated
sub-tree, to get the final updated tree. The procedure is fur-
ther explained by a toy example in Fig. 6. In this example
we add a unary factor to a planning factor graph at θ2. As
explained in the previous sub-section, we have the Bayes net
of the factor graph in Fig. 6b, where the dashed boxes mark
the affected part of the tree. We see that the clique θ0 : θ1
remains untouched during the whole update procedure.

6.3 Using the Bayes tree in STEAP

We are now ready to discuss how the Bayes tree can be
used to speed up STEAP. At the beginning of the STEAP
algorithm, the factor graph is the same as the planning factor

123

Autonomous Robots

Algorithm 4 Incremental inference on a Bayes tree
Require: Bayes tree T , add factors F .
1: Remove top of T , reinterpret as factor graph.
2: Add F to factor graph.
3: Eliminate factor graph to Bayes net, then to Bayes tree.
4: Attach unchanged sub-tree to updated sub-tree.
5: return Updated Bayes tree T ∗.

θ0 θ1 θ2 θ3 θ4

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ1 θ2 θ3 θ4

θ1 θ2 θ3 θ4

(a)

(b)

Fig. 6 An example of how to add factors and perform incremental
inference on a Bayes tree. a The inference problem illustrated as a
factor graph. The added factor is displayed in red. b Steps to add the
red factor into Bayes tree (Color figure online)

graph in GPMP2 (Dong et al. 2016). A Bayes tree is con-
structed from the factor graph using the approach discussed
in Sect. 6.1. After construction of the Bayes tree, the factor
graph is no longer needed or maintained, since all remain-
ing steps are performed directly on the Bayes tree. When
the Bayes tree needs to be updated with new measurement
factors, we update the tree and perform incremental infer-
ence using the approach described in Sect. 6.2. An example
is shown in Fig. 7 that corresponds to the STEAP example
in Sect. 5.2.

As mentioned in Sect. 5, one of the advantages of
STEAP, compared to other trajectory estimation andplanning
approaches, is that it can use Bayes trees to gain a signifi-
cant speed up while performing incremental inference. In the
example in Fig. 7, we see that for each step of STEAP, only
part of the Bayes tree is updated leaving the remaining tree
unchanged. Therefore, incremental inference is more effi-
cient while maintaining similar accuracy compared to batch
inference, which needs to perform all the steps (linearization,
solving linear systems, etc.) on the full graph. We also gain
additional efficiency improvement from the iSAM2 (Kaess

t = 0

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

θ0 θ1 θ2 θ3 θ4

t = 1

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 2

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 3

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

t = 4

θ4, θ3

θ2 : θ3

θ1 : θ2

θ0 : θ1

Fig. 7 The Bayes tree of the STEAP example (red and blue are the
estimation and planning parts of the graph respectively) from Sect. 5.2.
At t = 0 the Bayes tree is built from the factor graph shown on the
left, and from t = 1 to t = 4 the incremental inference is performed on
the tree, with affected sub-trees marked by dashed boxes (Color figure
online)

et al. 2012) implementation of the Bayes tree (which we
use) that avoids excessive linearization operations by fluid
relinearization. We will see in the experimental section how
the Bayes tree and iSAM2 improve the efficiency of STEAP
compared to other approaches.

7 GP priors

7.1 GP priors on vector space

GP priors on vector-valued system states θ(t) can be gener-
ated by linear time-varying stochastic differential equations
(LTV-SDEs) (Barfoot et al. 2014)

θ̇(t) = A(t)θ(t) + u(t) + F(t)w(t), (26)

where u(t) is the known system control input, w(t) is white
process noise, and both A(t) and F(t) are time-varying sys-

123

Autonomous Robots

tem matrices. The white process noise is represented by

w(t) ∼ GP(0,QCδ(t − t ′)), (27)

where QC is the power-spectral density matrix, which is a
hyperparameter (Barfoot et al. 2014), and δ(t − t ′) is the
Dirac delta function. The mean and covariance of the GP is
computed by taking the first and second order moments of
the solution to Eq. (26)

μ(t) = Φ(t, t0)μ0 +
∫ t

t0
Φ(t, s)u(s)ds

K(t, t ′) = Φ(t, t0)K0Φ(t ′, t0)�+ (28)
∫ min(t,t ′)

t0
Φ(t, s)F(s)QCF(s)�Φ(t ′, s)�ds (29)

where μ0 is the initial mean value of first state, K0 is the
covariance of first state, and Φ(t, s) is transition matrix.

7.1.1 Constant velocity GP prior

The constant-velocity GP prior is generated by a LTV-SDE
with a noise-on-acceleration model

p̈(t) = w(t), (30)

where p(t) is the N -dimensional vector-valued position (or
pose) variable of trajectory, if the system has N degrees of
freedom. To convert this prior into the LTV-SDE form of
Eq. (26), a Markov system state variable is defined

θ(t)
.=

[
p(t)
ṗ(t)

]
, (31)

The prior in Eq. (30) then can easily be converted into a
LTV-SDE in Eq. (26) by defining

A(t) =
[
0 1
0 0

]
, u(t) = 0, F(t) =

[
0
1

]
. (32)

7.1.2 GP prior factor

Given the LTV-SDE formulation defined in Eq. (32), we
define the GP factor between any two states at ti and ti+1

by (Barfoot et al. 2014)

f gpi (θ i , θ i+1) = exp

{
− 1

2
‖Φ(ti+1, ti)θ i − θ i+1‖2Qi,i+1

}
(33)

where

Φ(t, s) =
[
1 (t − s)1
0 1

]
,Qi,i+1 =

[1
3�t3i QC

1
2�t2i QC

1
2�t2i QC �tiQC

]
. (34)

7.1.3 Constant time GP interpolation

The posterior mean of the trajectory at any time τ can be
approximated by Laplace’s method and expressed in terms
of the current trajectory θ at time points t (Barfoot et al.
2014):

θ(τ) = μ(τ) + K(τ, t)K−1(θ − μ). (35)

Although the interpolation in Eq. (35) naïvely requires O(N)

operations, with structured kernels θ(τ) can be computed in
as fast as O(1) (Barfoot et al. 2014; Dong et al. 2016).

7.2 GP prior on Lie groups

The sparse GP prior defined in GPMP2 (Dong et al. 2016)
works well for robot manipulators since their configurations
can be defined using a vector space. But not all robots’
configuration spaces can be well represented with a vec-
tor space. For example, the orientations of rigid body in 3D
space cannot be represented by vectors without singularity
(Euler angle) or extra degrees (quaternion). Lie groups offer
more general robot configuration space representations. For
example, SE(2) can represent position and orientation for
a planar base of a mobile manipulator, and SE(3) can rep-
resent position and orientation for an aerial vehicle. Prior
work (Anderson and Barfoot 2015) proposed the sparse GP
prior on SE(3) which is useful for trajectory estimation. In
this section we extend the sparse GP priors on Lie groups
(Chirikjian 2011) that will be useful for more general con-
figuration representations. This section is an overview of GP
priors on Lie groups, a more detailed discussion can be found
in our technical report (Dong et al. 2017a).

A N -dimensional matrix Lie group G is a sub-group of
the general linear group and defines a smooth differentiable
manifold whose local tangent space is described by its asso-
ciated Lie algebra g (Chirikjian 2011). For example, the Lie
algebra of SE(2) is defined by a skew symmetric matrix.
We can switch between them using the exponential map
exp : g → G and the logarithm map log : G → g and
to convert elements in local coordinate of G to Lie algebra
and vice versa we can use the hat operator ∧ : RN → g

and the vee operator ∨ : g → R
N respectively (Chirikjian

2011).

7.2.1 Constant velocity GP prior

We define a constant velocity GP prior here to match the
vector space prior in GPMP2 (Dong et al. 2016), but just
like the vector space, other priors can also be applied here.
Let T ∈ G represent a state in G, such that T (t) defines
a continuous-time trajectory in G. To generate the GP we
need to first construct a stochastic differential equation (SDE)

123

Autonomous Robots

θinit

θi:i+1

fmeas
i+1

i = N

i = 0
fgp, fobs, ffix

θ

Fig. 8 Block diagram of our framework showing all the components
and how they interact. Blue boxes are modules and gray boxes are
data. Sensor measurements flow from the Robot Module to the

Localization Module. This block diagram is also complemented
by Algorithm 1 (Color figure online)

with a Markovian state (Barfoot et al. 2014). Let that state
be θ(t)

.= {T (t),� (t)}, with the SDE as a double integrator
noise-on-acceleration model that will yield a constant veloc-
ity prior,

�̈ (t) = w(t), w(t) ∼ GP
(
0,QCδ(t − t ′)

)
(36)

where � (t) is the ‘body-frame velocity’ variable defined by

� (t)
.= (T (t)−1Ṫ (t))∨. (37)

and w(t) is a white noise, zero mean Gaussian process and
power-spectral densitymatrixQC (Barfoot et al. 2014). Since
∀ T ∈ G, T−1Ṫ ∈ g (Chirikjian 2011), we can apply the
∨ operator on T (t)−1Ṫ (t). However, unlike GPMP2 (Dong
et al. 2016), this SDE is non-linear. Fortunately through lin-
earization we can convert it to the linear time-varying SDE
(LTV-SDE) that GPMP2 uses.

7.2.2 Local linearization

With linearization on the Lie group around any Ti , we can
define both a local GP and a LTV-SDE on the linear tangent
space to leverage the constant-velocity GP prior. A local GP
at any time t, ti ≤ t ≤ ti+1 will be

T (t) = Ti exp(ξ i (t)
∧), ξ i (t) ∼ N (0,K(ti , t)) (38)

where the local pose variable ξ i (t) ∈ R
N around Ti is

ξ i (t)
.= log(T−1

i T (t))∨. (39)

Then the local LTV-SDE is defined using the local pose sim-
ilar to Eq. (36) as a double integrator noise-on-acceleration

model to give a constant velocity prior

ξ̈ i (t) = w(t), w(t) ∼ GP(0,QCδ(t − t ′)) (40)

with the local Markovian state for the LTV-SDE as

γ i (t)
.= {ξ i (t), ξ̇ i (t)}. (41)

To show the equivalence between the original nonlinear SDE
and the local approximation we use the identity (Chirikjian
2011)

T (t)−1Ṫ (t) = (
Jr (ξ i (t))ξ̇ i (t)

)∧ (42)

where Jr is the right Jacobian ofG. Following from Eq. (37)
we get

ξ̇ i (t) = Jr (ξ i (t))
−1� (t) (43)

If the time interval between any ti and ti+1 is small then the
approximation

ξ̇ i (t) ≈ � (t) (44)

is good. Then linear SDE Eq. (40) is a good approximation
of non-linear SDF Eq. (36), so we linearize the SDE and we
can apply LTV-SDE GP prior by (Barfoot et al. 2014).

7.2.3 GP prior factor

We define the GP factor between any two states at ti and ti+1

with their local pose using the linearized SDE formulation

123

Autonomous Robots

on the Lie group manifold

f gpi (θ i , θ i+1)

= exp

{
− 1

2
‖Φ(ti+1, ti)γ i − γ i+1‖2Qi,i+1

}
(45)

where the logarithmmap provide transformation from SE(2)
to R3 and vice versa with the exponential map, and

Φ(t, s) =
[
1 (t − s)1
0 1

]
,Qi,i+1 =

[1
3�t3i QC

1
2�t2i QC

1
2�t2i QC �tiQC

]
. (46)

We use this GP prior in our current implementation.

8 Implementation details

We implement STEAP within the PIPER (Mukadam 2017)
package using ROS (Quigley et al. 2009) and GPMP2 (Dong
et al. 2016) and have open-sourced the code. Fig. 8 shows a
block diagram of the framework. The offline phase assim-
ilates (i) robot-specific information including model and
physical parameters, (ii) problem definitions and optimiza-
tion parameters, and (iii) a pre-generated signeddistancefield
(SDF) of the environment, which is assumed to be static.
In the online phase, this information is passed to our cen-
tral module, STEAP Module, that solves STEAP problems
and communicates with the Robot Module (simulated or
physical) with sensors, and the Localization Module
that takes raw sensor measurements and outputs a noisy pose
estimate for the robot that can be interpreted by the STEAP
Module.

Note that in our framework, the Localization
Module is free to be any source of raw or processed sensor
information, as long as suitable factors are defined to fuse
sensor information in the factor graph, e.g. GPS, LIDAR,
monocular, or stereo camera data. In our implementation we
use a depth image-based localization algorithm, detailed in
Sect. 8.4.

8.1 STEAPmodule

This module uses the robot and problem configuration. In the
first step, the module initializes the problem by constructing
an initial factor graph, performing inference to get the first
planned solution, and constructing a Bayes tree for future
iterations. During every other step, the module performs
incremental inference by updating the Bayes tree directly. At
every step, the replanned solution is upsampled and checked
for safety, and is sent to the Robot Module. When the
Localization Module returns a current pose measure-
ment, new sensormeasurement factors are added to theBayes
tree and the updated posterior is evaluated. This procedure

repeats until the full trajectory completes execution or exits
due to collision failure. Given the generic implementation of
this module, our framework can be used on any simulated or
real robot as long as the robot information is provided in the
offline phase.

8.2 Robot module

This module consists of the robot API and controllers that
can understand and execute the trajectory passed to it by the
STEAP Module for either a real robot or an interface with
Gazebo for a simulated robot. Sensors on the robot pass infor-
mation to the Localization Module. Note that in our
simulator, adjustable Gaussian noise is mixed in both sys-
tem dynamics (more precisely vehicle velocities) and sensor
measurements (more precisely depth measurements of depth
camera simulator), to simulate the real-world stochasticity.

8.3 Mapper

Obstacle factors require a signed distance field (SDF) to cal-
culate obstacle cost. Although we can calculate SDFs from
CAD models in simulation, we will not have these models
available in most real-world environments. Therefore, we
build SDFs from sensor data. We use depth scans from depth
sensors (a simulated depth camera in simulation and a Prime-
Sense, shown in Fig. 9, in real-world experiments), and an
occupancy grid mapping approach (Thrun et al. 2005, Ch.9)
to generate the SDF. The space is first discretized into small
cells, and a probability of occupancy po is assigned to each
cell, with initial po = 0.5 (sincewe have no information). All
pos are updated by sensor measurements, and after all sensor
data is received, we assume cells with po ≥ 0.5 are occu-
pied, and cells with po < 0.5 are unoccupied. Note that we
assume cells with po = 0.5, which indicates no depth mea-
surement available, are occupied, since it is safer to assume
that locations never observed are occupied by obstacles. True
camera poses are provided by a motion capture system dur-
ing the mapping process. After occupancy grid mapping, we
calculate the signed distance field by the efficient distance
transformation (Felzenszwalb and Huttenlocher 2012). We
use CUDA (Nickolls et al. 2008) to implement occupancy
grid mapping and distance transformation, allowing us to
achieve real-time performance on scenes roughly of size
8m×6m×1.5m with 3cm resolution. A map constructed
with this approach is shown in Fig. 9.

8.4 Localizationmodule

The Localization module reads raw sensor data from the
Robot Module, calculates a pose estimate of the robot,
and provides this information to the STEAP Module. Here
it’s free to choose any Localization algorithm. We choose

123

Autonomous Robots

Fig. 9 Left: the PrimeSense depth camera mounted on the robot base.
Right: one 8m×6m×1.5m occupancy grid map built by the mapper
module

an ICP-style iterative approach, which similar to tracking
in KinectFusion (Izadi et al. 2011) but operates on the full
SDF generated by theMapper rather than the truncated SDF
(TSDF) in KinectFusion. We use CUDA to implement and
parallelize the tracking module to achieve real-time perfor-
mance. Although additional sensor data like RGB images,
odometry, and laser scans are available to the robot, we only
use depth images from PrimeSense in our experiments.

8.5 Computational complexity

Since our approach can involve performing inference on
arbitrary factor graphs and incremental inference on their
corresponding Bayes trees, the computational complexity
depends on the problem and the structure of the graph or
tree and how the tree changes over time. Considering the
case of the experiments in this paper where the graphs are
chain-like and measurement factors are unary, the complex-
ity of the batch step is O(T D2), where T is the number of
time-steps (or states) and D is the dimension of the system
state. The time complexity O(T D2) comes from solving the
block-tridiagonal linear system with block size D × D.

In the online step, the time complexity of the incremental
update is O(V D2), where V is the total number of variables
(or states) in all the affected cliques of the Bayes tree starting
from the root of the tree. In the beginning since all states in
the Bayes tree are affected, V is the same as T and the time
complexity is equal to the batch step complexity. When the
robot is moving along the trajectory, V is much smaller, as
shown in Fig. 7.

The time complexity for STEAP discussed above only
applies to cases of chain-like graphs (as shown in Fig. 3)
that have a start-to-goal variable ordering. In the presence of
non-unary measurement factors (for example, higher-order
measurement factors like landmark observations) that con-
nect to states across greater time-intervals, or in the case of
loop-closures, the time complexitywill be greater. In general,
the time complexity increases as the sparsity in the graph
decreases, and is also dependent on the variable ordering
selected by the COLAMD heuristics.

Fig. 10 STEAP result on an example from the simulation benchmark
with a planar 2-link mobile arm. Ground-truth (green), estimated past
(red) and replanned future (blue) trajectories are shown with the current
robot pose between the red and blue trajectories and the goal at the end
of the blue trajectory. Best viewed in color (Color figure online)

9 Evaluation

We evaluate our framework with simulation and real-world
experiments.1 The simulation benchmark is performed on
two datasets: a planar 2-link mobile arm in several randomly
generated 2D environments as shown in Fig. 10, and a 18-
DOF PR2 robot in a simulated indoor environment as shown
in Fig. 11. The real-world experiments are performed on a
mobile manipulator, with an omni-drive base and a 6-DOF
Kinova JACO2 arm, in an indoor environment as shown in
Fig. 1.

In our experiments we compare our proposed approach,
simultaneous trajectory estimation and planning (STEAP),
against an open loop execution (OL). In OL the initial infer-
ence solves the GPMP2 planning problem and the planned
trajectory is executed without any estimation or replanning
until thefinal time-step or a collision. In our simulation exper-
iments, we also compared against simultaneous localization
and planning (SLAP) that uses the current measurement fac-
tor in the graph, but updates only a truncated version of the
graph associated with the future states to replan. This graph
also uses the GP prior factors from STEAP.

9.1 Benchmark with a planar 2-linkmobile arm

For this benchmark we use a simulated 2-link planar mobile
arm with base of size 1m × 0.7m and link length 0.6m in
an environment of size 30m × 20m. The robot is equipped
with a simulated 2D laser scanner for localization using ICP.
The environment is populated with 20 randomly generated
obstacles of size 1m × 1m. The graph consists of 30 states
from start to goal with 5 interpolated binary obstacle fac-
tors between any two states. We compare OL, SLAP and
STEAP across different amounts of robot dynamics noise

1 A video of experiments is available at https://youtu.be/
lyayNKV1eAQ.

123

https://youtu.be/lyayNKV1eAQ
https://youtu.be/lyayNKV1eAQ

Autonomous Robots

Fig. 11 Workspace setup for PR2 full-body problems. An example
problem with start and end robot state, and planned trajectory of the
PR2 base is shown. As done in GPMP2, the PR2 body is approximated
with a set of spheres for collision checking

(ndyn), implemented as uniformbounded additive noise (m/s)
to the robot velocity, and camera measurement noise (ncam),
implemented as additive Gaussian noise (m−1) when receiv-
ing depth information from the camera on the robot. Each
setting is run with 40 distinct seeds (each seed yields a new
environment) to account for stochasticity, which are kept the
same across all three scenarios. In each trial we record if the
trajectory successfully finishes without collision (success),
the distance from the goal (goal error) at the end of execu-
tion, and L2 norm of the ground-truth trajectory with the
estimated trajectory (estimation error).

The results for this benchmark are summarized in
Table 2A–E. The goal and estimation error are aggregates of
runs where success is true (the robot reached the goal with-
out colliding with any obstacles). As expected, OL exhibits a
low success rate that drops further with an increase in ndyn .
SLAP has lower success rates compared to OL; a possible
reason is the low precision trajectory estimation from SLAP
confuses the robot. Comparatively STEAP has a higher suc-
cess rate than SLAP and OL, and also follows the decreasing
trend with increasing ndyn .

The goal error in STEAP is much lower than SLAP and
OL, with the help from high precision trajectory estimation.
The trajectory estimation error is significantly smaller with
STEAP compared to SLAP and the difference between them
increases with increasing ncam . This can be attributed to
simultaneously solving the trajectory estimation and plan-
ning problems; the motion plan helps in providing a better
estimate of the robot’s trajectory and in turn a better estimate
of the trajectory helps in generating a better motion plan.

9.2 Benchmark with 18-DOF full-body PR2

We additionally evaluated our approach on a simulation
dataset in 3D, with a 18-DOF PR2 robot in an indoor set-
ting. The PR2 has two 7-DOF arms (without grippers), a
3-DOF mobile base, 1-DOF linear actuator that moves the
torso in the vertical direction, and a 2D laser scanner on the
robot base (10cm above the ground level) used for localiza-
tion. The environment consists of two cabinets, a desk and
several random obstacles so that the laser scanner receives
non-trivial readings when the robot is facing outwards. The
benchmark consists of a total of 6 tasks, each with a start and
a goal state, and the robot is tasked with reaching the goal
states from the start states. The environment and an example
problem from the benchmark is shown in Fig. 11. We com-
pare OL, SLAP and STEAP across different ndyn and ncam
settings, with a graph of 40 states from start to goal. Each
setting is run for 120 trials (6 tasks with 20 distinct seeds)
and similar metrics as the 2D benchmarks are recorded.

The results for this benchmark are summarized in
Table 3A–F, which support the finding in the previous 2D
benchmark. We see that STEAP has higher success rates
compared to SLAP and OL. This is a result of the lower esti-
mation errors (compared to SLAP) and better quality plans
achieved through joint inference. STEAP has a significantly
lower estimation errors with larger ncam . The goal error in
SLAP and STEAP are smaller than OL since both are feed-
back approaches that can reduce the error when approaching
the goal. We also observe that STEAP has a smaller perfor-
mance drops caused by a high value of both ndyn and ncam ,
than SLAP and OL. We also report timing results for this
benchmark. On average STEAP takes about 17ms per time-
step, which is significantly faster than SLAP with an average
of about 130ms per time-step.

9.3 Experiments with a real robot

Real-world experiments were performed in an 8m × 6m
indoor environment. Various obstacles (desks, sofas and
small objects like boxes and cans) are placed in the environ-
ment, to simulate domestic scenes. During the experiments,
ground-truth robot trajectories are recorded by an Optitrack
motion capture system. A photo of the robot traversing the
environment and a map of the environment can be found
in Figs. 1 and 9, respectively. Our implementation runs on
a desktop computer equipped with Intel 4.0GHz quad-core
CPU, 32GB memory and one NVIDIA Titan X GPU. Robot
sensor data is streamed to the desktop overWiFi, and STEAP
commands are streamed back to robot after processing.

We design 2 problems for performance evaluation. In
each problem the robot begins from a start configuration
and is tasked with reaching the goal configuration. For both
problems the graph consists of 50 states from start to goal

123

Autonomous Robots

Table 2 A: Success rate on planar 2-link mobile arm benchmark, B: Goal translational error (in m), C: Goal rotational error (in rad), D: Estimation
translational error (in m), E: Estimation rotational error (in rad)

ncam 0.02 0.1

OL SLAP STEAP SLAP STEAP

(A)

ndyn 0.1 0.5250 0.1250 0.5750 0.0750 0.7000

0.2 0.3250 0.1250 0.6000 0.1000 0.4750

0.5 0.2500 0.0750 0.3750 0.0500 0.4500

(B)

ndyn 0.1 0.7463 0.7556 0.3413 0.7067 0.4377

0.2 0.9715 0.8012 0.4888 1.0793 0.5162

0.5 1.4179 1.2110 0.6872 1.1295 0.7345

(C)

ndyn 0.1 0.0805 0.1978 0.0269 0.0497 0.0379

0.2 0.0952 0.2344 0.0433 0.0847 0.0401

0.5 0.0952 0.2344 0.0433 0.0847 0.0401

ncam 0.02 0.1

SLAP STEAP SLAP STEAP

(D)

ndyn 0.1 0.3662 0.1598 0.9217 0.2213

0.2 0.3644 0.2183 0.8885 0.2242

0.5 0.3937 0.3065 1.0125 0.3309

(E)

ndyn 0.1 0.0470 0.0183 0.1287 0.0266

0.2 0.0480 0.0280 0.1132 0.0297

0.5 0.0527 0.0450 0.1265 0.0468

with 2 interpolated binary obstacle factors between any two
states. Figure 12 shows a screenshot when the robot is run-
ning STEAP for problem 1. To evaluate the performance of
our STEAP implementation, we performed 10 runs for each
problem, in which 5 runs switch the start and goal configu-
rations. We record the planned, estimated and ground-truth
trajectories and calculate the same performance criteria as
in simulation: success rate, final goal error, and trajectory
estimation error.

Table 4 reports performance in these real-world exper-
iments. We first run one-time batch planning by GPMP2
and use an open loop controller to follow the planned
trajectory. Since the control command execution on the omni-
directional wheels is noisy, the robot base cannot follow the
planned trajectory well, so every run ends with a collision.
With the state estimation and replanning provided by STEAP,
the robot can follow planned trajectories better, and compen-
sate for perturbations. With STEAP the robot can achieve a
95% overall success rate for the given tasks, with a final
translation error of about 14.2cm in problem 1, and 5.19cm
in problem 2. This goal error is due to the finite-horizon tra-
jectory setup that we use. Since if the robot overshoots when

near the end of the trajectory, it may not have enough time
steps left to recover. The goal error can be reduced with a
receding-horizon formulation of our problem.

In addition to improving planning results, STEAP helps
with trajectory estimation.We show the raw localization error
in Table 4. Due to the noisy depth measurements, the local-
ization module provides poor estimates of the robot pose.
Sometimes the localization module additionally fails due to
the scene being out of sensor range (for example when the
robot is too close to obstacles). With STEAP, we can reduce
the estimation error by about 50–60% as shown in Table 4. In
the video of experiments,1 one can see that although the raw
localization positions have significant jumps between each
measurement, the estimation results in STEAP are stabilized
given previous sensor information and the planned trajectory.

To evaluate the efficiency of our implementation, we
time the localization and STEAPmodules separately. Timing
results show that, in real-world experiments, localization and
STEAP modules have average runtimes of 19.3 and 76.0ms
respectively, and maximum runtimes of 30.3 and 149ms
respectively, indicating that our localization implementation

123

Autonomous Robots

Table 3 A: Success rate on 18-DOF full-body PR2 benchmark, B: Goal translational error (in m), C: Goal rotational error (in rad), D: Estimation
translational error (in m), E: Estimation rotational error (in rad), F: Average runtime (in s)

ncam 0.1 0.5

OL SLAP STEAP SLAP STEAP

(A)

ndyn 0.02 0.3833 0.7500 0.8333 0.5417 0.6917

0.1 0.0750 0.3083 0.8583 0.0667 0.6250

0.5 0.0083 0.0500 0.3500 0.0083 0.3083

(B)

ndyn 0.02 0.2032 0.0798 0.0426 0.0970 0.0943

0.1 0.4197 0.1108 0.0440 0.1647 0.1024

0.5 2.8040 0.1357 0.0936 0.4100 0.1238

(C)

ndyn 0.02 0.1078 0.0396 0.0219 0.0587 0.0543

0.1 0.3206 0.0690 0.0261 0.0944 0.0644

0.5 0.5170 0.0803 0.0473 0.2780 0.0784

ncam 0.1 0.5

SLAP STEAP SLAP STEAP

(D)

ndyn 0.02 0.0807 0.0287 0.1487 0.0739

0.1 0.1777 0.0307 0.1749 0.0728

0.5 0.2100 0.0595 0.2550 0.0858

(E)

ndyn 0.02 0.0415 0.0168 0.0689 0.0423

0.1 0.0906 0.0185 0.0790 0.0459

0.5 0.1007 0.0308 0.1310 0.0475

(F)

ndyn 0.02 0.1181 0.0141 0.1273 0.0188

0.1 0.1377 0.0149 0.1353 0.0193

0.5 0.1474 0.0185 0.1438 0.0195

can easily process the depth image stream at 30Hz, and run
STEAP at ∼ 10Hz.

10 Limitations and future work

The primary limitation of our current work is that it is only
applicable in known, static environments. We use an existing
map of the environment and precompute a signed distance
field for collision checking. In dynamic environments, the
map and the signed distance field would need to be con-
stantly updated, which can be a major computational bottle
neck, especially in large environments. Using techniques like
incremental mapping (Yan et al. 2017), incremental signed
distance fields (Oleynikova et al. 2017), and dynamic track-
ing (Schmidt et al. 2014), we can extend our method to
performSLAMand planning simultaneously online and han-
dle dynamic environments.

Our current implementation is limited to holonomic sys-
tems, like the omni-directional mobile base we use in
our experiments. It does not support nonholonomic and
inequality constraints. But, they can be incorporated as soft
constraints with small covariances, for example, the config-
uration and velocity limit factors (Mukadam et al. 2017c).
A sequential quadratic programming type procedure would
have to be set up to handle hard constraints.

Our approach is a local trajectory optimization method
and is, therefore, prone to local minima. In the context of
estimation, trajectory optimization rarely suffers from bad
localminimas, since obtaining reasonable initial values is not
hard during estimation (e.g. from odometry). In the context
of planning, trajectory optimization suffers from bad local
minimas (ones that are in collision) primarily in extremely
cluttered or maze type environments due to the nature of the
optimization methods used. Readers are encouraged to refer
to Dong et al. (2016) and Mukadam et al. (2017c) for some

123

Autonomous Robots

Fig. 12 Visualization of STEAP results on one run of problem 1. The
green line is the ground-truth trajectory as determined by the motion
capture system, and green robot outline shows the current pose of the
Vector robot. The blue line is the planned trajectory and the red line is
the estimated trajectory. The yellow axis is current raw pose estimate.
The ground plane is cut for visibility. Best viewed in color (Color figure
online)

Table 4 Real-world experimental results

Problem 1 Problem 2

OL success rate 0/10 0/10

STEAP success rate 9/10 10/10

Goal translation error (cm) 14.20 5.19

Localization error (cm) 7.07 6.45

Trajectory estimation error (cm) 3.48 2.53

quantitative evaluations on several commonly used trajectory
optimization techniques. In case of batch optimization i.e.
the first inference step, several ideas like random initializa-
tions and graph-based initializations (Huang et al. 2017) exist
to improve results. However, there are no known methods to
address this problem during incremental inference using the
Bayes tree, except by re-solving a new batch optimization
problem,whichwill be computationally expensive. Develop-
ing new incremental algorithms that are better able to contend
with local minima is an interesting research direction.

Our approach is capable of fusing information from
multiple sensors in an asynchronous fashion using GP inter-
polation (Yan et al. 2017), we are interested in exploring this
capability more fully. Finally, as discussed in the results sec-
tion, a receding horizon formulation of STEAP would help
reduce goal-errors and better support navigation with explo-
ration. We leave this as future work.

11 Conclusion

We formulate the problem of simultaneous trajectory esti-
mation and planning (STEAP) as probabilistic inference. By
representing the prior distribution of a continuous-time tra-
jectory and likelihood function of costs and observations

with factor graphs, we can efficiently perform inference
to compute the posterior distribution of the trajectory. We
solve STEAP in an online setting to simultaneously esti-
mate and smooth the trajectory history as well as replan
for the future trajectory as new information is encountered.
This is made possible by performing efficient incremental
inference to update the previous solution. We conducted
experiments in simulation and on a real mobile manipulator
and showed that our framework is able to perform in real-time
and robustly handle the stochasticity associated with execu-
tion. Our results demonstrate that this framework is suitable
for online applications with high-degree-of-freedom systems
in known, static real-world environments.

Acknowledgements This work was partially supported by NSF NRI
award 1637908 and National Institute of Food and Agriculture, USDA,
award 2014-67021-22556. The authors thank Muhammad Asif Rana,
David Kent, Vivian Chu, and Sonia Chernova for access to and help
with the Vector robot.

Funding NSF NRI Award 1637908 and National Institute of Food and
Agriculture, USDA, Award 2014-67021-22556.

Compliance with ethical standards

Conflict of interest Author Dellaert is affiliated with Facebook, and
author Boots is affiliated with Google.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent No informed consent was required.

References

Agha-mohammadi, A. A., Agarwal, S., Chakravorty, S., & Amato, N.
M. (2015). Simultaneous localization and planning for physical
mobile robots via enabling dynamic replanning in belief space.
arXiv:1510.07380

Anderson, S., & Barfoot, T. D. (2015) Full STEAM ahead: Exactly
sparse Gaussian process regression for batch continuous-time tra-
jectory estimation onSE (3). In IEEE/RSJ international conference
on intelligent robots and systems (IROS) (pp 157–164). IEEE.

Anderson, S., Barfoot, T. D., Tong, C. H., & Särkkä, S. (2015). Batch
nonlinear continuous-time trajectory estimation as exactly sparse
gaussian process regression. Autonomous Robots, 39(3), 221–238.

Attias, H. (2003). Planning by probabilistic inference. In International
conference on artificial intelligence and statistics (AISTATS).

Barfoot, T., Tong, C. H., & Sarkka, S. (2014). Batch continuous-time
trajectory estimation as exactly sparse Gaussian process regres-
sion. In Science and Systems (RSS): Robotics.

Camacho, E. F., & Alba, C. B. (2013).Model predictive control. Berlin:
Springer.

Carlone, L., Kira, Z., Beall, C., Indelman, V., & Dellaert, F. (2014).
Eliminating conditionally independent sets in factor graphs: A uni-
fying perspective based on smart factors. In IEEE international
conference on robotics and automation (ICRA) (pp. 4290–4297).
IEEE.

123

http://arxiv.org/abs/1510.07380

Autonomous Robots

Censi,A. (2007).An accurate closed-formestimate of ICP’s covariance.
In IEEE International Conference on Robotics and Automation
(ICRA) (pp. 3167–3172). IEEE.

Chirikjian, G. S. (2011). Stochastic models, information theory, and
Lie groups, volume 2: Analytic methods and modern applications
(Vol. 2). Berlin: Springer.

Davis, T. A., Gilbert, J. R., Larimore, S. I., & Ng, E. G. (2004). A
column approximate minimum degree ordering algorithm. ACM
Transactions onMathematical Software (TOMS), 30(3), 353–376.

Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous
localization and mapping via square root information smoothing.
International Journal of Robotics Research, 25(12), 1181–1203.

Dong, J., Mukadam, M., Dellaert, F., & Boots, B. (2016). Motion plan-
ning as probabilistic inference usingGaussian processes and factor
graphs. In Robotics: Science and Systems (RSS)

Dong, J., Boots, B., & Dellaert, F. (2017a). Sparse Gaussian processes
for continuous-time trajectory estimation on matrix Lie groups.
arXiv:1705.06020

Dong, J., Burnhan, J., Boots, B., Rains, G., & Dellaert, F. (2017b). 4D
crop monitoring: Spatio-temporal reconstruction for agriculture.
In IEEE International Conference on Robotics and Automation
(ICRA)

Felzenszwalb, P., & Huttenlocher, D. (2012). Distance transforms of
sampled functions (p. 19). Technical Report

Ferguson, D., Kalra, N., Stentz, A. (2006) Replanning with RRTs.
In IEEE International Conference on Robotics and Automation
(ICRA) (pp. 1243–1248). IEEE.

Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2015) IMU
preintegration on manifold for efficient visual-inertial maximum-
a-posteriori estimation. In Robotics: Science and Systems (RSS)

Huang, E., Mukadam,M., Liu, Z., & Boots, B. (2017). Motion planning
with graph-based trajectories and Gaussian process inference. In
IEEE international conference on robotics and automation (ICRA)

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli,
P., Shotton, J., Hodges, S., Freeman, D., & Davison, A., et al.
(2011).KinectFusion:Real-time 3D reconstruction and interaction
using a moving depth camera. In Proceedings of ACM symposium
on user interface software and technology (UIST) (pp. 559–568)

Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental
smoothing and mapping. IEEE Transaction on Robotics, 24(6),
1365–1378.

Kaess, M., Ila, V., Roberts, R., Dellaert, F. (2011). The Bayes tree: An
algorithmic foundation for probabilistic robot mapping. In Algo-
rithmic Foundations of Robotics (pp. 157–173). Berlin: Springer.

Kaess,M., Johannsson,H.,Roberts,R., Ila,V., Leonard, J. J.,&Dellaert,
F. (2012). iSAM2: Incremental smoothing and mapping using the
Bayes tree. International Journal of Robotics Research, 31(2),
216–235.

Kalman, R. E., et al. (1960). A new approach to linear filtering and
prediction problems. Journal of Basic Engineering, 82(1), 35–45.

Koenig, S., & Likhachev, M. (2005). Fast replanning for navigation in
unknown terrain. IEEE Transaction on Robotics, 21(3), 354–363.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs
and the sum-product algorithm. IEEETransactions on Information
Theory, 47(2), 498–519.

Leandro, R., Santos, M., & Cove, K. (2005). An empirical approach for
the estimation of GPS covariance matrix of observations. In: ION
61st annual meeting TheMITRE corporation & draper laboratory
(pp. 27–29).

Levine, S., & Koltun, V. (2013) Variational policy search via trajec-
tory optimization. In Advances in neural information processing
systems (pp. 207–215)

Mukadam, M. (2017). PIPER (Online). https://github.com/gtrll/piper
Mukadam, M., Yan, X., & Boots, B. (2016). Gaussian process motion

planning. In IEEE international conference on robotics and
automation (ICRA) (pp. 9–15).

Mukadam,M.,Cheng,C.A.,Yan,X.,Boots,B. (2017a).Approximately
optimal continuous-time motion planning and control via proba-
bilistic inference. In IEEE international conference on robotics
and automation (ICRA)

Mukadam, M., Dong, J., Dellaert, F., Boots, B. (2017b). Simultaneous
trajectory estimation and planning via probabilistic inference. In
Robotics: Science and Systems (RSS).

Mukadam, M., Dong, J., Yan, X., Dellaert, F., & Boots, B. (2017c).
Continuous-time Gaussian process motion planning via proba-
bilistic inference. arXiv preprint arXiv:1707.07383

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable
parallel programming with CUDA. Queue, 6(2), 40–53. https://
doi.org/10.1145/1365490.1365500.

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., & Nieto, J. (2017).
Voxblox: Incremental 3D euclidean signed distance fields for on-
board mav planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Penny, W. (2014). Simultaneous localisation and planning. In 4th Inter-
national workshop on cognitive information processing (CIP) (pp.
1–6). IEEE.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., Ng, A. Y. (2009). ROS: an open-source Robot Oper-
ating System. In ICRA workshop on open source software, Kobe
(Vol. 3, p. 5)

Rafieisakhaei, M., Chakravorty, S., Kumar, P. (2016). Non-Gaussian
slap: Simultaneous localization and planning under non-Gaussian
uncertainty in static anddynamic environments. arXiv:1605.01776

Rana, M. A., Mukadam, M., Ahmadzadeh, S. R., Chernova, S., Boots,
B. (2017). Towards robust skill generalization: Unifying learning
from demonstration and motion planning. In Proceedings of the
1st Annual Conference on Robot Learning, PMLR (Vol. 78, pp.
109–118).

Rawlik, K., Toussaint, M., & Vijayakumar, S. (2012). On stochastic
optimal control and reinforcement learning by approximate infer-
ence. In Science and Systems (RSS): Robotics.

Schmidt, T., Newcombe, R. A., & Fox, D. (2014). DART: Dense artic-
ulated real-time tracking. In Robotics: Science and Systems (RSS)

Ta, D. N., Kobilarov, M., Dellaert, F. (2014). A factor graph approach
to estimation and model predictive control on unmanned aerial
vehicles. In International conference on unmanned aircraft systems
(ICUAS) (pp. 181–188). IEEE.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cam-
bridge: MIT press.

Todorov, E. (2008). General duality between optimal control and
estimation. In IEEE Conference on Decision and Control (pp.
4286–4292). IEEE.

Tong, C. H., Furgale, P., & Barfoot, T. D. (2013). Gaussian process
Gauss–Newton for non-parametric simultaneous localization and
mapping. International Journal of Robotics Research, 32(5), 507–
525.

Toussaint, M. (2009). Robot trajectory optimization using approxi-
mate inference. In International Conference onMachine Learning
(ICML) (pp 1049–1056). ACM.

Toussaint, M., Storkey, A. (2006). Probabilistic inference for solving
discrete and continuous state Markov decision processes. In Inter-
national Conference on Machine Learning (ICML) (pp 945–952).
ACM.

Yan, X., Indelman, V., & Boots, B. (2017). Incremental sparse GP
regression for continuous-time trajectory estimation and mapping.
Robotics and Autonomous Systems, 87, 120–132.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1705.06020
https://github.com/gtrll/piper
http://arxiv.org/abs/1707.07383
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://arxiv.org/abs/1605.01776

Autonomous Robots

Mustafa Mukadam is currently
a Ph.D. student in Robotics at
Georgia Institute of Technology,
working with Byron Boots in the
Institute for Robotics and Intel-
ligent Machines. He received his
M.S. degree in Aerospace Engi-
neering from University of Illi-
nois at Urbana-Champaign. His
research focuses on motion plan-
ning, estimation, and learning
from demonstration, often
employing probabilistic and
machine learning tools, for autono-
mous navigation and mobile manip-
ulation.

Jing Dong is a Ph.D. student
in Computer Science at Georgia
Institute of Technology. Prior to
joining Georgia Tech, he got his
bachelor degree in Engineering
Mechanics and Aerospace Engi-
neering from Tsinghua University,
Beijing, China. His current
research interests cover various
topics in robotics and computer
vision, including but not limited
to Simultaneous Localization and
Mapping (SLAM), 3D reconstruc-
tion, visual feature learning and
matching, and real-time motion
planning.

FrankDellaert is a Professor in the
School of Interactive Computing
at Georgia Tech. He obtained his
Ph.D. from Carnegie Mellon Uni-
versity in 2001. He has applied
Markov chain Monte Carlo sam-
pling methodologies in a variety
of novel settings, including the
Monte Carlo localization method
for estimating and tracking the
pose of robots, now a standard
and popular tool in mobile robo-
tics. His current research interests
lie in the overlap of Robotics and
Computer vision, and he is partic-

ularly interested in graphical model techniques to solve large-scale
problems in mapping and 3D reconstruction. The GTSAM toolbox
which embodies many of the ideas his group has worked on in the past
few years is available as open source, and uses factor graphs as the
unifying graphical model language to tie together many optimization
problems in computer vision, robotics, and even discrete optimization.

Byron Boots is an Assistant Pro-
fessor in the College of Comput-
ing at Georgia Tech. He directs
the Georgia Tech Robot Learn-
ing Lab, affiliated with the Cen-
ter for Machine Learning and the
Institute for Robotics and Intelli-
gent Machines. Byron’s research
focuses on development of theory
and systems that tightly integrate
perception, learning, and control.
He received his Ph.D. in Machine
Learning from Carnegie Mellon
University and was a postdoctoral
researcher in Computer Science

and Engineering at the University of Washington. His research has
won several awards including Best Paper at ICML in 2010.

123

	STEAP: simultaneous trajectory estimation and planning
	Abstract
	1 Introduction
	2 Related work
	3 Background: trajectory optimization as probabilistic inference
	3.1 Trajectory prior
	3.2 Likelihood function
	3.3 Computing the MAP trajectory

	4 Mapping, estimation, and planning with factor graphs
	5 Simultaneous trajectory estimation and planning
	5.1 STEAP factor definitions
	5.1.1 The Gaussian process prior factor
	5.1.2 Obstacle factor
	5.1.3 Start and goal factor
	5.1.4 Measurement factor

	5.2 A STEAP example

	6 Incremental inference with the Bayes tree data structure
	6.1 Building a Bayes tree from a factor graph
	6.2 Incremental inference on Bayes tree
	6.3 Using the Bayes tree in STEAP

	7 GP priors
	7.1 GP priors on vector space
	7.1.1 Constant velocity GP prior
	7.1.2 GP prior factor
	7.1.3 Constant time GP interpolation

	7.2 GP prior on Lie groups
	7.2.1 Constant velocity GP prior
	7.2.2 Local linearization
	7.2.3 GP prior factor

	8 Implementation details
	8.1 STEAP module
	8.2 Robot module
	8.3 Mapper
	8.4 Localization module
	8.5 Computational complexity

	9 Evaluation
	9.1 Benchmark with a planar 2-link mobile arm
	9.2 Benchmark with 18-DOF full-body PR2
	9.3 Experiments with a real robot

	10 Limitations and future work
	11 Conclusion
	Acknowledgements
	References

