

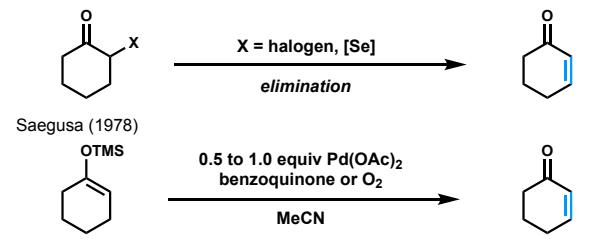
Synthesis of Cyclic Enones by Allyl-Palladium-Catalyzed α,β -Dehydrogenation

David Huang, Yizhou Zhao, and Timothy R. Newhouse*

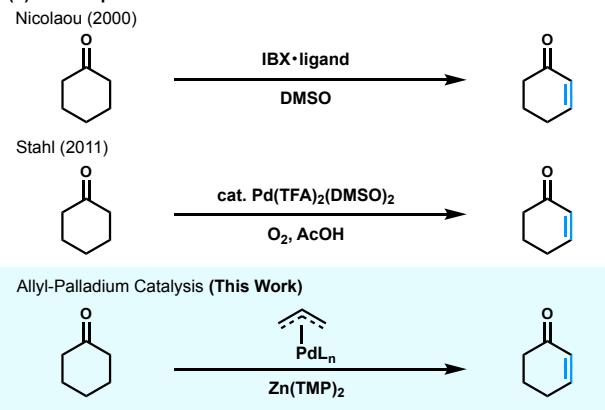
Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520-8107

Supporting Information Placeholder

ABSTRACT: The use of allyl-palladium catalysis for the one-step α,β -dehydrogenation of ketones via their zinc enolates is reported. The optimized protocol utilizes commercially available $Zn(TMP)_2$ as base and diethyl allyl phosphate as oxidant. Notably, this transformation operates under salt-free conditions and tolerates a diverse scope of cycloalkanones.


The conversion of ketones to the more versatile enone functionality is an important transformation in organic synthesis due to the utility of enones as intermediates in multistep production of pharmaceuticals and biologically active compounds. The introduction of an alkene adjacent to a ketone is well-preceded in the literature, and can be broadly categorized into two main areas: two-step methods that proceed via an α -functionalized intermediate (Scheme 1a), and one-step methods that directly access enones from ketones in a single operation (Scheme 1b).¹

While two-step ketone dehydrogenations are widely employed and reliable, the poor step economy associated with these processes leads to significant ancillary waste and excessive production times. One of the earliest strategies for the synthesis of enones involves the pre-functionalization of the ketone α -position with a halogen, which can be eliminated upon treatment with base at high temperatures.² This strategy remains an important instrument in multistep synthesis owing to the low cost and limited byproducts produced. Utilizing α -selenide intermediates is similarly broad in scope as these species can be formed under mild conditions through trapping of a lithium enolate with PhSeX.^{3,4} The second step entails conversion of the selenide moiety to the corresponding selenoxide, which allows for spontaneous generation of α,β -unsaturated products via a 2,3-sigmatropic rearrangement.⁵ Another reliable two-step methodology for ketone to enone conversion is the Saegusa oxidation, wherein an initially formed enoxysilane undergoes palladium-mediated dehydroxylation in a separate step. While benzoquinone or O_2 can be employed as terminal oxidants to enable the use of catalytic quantities of palladium, sub-stoichiometric loadings are typically required to achieve synthetically useful yields.⁶


The two practical one-step methodologies that have emerged are Nicolaou's dehydrogenation and Stahl's palladium-catalyzed dehydrogenation. Nicolaou demonstrated that the use of a stoichiometric hypervalent iodine oxidant, 2-iodoxybenzoic acid (IBX), can effect the α,β -dehydrogenation

Scheme 1. Overview of Strategies for the α,β -Dehydrogenation of Ketones

(a) Two-Step Methods

(b) One-Step Methods

of ketones and aldehydes. This process can be further promoted through the addition of catalytic p -TsOH, or *N*-oxide or sulfoxide ligands to generate an I(V) oxidant. As a result of its generality and practical ease of application, the IBX oxidation is one of the principle methods for ketone dehydrogenation.⁷ Stahl reported the direct aerobic dehydrogenation of ketones via the use of palladium catalysis and O_2 as oxidant. The intermediate palladium enolates needed for β -hydride elimination are accessed by oxidative functionalization of the

ketone α -position under acidic conditions for cyclic ketones⁸ and neutral conditions for acyclic substrates.⁹

Despite the abundance of methods for the dehydrogenation of ketones, in the practical application of this transformation recourse to two-step methods is common. Our group has previously reported the formation of unsaturated carboxylic acids and their derivatives using allyl-palladium catalysis.¹⁰ Precedent for this approach originates with Tsuji's pioneering studies of allyl-palladium enolates derived by oxidative decarboxylation of allyl- β -keto esters that were reported to undergo β -hydride elimination to form enones.^{6c} For carboxylic acids and their derivatives, allyl-palladium enolates were formed via deprotonation with a lithium amide, transmetallation with $ZnCl_2$, and a subsequent transmetallation with an allyl-palladium catalyst.

It was found that changing the identity of the metal enolate from lithium to zinc crucially avoided typical Tsuji-Trost allylation products.¹⁰ It is postulated that the less reactive zinc enolate is less prone to undergo nucleophilic substitution with an electrophilic allyl-palladium species. Thus instead, a transmetalation pathway could proceed to provide the necessary allyl-palladium enolate for β -hydride elimination. Alternatively, the presence of a zinc species may be responsible for altering the structure of the allyl-palladium enolate to favor β -hydride elimination over reductive elimination to give enones rather than α -allylated products.¹¹ After, β -hydride elimination, the resulting allyl-palladium hydride species then undergoes rate-determining reductive elimination to generate propene gas. The catalytic cycle is completed after palladium(0) undergoes oxidative addition with an allyl oxidant.

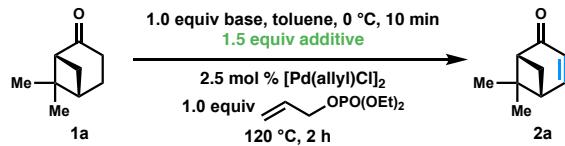
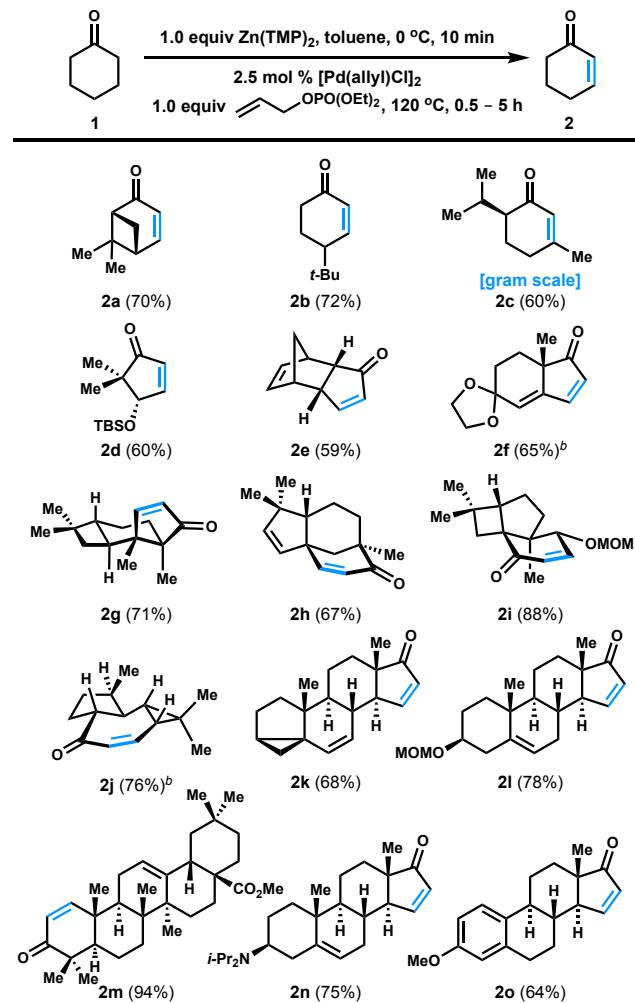

More recently we demonstrated that the use of allyl-palladium catalysis can enable a telescoped process for the vicinal difunctionalization of ketones via their enone intermediates.¹² Herein, we report the effective allyl-palladium-catalyzed dehydrogenation of ketones as a standalone method to access a broad range of enones with varied structural complexity through the formation of zinc enolates under salt-free

Table 1. Optimization of Ketone α,β -Dehydrogenation

(a) α,β -Dehydrogenation of Carboxylic Acid Derivatives (Previous Work)

(b) α,β -Dehydrogenation of Ketones (This Work)

Entry	Base	Additive	NMR Yield (%) ^a
1	Zn(TMP) ₂	none (salt-free)	80 (70) ^b
2	Zn(TMP) ₂	none	11 ^c
3	Zn(TMP) ₂	ZnCl ₂	27
4	Zn(TMP) ₂ ·2LiCl	none	56
5	Zn(TMP) ₂ ·2LiCl	ZnCl ₂	44
6	LiTMP	ZnCl ₂	33
7	LiCyan	ZnCl ₂	29

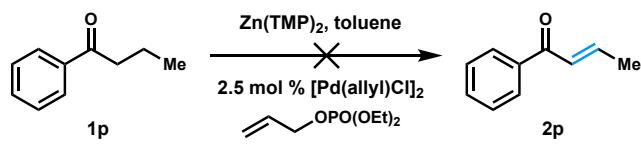

^a¹H-NMR yields were obtained using 1,3,5-trimethoxybenzene as an internal standard. Complete conversion was observed in all entries. ^bIsolated yield. ^c1.0 equiv of allyl acetate was used instead of diethyl allyl phosphate.

conditions.

Table 1 describes our efforts to optimize the α,β -dehydrogenation of (+)-nopolone (**1a**) to form (+)-apoverbenone (**2a**); previous synthesis of bioactive compounds relied on two-step approaches for this challenging transformation.¹³ We determined that the optimized protocol for allyl-palladium-catalyzed ketone dehydrogenation requires the specific combination of commercially available Zn(TMP)₂ as base¹⁴ and diethyl allyl phosphate as oxidant^{6g} (Table 1, entry 1). In contrast to our previous reports of carbonyl dehydrogenation, which were conducted in the presence of in situ generated LiCl salts and externally added ZnCl₂ salts, salt-free conditions are optimal for ketone dehydrogenation which underscores the complex role that these additives play in transition metal catalysis with enolates.¹⁵

Alternative conditions led to inferior results. The use of allyl acetate as oxidant led to a substantial loss in reaction efficiency (entry 2), thereby emphasizing the significance of the leaving group on the allyl oxidant, which may play a role in perturbing enolate aggregation states or influence the ligand sphere on palladium to alter its reactivity.¹⁶ The addition of $ZnCl_2$ as an additive also led to a sharp decline in the yield of product **2a** (entry 3) and indicates that the presence of metal halide salts are detrimental to the reaction efficiency. The use

Scheme 2. Scope of Ketone α,β -Dehydrogenation^a


^aIsolated yields. ^b1.3 equiv of Zn(TMP)₂ was used.

of $\text{Zn}(\text{TMP})_2 \cdot 2\text{LiCl}$, prepared according to Knochel's procedure,¹⁷ provided **2a** in moderate yield (entry 4), and suggests that while in situ generated LiCl is also unfavorable, $\text{Zn}(\text{TMP})_2 \cdot 2\text{LiCl}$ conveniently prepared from LiTMP and ZnCl_2 can still provide synthetically useful yields of enone product. Lastly, attempts to use the bases and additives optimized for carboxylic acid, ester, nitrile, and amide dehydrogenation ($\text{Zn}(\text{TMP})_2 \cdot 2\text{LiCl}$, LiTMP, or LiCyan with added ZnCl_2) all led to significant deprecations in yield (entries 5-7), and highlights that the structure and identity of the base plays an intimate role in determining reaction efficiency.

With the optimized conditions in hand, the scope of cyclic ketones that can undergo dehydrogenation was explored (Scheme 2). (+)-Nopinone **1a** was dehydrogenated to give (+)-apoverbeneone **2a** in 70% isolated yield. 4-*tert*-butylcyclohexanone was also successfully dehydrogenated to give enone **2b** in 72% yield with only 18% of the overoxidized phenol product observed. Although this is an effective preparation of the γ -substituted enone, it also highlights a key challenge in this arena. (–)-Menthone was also readily dehydrogenated on gram scale to give the β -substituted enone product (+)-piperitone (**2c**) in 60% yield, and remarkably, without epimerization of the isopropyl group,¹⁸ which indicates that enolate transfer is not competitive with dehydrogenation in this case. A series of other monocyclic (**2d**), bicyclic (**2e** - **2f**), and tricyclic (**2g** - **2j**) 5-, 6-, and 7-membered cycloalkanones were all smoothly dehydrogenated under the standard conditions. Additionally, a variety of steroidal substrates could also be desaturated to give enones **2k** - **2o**. Notably, the standard conditions allowed dehydrogenation in the presence of a range of acid-sensitive functionality, including TBS (**2d**) and MOM (**2i**, **2k**) protected alcohols, acetals (**2f**), strained cyclobutanones (**2g**) and cyclopropanes (**2j**, **2l**), and readily oxidizable functionality such as a tertiary amine (**2n**).

The application of the optimized ketone dehydrogenation conditions to an acyclic ketone substrate such as butyrophoneone (**1p**) was ineffective and led to a complex mixture of products, therefore highlighting a limitation and challenge to the current protocol.¹⁹

Scheme 3. Dehydrogenation of Acyclic Ketones

In conclusion, we have developed a general method for the α,β -dehydrogenation of cyclic ketones via their zinc enolates. The use of a less basic zinc amide and a non-electrophilic allyl phosphate oxidant was crucial to achieving a broad scope of architecturally diverse ketone substrates with acid-sensitive functional groups. This approach for enone synthesis is expected to be broadly useful because it initiates mechanistically with deprotonation, which is facile and reliable in complex chemical settings. This one-step dehydrogenation of cyclic ketones that operates under basic conditions represents an orthogonal procedure to existing one-step methodologies that operate under acidic conditions, and is amenable to tandem functionalizations of the enone by reactions that employ basic conditions.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and spectroscopic data for all compounds (**2a** - **2o**) including ¹H- and ¹³C-NMR spectra. (PDF)

AUTHOR INFORMATION

Corresponding Author

*timothy.newhouse@yale.edu

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful for financial support from Yale University, the Sloan Foundation, the National Science Foundation (CAREER, 1653793), and the National Institutes of Health-funded Chemistry/Biology Interface Training Program (D.H., T32GM067543).

REFERENCES

- (1) For reviews on carbonyl dehydrogenation, see: (a) Muzart, J. *Eur. J. Org. Chem.* **2010**, 3779–3790. (b) Stahl, S. S.; Diao, T. *Comp. Org. Synth.* **2014**, 7, 178–212. (c) Turluk, A.; Chen, Y.; Newhouse, T. R. *Synlett* **2016**, 27, 331–336. (d) Iosub, A. V.; Stahl, S. S. *ACS Catal.* **2016**, 6, 8201–8213.
- (2) Larock, R. C. *Comprehensive Organic Transformations*; VCH Publishers: New York, 1989; pp 129–131.
- (3) (a) Reich, H. J.; Reich, I. L.; Renga, J. M. *J. Am. Chem. Soc.* **1973**, 95, 5813–5815. (b) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. *J. Am. Chem. Soc.* **1973**, 95, 6137–6139.
- (4) Analogous α -sulfenyl intermediates may also be employed. See: Trost, B. M.; Salzmann, T. N.; Hiroi, K. *J. Am. Chem. Soc.* **1976**, 98, 4887–4902.
- (5) Mukaiyama has also developed a conceptually similar one-step approach for enone generation that proceeds via a cyclic transition state to eliminate an α -sulfinimidoyl group. However, the well-recognized drawbacks of this approach, such as the generation of stoichiometric and toxic waste and incomplete conversion, have complicated purification and isolation and therefore limited the practical application of these methodologies in organic synthesis. See: Mukaiyama, T.; Matsuo, J.-i.; Kitagawa, H. *Chem. Lett.* **2000**, 29, 1250–1251.
- (6) For select palladium-based methods for ketone α,β -dehydrogenation, see: (a) Thiessen, R. J. *J. Org. Chem.* **1971**, 36, 752–757. (b) Ito, Y.; Hirao, T.; Saegusa, T. *J. Org. Chem.* **1978**, 43, 1011–1013. (c) Shimizu, I.; Tsuji, J. *J. Am. Chem. Soc.* **1982**, 104, 5844–5846. (d) Shimizu, I.; Minami, I.; Tsuji, J. *Tetrahedron Lett.* **1983**, 24, 1797–1800. (e) Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. *Tetrahedron* **1986**, 42, 2971–2977. (f) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. *Tetrahedron Lett.* **1995**, 36, 2423–2426. (g) Shvo, Y.; Arisha, A. H. I. *J. Org. Chem.* **1998**, 63, 5640–5642. (h) Ohshima, T.; Xu, Y.; Takita, R.; Shimizu, S.; Zhong, D.; Shibasaki, M. *J. Am. Chem. Soc.* **2002**, 124, 14546–14547. (i) Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y. *Chem. Sci.* **2012**, 3, 883–886. (j) Sakamoto, Y.; Amaya, T.; Suzuki, T.; Hirao, T. *Chem. Eur. J.* **2016**, 22, 18686–18689.
- (7) (a) Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S. *J. Am. Chem. Soc.* **2000**, 122, 7596–7597. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y.-L. *J. Am. Chem. Soc.* **2002**, 124, 2245–2258. (c) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. *Angew. Chem. Int. Ed.* **2002**, 41, 993–996. (d) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. *Angew. Chem. Int. Ed.* **2002**, 41, 1386–1389. (e) Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. *Angew. Chem. Int. Ed.* **2002**, 41, 996–1000.
- (8) Diao, T.; Stahl, S. S. *J. Am. Chem. Soc.* **2011**, 133, 14566–14569.

(9) (a) Izawa, Y.; Pun, D.; Stahl, S. S. *Science* **2011**, *333*, 209–213. (b) Diao, T.; Wadzinski, T. J.; Stahl, S. S. *Chem. Sci.* **2012**, *3*, 887–891. (c) Diao, T.; Pun, D.; Stahl, S. S. *J. Am. Chem. Soc.* **2013**, *135*, 8205–8212.

(10) (a) Chen, Y.; Romaire, J. P.; Newhouse, T. R. *J. Am. Chem. Soc.* **2015**, *137*, 5875–5878. (b) Chen, Y.; Turlik, A.; Newhouse, T. R. *J. Am. Chem. Soc.* **2016**, *138*, 1166–1169. (c) Zhao, Y.; Chen, Y.; Newhouse, T. R. *Angew. Chem. Int. Ed.* **2017**, *56*, 13122–13125.

(11) A stereochemical probe to determine the mechanism of palladium catalyzed allylation of zinc enolates indicates zinc enolates undergo nucleophilic attack at carbon with allyl-palladium electrophiles in the presence of PPh_3 : Negishi, E.-i.; John, R. A. *J. Org. Chem.* **1983**, *48*, 4098–4102.

(12) Chen, Y.; Huang, D.; Zhao, Y.; Newhouse, T. R. *Angew. Chem. Int. Ed.* **2017**, *56*, 8258–8262.

(13) For the conversion of (+)-nopinone **1a** to (+)-apoverbenone **2a** by two-step processes, see: (a) Grimshaw, J.; Grimshaw, J. T.; Juneja, H. R. *J. Chem. Soc., Perkin. Trans. I* **1972**, 50–52. (b) Jefford, C. W.; Boschung, A. F.; Moriarty, R. M.; Rimbault, C. G.; Laffer, M. H. *Helv. Chim. Acta* **1973**, *56*, 2649–2659. (c) Edgar, M. T.; Barth, G.; Djerassi, C. *J. Org. Chem.* **1980**, *45*, 2680–2684. (d) Konopelski, J. P.; Sundararaman, P.; Barth, G.; Djerassi, C. *J. Am. Chem. Soc.* **1980**, *102*, 2737–2745. (e) Watanabe, M.; Awen, B. Z.; Kato, M. *J. Org. Chem.* **1993**, *58*, 3923–3927. For the use of (+)-apoverbenone **2a** in the synthesis of bioactive compounds, see: (f) Huffman, J. W.; Zhang, X.; Wu, M. J.; Joyner, H. H. *J. Org. Chem.* **1989**, *54*, 4741–4743. (g) Tius, M. A.; Kannangara, G. S. K. *J. Org. Chem.* **1990**, *55*, 5711–5714. (h) Huffman, J. W.; Zhang, X.; Wu, M. J.; Joyner, H. H.; Pennington, W. T. *J. Org. Chem.* **1991**, *56*, 1481–1489. (i) Huffman, J. W.; Wu, M. J.; Banner, K.; Dai, D. *Tetrahedron* **1997**, *53*, 13295–13306. (j) Huffman, J. W.; Liddle J.; Shu, Y.; Aung, M. M.; Abood, M. E.; Wiley, J. L.; Martin, B. R. *Bioorg. Med. Chem.* **1999**, *7*, 2905–2914. (k) Kawashima, H.; Kaneko, Y.; Sakai, M.; Kobayashi, Y. *Chem. Eur. J.* **2014**, *20*, 272–278. (l) Lu, Y.; Yuan, H.; Zhou, S.; Luo, T. *Org. Lett.* **2017**, *19*, 620–623.

(14) Hlavinka, M. L.; Hagadorn, J. R. *Organometallics* **2007**, *26*, 4105–4108.

(15) (a) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.; Knochel, P. *Angew. Chem. Int. Ed.* **2011**, *50*, 9794–9824. (b) Klatt, T.; Markiewicz, J. T.; Sämann, C.; Knochel, P. *J. Org. Chem.* **2014**, *79*, 4253–4269.

(16) Murahashi, S.-I.; Imada, Y.; Higashiura, S. *J. Org. Chem.* **1993**, *58*, 1538–1545.

(17) Krasovskiy, A.; Knochel, P. *Synthesis* **2006**, *5*, 890–891.

(18) Yamamoto, E.; Gokuden, D.; Nagai, A.; Kamachi, T.; Yoshizawa, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M. *Org. Lett.* **2012**, *14*, 6179–6181.

(19) A one-step dehydrogenation of **1p** using super-stoichiometric palladium has been reported: Mukaiyama, T.; Oshima, M.; Nakatsuka, T. *Chem. Lett.* **1983**, 1207–1210. The one-step dehydrogenation of aryl ketones is known with existing methods: for examples, see references 5, 7a, and 9b.