ON A PAPER OF ERDOS AND SZEKERES

J. BOURGAIN AND M.-C. CHANG

ABSTRACT. Propositions 1.1 — 1.3 stated below contribute to results and certain problems con-
sidered in [E-S], on the behavior of products H;’(l —2%),1 < a; <--- < a, integers. In
the discussion below, {a1, ..., a,} will be either a proportional subset of {1,...,n} or a set of

large arithmetic diameter.

1. Introduction

The aim of this paper is to revisit some of the questions put forward in the paper [E-S] of

Erdos and Szekeres.

Following [E-S], define

M(ay, ..., a, maXH|1—z (1.1)

|z=1 -

where we assume a; < as < --- < a, positive integers (in this paper, we restrict ourselves to

distinct integers a; < - -+ < ay).

Denote
f(n) :alimréanM(al,...,an) and  f.(n) = min M(ay, ..., ay). (1.2)

It was proven in [E-S] that
f(n) > Vv2n. (1.3)

This lower bound remains presently still unimproved.
In the other direction, [E-S] establish an upper bound
f(n) < exp(n'~) for some ¢ > 0. (1.4)
Subsequent improvements were given by Atkinson [A]

f(n) = eXp{lO(né logn)} (1.5)
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and Odlyzko [O]

f(n) = exp{O(n (logn)*/*)}. (1.6)
Also to be mentioned is a construction due to Kolountzakis ([Kol2], [Kol4]) of a sequence
l<a <+ <a, <2n+ O(y/n) for which

fe(n) < M(ay,...,a,) < eXp{O(n% logn)} (1.7)
(Note that Odlyzko’s construction does not come with distinct frequencies).

As shown by Atkinson [A], there is a relation between the [E-S] problem and the cosine-

minimum problem.
Define
Ms(n) = inf{— mein 2 cos a;0} (1.8)
‘7:

with infinum taken over integer sets a; < - -+ < ay,.

Then
log fi(n) < O(Mz(n)logn). (1.9)
The problem of determining M5 (n) was put forward by Ankeny and Chowla [C1] motivated by

questions on zeta functions.

It is known that M,(n) = O(n2) and conjectured by Chowla that in fact My(n) ~ nz [C2].

The current best lower bound is due to Ruzsa [R]
Ms(n) > exp(cy/logn) (1.10)
for some ¢ > 0.

As pointed out in [O], polynomials of the form (1.1) are also of interest in connection to
Schinzel’s problem [S] of bounding the number of irreducible factors of a polynomial on the

unit circle in terms of its degree and L?-norm.

Propositions 1.1 and 1.2 in this paper establish new results for ‘dense’ sets S = {a; < -+ <

ay, }. The former improves upon (1.7).

Proposition 1.1. There is a subset {a; < --- < a,} C{l,...,N},n =< =, such that

M(ay, ..., a,) < exp(cy/ny/lognloglogn). (1.11)

N
27
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On the other hand, the following holds

Proposition 1.2. There is a constant T > 0 such that if {a; < ... < a,} C {1,...,N} and
n > (1 —7)N, then

M(ay,...,a,) > expTn. (1.12)

The latter result generalizes the comment made in [E-S] that

lim [M(1,2,...,n)]"/" (1.13)
n—oo
exists and is between 1 and 2.
In converse direction, one may prove new lower bounds on M (ay, ..., a,) assuming that the

set {a; < --- < a,} has a sufficiently large arithmetic diameter.

First, we are recalling the notion of a ‘dissociated set’ of integers. We say that D =

{v1,...,vm} C Zis dissociated provided D does not admit non-trivial 0, 1, —1 relations. Thus
e+ 4+ eplm =0 with 61 =0,1, —1 (1.14)
implies
g1 =--=¢, =0.

A more detailed discussion of this notion and its relation to lacunarity appears in §5 of the

paper.

Proposition 1.3. Assume {a, < - < a,} contains a dissociated set of size m. Then

1
m2—¢

logM(al,...,an) > W

(1.15)

Hence (1.15) improves upon (1.3) as soon as

m > (logn)**e. (1.16)
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2. Preliminary estimates

Let
z=e(f) = 2.
By taking the real part of Log(1 — e*™?) = — %" | 1™ we have
. cos 2wko
log|l — 2| = — _—
ogll—2l=-) —
k=1
Therefore, we have
Fact 1.
H |1 B Zaj| _ 6_ Z?:1 Zz"zl CosQ:kajG
j=1

We first establish some preliminary inequalities for later use.

Since the function e” is convex, we obtain for any probability measure ;. on T that

cos2mka; -

H 11— e(a;0)] * p > e~ Eim 2 —5 )l
j=1

and therefore we have

Fact 2.

cos QTrkaj .

L1 ], > o755 =
=1 >

Lemma 2.1.
J

log |1 — ¥ < —Z ﬁcos27rj0 + O(
J

=1

) (2.1)

al-

1

where p =1 — 77 and (2.1) is valid for all 6.

Proof. We rely on a calculation that appears in [O], Proposition 1.

Use the inequality ([O], (2.4))

1_61'9

1— pew

for 0 € [0,27],0 < p < 1. 2.2
<o for fe0.2e.0<p 22)
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From (2.2)
log|1 — €| <log|l — pe®| + lo
gl | < log |1 — pe®| +log - p
=— —cosjl+lo
; IR (2.3)
<—» —cosjl+——+C(1—p)
; J J(1=p)
by partial summation and since
2 1-—
log —— = —log (1 — _p>
1+p 2
Thus (2.1) follows from (2.3) with p as above.
O
Proposition 2.2. There is a subset {a; . ..a,} C {1,...,n} of size
n
m = —
2
and
H H |1 o Zak’ ‘ < ec\/ﬁ\/logn)(loglogn)‘ (24)
et Leo(jzl=1) ~
Remark. (2.4) is a slight improvement of the estimate
HH‘l_Zak| Sec\/ﬁlogn
P L (Jzl=1)
resulting from a construction in [Kol1], p. 162 of a set {ay, ..., a,,} as above and such that

m
Z cos 2mail > —cv/m
k=1

and Lemma 2.1
J

logH (1 —2a)| < —Z%ZCOSQWGk(jQ) + O(%

k=1 Jj=1 k=1
< C(logJ)v/m + O(ﬂ)

VI
< Clogn /n,
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taking J = m?.

Proof of Proposition 2.2. Take independent selectors (£;)1<j<, With values 0,1 and mean
El§]=1— L. Let F,(0) = 2 0cjen(l— %) cos 27760 + 1 be the Fejer kernel

Zcos apt = Z& cos (0 = — = —i— Z & — E[&]) cos £0. (2.5)

By Lemma 2.1 (applies with J = n'%)

kz:;logﬂ e2miant) < _ ZZ—COS27TjCLk9+O(%> (2.6)

7=1 k=1

and we take J at least n to bound the last term in the right hand side of (2.5) by y/n. We analyze
the first term. Inserting (2.5) gives the sum of the following two expressions ((2.7) and (2.8))

25 (R0 ) e
Z i] E[&]) cos 2mL30. (2.8)

Since F,(j0) > 0, (2.7) < log J.

Rewrite

(2.8) = = >_(& —Ele) |

r cos 27Tj£9] . (2.9)
=1 J

o,
[ MK
i

Note that all frequencies in (2.9) are bounded by n.J.
Applying the probabilistic Salem-Zygmund inequality [Kol3] shows that with large proba-
bility
(2.9) < V/log n [Z)Z—COSQWMQ‘ } (2.10)

Our next task is to evaluate the expression y_,_, ‘ Z p cos 27 jw)

A first observation is that we can assume

1
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since otherwise

4 2
1 — e2mal| < 27, )0]| < % <1

forall £k =1,...,m, and also the left hand side of (2.4) is bounded by 1.

i — L
Next, we note that (since p = 1 — \/j)

L p p’
—,(3052717[0‘ < llog|l — pe(9)|| + ——
\;j [log 1= pelO)| + 5 —
< [log |1 — pe(€0)|] + 1.
Hence
n J p] 9 n )
‘ — cos 27rj€9‘ < Z | log |1 — pe(46)]|” + n. (2.12)
= =1/ =1

Fix 6 and for 1 < R < log J define the dyadic set
Sp={1<0<n:|log|l — pe(td)|| ~ R}.
Thus for ¢ € Sp
1€0]] < |1 — pe(£8)]| < e=F =: ¢,

Let ¢ € N be the smallest integer with [[¢f|| < 2e. It follows that |Sg| < 7 4+ 1. Assuming

q > R3, one obtains
5 n
3 |log|1 — pet0)]]” < (ﬁ +1)R?
leSp

with collected contribution (summing over dyadic R)

~n + (log J)?. (2.13)

It remains to consider §’s with the property that for some large R and ¢ < R?,

lgf|| < e~
Hence either # admits a rational approximation
a €_CR R
‘6 ——| < <e ™ ¢< R’ and (a,q) =1 (2.14)
q q
or (in (2.14) when a = 0), by (2.11)
1
— < |19|| < e“E. (2.15)
n
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Consider first the case (2.15). Then
1Sp| < {€=1,...,n:||60]| < e} < ne e
and the above estimate still holds.
Assume next that 6 satisfies (2.14). Write

= g 4 with § = [ib] < e°F. (2.16)

First, we consider the case § 2 —

qu

# so that {¢6 : ¢ € V'} consists of ¢/3-separated

points filling a fraction of [0, 1] (mod 1). Hence

Let V' C {1,...,n} be an interval of size ~

Z‘log|1—pe(€0)| /‘10g|1—pe ||dt+log (1—p)
eV
! +log? J
/8 g
and
Z‘log|1—pe(f@)Hzgn—l—nqﬁloanSn
-1
unless

cR

gBlog*n > 1, ie. logn > e® or R <loglogn

where we used (2.14). Thus if 3 2 —- (2 12) < n(loglogn)?.

The next case is 5 < 100nq

It follows that for 1 < ¢ <n

< (2.17)

la
00 — —
‘ q 100¢q

‘We obtain

Z‘logﬂ—pe(f& <n/ | log |1 — pe(t Hdt<n
qtt
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and 5
1 n
Z‘log|1—pe(€9)||2~%/o ‘10g|1—pe(t)||2dt
alt
1 [P 12 (2.18)

< Z(lognB)?.
q

We obtain again a bound O(n) unless

|lognf| > \/q
ie.
6_\/6
B < (2.19)
Thus (2.17) may be replaced by
‘w - ﬂ’ <eVifor 1<(<n. (2.20)
q
For 0 satisfying (2.20) we proceed in a different way. Write
[I1n—e(ab)=]]1-e(o)
! (2.21)
1\&
SH(fr-<(G9)]+ m)"
~ 10
P q/1 q
We replace ; by its expectation E[§;] =1 — % using again a random argument. Thus if
I1 (‘1—6(3'9) + ) (2.22)
, q q
7j=1

we have

n

> (& - Elg]) 1og (’1—«{73)‘ +%)‘ (2.23)

=1 1
Recall that ¢ < R? < (log J)? ~ (logn)?. Thus with high probability we may bound (2.23) by
cv/n V/loglognlog q < c¢y/n(loglogn)3.

| 1og(2.21) — log(2.22)| <

Hence

(2.21) < eovnlloglogn)® (9 99y,
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Partition {1,...,n} inintervals I = [rq, (r + 1)q — 1] and estimate for each such interval
a 1 \1-=
[ (- () + )
jel q q
-1
G271 1 a 1=
< g% [ﬁ (‘1—e<sq>)+ﬁ] (2.24)
s=1
-1
A1 1 < S 1=
PIES | (RO
o L=

The product [T7_; [1 — e(2) | may be evaluated using Lemma 2.1 taking J = ¢%,p = 1 —
Thus clearly

1
.

q—1 s J ,0] g—1 s
10g’1—e(—>‘ <= — ) cos2mj—+ O(1)

< > 2 4 > P o)
1557 7 1<j<g J
atj qlj

<logq+C

implying that
21

(2.24) < ¢°% (— (2.25)

Since (2.22) is obtained as product of (2.24), (2.25) over the intervals /, we showed that

q2
(2.22) < ¢°w 20 < ellos™)?®,

Thus the preceding shows that if 6 satisfies (2.20), then

H |1 — e(aph)| < ecvriloglosn)®

(2.26)
Going back to (2.10), omitting the case (2.20) estimated by (2.26), we obtained the bound

cn(loglogn)? on (2.12) which permits to majorize (2.8) by cv/n log n(log log n) and
[T11 — e(axd)| by ecVrlognlosloen Thig completes the proof of Proposition 2.2.
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3. Almost full proportion

It was observed in [E-S] that

lim M(1,... ) (3.1)

exists and lies strictly between 1 and 2.
This fact is in contrast with Proposition 2.2 which gives a subset S C {1,...,n},[S| < § s.t.
log M(S) < v/n(logn)? loglog n. (3.2)

However

Proposition 3.1. There is a constant T > 0 such that if S C {1,...,n} satisfies |S| > (1—7)n,
then
log M(S) > en (3.3)

for some ¢ > 0.

Thus (3.3) generalizes (3.1) in some sense, but in view of (3.2), it fails dramatically if we do
|S]

not assume 1 — ! small enough.

Proof of Proposition 3.1.

It will be convenient to use Fact 2 for an appropriate p-convolution, which allow us to esti-

mate the tail contribution in the k-summation.

Thus consider

{33 o

jes k=1

IR (k)
__memzz L

k=1 jeS

cos 27k 0

n

ko o
o (k) :
> malng E ’ cos 2mkj0 (3.4)

— (log ko)mn

Ly 3 i .

k>ko j=1
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since we assumed |S| > (1 — 7)n.
Separating in (3.4) the cases £ = 1, and 2 < k < Ky, we write

(3.4) > — (icos 27Tj9> — i 11— u(7)

j=1

(3.6)
ko 1 n
- Z E) Z f(jk) cos 27Tkij9‘.
k=2 j=1
Take 11 = F,,z(6), R > 1 an appropriate constant and F,,z(6) the Féjer kernel.
Thus
Fop(s)=1— % for |s| <nR
=0 otherwise.
Take 0 = %. The first term in (3.6) becomes, since
- 1 1 sin(n +
Zcoij = EDn(x) — 5 where D, (z) = %
j=1 2
is the Dirichlet kernel,
1 1sin2(n+1) N 1
2 2 sin i—” 2sin Z”
The second term is
B i L . n+ 1
p= nk 2R
The third term becomes
ko n . .
1 gk 3kj
=3 (1= 7R), ooy | (37)
k=2 J=1
By partial summation, the inner sum is bounded by
max Ccos T
j1<min(n, @ Z

= max

j1<min(n, %

1 /3 ky 1
D, <_ _>__
27 \3™,) T g

1 +1
= 2|sin 27k
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For k < ko = o(n), the first term

Hence

It follows from the preceding that

1 T n-+1
4) >+ ) - —
(3-4) 2 251113—7r <2 6 ) log ko 2R

= cn — log ko
for R a sufficiently large constant.

We bound (3.5) by
nR R
(3.5) > Z do1x- TR

k>ko — j<nR k>ko
In summary, we proved that
Cl
Z Z M COSQ?T]]{?— > cn —logky — 7(log ko)n — kn > gn
jeS k=1 0
be choosing first k&, large enough and then assuming 7 sufficiently small.
This proves Proposition 3.1.
4. Sets with large arithmetical Diameter
As we pointed out the general lower bound M (ay, . .., a,) > /n remains unimproved. How-

ever Proposition 4.1 stated below shows that in certain cases one can do better.
First, we give the following definition.
Definition. D = {vy,...,v,} C Z is called dissociated provided the relation
g+ F+epvy, =0 with ¢, =0,1,—1

implies thate, = --- =€, = 0.
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We note that Hadamard lacunary sets are dissociated.

Proposition 4.1. Assume S = {a, ..., a,} contains a dissociated set D of size m. Then

m%fo(l)
log M(ay,...,a,) >

) 4.1
(logn)® D

Thus (4.1) improves the general lower bound from [E-S] provided m > (logn)3*e.

Remark. By a result of Pisier [P], our assumption is equivalent to S containing a Sidon set A
of size |A| ~ m. Here ‘Sidon set’ is in the harmonic analysis sense i.e.
H Z )\ne(nQ)H > CZ |\n| for all scalars {\,,}
neA >

with ¢ = ¢(A) to be considered as a constant. (This concept is different from the Sidon sets in

combinatorics!).

Dissociated sets are Sidon and conversely, Pisier proved that if A is a finite Sidon set, then A

contains a proportional dissociated set.
Proof of Proposition 4.1.

We derive (4.1) from the equivalent statement

m%_o(l)

{log )17 -

max (log |1 —e(ai0)| + - -~ + log |1 — e(a,b)|) >

which, since [ log |1 — e(af)| = 0 for a € Z\{0}, is a consequence of the stronger claim that

m%—o(l)

F —_— 4.
|| Hl > (10gn)1/2 ( 3)
denoting
F(0) =log|l —e(ai0)|+ - -- + log |1 — e(a,0)]|.
Recall that by Fact 1
=1
F(6) == £ (ko) (4.4)
k=1

with

f(o) = Z cos(2ma;0).



ON A PAPER OF ERDOS AND SZEKERES 15

We first perform a finite Mobius inversion on (4.4). Recall that

1 ifk=1
> uld) = '
d|k,d<r 0 ifl<k<r
d square free
Hence
Z F(df) ﬂ: zn:f: Z cos(2ma; dk@)ﬁ
d 7 dk
d<r j=1 k=1 d<r
square free square free
" cos( 27ra 144
-y el S )
e caine e (4.5)
= cos(2ma,;00)
=10 - XY CEED ] S )
j=1 i>r dlt,d<r
square free
= —f(0) + G(0),
where

60 =-3 YO 5 )

j=1 £>r dje,d<r
square free

Note also that

> u@)] 20, (4.6)

die,d<r
square free

where w({) is the number of distinct prime factors of .

Denote m the size of the largest dissociated set contained in {a, . .., a, }. Our first task will

be to bound the Fourier transform || G| of G.

Thus given ¢t € Z, we have

1= ) w(t)
Gyl < 5 D0 02 (17)
7j=1
We will bound (4.7) by considering dyadic ranges, letting for & > r dyadic

t
J=Jx={j€l,n| : a;/t and — ~ K}.
J
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Thus )
Q; w(%) Qj 2 w(k) 2
7 S (F) ()
- (4.8)
1 1 J|\ 2
SIJEK 'Kz (log K)? = (%) (log K)2.
Assume i
J| > —F=. 4.9
> o i (49)
Our aim is to get a contradiction for appropriate choice of r.
At this point, we invoke the following result from [H-T] (see F'q (1.14)).
Denote
U(z,y) = [{n <z : if pln, thenp < y}|.
Lemma 4.2. Forany 0 < a < 1, we have
¥ (z, (logz)V/*) < 2! %W for x — oco. (4.10)
It follows from (4.9) that for any fixed 1 > a > 0, we have
7| > 20(K, (log K)=). (4.11)

We make the following construction.
By (4.11), there is j; € J such that ai has a prime divisor p; > (log K)i and we write
¢ _ b J1
@ — P101.
J1
7]

Gon k)5 where we
og @

g |t K b
Next, let J; = {j € J: p1|aj } Hence |‘]1| < P1 +1< (1OgK)é <

assume « taken much smaller than %.

It follows that also

VL (2= s )0 (K, (log K)¥)

(log K)a—*

which permits to introduce jo € J\J; and a prime ps > (log K )é such that p2|a4. Write
J2

é = poby. Clearly p; # p; and p; 1 by.

The contribution of the process is clear. We may introduce elements

Jiseeeyjs € J with s> (log K)a™8
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and prime divisors py |——. Write = = pyby such that py { —— for ' < s”. Hence py» # py
Jgl Jgt T
for s # ¢ and
ps 1 bgn for s < s”. (4.12)
We claim that the set {a;,, ..., a;, } is dissociated. Otherwise, there is a non-trivial relation

51a_j1+"'+5saj5 =0 WithEs/ :O,]_,—]_

which by the preceding translates in

or
Z&’S/ H psubs// = 0
s'=1 s''#s!

Let s; be the smallest s’ with e, # 0. Then

s

Z Eg/ H psnbsn = 0. (4.13)

s'=s1 Y
s >s1

Since

ps1‘ H ps”bs” for 5/ > 81,

S//#S/
511251
identity (4.13) implies
psl‘ H bS”7
s"'>s1
contradicting (4.12).
Hence {a;,,...,a;,} is dissociated and by definition of m,
s<m
implying
m > (logK)é’8 and logr < mTsa.
Thus, by taking

logr ~m** (a small enough)

we obtain a contradiction under assumption (4.9).
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Hence

K
|JK|<(10g—K)8 for K >r

and summing (4.8) over dyadic ranges of K > r gives the bound

. 1 1
E <
GOl < (log K)2 ~ logr

K>r
dyadic
Consequently
— N 1 N
45)(t) = —f(t) + O(1 ) — —f(t) +o(1) forall t € Z.
ogr
Since
7)==
] - 27
we have
(4.5)(j) = —3 + o(1).
Next, let D be a size m dissociated set in {a, ..., a,}. Define
1
p(0) = —= ) e(j0).
Vi iz

Also, let ®, ¥ be the dual Orliez functions

®(z) =2/log(2+2) and U(z)=¢".
It is well known (e.g. Theorem 3.1 in [Rud].) that
el = O(1).
By (4.16)
(5 - o) v < | [ s)e01] < sl

It remains to bound ||(4.5)|| .

Estimate

/|(4.5)|\/1og(y(4.5)y +2) df
< 22”2/ (M) dA,

- .
>0 2277 < <0’

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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Where M = {6 : (4.5)(#) > A} and p is the measure. Using the left hand side of (4.5), the

J-summands is bounded by
2972)|(4.5)|, < 272 logr || F ;. (4.19)

Also, let Uy (u) = e*. Then

F(df
ZI (d )l

d<r

< (log7)|[F|pe. S nlogr,
LY1

since || log [1 — €] || v, < oo.
Thus also the bound
(M) < e e

implying the following bound for the j-summands

i1
2%’

27/29% ¢~ wiog (4.20)

Hence ,
2J—1

(4.18) < > 27/ min ((log r) [ Flly, 2% ¢~ 7 ).

J

For 22 <n log r, we get the contribution
(logn)? log r|| F 1.
For 22~* > nlogr, we bound by
(TL 10g T)4+ee—cnlog'r + (n IOg r)4~2+e e—c(n(logr))3 I (n 10g T)4~2“_1+e e—c(nlogr)Qu_1 4.
< O(1).
Hence
1
1(4.5) ]| < (4.18) < (logn)zm**|| F[ly (4.21)

recalling above choice for log r.

Returning to (4.17), we proved that

1 1 1
(5 o)) m 2 < logm) | Pl

hence

N[

|F||y = m2=*(logn) 2.

This proves (4.3) and hence Proposition 4.1.
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