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Abstract. We obtain various bounds on orbit length of modular
reductions of algebraic dynamical systems generated by polynomi-
als with integer coefficients. In particular we extend a recent result
of Chang (2015) in two different directions.

1. Introduction

Let
F = (F1, . . . , Fm), F1, . . . , Fm ∈ K[X],

be a system of m polynomials in m variables X = (X1, . . . , Xm) over
a field K. The iterations of this system are given by

(1.1) F
(0)
i = Xi and F

(k)
i = Fi

(
F

(k−1)
1 , . . . , F k−1)

m

)
for i = 1, . . . ,m and k ≥ 1. We refer to [AnaKhr09, Sch95, Sil07] for a
background on the dynamical systems associated with these iterations.

Given a point w ∈ Km we define its orbit with respect to the system
F as the set

OrbF (w) = {wn | with w0 = w and

wk = F (wk−1) , k = 1, 2, . . .}.
(1.2)

The set PrePerK(F ) of preperiodic points of F is the set of points
w ∈ Km for which OrbF (w) is a finite set.

Sets PrePerK(F ) are classical objects of study and in particular for
polynomial systems over C. For example, by the celebrated result of
Northcott [Nor50], if K is an algebraic number field, for any system
of nonlinear polynomials the set PrePerK(F ) is finite, see also [Sil07,
Theorem 3.12]. The Uniform Boundedness Conjecture of Morton and
Silverman [MS94] asserts that the cardinality #PrePerK(F ) can be
bounded only in terms of degrees of the polynomials in F and the
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degree of K over Q. Recently, several very deep results have been
obtained towards this conjecture, see [BDeM11, BDeM13, GHT13,
GHT15, GKN16, GKNY16, GNT15, Ing12] and references there in.
In a similar spirit, Dvornicich and Zannier [DvZan07] show that under
some very natural necessary conditions a polynomial f may have only
finitely many preperiodic points in the set U of roots of unity (or more
generally in the cyclotomic closure K[U ] of an algebraic number field
K). On the other hand, if K = Fq is a finite field of q elements then all
orbits OrbF (w) are finite and in fact #OrbF (w) ≤ qm.

We also note the result of Ingram [Ing12] which shows that the set of
t ∈ Q for which the critical points of a parametric polynomial ft(X) ∈
C[X] are preperiodic (such polynomials are called post-critically finite)
is a set of bounded height.

Recently, there has been active interest in the study of orbits of
reductions Fp modulo distinct primes p of a polynomial system F de-
fined over Q, see [AkbGhi09, BGH+13, Cha15, DOSS15, Sil08]. We
use OrbF ,p(w) to denote the orbit of the reduction of w ∈ Zm modulo
p in the dynamical system over Fp generated by the reduction of poly-
nomial system F ∈ Z[X] modulo p. Alternatively, OrbF ,p(w) is the
reduction modulo p of the elements of the orbit (1.2).

Silverman [Sil08] has shown that under some natural conditions on
a fixed w ∈ Zm, for almost all primes p (in the sense of asymptotic
relative density) we have #OrbF ,p(w) ≥ (log p)1+o(1). This result has
been improved slightly by Akbary and Ghioca [AkbGhi09].

Chang [Cha15] has given a result of a new type involving two distinct
orbits. The method of [Cha15] is based on a result of Ghioca, Krieger
and Nguyen [GKN16] on the finiteness of the set of t ∈ C for which
0 ∈ PrePerC(ft)∩PrePerC(gt) for the polynomials ft(X) = Xd + t and
gt(X) = Xd + a(t) with a ∈ Z[T ] and a fixed integer d ≥ 2. This result
has been extended by Ghioca, Krieger, Nguyen and Ye [GKNY16] to
much wider families of polynomials.

Let Fp denote the algebraic closure of Fp. Then, by [Cha15, Theo-
rem 1], there are constants c1, c2 depending on d and a(T ) such that
for almost all primes p, there is a set T ⊆ Fp with #T ≤ c1 such that

for every t ∈ Fp \ T we have

(1.3) max {#Orbft,p(0),#Orbgt,p(0)} ≥ c2 log p.

Here we consider a more general case of r ≥ 1 distinct n-parametric
m-dimensional polynomial systems

(1.4) Ft,ν(X) = (F1,ν(X, t), . . . , Fm,ν(X, t)), ν = 1, . . . , r,
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with polynomials

(1.5) Fi,ν(X,T ) ∈ Z[X;T ], i = 1, . . . ,m, ν = 1, . . . , r,

where T = (T1, . . . , Tn), specialised at the values of the parameter
t ∈ Cn.

It is also convenient to denote

0m = (0, . . . , 0︸ ︷︷ ︸
m

).

Here we extend [Cha15, Theorem 1] in several different directions:

• We use some results of [DOSS15] to obtain an analogue of the
result of Chang [Cha15, Theorem 1] for r distinct n-parametric
m-dimensional polynomial systems Ft,ν , ν = 1, . . . , r, for which

0m ∈
r⋂

ν=1

PrePerC(Ft,ν)

for only finitely many values of the parameter t ∈ Cn;
• We obtain a somewhat dual result of similar flavour, which

applies to one polynomial system and several initial points.
• We use a result on divisibility of resultants which is due to

Gómez-Pérez, Gutierrez, Ibeas and Sevilla [GGIS09] in the set-
tings of [Cha15] with two parametric families of univariate poly-
nomials to get a trade-off between the size of the exceptional
set T ⊆ Fp and max{#Orbft,p(0),#Orbgt,p(0)} in [Cha15, The-
orem 1].

Note that our results can be derived for any fixed initial point w0 ∈
Zm, not necessary for w0 = 0m. In fact no special adjstment is needed,
one simply considers the polynomial systems Ft,ν (X −w0) +w0, ν =
1, . . . , r, with shifted arguments and polynomials.

Throughout the paper, given functions

Φ, Ψ : N→ N,
the symbols Φ = O(Ψ) and Φ� Ψ both mean that there is a constant
c ≥ 0 such that Φ(k) ≤ c Ψ(k) for all k ∈ N. To emphasise the
dependence of the implied constant c on a list of parameters ρ, we
write Φ = Oρ(Ψ) or Φ�ρ Ψ .

2. Main results

2.1. Multivariate systems. We start with a generalisation of the
result of Chang [Cha15, Theorem 1] and obtain a version of the lower
bound (1.3) for several parametric multivariate polynomial systems as
in (1.4) and (1.5).
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Theorem 2.1. Let Ft,ν, ν = 1, . . . , r, be r ≥ 1 parametric systems of
polynomials as in (1.4) and (1.5) with

max
i=1,...,m
ν=1,...,r

degFi,ν ≤ d and max
i=1,...,m
ν=1,...,r

h(Fi,ν) ≤ h.

Assume that there exists K ∈ N such that

#

{
t ∈ Cn : 0m ∈

r⋂
ν=1

PrePerC(Ft,ν)

}
≤ K.

Then, for any integer L, there exists an integer A ≥ 1 with

logA�d,h,n,m,r

(
LdL

)3n+2

such that for a prime p with p - A, for all but at most K values of
t ∈ Fnp , we have

max
{

#OrbFt,ν ,p(0m) : ν = 1, . . . , r
}
> L.

Corollary 2.2. Under the conditions of Theorem 2.1, for any prime
p we have

max
{

#OrbFt,ν ,p(0m) : ν = 1, . . . , r
}
�d,h,m,n,r log log p

for all but at most K values of t ∈ Fnp .

For almost all primes, we have a stronger result.

Corollary 2.3. Under the conditions of Theorem 2.1, for any fixed
ε > 0 and sufficiently large integer Q ≥ 2, for all but Qε primes p ≤ Q
we have

max
{

#OrbFt,ν ,p(0m) : ν = 1, . . . , r
}
�d,h,m,n,r log p

for all but at most K values of t ∈ Fnp .

It is interesting to compare the bound of Corollary 2.3 with the
result of Silverman [Sil08] and its improvement due to Akbary and
Ghioca [AkbGhi09].

We now obtain a dual result for a polynomial system but with several
initial points.

Theorem 2.4. Let {Ft}t∈Cn = {(F1(X, t), . . . , Fm(X, t))}t∈Cn be a
parametric system with polynomials as in (1.4) and (1.5) and let aν ∈
Zm, ν = 1, . . . , r, be r integer vectors with

max
i=1,...,m

degFi ≤ d and max
i=1,...,m
ν=1,...,r

{h(Fi), h(aν)} ≤ h.

Assume that there exists K ∈ N such that

# {t ∈ Cn : {a1, . . . ,ar} ⊆ PrePerC(Ft)} ≤ K.
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Then, for any integer L, there exists an integer A ≥ 1 with

logA�d,h,n,m,r

(
LdL

)3n+2

such that for a prime p with p - A, for all but at most K values of
t ∈ Fnp , we have

max {#OrbFt,p(aν) : ν = 1, . . . , r} > L.

For a parametric system {Ft}t∈Cn with polynomials defined over C
as in (1.4) and (1.5) and aν ∈ Cm, ν = 1, . . . , r, it is certainly desirable
to control the finiteness of the set

{t ∈ Cn : {a1, . . . ,ar} ⊆ PrePerC(Ft)},
as well as the uniform boundedness of this set, as required in Theo-
rem 2.4.

For instance, Baker and DeMarco [BDeM11, Theorem 1.1] prove
that for any fixed a1, a2 ∈ C and any integer d ≥ 2, the set of t ∈ C
such that a1, a2 are preperiodic for ft(X) = Xd + t is infinite if and
only if ad1 = ad2. Thus this gives an example of polynomials to which
Theorem 2.4 applies.

2.2. Univariate systems. In the case of the univariate systems with
X = X and a univariate parameter T = T (that is, for m = 1, n = 1),
we also extend the result of Chang [Cha15, Theorem 1] in a different
direction.

Theorem 2.5. Let {ft}t∈C and {gt}t∈C be two parametric families
of univariate polynomials defined by (1.4) and (1.5) with polynomials
f(X,T ), g(X,T ) ∈ Z[X,T ] of degree at most d and of height at most
h. Assume that the following set is finite and satisfies

# {t ∈ C : 0 ∈ PrePerC(ft) ∩ PrePerC(gt)} ≤ K.

Then, for any integer L, there exists an integer B ≥ 1 with

logB�d,h L
2d2L

such that for a prime p and a positive integer N with pN - B, for all
but at most N +K − 1 values of t ∈ Fp we have

max {#Orbft,p(0),#Orbgt,p(0)} > L.

As in [Cha15], we note that by the result of Ghioca, Krieger and
Nguyen [GKN16] the conditions of Theorem 2.5 are satisfied for the
pair of polynomials ft(X) = Xd + t and gt(X) = Xd + a(t) with
a ∈ Z[T ] which is not of the form a(T ) = ζT , where ζd−1 = 1, see
also [GKNY16] for a much broader family of examples.

We also have:
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Corollary 2.6. Under the conditions of Theorem 2.5, for any integers
E,L,Q ≥ 1 the number R of primes p ∈ [Q, 2Q] such that

max {#Orbft,p(0),#Orbgt,p(0)} ≤ L

for at least E values of t ∈ Fp, satisfies

ER�d,h L
2d2L/ logQ+K.

For example, we see that for any function ψ with ψ(z) → ∞ as
z →∞ for all but o(Q/ logQ) primes p ∈ [Q, 2Q] we have

max {#Orbft,p(0),#Orbgt,p(0)} ≤ logQ− 2 log logQ

2 log d
− ψ(Q)

for at most K +Od,h(1) values of t ∈ Fp, which is a more explicit form
of the bound (1.3).

Theorem 2.7. Let {ft}t∈C be a parametric family of univariate poly-
nomials defined by (1.4) and (1.5) with a polynomial f(X,T ) ∈ Z[X,T ]
and let a, b ∈ Zm betwo integers with

deg f ≤ d and max{h(f), log |a|, log |b|} ≤ h.

Assume that there exists K ∈ N such that

# {t ∈ Cn : {a, b} ⊆ PrePerC(ft)} ≤ K.

Then, for any integer L, there exists an integer B ≥ 1 with

logB�d,h,m L2d2L

such that for a prime p and a positive integer N with pN - B, for all
but at most N +K − 1 values of t ∈ Fp we have

max {#Orbft,p(a),#Orbft,p(b)} > L.

As we have mentioned, the result of Baker and DeMarco [BDeM11,
Theorem 1.1] shows that the class of polynomials to which Theorem 2.7
applies is not void.

Finally, as before, we also have:

Corollary 2.8. Under the conditions of Theorem 2.7, for any integers
E,L,Q ≥ 1 the number R of primes p ∈ [Q, 2Q] such that

max {#Orbft,p(a),#Orbft,p(b)} ≤ L

for at least E values of t ∈ Fp, satisfies

ER�d,h L
2d2L/ logQ+K.
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3. Auxiliary results

3.1. Heights of polynomials and their iterates. For an integer
vector a = (a1, . . . , a`) ∈ Z` we define its height h (a) as

h (a) = max
j=1,...,`

log max{1, |aj|}.

For a polynomial Ψ ∈ Z[X], we define its height, denoted by h (Ψ), as
the height of the vector formed by its coefficients.

The following bound on the height of a product of polynomials is
important for our results. It follows from [KPS01, Lemma 1.2].

Lemma 3.1. Let Ψ1, . . . , Ψs ∈ Z[Z] be polynomials in n variables Z =
(Z1, . . . , Zn). Then

−2
s∑
i=1

deg Ψi log(n+ 1) ≤ h

(
s∏
i=1

Ψi

)
−

s∑
i=1

h(Ψi)

≤
s∑
i=1

deg Ψi log(n+ 1).

We also frequently use the trivial bound on the height of a sum of
polynomials

(3.1) h

(
s∑
i=1

Ψi

)
≤ max

i=1,...,s
h(Ψi) + log s.

Moreover, we need a bound of [DOSS15] on the degree and height of
iterations of polynomial systems.

Lemma 3.2. Let Ψ1, . . . , Ψs ∈ Z[Z] be polynomials in s variables Z =
(Z1, . . . , Zs) of degree at most D ≥ 2 and of height at most H. Then, for

any positive integer k, the polynomials Ψ
(k)
1 , . . . , Ψ

(k)
s defined as in (1.1),

are of degree at most

max
j=1,...,s

deg Ψ
(k)
j ≤ Dk

and of height at most

max
j=1,...,s

h
(
Ψ

(k)
j

)
≤ H

Dk − 1

D − 1
+D(D + 1)

Dk−1 − 1

D − 1
log(s+ 1).

3.2. Modular reduction of systems of polynomial equations.
We recall the following result of [DOSS15] concerning the reduction
modulo prime numbers of systems of multivariate polynomials over the
integers.
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Lemma 3.3. Let Ψ1, . . . , Ψs ∈ Z[T ] in n variables T = (T1, . . . , Tn)
of degree at most D ≥ 2 and of height at most H, whose zero set in
Cn has a finite number K of distinct points. Then there exists A ∈ N
satisfying

logA ≤ C1(n)D3n+1H + C2(n, s)D
3n+2,

with

C1(n) = 11n+ 4 and C2(n, s) = (55n+ 99) log((2n+ 5)s)

and such that, if p is a prime number not dividing A, then the zero set
in Fnp of the system of polynomials Ψi (mod p), i = 1, . . . , s, consists
of exactly K distinct points.

3.3. Common zeros and resultants of polynomials. One of our
main results relies on a generalisation of the well known fact that if two
univariate polynomials f(T ), g(T ) ∈ Z[T ] have a common zero modulo
p then their resultant Res(f, g) is divisible by p. We need the following
extension of this property, due to Gómez-Pérez, Gutierrez, Ibeas and
Sevilla [GGIS09], to polynomials with several common roots modulo a
prime.

Lemma 3.4. Let p be a prime and let f, g ∈ Z[T ] be two univariate
polynomials such that their reduction modulo p do not vanish identically
and have at least N common roots in Fp counted with multiplicities.
Then pN | Res(f, g).

We remark that for applications, the result of [KS99, Lemma 5.3]
(which counts only simple roots) is sufficient.

4. Proofs of main results

4.1. Proof of Theorem 2.1. Consider the systems

Rν = (F1,ν(X,T ), . . . , Fm,ν(X,T ), T1, . . . , Tn) , ν = 1, . . . , r,

of m+ n polynomials in m+ n variables, each.
Let T be set of those t ∈ Cn for which 0m is a preperiodic point

of every system Ft,ν , ν = 1, . . . , r. By our assumptions, we have that
#T ≤ K.

For every choice of nonnegative integers k1, . . . , kr < L, we consider
the system of (m+ n)r equations formed by the iterations

(4.1) R(L)
ν (0m,T ) = R(kν)

ν (0m,T ), ν = 1, . . . , r.

Observe that in each group of m + n equations corresponding to the
same value of ν, the bottom n equations in (4.1) are automatically



MODULAR REDUCTIONS OF POLYNOMIAL DYNAMICAL SYSTEMS 9

satisfied. So we have mr equations in n variables:

(4.2) F
(L)
i,ν (0m,T ) = F

(kν)
i,ν (0m,T ) i = 1, . . . ,m, ν = 1, . . . , r.

Furthermore, we consider now the system of mr equations∏
kν<L

(
F

(L)
i,ν (0m,T )− F (kν)

i,ν (0m,T )
)

= 0,

i = 1, . . . ,m, ν = 1, . . . , r,

(4.3)

which by the above, has at most K solutions t ∈ T .
Now note that if

max
{

#OrbFt,ν ,p(0m) : ν = 1, . . . , r
}
≤ L

for some parameter t ∈ Fnp , then there are some nonnegative integers
k1, . . . , kr < L for which we have (4.1), and thus (4.3) (considered over
Fnp with reductions modulo p of the corresponding polynomials).

Applying Lemma 3.2 to the systemsRν in n+m variables, we obtain
that for i = 1, . . . ,m, ν = 1, . . . , r and an integer k ≥ 0 we have

(4.4) degF
(k)
i,ν (0m,T ) ≤ dk

and

(4.5) h
(
F

(k)
i,ν (0m,T )

)
≤ h

dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(n+m+ 1).

From (6), we immediately conclude

(4.6) deg

(∏
k<L

(
F

(L)
i,ν (0m,T )− F (k)

i,ν (0m,T )
))
�d,h,n,m LdL,

and furthermore by (3.1) and (4.5), we have

h
(
F

(L)
i,ν (0m,T )− F (k)

i,ν (0m,T )
)

≤ h
dL − 1

d− 1
+ d(d+ 1)

dL−1 − 1

d− 1
log(n+m+ 1) + log 2

�d,h,n,m dL,

for i = 1, . . . ,m and ν = 1, . . . , r.
Hence, by Lemma 3.1, we immediately obtain

(4.7) h

(∏
k<L

(
F

(L)
i,ν (0m,T )− F (k)

i,ν (0m,T )
))
�d,h,n,m,r Ld

L,

for i = 1, . . . ,m and ν = 1, . . . , r.
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Now we apply Lemma 3.3 with s = mr. Hence, if p - A, where A is
as in Lemma 3.3, and thus

(4.8) logA�d,h,n,m,r

(
LdL

)3n+2
,

then the system (4.3) (considered over Fnp again) has at most K zeros

in Fnp . The bound (4.8) gives the desired inequality.

4.2. Proof of Corollary 2.2. We can assume that p is sufficiently
large. Theorem 2.1 applied with

L =

⌊
log log p

3(n+ 1) log d

⌋
implies logA �d,h,m,n,r (log p)1−1/(3n+3)(log log p)3n+2. Since p is large
enough we have p - A and the result now follows.

4.3. Proof of Corollary 2.3. Theorem 2.1 applied with

L =

⌊
ε

logQ

3(n+ 1) log d

⌋
implies logA�d,h,m,n,r Q

(1−1/(3n+3))ε(logQ)3n+2. The divisibility p | A
is possible for at most 2 logA�d,h,m,n,r Q

(1−1/(3n+3))ε(logQ)3n+2 primes
p and since Q is large enough the result now follows.

4.4. Proof of Theorem 2.4. The proof follows the same way as for
Theorem 2.1. Consider the system

R = (F1(X,T ), . . . , Fm(X,T ), T1, . . . , Tn)

of m+ n polynomials in m+ n variables, each.
Let T be set of those t ∈ Cn for which a1, . . . ,ar are preperiodic

points of Ft. By our assumptions, we have that #T ≤ K.
For every choice of nonnegative integers k1, . . . , kr < L, we consider

the system of (m+ n)r equations formed by the iterations

(4.9) R(L)(aν ,T ) = R(kν)(aν ,T ), ν = 1, . . . , r.

Observe that in each group of equations the bottom n equations in (4.1)
are automatically satisfied. So we have mr equation (formed by the
first m components of R(kν)) in n variables:

(4.10) F
(L)
i (aν ,T ) = F

(kν)
i (aν ,T ), i = 1, . . . ,m, ν = 1, . . . , r.

We consider now the system of mr equations∏
kν≤L

(
F

(L)
i (aν ,T )− F (kν)

i (aν ,T )
)

= 0,

i = 1, . . . ,m, ν = 1, . . . , r,

(4.11)
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which by the above, has at most K solutions t ∈ T .
Now note that if

max {#OrbFt,p(aν) : ν = 1, . . . , r} ≤ L

for some parameter t ∈ Fnp , then there are some nonnegative integers
k1, . . . , kr < L for which we have (4.9), and thus (4.11) (considered
over Fnp with reductions modulo p of the corresponding polynomials).

As before, applying Lemma 3.2 to the system R in n+m variables,
we see that for any integer k ≥ 1 we have a full analogues of (4.6)
and (4.7), that is,

deg

(∏
k<L

(
F

(L)
i (aν ,T )− F (k)

i (aν ,T )
))
�d,h,n,m,r Ld

L

and

h

(∏
k<L

(
F

(L)
i (aν ,T )− F (k)

i (aν ,T )
))
�d,h,n,m,r Ld

L,

for i = 1, . . . ,m and ν = 1, . . . , r.
Now we apply Lemma 3.3 with s = mr. Hence, if p - A, where A is

as in Lemma 3.3, and thus

(4.12) logA�d,h,n,m,r

(
LdL

)3n+2
,

then the system (4.11) (considered over Fnp again) has at most K zeros

in Fnp . The bound (4.12) gives the desired inequality.

4.5. Proof of Theorem 2.5. As in Theorem 2.1, consider the two
dimensional dynamical systems

R = (f(X,T ), T ), and Q = (g(X,T ), T ).

By the finiteness assumption, the polynomials

ΦL(T ) =
L−1∏
k=0

(
f (L)(0, T )− f (k)(0, T )

)
,

ΨL(T ) =
L−1∏
k=0

(
g(L)(0, T )− g(k)(0, T )

)
,

have at most K common zeros t ∈ C. This implies that at least one
among ΦL(T ) and ΨL(T ) is not zero. If one of them is identically zero,
then the degree of the other is bounded by K and the claim follows
straightforwardly by taking B = 1.



12 CHANG, D’ANDREA, OSTAFE, SHPARLINSKI, AND SOMBRA

Suppose then without loss of generality that ΨL(T ) 6= 0 6= ΦL(T ),
and write

ΦL(T ) = Φ̃L(T )HL(T ) and ΨL(T ) = Ψ̃L(T )HL(T ),

for nonzero polynomials Φ̃L(T ), Ψ̃L(T ), HL(T ) ∈ Z[T ] such that the

polynomials Φ̃L(T ) and Ψ̃L(T ) have no common root in C and HL(T )
has at most K distinct zeros.

Let M the number of their common zeros in Fp. At most K of them

come from the polynomial HL(T ). Hence, the polynomials, Φ̃L(T ) and

Ψ̃L(T ) have at least M −K common zeros.
In particular, by Lemma 3.4, we deduce that pM−K | B, where

B =
∣∣∣Res

(
Φ̃L(T ), Ψ̃L(T )

)∣∣∣ > 0.

Hence, for a bound N such that pN - B, we must have M ≤ N+K−1.

One checks that this is also true if one of the polynomials Φ̃L(T ) andI: Added this
sentence

Ψ̃L(T ) vanishes identically modulo p.
To finish the proof we need to bound the size of B. As in the proof

of Theorem 2.1, applying Lemma 3.2 to the system R and Q in two
variables, we get

degΦL, deg ΨL ≤ LdL

and

(4.13) h (ΦL(T )) , h (ΨL(T ))�d,h Ld
L.

We apply now Lemma 3.1 and using (4.13), we conclude that

(4.14) h(Φ̃L), h(Ψ̃L)�d,h Ld
L.

We now use the trivial bound

| detB| ≤ s!Hs ≤ ssHs

on the determinant of an s×smatrixB with complex entries of absolute
value at most H (note that the Hadamard inequality does not lead to
any advantage here). We apply it to the Sylvester determinant formula
for the resultant B (with logH �d,h,m LdL and s ≤ LdL). Hence we
derive

logB�d,h L
2d2L,

which concludes the proof.

4.6. Proof of Corollary 2.6. Theorem 2.5 implies

(E −K + 1)R logQ ≤ logA�d,h L
2d2L

and the result now follows.
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4.7. Proof of Theorem 2.7. By consider the polynomials

ΦL(T ) =
L−1∏
k=0

(
f (L)(a, T )− f (k)(a, T )

)
,

ΨL(T ) =
L−1∏
k=0

(
f (L)(b, T )− g(k)(b, T )

)
,

which have at most K common zeros t ∈ C, and then follow the same
argument as in the proof of Theorem 2.5. In particular, we have full
analogues of the bounds (4.13) and (4.14).

4.8. Proof of Corollary 2.8. Similarly to the proof of Corollary 2.6
we note that Theorem 2.7 implies

(E −K + 1)R logQ ≤ logA�d,h L
2d2L

and the result now follows.

5. Comments

We remark that considering the systems of equations (4.2) and (4.10)
separately for each choice of the parameters k1, . . . , kr and k, respec-
tively, instead of the systems of equations (4.3) and (4.11), one can
slightly improve polynomial factors in the dependence on L in the
bounds of Theorems 2.1 and 2.4.
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6. Reduction modulo p of families of multivariate
parametric systems

Let X = (X1, . . . , Xn) and T = (T1, . . . , Tn) be groups of m ≥ 1 and
n ≥ 0 variables, respectively. Let F = (F1, . . . , Fm) ∈ Z[X,T ]m be a
family of m polynomials in the variables X and T . We respectively
define the degree and the height of F as

degF = max
i

degFi and h(F ) = max
i

h(Fi).

Given a field K and t = (t1, . . . , tn) ∈ Kn, we denote by Ft the map
Km → Km defined, for x ∈ Km, byThis definition

was implicit but
missing (6.1) Ft(x) = F (x, t).

Hence, F defines a n-parametric family of polynomial dynamical sys-
tems on Km. The fields relevant to our applications are the field of
complex numbers C and the algebraic closure Fp of a finite field corre-
sponding to a prime p.

Given a point w ∈ Kn, we denote by OrbFt(w) the orbit of w under
the map in (6.1). The set of preperiodic points of Ft, denoted by
PrePerK(Ft), is the set of points w ∈ Km with finite F -orbit.

For a point a ∈ Zm and a prime p, we denote by a mod p the
reduction of a modulo p, which is a point in Fmp . For t ∈ Fmp , we
denote by

OrbFt(a mod p)

the orbit of this point under the map Ft : F
m

p → Fmp .I took out p from
the index, to be
consistent with
the provious no-
tation for orbits.
The underlying
field is implicit
from the choice
of the point to
which the map is
applied

Theorem 6.1. Let Fν ∈ Z[X,T ]m, ν = 1, . . . , r, be a family of r ≥ 1
parametric systems of polynomials and aj ∈ Z, j = 1, . . . , s, a family
of s ≥ 1 integer vectors, such that the set

(6.2) #{t ∈ Cn : aj ∈ PrePerC(Fν,t) for all ν, j}

is finite. Let also L ≥ 1.
Set K for the cardinality of the set in (6.2), and let d ≥ degFν for

all ν and h ≥ h(Fν), h(aj) for all ν and j. Then there is A ≥ 1 with

logA�m,n,r,s,d,h

(
LdL

)3n+2

such that, for every prime p not dividing A, for all but at most K values
of t ∈ Fnp ,

max
1≤ν≤r
1≤j≤s

#OrbFν,t(aj mod p) > L.

I prefer Fν,t (the
evaluation T ←
t of Fν) rather
than Ft,ν .
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Proof. Fix 1 ≤ ν ≤ r and 1 ≤ j ≤ s. Given 0 ≤ k ≤ L − 1, a point
t ∈ Cn verifies that

F
(L)
ν,i (aj, t) = F

(k)
ν,i (aj, t)

if and only if it lies in the zero set of the ideal of Z[T ] given by I also prefer Fν,i
(the ith compo-
nent of Fν) rather
than Fi,ν .

Iν,j,k =
(
{F (L)

ν,i (aj,T )− F (k)
ν,i (aj,T ) : 1 ≤ i ≤ m, 1 ≤ j ≤ s}

)
.

Hence, OrbFν ,t(aj) ≤ L if and only if t ∈ V
(∏L−1

k=0 Iν,j,k
)
.

For ν = 1, . . . , r, i ∈ {1, . . . ,m}L and j = 1, . . . , s, consider the
polynomial

(6.3) Ψν,i,j =
L−1∏
k=0

(
F

(L)
ν,ik+1

(aj,T )− F (k)
ν,ik+1

(aj,T )
)
∈ Z[T ].

This gives a set of generators for the ideal
∑

ν,j

∏L−1
k=0 Iν,j,k ⊂ Z[T ]. In think we

needed a bigger
set of equations
to translate the
condition (6.4).
This enlargement
does not affect
our conclusion

Hence, for a point t ∈ Cn we have that

(6.4) max
ν,j

OrbFν ,t(aj) ≤ L

if and only if t lies in the zero set of the Ψν,i,j’s. By our hypothesis on
the set in (6.2), the number of such t’s is finite and bounded by K.

For ν = 1, . . . , r, consider the family of m+ n polynomials in m+ n
variables given by

Rν = (F ,T ) ∈ Z[X,T ]m+n.

For k ≥ 0, we have that R
(k)
ν = (F

(k)
ν ,T ). Applying Lemma 3.2 to Rν ,

we obtain that

degF (k)
ν ≤ dk, h(F (k)

ν ) ≤ h
dk − 1

d− 1
+ d(d+ 1)

dk−1 − 1

d− 1
log(n+m+ 1).

Appluing Lemma 3.1, we deduce from this that, for all ν, i and j,

deg Ψν,i,j ≤ LdL and h(Ψν,i,j)�m,n,r,s,d,h Ld
L.

By Lemma 3.3 applied to the family of polynomials in (6.3), there

exists an integer A ≥ 1 with logA�m,n,r,s,d,h

(
LdL

)3n+2
such that the

system of equations

(6.5) Ψν,i,j(aj mod p, t) = 0

at most K solutions t ∈ Fnp . Similarly as before, this is equivalent to
the statement that

max
ν,j

#OrbFν,t(aj mod p) > L,

for all but at most K values of t ∈ Fnp . ut
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Corollary 6.2. Under the conditions of Theorem 6.1, for any prime
p we have

max
ν,j

#OrbFν,t(aj mod p)�m,n,r,s,d,h log log p

for all but at most K values of t ∈ Fnp .

Proof. We can assume that p is sufficiently large. Theorem 6.1 applied
with

L =

⌊
log log p

3(n+ 1) log d

⌋
implies logA� (log p)1−1/(3n+3)(log log p)3n+2. Since p is large enough,
we have p - A and the result now follows. ut

In the case when n = 0, that is, when there are no parameters,
Corollary 6.2 applied to a a point a ∈ Zm with infinite orbit over C,
gives that

(6.6) #OrbFν,t(a mod p)�m,n,r,s,d,h log log p

for every prime p. This is [Sil08, Corollary 12] for a dynamical system
on Pm defined by polynomials with integer coefficients.Silverman treats

more general dy-
namical systems
on quasiprojec-
tive varieties over
number fields

For almost all primes, we have a stronger result.

Corollary 6.3. Under the conditions of Theorem 2.1, for any fixed
ε > 0 and sufficiently large integer Q ≥ 2, for all but Qε primes p ≤ Q
we have

max
ν,j

#OrbFν,t(aj mod p)�m,n,r,s,d,h ε log p

for all but at most K values of t ∈ Fnp .We should spec-
ify that the im-
plicit constant in
the notation� is
> 0.

Proof. Theorem 6.1 applied with

L =

⌊
ε

logQ

3(n+ 1) log d

⌋
implies logA�d,h,m,n,r Q

(1−1/(3n+3))ε(logQ)3n+2. The divisibility p | A
is possible for at most logA/ log 2 primes p. Since Q is large enough,
the result follows. ut

This result should contain both [Sil08, Theorem 1] and [AkbGhi09,
Theorem 1.1], for a dynamical system on Pm defined by polynomials
with integer coefficients, and a point with infinite orbite.This has to be

verified. it would
good be good to
state this corol-
lary 6.3 in terms
of natural density
of primes.
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