
ON A PAPER OF ERDÖS AND SZEKERES

J. BOURGAIN AND M.-C. CHANG

ABSTRACT. Propositions 1.1 – 1.3 stated below contribute to results and certain problems con-

sidered in [E-S], on the behavior of products
∏n

1 (1 − zaj ), 1 ≤ a1 ≤ · · · ≤ an integers. In

the discussion below, {a1, . . . , an} will be either a proportional subset of {1, . . . , n} or a set of

large arithmetic diameter.

1. Introduction

The aim of this paper is to revisit some of the questions put forward in the paper [E-S] of

Erdos and Szekeres.

Following [E-S], define

M(a1, . . . , an) = max
|z|=1

n∏
i=1

|1− zai | (1.1)

where we assume a1 ≤ a2 ≤ · · · ≤ an positive integers (in this paper, we restrict ourselves to

distinct integers a1 < · · · < an).

Denote

f(n) = min
a1≤···≤an

M(a1, . . . , an) and f∗(n) = min
a1<···<an

M(a1, . . . , an). (1.2)

It was proven in [E-S] that

f(n) ≥
√

2n. (1.3)

This lower bound remains presently still unimproved.

In the other direction, [E-S] establish an upper bound

f(n) < exp(n1−c) for some c > 0. (1.4)

Subsequent improvements were given by Atkinson [A]

f(n) = exp{O(n
1
2 log n)} (1.5)
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and Odlyzko [O]

f(n) = exp{O(n
1
3 (log n)4/3)}. (1.6)

Also to be mentioned is a construction due to Kolountzakis ([Kol2], [Kol4]) of a sequence

1 < a1 < · · · < an < 2n+O(
√
n) for which

f∗(n) ≤M(a1, . . . , an) < exp{O(n
1
2 log n)} (1.7)

(Note that Odlyzko’s construction does not come with distinct frequencies).

As shown by Atkinson [A], there is a relation between the [E-S] problem and the cosine-

minimum problem.

Define

M2(n) = inf{−min
θ

n∑
j=1

cos ajθ} (1.8)

with infinum taken over integer sets a1 < · · · < an.

Then

log f∗(n) < O(M2(n) log n). (1.9)

The problem of determining M2(n) was put forward by Ankeny and Chowla [C1] motivated by

questions on zeta functions.

It is known that M2(n) = O(n
1
2 ) and conjectured by Chowla that in fact M2(n) ∼ n

1
2 [C2].

The current best lower bound is due to Ruzsa [R]

M2(n) > exp(c
√

log n) (1.10)

for some c > 0.

As pointed out in [O], polynomials of the form (1.1) are also of interest in connection to

Schinzel’s problem [S] of bounding the number of irreducible factors of a polynomial on the

unit circle in terms of its degree and L2-norm.

Propositions 1.1 and 1.2 in this paper establish new results for ‘dense’ sets S = {a1 < · · · <
an}. The former improves upon (1.7).

Proposition 1.1. There is a subset {a1 < · · · < an} ⊂ {1, . . . , N}, n � N
2

, such that

M(a1, . . . , an) < exp(c
√
n
√

log n log log n). (1.11)
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On the other hand, the following holds

Proposition 1.2. There is a constant τ > 0 such that if {a1 < . . . < an} ⊂ {1, . . . , N} and

n > (1− τ)N , then

M(a1, . . . , an) > exp τn. (1.12)

The latter result generalizes the comment made in [E-S] that

lim
n→∞

[M(1, 2, . . . , n)]1/n (1.13)

exists and is between 1 and 2.

In converse direction, one may prove new lower bounds on M(a1, . . . , an) assuming that the

set {a1 < · · · < an} has a sufficiently large arithmetic diameter.

First, we are recalling the notion of a ‘dissociated set’ of integers. We say that D =

{ν1, . . . , νm} ⊂ Z is dissociated provided D does not admit non-trivial 0, 1,−1 relations. Thus

ε1ν1 + · · ·+ εmνm = 0 with ε1 = 0, 1,−1 (1.14)

implies

ε1 = · · · = εm = 0.

A more detailed discussion of this notion and its relation to lacunarity appears in §5 of the

paper.

Proposition 1.3. Assume {a1 < · · · < an} contains a dissociated set of size m. Then

logM(a1, . . . , an)� m
1
2
−ε

(log n)1/2
. (1.15)

Hence (1.15) improves upon (1.3) as soon as

m� (log n)3+ε. (1.16)
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2. Preliminary estimates

Let

z = e(θ) = e2πiθ.

By taking the real part of Log(1− e2πiθ) = −
∑∞

k=1
1
k
e2πikθ, we have

log |1− z| = −
∞∑
k=1

cos 2πkθ

k
.

Therefore, we have

Fact 1.
n∏
j=1

|1− zaj | = e−
∑n
j=1

∑∞
k=1

cos 2πkajθ

k .

We first establish some preliminary inequalities for later use.

Since the function ex is convex, we obtain for any probability measure µ on T that
n∏
j=1

|1− e(ajθ)| ∗ µ ≥ e−(
∑n
j=1

∑∞
k=1

cos 2πkaj ·
k

)∗µ(θ)

and therefore we have

Fact 2.∥∥∥ n∏
j=1

|1− e(ajθ)|
∥∥∥
∞
≥ e

−min
θ
{
∑n
j=1

∑∞
k=1

cos 2πkaj ·
k

∗µ}(θ)
.

Lemma 2.1.

log |1− e2πiθ| ≤ −
J∑
j=1

ρj

j
cos 2πjθ +O

( 1√
J

)
(2.1)

where ρ = 1− 1√
J

and (2.1) is valid for all θ.

Proof. We rely on a calculation that appears in [O], Proposition 1.

Use the inequality
(
[O], (2.4)

)
∣∣∣ 1− eiθ

1− ρeiθ
∣∣∣ ≤ 2

1 + ρ
for θ ∈ [0, 2π], 0 < ρ < 1. (2.2)
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From (2.2)

log |1− eiθ| ≤ log |1− ρeiθ|+ log
2

1 + ρ

= −
∞∑
j=1

ρj

j
cos jθ + log

2

1 + ρ

≤ −
J∑
j=1

ρj

j
cos jθ +

ρJ

J(1− ρ)
+ C(1− ρ)

(2.3)

by partial summation and since

log
2

1 + ρ
= − log

(
1− 1− ρ

2

)
.

Thus (2.1) follows from (2.3) with ρ as above.

�

Proposition 2.2. There is a subset {a1 . . . am} ⊂ {1, . . . , n} of size

m � n

2

and ∥∥∥ m∏
k=1

|1− zak |
∥∥∥
L∞(|z|=1)

≤ ec
√
n
√

logn)(log logn). (2.4)

Remark. (2.4) is a slight improvement of the estimate∥∥∥ m∏
k=1

|1− zak |
∥∥∥
L∞(|z|=1)

≤ ec
√
n logn

resulting from a construction in [Kol1], p. 162 of a set {a1, . . . , am} as above and such that
m∑
k=1

cos 2πakθ ≥ −c
√
m

and Lemma 2.1

log
m∏
k=1

|(1− 2ak)| ≤ −
J∑
j=1

ρj

j

m∑
k=1

cos 2πak(jθ) +O
( m√

J

)
≤ C(logJ)

√
m+O

( m√
J

)
< C log n

√
n,
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taking J = m2.

Proof of Proposition 2.2. Take independent selectors (ξj)1≤j<n with values 0, 1 and mean

E[ξj] = 1− j
n

. Let Fn(θ) = 2
∑

0<j<n(1− j
n
) cos 2πjθ + 1 be the Fejer kernel

m∑
k=1

cos akθ =
n∑
`=1

ξ` cos `θ =
1

2
Fn(θ)− 1

2
+

n∑
`=1

(ξ` − E[ξ`]) cos `θ. (2.5)

By Lemma 2.1 (applies with J = n10)
m∑
k=1

log |1− e2πiakθ| ≤ −
J∑
j=1

m∑
k=1

ρj

j
cos 2πjakθ +O

( m√
J

)
(2.6)

and we take J at least n to bound the last term in the right hand side of (2.5) by
√
n. We analyze

the first term. Inserting (2.5) gives the sum of the following two expressions ((2.7) and (2.8))

−
J∑
j=1

ρj

j

(1

2
Fn(jθ)− 1

2

)
(2.7)

−
J∑
j=1

n∑
`=1

ρj

j
(ξ` − E[ξ`]) cos 2π`jθ. (2.8)

Since Fn(jθ) ≥ 0, (2.7) ≤ log J .

Rewrite

(2.8) = −
n∑
`=1

(ξ` − E[ξ`])
[ J∑
j=1

ρj

j
cos 2πj`θ

]
. (2.9)

Note that all frequencies in (2.9) are bounded by nJ .

Applying the probabilistic Salem-Zygmund inequality [Kol3] shows that with large proba-

bility

(2.9) .
√

log nJ
[ n∑
`=1

∣∣∣ J∑
j=1

ρj

j
cos 2πj`θ

∣∣∣2] 1
2
. (2.10)

Our next task is to evaluate the expression
∑n

`=1

∣∣∣∑J
j=1

ρj

j
cos 2πj`θ

∣∣∣2.

A first observation is that we can assume

‖θ‖ > 1

10n
(2.11)
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since otherwise

|1− e2πiakθ| ≤ 2πak‖θ‖ <
2π

10
< 1

for all k = 1, . . . ,m, and also the left hand side of (2.4) is bounded by 1.

Next, we note that (since ρ = 1− 1√
J

)∣∣∣ J∑
j=1

ρj

j
cos 2πj`θ

∣∣∣ ≤ ∣∣ log |1− ρe(`θ)|
∣∣+

ρJ

J(1− ρ)

<
∣∣ log |1− ρe(`θ)|

∣∣+ 1.

Hence
n∑
`=1

∣∣∣ J∑
j=1

ρj

j
cos 2πj`θ

∣∣∣2 . n∑
`=1

∣∣ log |1− ρe(`θ)|
∣∣2 + n. (2.12)

Fix θ and for 1 < R . log J define the dyadic set

SR = {1 ≤ ` ≤ n :
∣∣ log |1− ρe(`θ)|

∣∣ ∼ R}.

Thus for ` ∈ SR
‖`θ‖ < |1− ρe(`θ)| < e−cR =: ε.

Let q ∈ N be the smallest integer with ‖qθ‖ < 2ε. It follows that |SR| . n
q

+ 1. Assuming

q > R3, one obtains ∑
`∈SR

∣∣ log |1− ρe(`θ)|
∣∣2 . ( n

R3
+ 1
)
R2

with collected contribution (summing over dyadic R)

∼ n+ (log J)2. (2.13)

It remains to consider θ’s with the property that for some large R and q < R3,

‖qθ‖ < e−cR.

Hence either θ admits a rational approximation∣∣∣θ − a

q

∣∣∣ < e−cR

q
< e−cR, q < R3 and (a, q) = 1 (2.14)

or
(
in (2.14) when a = 0

)
, by (2.11)

1

n
. ‖θ‖ < e−cR. (2.15)
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Consider first the case (2.15). Then

|SR| ≤ |{` = 1, . . . , n : ‖`θ‖ < e−cR}| . ne−cR

and the above estimate still holds.

Assume next that θ satisfies (2.14). Write

θ =
a

q
+ ψ with β = |ψ| < e−cR. (2.16)

First, we consider the case β & 1
nq

.

Let V ⊂ {1, . . . , n} be an interval of size ∼ 1
qβ

so that {`θ : ` ∈ V } consists of qβ-separated

points filling a fraction of [0, 1] (mod 1). Hence

∑
`∈V

∣∣ log |1− ρe(`θ)|
∣∣2 . 1

βq

∫ 1

0

∣∣ log |1− ρe(t)|
∣∣2dt+ log2(1− ρ)

.
1

βq
+ log2 J

and
n∑
`=1

∣∣ log |1− ρe(`θ)|
∣∣2 . n+ nq β log2 n . n

unless

qβ log2 n > 1, i.e. log n > ecR or R . log log n

where we used (2.14). Thus if β & 1
nq
, (2.12) . n(log log n)2.

The next case is β < 1
100nq

.

It follows that for 1 ≤ ` ≤ n ∣∣∣`θ − `a

q

∣∣∣ < 1

100q
. (2.17)

We obtain ∑
q-`

∣∣ log |1− ρe(`θ)|
∣∣2 . n

∫ 1

0

∣∣ log |1− ρe(t)|
∣∣2dt . n
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and ∑
q|`

∣∣ log |1− ρe(`θ)|
∣∣2 ∼ 1

qβ

∫ nβ

0

∣∣ log |1− ρe(t)|
∣∣2dt

≤ 1

qβ

∫ nβ

0

(
log

1

t

)2

dt

.
n

q
(log nβ)2.

(2.18)

We obtain again a bound O(n) unless

| log nβ| > √q

i.e.

β <
e−
√
q

n
. (2.19)

Thus (2.17) may be replaced by∣∣∣`θ − `a
q

∣∣∣ < e−
√
q for 1 ≤ ` ≤ n. (2.20)

For θ satisfying (2.20) we proceed in a different way. Write∏
|1− e(akθ)| =

n∏
j=1

|1− e(jθ)|ξj

.
n∏
j=1

(∣∣∣1− e(j a
q

)∣∣∣+
1

q10

)ξj
.

(2.21)

We replace ξj by its expectation E[ξj] = 1− j
n

using again a random argument. Thus if
n∏
j=1

(∣∣∣1− e(j a
q

)∣∣∣+
1

q10

)1− j
n

(2.22)

we have

| log(2.21)− log(2.22)| ≤
∣∣∣∣ n∑
j=1

(
ξj − E[ξj]

)
log
(∣∣∣1− e(j a

q

)∣∣∣+
1

q10

)∣∣∣∣. (2.23)

Recall that q < R3 . (log J)3 ∼ (log n)3. Thus with high probability we may bound (2.23) by

c
√
n
√

log log n log q < c
√
n(log log n)3.

Hence

(2.21) ≤ ec
√
n(log logn)3

(2.22).
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Partition {1, . . . , n} in intervals I = [rq, (r + 1)q − 1] and estimate for each such interval

∏
j∈I

(∣∣∣1− e(j a
q

)∣∣∣+
1

q10

)1− j
n

≤ qc
q2

n

[ 1

q10

q−1∏
s=1

(∣∣∣1− e(sa
q

)∣∣∣+
1

q10

]1− rq
n

≤ qc
q2

n

[ 1

q10

q−1∏
s=1

∣∣∣1− e(s
q

)∣∣∣]1− rq
n
.

(2.24)

The product
∏q−1

s=1

∣∣1− e( s
q

)∣∣ may be evaluated using Lemma 2.1 taking J = q2, ρ = 1− 1
q
.

Thus clearly
q−1∑
s=1

log
∣∣∣1− e(s

q

)∣∣∣ ≤ − J∑
j=1

ρj

j

q−1∑
s=1

cos 2πj
s

q
+O(1)

≤
∑

1≤j≤J
q-j

ρj

j
+ q

∑
1≤j≤J
q|j

ρj

j
+O(1)

< log q + C

implying that

(2.24) < qc
q2

n

( 1

q10
elog q+c

)1− rq
n
< qc

q2

n . (2.25)

Since (2.22) is obtained as product of (2.24), (2.25) over the intervals I , we showed that

(2.22) < qc
q2

n
n2q < e(logn)3

.

Thus the preceding shows that if θ satisfies (2.20), then∏
|1− e(akθ)| < ec

√
n(log logn)3

. (2.26)

Going back to (2.10), omitting the case (2.20) estimated by (2.26), we obtained the bound

cn(log log n)2 on (2.12) which permits to majorize (2.8) by c
√
n log n(log log n) and∏

|1− e(akθ)| by ec
√
n logn log logn. This completes the proof of Proposition 2.2.
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3. Almost full proportion

It was observed in [E-S] that

lim
n→∞

M(1, . . . , n)
1
n (3.1)

exists and lies strictly between 1 and 2.

This fact is in contrast with Proposition 2.2 which gives a subset S ⊂ {1, . . . , n}, |S| � n
2

s.t.

logM(S) .
√
n(log n)

1
2 log log n. (3.2)

However

Proposition 3.1. There is a constant τ > 0 such that if S ⊂ {1, . . . , n} satisfies |S| > (1−τ)n,

then

logM(S) > cn (3.3)

for some c > 0.

Thus (3.3) generalizes (3.1) in some sense, but in view of (3.2), it fails dramatically if we do

not assume 1− |S|
n

small enough.

Proof of Proposition 3.1.

It will be convenient to use Fact 2 for an appropriate µ-convolution, which allow us to esti-

mate the tail contribution in the k-summation.

Thus consider

−min
θ

{∑
j∈S

∞∑
k=1

cos 2πkj·
k

∗ µ
}

(θ)

=−min
θ

∞∑
k=1

∑
j∈S

µ̂(jk)

k
cos 2πkjθ

≥ −min
θ

k0∑
k=1

n∑
j=1

µ̂(jk)

k
cos 2πkjθ (3.4)

− (log k0)πn

−
∑
k>k0

n∑
j=1

|µ̂(jk)|
k

(3.5)
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since we assumed |S| > (1− τ)n.

Separating in (3.4) the cases k = 1, and 2 ≤ k ≤ k0, we write

(3.4) ≥−
( n∑
j=1

cos 2πjθ
)
−

n∑
j=1

|1− µ̂(j)|

−
k0∑
k=2

1

k

∣∣∣ n∑
j=1

µ̂(jk) cos 2πkjθ
∣∣∣. (3.6)

Take µ = FnR(θ), R > 1 an appropriate constant and FnR(θ) the Féjer kernel.

Thus

F̂nR(s) = 1− |s|
nR

for |s| ≤ nR

= 0 otherwise.

Take θ = 3
4n

. The first term in (3.6) becomes, since
n∑
j=1

cos jx =
1

2
Dn(x)− 1

2
, where Dn(x) =

sin(n+ 1
2
)x

sin x
2

is the Dirichlet kernel,
1

2
− 1

2

sin 3π
2n

(n+ 1
2
)

sin 3π
4n

∼ +
1

2 sin 3π
4n

.

The second term is

−
n∑
j=1

j

nR
= −n+ 1

2R
.

The third term becomes

−
k0∑
k=2

1

k

∣∣∣ n∑
j=1

(
1− jk

nR

)
+

cos π
3kj

2n

∣∣∣. (3.7)

By partial summation, the inner sum is bounded by

max
j1≤min(n,nR

k
)

∣∣∣ j1∑
j=1

cos π
3kj

2n

∣∣∣
= max

j1≤min(n,nR
k

)

∣∣∣1
2
Dj1

(3

2
π
k

n

)
− 1

2

∣∣∣
≤ 1

2| sin 3
4
π k
n
|

+
1

2
.



ON A PAPER OF ERDÖS AND SZEKERES 13

For k < k0 = o(n), the first term

∼ 1

2k sin 3π
4n

.

Hence

(3.7) ≥ −
k0∑
k=2

1

2k2

1

sin 3π
4n

− log k0

≥ − 1

2 sin 3π
4n

(π2

6
− 1
)
− log k0.

It follows from the preceding that

(3.4) ≥ +
1

2 sin 3π
4n

(
2− π2

6

)
− log k0 −

n+ 1

2R

= cn− log k0

for R a sufficiently large constant.

We bound (3.5) by

(3.5) ≥ −
∑
k≥k0

1

k

∑
j≤nR

k

1 ≥ −
∑
k≥k0

nR

k2
≥ −R

k0

n.

In summary, we proved that

−
∑
j∈S

∞∑
k=1

µ̂(jk)

k
cos 2πjk

3

4n
≥ cn− log k0 − τ(log k0)n− C ′n

k0

>
c

2
n

be choosing first k0 large enough and then assuming τ sufficiently small.

This proves Proposition 3.1.

4. Sets with large arithmetical Diameter

As we pointed out the general lower boundM(a1, . . . , an) >
√
n remains unimproved. How-

ever Proposition 4.1 stated below shows that in certain cases one can do better.

First, we give the following definition.

Definition. D = {v1, . . . , vm} ⊂ Z is called dissociated provided the relation

ε1v1 + · · ·+ εmvm = 0 with εi = 0, 1,−1

implies that ε1 = · · · = εm = 0.
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We note that Hadamard lacunary sets are dissociated.

Proposition 4.1. Assume S = {a, . . . , an} contains a dissociated set D of size m. Then

logM(a1, . . . , an)� m
1
2
−o(1)

(log n)
1
2

. (4.1)

Thus (4.1) improves the general lower bound from [E-S] provided m > (log n)3+ε.

Remark. By a result of Pisier [P], our assumption is equivalent to S containing a Sidon set Λ

of size |Λ| ∼ m. Here ‘Sidon set’ is in the harmonic analysis sense i.e.∥∥∥∑
n∈Λ

λne(nθ)
∥∥∥
∞
≥ c

∑
|λn| for all scalars {λn}

with c = c(Λ) to be considered as a constant. (This concept is different from the Sidon sets in

combinatorics!).

Dissociated sets are Sidon and conversely, Pisier proved that if Λ is a finite Sidon set, then Λ

contains a proportional dissociated set.

Proof of Proposition 4.1.

We derive (4.1) from the equivalent statement

max
θ

(
log |1− e(a1θ)|+ · · ·+ log |1− e(anθ)|

)
� m

1
2
−o(1)

(log n)1/2
(4.2)

which, since
∫

log |1− e(aθ)| = 0 for a ∈ Z\{0}, is a consequence of the stronger claim that

‖F‖1 �
m

1
2
−o(1)

(log n)1/2
(4.3)

denoting

F (θ) = log |1− e(a1θ)|+ · · ·+ log |1− e(anθ)|.

Recall that by Fact 1

F (θ) = −
∞∑
k=1

1

k
f(kθ) (4.4)

with

f(θ) =
n∑
j=1

cos(2πajθ).
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We first perform a finite Mobius inversion on (4.4). Recall that

∑
d|k,d≤r

d square free

µ(d) =

1 if k = 1

0 if 1 < k ≤ r

Hence ∑
d<r

square free

F (dθ)
µ(d)

d
= −

n∑
j=1

∞∑
k=1

∑
d<r

square free

cos(2πajdkθ)
µ(d)

dk

= −
n∑
j=1

∞∑
`=1

cos(2πaj`θ)

`

[ ∑
d|`,d<r

square free

µ(d)

]

= −f(θ)−
n∑
j=1

∑
`>r

cos(2πaj`θ)

`

[ ∑
d|`,d<r

square free

µ(d)

]

= −f(θ) +G(θ),

(4.5)

where

G(θ) = −
n∑
j=1

∑
`>r

cos(2πaj`θ)

`

[ ∑
d|`,d<r

square free

µ(d)

]
.

Note also that ∣∣∣ ∑
d|`,d<r

square free

µ(d)
∣∣∣ ≤ 2ω(`), (4.6)

where ω(`) is the number of distinct prime factors of `.

Denote m the size of the largest dissociated set contained in {a1, . . . , an}. Our first task will

be to bound the Fourier transform ‖Ĝ‖∞ of G.

Thus given t ∈ Z, we have

|Ĝ(t)| ≤ 1

2

n∑
j=1

aj
t

2
ω( t

aj
)
. (4.7)

We will bound (4.7) by considering dyadic ranges, letting for K > r dyadic

J = JK = {j ∈ [1, n] : aj|t and
t

aj
∼ K}.
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Thus ∑
j∈J

aj
t

2
ω( t

aj
) ≤

√∑
j∈J

(aj
t

)2 (∑
k≤K

4ω(k)
) 1

2

. |J |
1
2K−1K

1
2 (logK)2 =

(
|J |
K

) 1
2

(logK)2.

(4.8)

Assume

|J | > K

(logK)8
. (4.9)

Our aim is to get a contradiction for appropriate choice of r.

At this point, we invoke the following result from [H-T] (see Fq (1.14)).

Denote

ψ(x, y) =
∣∣{n ≤ x : if p|n, then p ≤ y}

∣∣.
Lemma 4.2. For any 0 < α < 1, we have

ψ
(
x, (log x)1/α

)
< x1−α+o(1) for x→∞. (4.10)

It follows from (4.9) that for any fixed 1 > α > 0, we have

|J | > 2ψ
(
K, (logK)

1
α

)
. (4.11)

We make the following construction.

By (4.11), there is j1 ∈ J such that t
aj1

has a prime divisor p1 > (logK)
1
α and we write

t
aj1

= p1b1.

Next, let J1 = {j ∈ J : p1| taj }. Hence |J1| < K
p1

+ 1 < K

(logK)
1
α
< |J |

(logK)
1
α−8

where we

assume α taken much smaller than 1
8
.

It follows that also

|J\J1| >
(

2− 1

(logK)
1
α
−8

)
ψ
(
K, (logK)

1
α

)
which permits to introduce j2 ∈ J\J1 and a prime p2 > (logK)

1
α such that p2| taj2 . Write

t
aj2

= p2b2. Clearly p2 6= p1 and p1 - b2.

The contribution of the process is clear. We may introduce elements

j1, . . . , js ∈ J with s & (logK)
1
α
−8
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and prime divisors ps′| t
ajs′

. Write t
ajs′

= ps′bs′ such that ps′ - t
ajs′′

for s′ < s′′. Hence ps′′ 6= ps′

for s′ 6= s′′ and

ps′ - bs′′ for s′ < s′′. (4.12)

We claim that the set {aj1 , . . . , ajs} is dissociated. Otherwise, there is a non-trivial relation

ε1aj1 + · · ·+ εsajs = 0 with εs′ = 0, 1,−1

which by the preceding translates in

ε1
1

p1b1

+ · · ·+ εs
1

psbs
= 0

or
s∑

s′=1

εs′
∏
s′′ 6=s′

ps′′bs′′ = 0.

Let s1 be the smallest s′ with εs′ 6= 0. Then
s∑

s′=s1

εs′
∏
s′′ 6=s′
s′′≥s1

ps′′bs′′ = 0. (4.13)

Since

ps1

∣∣∣ ∏
s′′ 6=s′
s′′≥s1

ps′′bs′′ for s′ > s1,

identity (4.13) implies

ps1

∣∣∣ ∏
s′′>s1

bs′′ ,

contradicting (4.12).

Hence {aj1 , . . . , ajs} is dissociated and by definition of m,

s ≤ m

implying

m ≥ (logK)
1
α
−8 and log r ≤ m

α
1−8α .

Thus, by taking

log r ∼ m2α (α small enough)

we obtain a contradiction under assumption (4.9).
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Hence

|JK | <
K

(logK)8
for K > r

and summing (4.8) over dyadic ranges of K > r gives the bound

|Ĝ(t)| <
∑
K>r
dyadic

1

(logK)2
.

1

log r
. (4.14)

Consequently

(̂4.5)(t) = −f̂(t) +O
( 1

log r

)
= −f̂(t) + o(1) for all t ∈ Z. (4.15)

Since

f̂(j) =
1

2
,

we have

(̂4.5)(j) = −1

2
+ o(1). (4.16)

Next, let D be a size m dissociated set in {a1, . . . , an}. Define

ϕ(θ) =
1√
m

∑
j∈D

e(jθ).

Also, let Φ,Ψ be the dual Orliez functions

Φ(x) = x
√

log(2 + x) and Ψ(x) = ex
2

.

It is well known (e.g. Theorem 3.1 in [Rud].) that

‖ϕ‖LΨ = O(1).

By (4.16) (1

2
− o(1)

)√
m ≤

∣∣∣ ∫ 1

0

(4.5)ϕ(θ)dθ
∣∣∣ ≤ C‖(4.5)‖LΦ (4.17)

It remains to bound ‖(4.5)‖LΦ .

Estimate ∫
|(4.5)|

√
log(|(4.5)|+ 2) dθ

≤
∑
j>0

2j/2
∫

22
j−1
≤λ≤22

j
µ(M) dλ,

(4.18)
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Where M = {θ : (4.5)(θ) > λ} and µ is the measure. Using the left hand side of (4.5), the

j-summands is bounded by

2j/2‖(4.5)‖1 . 2j/2 log r ‖F‖1. (4.19)

Also, let Ψ1(u) = eu. Then∥∥∥∥∑
d≤r

|F (dθ)|
d

∥∥∥∥
LΨ1

≤ (log r)‖F‖LΨ1 . n log r,

since ‖ log |1− eiθ| ‖LΨ1 <∞.

Thus also the bound

µ(M) ≤ e−c
λ

n log r

implying the following bound for the j-summands

2j/222je−c
22j−1

n log r . (4.20)

Hence

(4.18) <
∑
j

2j/2 min
(

(log r)‖F‖1, 2
2je−c

22j−1

n log r

)
.

For 22j−2
< n log r, we get the contribution

(log n)
1
2 log r‖F‖1.

For 22j−2 ≥ n log r, we bound by

(n log r)4+εe−cn log r + (n log r)4·2+ε e−c(n(log r))3

+ · · ·+ (n log r)4·2u−1+ε e−c(n log r)2u−1

+ · · ·

< O(1).

Hence

‖(4.5)‖LΦ . (4.18) < (log n)
1
2m2α‖F‖1 (4.21)

recalling above choice for log r.

Returning to (4.17), we proved that(1

2
− o(1)

)
m

1
2
−2α . (log n)

1
2‖F‖1

hence

‖F‖1 & m
1
2
−ε(log n)−

1
2 .

This proves (4.3) and hence Proposition 4.1.
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