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ABSTRACT. We obtain various bounds on orbit length of modular
reductions of algebraic dynamical systems generated by polynomi-
als with integer coefficients. In particular we extend a recent result
of Chang (2015) in two different directions.

1. INTRODUCTION

Let
F=(FR,....F,), F,.. F,cKX],
be a system of m polynomials in m variables X = (Xi,..., X,,) over
a field K. The iterations of this system are given by
(1.1) FO=x, and FY=F (Ff’“’, . ,FT’;—U)

fori=1,...,m and k > 1. We refer to [AnaKhr09, Sch95, Sil07] for a
background on the dynamical systems associated with these iterations.
Given a point w € K™ we define its orbit with respect to the system
F' as the set
Orbp(w) = {w,, | with wy = w and
gy Orbe(w) = {an with wo

wk:F(wk_l), k:1,2,}

The set PrePerk(F') of preperiodic points of F' is the set of points
w € K™ for which Orbp(w) is a finite set.

Sets PrePerg (F') are classical objects of study and in particular for
polynomial systems over C. For example, by the celebrated result of
Northcott [Nor50], if K is an algebraic number field, for any system
of nonlinear polynomials the set PrePerg(F) is finite, see also [Sil07,
Theorem 3.12]. The Uniform Boundedness Conjecture of Morton and
Silverman [MS94] asserts that the cardinality #PrePerg(F') can be
bounded only in terms of degrees of the polynomials in F' and the
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degree of K over Q. Recently, several very deep results have been
obtained towards this conjecture, see [BDeM11, BDeM13, GHT13,
GHT15, GKN16, GKNY16, GNT15, Ingl2] and references there in.
In a similar spirit, Dvornicich and Zannier [DvZan07] show that under
some very natural necessary conditions a polynomial f may have only
finitely many preperiodic points in the set U of roots of unity (or more
generally in the cyclotomic closure K[U] of an algebraic number field
K). On the other hand, if K = F, is a finite field of ¢ elements then all
orbits Orbp(w) are finite and in fact #Orbp(w) < ¢™.

We also note the result of Ingram [Ing12] which shows that the set of
t € Q for which the critical points of a parametric polynomial f,(X) €
C[X] are preperiodic (such polynomials are called post-critically finite)
is a set of bounded height.

Recently, there has been active interest in the study of orbits of
reductions F}, modulo distinct primes p of a polynomial system F' de-
fined over Q, see [AkbGhi09, BGH+13, Chal5, DOSS15, Sil08]. We
use Orbp ,(w) to denote the orbit of the reduction of w € Z™ modulo
p in the dynamical system over [, generated by the reduction of poly-
nomial system F € Z[X]| modulo p. Alternatively, Orbg ,(w) is the
reduction modulo p of the elements of the orbit (1.2).

Silverman [Sil08] has shown that under some natural conditions on
a fixed w € Z™, for almost all primes p (in the sense of asymptotic
relative density) we have #Orbp ,(w) > (logp)'+°). This result has
been improved slightly by Akbary and Ghioca [AkbGhi09].

Chang [Chalb] has given a result of a new type involving two distinct
orbits. The method of [Chal5] is based on a result of Ghioca, Krieger
and Nguyen [GKNI16] on the finiteness of the set of ¢ € C for which
0 € PrePerc(f;) N PrePerc(g;) for the polynomials f;(X) = X9+t and
g:(X) = X9+ a(t) with a € Z[T] and a fixed integer d > 2. This result
has been extended by Ghioca, Krieger, Nguyen and Ye [GKNY16] to
much wider families of polynomials.

Let Fp denote the algebraic closure of F,. Then, by [Chal5, Theo-
rem 1], there are constants ¢, ¢y depending on d and a(7) such that
for almost all primes p, there is a set 7 C EU with #7 < ¢; such that
for every t € F, \ T we have

(1.3) max {#0rby, ,(0), #0rby, ,(0)} > c3logp.

Here we consider a more general case of r > 1 distinct n-parametric
m-dimensional polynomial systems

(14) F (X)=(F,(X.t),... Fo,(X,t), v=1..r
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with polynomials
(1.5) F,,(X,T) e Z[X,;T], i=1,....m,v=1,...,r

where T' = (T3,...,T,), specialised at the values of the parameter
teCr.
It is also convenient to denote
0,, = (0,...,0).
——

Here we extend [Chal5, Theorem 1] in several different directions:

e We use some results of [DOSS15] to obtain an analogue of the
result of Chang [Chal5, Theorem 1] for r distinct n-parametric
m-dimensional polynomial systems F;,, v =1,...,r, for which

0, € ﬂ PrePerc(Ft,)
v=1
for only finitely many values of the parameter t € C";

e We obtain a somewhat dual result of similar flavour, which
applies to one polynomial system and several initial points.

e We use a result on divisibility of resultants which is due to
Goémez-Pérez, Gutierrez, Ibeas and Sevilla [GGIS09] in the set-
tings of [Chal5] with two parametric families of univariate poly-
nomials to get a trade-off between the size of the exceptional
set T C F, and max{#Orby, ,(0), #O0rb,, ,(0)} in [Chal5, The-

orem 1].

Note that our results can be derived for any fixed initial point wqy €
Z™, not necessary for wy = 0,,. In fact no special adjstment is needed,
one simply considers the polynomial systems F;, (X — wy) + wy, v =
1,...,r, with shifted arguments and polynomials.

Throughout the paper, given functions

b V:N— N,

the symbols @ = O(¥) and @ < ¥ both mean that there is a constant
¢ > 0 such that ®(k) < c¢W¥(k) for all £k € N. To emphasise the

dependence of the implied constant ¢ on a list of parameters p, we
write @ = O,(¥) or @ <, V.

2. MAIN RESULTS

2.1. Multivariate systems. We start with a generalisation of the
result of Chang [Chal5, Theorem 1] and obtain a version of the lower

bound (1.3) for several parametric multivariate polynomial systems as
in (1.4) and (1.5).
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Theorem 2.1. Let Fy,, v =1,...,r, be r > 1 parametric systems of
polynomials as in (1.4) and (1.5) with

max deg F;, <d and max h(F;,) < h.

s PO

Assume that there exists K € N such that

# {t eC":0,c¢ ﬂ PrePer@(Ftvl,)} < K.

v=1

Then, for any integer L, there exists an integer A > 1 with

IOgQ{ <<d,h,n,m,r (LdL)3n+2
such that for a prime p with p t A, for all but at most K wvalues of
te FZ, we have
max {#OI‘thﬁu,p(Om) cv=1,... ,7“} > L.

Corollary 2.2. Under the conditions of Theorem 2.1, for any prime
p we have

max {#Orbptva(om) cv=1,... ,r} >4 hmon,y loglogp
for all but at most K wvalues of t € FZ.
For almost all primes, we have a stronger result.

Corollary 2.3. Under the conditions of Theorem 2.1, for any fixed
e > 0 and sufficiently large integer Q) > 2, for all but Q° primes p < Q)
we have

max {#Oert,mP(Om) cv=1,... ,r} > d homon,r 10g P
for all but at most K wvalues of t € FZ.
It is interesting to compare the bound of Corollary 2.3 with the
result of Silverman [Sil08] and its improvement due to Akbary and
Ghioca [AkbGhi09].

We now obtain a dual result for a polynomial system but with several
initial points.

Theorem 2.4. Let {Fi}iecn = {(FA(X,t),..., Fn(X, 1)) becn be a

parametric system with polynomials as in (1.4) and (1.5) and let a, €

Zm, v=1,...,r, be r integer vectors with
max deg F; < d and max {h(F;),h(a,)} < h.
e P

Assume that there exists K € N such that
#{teC" : {ai,...,a,} CPrePerc(F;)} < K.
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Then, for any integer L, there exists an integer A > 1 with

log A L dhn,mr (LdL)3n+2

such that for a prime p with p t A, for all but at most K wvalues of
teF, we have

p’
max {#Orbg, ,(a,) : v=1,...,r} > L.

For a parametric system {Fy}sccn with polynomials defined over C
asin (1.4) and (1.5) and @, € C™, v = 1,...,r, it is certainly desirable
to control the finiteness of the set

{teC" : {ay,...,a,} C PrePerc(F})},

as well as the uniform boundedness of this set, as required in Theo-
rem 2.4.

For instance, Baker and DeMarco [BDeM11, Theorem 1.1] prove
that for any fixed a;,as € C and any integer d > 2, the set of t € C
such that ay,ay are preperiodic for fi(X) = X? + ¢ is infinite if and
only if a¢ = a4. Thus this gives an example of polynomials to which

Theorem 2.4 applies.

2.2. Univariate systems. In the case of the univariate systems with
X = X and a univariate parameter T' = T (that is, for m =1, n = 1),
we also extend the result of Chang [Chal5, Theorem 1] in a different
direction.

Theorem 2.5. Let {fi}iec and {g:}iec be two parametric families
of univariate polynomials defined by (1.4) and (1.5) with polynomials
f(X,T),9(X,T) € Z|X,T] of degree at most d and of height at most
h. Assume that the following set is finite and satisfies

#{t € C : 0 € PrePerc(f;) N PrePerc(¢:)} < K.
Then, for any integer L, there exists an integer B > 1 with
logB <41 L2d*"

such that for a prime p and a positive integer N with pN B, for all
but at most N + K — 1 values of t € F, we have

max {#Orby, ,(0), #O0rby, ,(0)} > L.

As in [Chalb], we note that by the result of Ghioca, Krieger and
Nguyen [GKN16] the conditions of Theorem 2.5 are satisfied for the
pair of polynomials f;(X) = X%+t and ¢,(X) = X? + a(t) with
a € Z[T] which is not of the form a(T) = (T, where (*! = 1, see
also [GKNY16] for a much broader family of examples.

We also have:
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Corollary 2.6. Under the conditions of Theorem 2.5, for any integers
E,L,Q > 1 the number R of primes p € [Q,2Q)] such that

max {#Orby, ,(0), #0rbg, ,(0)} < L
for at least E values of t € Fp, satisfies
ER <5, L*d**/log Q + K.

For example, we see that for any function ¢ with ¥(z) — oo as
z — oo for all but o(Q/log @) primes p € [Q,2Q] we have

log ) — 2loglog B

max {#Orbft,p(o)a #Orb9t7p<0>} S 2 log d

(@)

for at most K + Og4(1) values of ¢ € F,, which is a more explicit form
of the bound (1.3).

Theorem 2.7. Let {f;}iec be a parametric family of univariate poly-
nomials defined by (1.4) and (1.5) with a polynomial f(X,T) € Z|X,T]
and let a,b € Z™ betwo integers with

deg f <d and max{h(f),log|al,log|b|} < h.
Assume that there exists K € N such that
#{teC" : {a,b} C PrePerc(f:)} < K.
Then, for any integer L, there exists an integer B > 1 with
log B <gpm L*d*"

such that for a prime p and a positive integer N with pN B, for all
but at most N + K — 1 values of t € F, we have

max {#Orby, ,(a), #O0rby, ,(b)} > L.

As we have mentioned, the result of Baker and DeMarco [BDeM11,
Theorem 1.1] shows that the class of polynomials to which Theorem 2.7
applies is not void.

Finally, as before, we also have:

Corollary 2.8. Under the conditions of Theorem 2.7, for any integers
E,L,Q > 1 the number R of primes p € [Q,2Q)] such that

max {#Orby, ,(a), #Orby, ,(b)} < L
for at least E values of t € Fp, satisfies
ER <45, L*d**/logQ + K.
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3. AUXILIARY RESULTS

3.1. Heights of polynomials and their iterates. For an integer
vector a = (ay, . ..,a;) € Z* we define its height h (a) as

h(a)= Jmax, log max{1, |a,|}.

77777

For a polynomial ¥ € Z[X], we define its height, denoted by h (¥), as
the height of the vector formed by its coefficients.

The following bound on the height of a product of polynomials is
important for our results. It follows from [KPS01, Lemma 1.2].

Lemma 3.1. Let ¥y, ..., W, € Z[Z] be polynomials in n variables Z =
(Z1,...,Zy,). Then

—QZdeg@log n+1 (H@)—ih(@)

=1

< Z deg¥;log(n + 1).

i=1

We also frequently use the trivial bound on the height of a sum of
polynomials

(3.1) h (i LZ) < max h(¥;) + log s.

Moreover, we need a bound of [DOSS15] on the degree and height of
iterations of polynomial systems.

Lemma 3.2. Let ¥,,..., ¥, € Z|Z] be polynomials in s variables Z =
(Z1,...,Zs) of degree at most D > 2 and of height at most H. Then, for
any positive integer k, the polynomaials !I/l(k), e ,Ws(k) defined as in (1.1),
are of degree at most

and of height at most

E_ k-1

D 1 1
h(l]/()><H D(D+1)"— "1 1).
e, p-1 PPN el

3.2. Modular reduction of systems of polynomial equations.
We recall the following result of [DOSS15] concerning the reduction
modulo prime numbers of systems of multivariate polynomials over the
integers.
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Lemma 3.3. Let ¥y,..., ¥ € Z[T| in n variables T = (Ty,...,T,)
of degree at most D > 2 and of height at most H, whose zero set in
C"™ has a finite number K of distinct points. Then there exists A € N
satisfying
IOgQ[ < Cl<n)D3n+1H 4 Cz(n, 8)D3n+2,
with
Ci(n) =1ln+4 and Cs(n, s) = (bbn + 99) log((2n + 5)s)

and such that, if p is a prime number not dividing 2, then the zero set
m FZ of the system of polynomials ¥; (mod p), i = 1,...,s, consists
of exactly K distinct points.

3.3. Common zeros and resultants of polynomials. One of our
main results relies on a generalisation of the well known fact that if two
univariate polynomials f(7), g(T') € Z[T] have a common zero modulo
p then their resultant Res(f, g) is divisible by p. We need the following
extension of this property, due to Gémez-Pérez, Gutierrez, Ibeas and
Sevilla [GGIS09], to polynomials with several common roots modulo a
prime.

Lemma 3.4. Let p be a prime and let f,g € Z[T] be two univariate
polynomials such that their reduction modulo p do not vanish identically
and have at least N common roots in T, counted with multiplicities.
Then p™ | Res(f, g).

We remark that for applications, the result of [KS99, Lemma 5.3]
(which counts only simple roots) is sufficient.

4. PROOFS OF MAIN RESULTS
4.1. Proof of Theorem 2.1. Consider the systems
R, =(F,X,T),....F,,(X,T),Th,...,T,), v=1,...,r,

of m + n polynomials in m + n variables, each.

Let T be set of those t € C™ for which 0,, is a preperiodic point
of every system F;,, v =1,...,r. By our assumptions, we have that
#T < K.

For every choice of nonnegative integers ki, ..., k., < L, we consider
the system of (m + n)r equations formed by the iterations

(4.1) RY(0,,,T) = R*)(0,,,T), v=1,...,r

Observe that in each group of m + n equations corresponding to the
same value of v, the bottom n equations in (4.1) are automatically
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satisfied. So we have mr equations in n variables:

42)  F20,,T)=F%0,T) i=1...,m v=1,...r
Furthermore, we consider now the system of mr equations

[T (F2©0nT) - £ 0, 1)) =0,

(4.3) ky<L
1=1,....m, v=1,...,r,

which by the above, has at most K solutions t € T.
Now note that if

max {#Orbptwp(om) cv=1,... ,r} <L

for some parameter t € FZ, then there are some nonnegative integers
ki,...,k. < L for which we have (4.1), and thus (4.3) (considered over
ﬁ; Wlth reductions modulo p of the corresponding polynomials).

Applying Lemma 3.2 to the systems R, in n+m variables, we obtain
that for ¢ =1,. ,v=1,...,r and an integer k£ > 0 we have

(4.4) deg F(k (0, T) < d

and
d* — dFt—1
T +d(d+1) log(n +m + 1).

d—1
From (6), we immediately conclude

(45) b (ﬂ.{’;)(om,:r)) <h

(4.6) deg (H ( (0,,,T) — Fi{’y(om,T))) Ldnmm Ld",

k<L

and furthermore by (3.1) and (4.5), we have

5),
b (£(0,.T) = F(0,.7))

dt —1 a1
Shd +d(d+1)d—log(n+m+1)+log2
<<d,h,n,mdLa
fori=1,....mandv=1,...,r.

Hence, by Lemma 3.1, we immediately obtain

(4.7) h(H (FF 00, 1) - Eﬁ’z)(om,ﬂ)) Lanpmy Ld",

k<L

fori=1,...mandv=1,...,r.
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Now we apply Lemma 3.3 with s = mr. Hence, if p t 2, where 2 is
as in Lemma 3.3, and thus

(4.8) log & apnmr (Ld")"

I

then the system (4.3) (considered over FZ again) has at most K zeros
in FZ. The bound (4.8) gives the desired inequality.

4.2. Proof of Corollary 2.2. We can assume that p is sufficiently
large. Theorem 2.1 applied with

B log log p

~ 13(n+1)logd
implies log 2 <gpmar (logp)=/G+3)(loglog p)® 2. Since p is large
enough we have p 1 2 and the result now follows.

4.3. Proof of Corollary 2.3. Theorem 2.1 applied with
log @
L=|le——————
{53(71 +1)log dJ
implies log A <y pmn, QI/E 3 (log Q)*"+2. The divisibility p | 2

is possible for at most 210g A g pmn,r Q7Y E 3 (log Q)>"+2 primes
p and since @ is large enough the result now follows.

4.4. Proof of Theorem 2.4. The proof follows the same way as for
Theorem 2.1. Consider the system

R=(F(X,T),....Fu(X,T),T\,....T))

of m 4+ n polynomials in m + n variables, each.
Let T be set of those t € C™ for which aq,...,a, are preperiodic
points of F;. By our assumptions, we have that #7 < K.

For every choice of nonnegative integers ki, ..., k. < L, we consider
the system of (m + n)r equations formed by the iterations
(4.9) R%Y(a,,T)= R*)(a,,T), v=1,...,r

Observe that in each group of equations the bottom n equations in (4.1)
are automatically satisfied. So we have mr equation (formed by the
first m components of R**)) in n variables:

4.10) FPa,,T)=F*(a,,T), i=1,...,m, v=1,...r

7

We consider now the system of mr equations

[T (£ (@, 1)~ F*(a,. 1)) =0
(4.11) Rl
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which by the above, has at most K solutions t € 7.
Now note that if

max {#Orbp, ,(a,) : v=1,...,r} <L

for some parameter t € FZ, then there are some nonnegative integers
ki,...,k, < L for which we have (4.9), and thus (4.11) (considered
over ﬁ; with reductions modulo p of the corresponding polynomials).

As before, applying Lemma 3.2 to the system R in n + m variables,
we see that for any integer £ > 1 we have a full analogues of (4.6)
and (4.7), that is,

deg (H (E(L) (a'V’ T) - Fz(k) (al/7 T))) <<d,h,n,m,7" LdL

k<L
and
h <H (‘Fz(L) (aV7T) - Fz(k) (aV7T)>> <<d,h,n,m,r LdL7
k<L
fori=1,....mandv=1,...,r.

Now we apply Lemma 3.3 with s = mr. Hence, if p t 2, where 2 is
as in Lemma 3.3, and thus

(4.12) log A < nma (LdP)™

then the system (4.11) (considered over FZ again) has at most K zeros
in FZ. The bound (4.12) gives the desired inequality.

4.5. Proof of Theorem 2.5. As in Theorem 2.1, consider the two
dimensional dynamical systems

R:(f(XvT)’T>7 and Q:(Q(X7T)>T)'

By the finiteness assumption, the polynomials
L—1
o(T) = [ (#P0,7) - f¥(0,1))
k=0
L—1
v, (T) =[] (¢%(0,7) — g™ (0,7)),
k=0

have at most K common zeros t € C. This implies that at least one
among @1, (T') and Wy (T) is not zero. If one of them is identically zero,

then the degree of the other is bounded by K and the claim follows
straightforwardly by taking B = 1.
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Suppose then without loss of generality that ¥, (T) # 0 # @.(T),
and write

G,(T) = L(TVHL(T)  and W (T) =W (T)HL(T),

for nonzero polynomials @ (T), W, (T), H,(T) € Z[T] such that the
polynomials @1 (T) and ¥, (T) have no common root in C and Hy(T)
has at most K distinct zeros. B

Let M the number of their common zeros in F,. At most K of them
come from the polynomial Hy(T). Hence, the polynomials, @, (T') and

¥, (T) have at least M — K common zeros.
In particular, by Lemma 3.4, we deduce that p» =% | 9B, where

B — ‘Res (E;FL(T),@L(T))‘ > 0.

Hence, for a bound N such that p™ t B, we must have M < N+ K —1.
One checks that this is also true if one of the polynomials @, (T") and
W, (T) vanishes identically modulo p.

To finish the proof we need to bound the size of 9. As in the proof
of Theorem 2.1, applying Lemma 3.2 to the system R and Q in two
variables, we get

deg @y, deg¥; < Ld"

and
(4.13) h(®(T)), h(¥(T)) <ap Ld".

We apply now Lemma 3.1 and using (4.13), we conclude that
(4.14) h(Pp), h(Pp) <ap Ld".

We now use the trivial bound
|det B| < s!H® < s°H*®

on the determinant of an sx s matrix B with complex entries of absolute
value at most H (note that the Hadamard inequality does not lead to
any advantage here). We apply it to the Sylvester determinant formula
for the resultant B (with log H <5, Ld" and s < Ld"). Hence we
derive

log B <4 L2d*,

which concludes the proof.

4.6. Proof of Corollary 2.6. Theorem 2.5 implies
(E— K+ 1)RlogQ < log? <, L*d**

and the result now follows.
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4.7. Proof of Theorem 2.7. By consider the polynomials
L—1
o,(T) =[] (FP(a,T) = [P (a, 1)),
k=0
L—1
v (T) =[] (PP 0.1) - M 0. 1)),
k=0
which have at most K common zeros t € C, and then follow the same

argument as in the proof of Theorem 2.5. In particular, we have full
analogues of the bounds (4.13) and (4.14).

4.8. Proof of Corollary 2.8. Similarly to the proof of Corollary 2.6
we note that Theorem 2.7 implies

(E— K+ 1)RlogQ < log® <, L*d**

and the result now follows.

5. COMMENTS

We remark that considering the systems of equations (4.2) and (4.10)
separately for each choice of the parameters ki, ..., k. and k, respec-
tively, instead of the systems of equations (4.3) and (4.11), one can
slightly improve polynomial factors in the dependence on L in the
bounds of Theorems 2.1 and 2.4.
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6. REDUCTION MODULO p OF FAMILIES OF MULTIVARIATE
PARAMETRIC SYSTEMS

Let X = (Xq,...,X,) and T' = (T}, ...,T,) be groups of m > 1 and
n > 0 variables, respectively. Let F' = (Fy,..., F,,) € Z[X,T]™ be a
family of m polynomials in the variables X and T. We respectively
define the degree and the height of F' as

and

h(F') = maxh(F;).

7

deg F' = max deg F;

Given a field K and t = (ty,...,t,) € K", we denote by F; the map
K™ — K™ defined, for x € K™, by

(6.1) Fy(z) = F(z,t).

Hence, F' defines a n-parametric family of polynomial dynamical sys-
tems on K™. The fields relevant to our applications are the field of
complex numbers C and the algebraic closure F,, of a finite field corre-
sponding to a prime p.

Given a point w € K", we denote by Orbg, (w) the orbit of w under
the map in (6.1). The set of preperiodic points of Fi, denoted by
PrePerg (Fy), is the set of points w € K™ with finite F-orbit.

For a point @ € Z™ and a prime p, we denote by a mod p the
reduction of @ modulo p, which is a point in F}'. For t € F;n, we
denote by

Orbg, (@ mod p)
the orbit of this point under the map F;: F;n — FZL.

Theorem 6.1. Let F, € Z[ X, T|™, v=1,...,r, be a family of r > 1
parametric systems of polynomials and a; € Z, j = 1,...,s, a family
of s > 1 integer vectors, such that the set

(6.2) #{t € C" : a; € PrePerc(F,+) for all v,j}

is finite. Let also L > 1.
Set K for the cardinality of the set in (6.2), and let d > deg F,, for
all v and h > h(F,),h(a;) for all v and j. Then there is A > 1 with

IOg 2A <<m,n,r,s,d,h (LdL)3n+2

such that, for every prime p not dividing 2, for all but at most K values
of t € F;,
max #Orbg, ,(a; mod p) > L.

1<v<r
125<s
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Proof. Fix 1 <v <rand1<j<s. Given 0 < k < L —1, a point

t € C™ verifies that

F(a;,t) = F¥(a;,t)

if and only if it lies in the zero set of the ideal of Z[T| given by

V]k

({F(L (ajv T) -

F*™a; T):1<i<m,1<j<s}).

Hence, Orbg, +(a;) < L if and only if t € V/(

Forv =1,...,r, 1 € {1,...,
polynomial
L1
_ (L)
(6'3) \D%id - H (FV7ik+1
k=0

(aj’ T)

m}l and j = 1,...,

120

Vylk+1

[I/ > k)
s, consider the

(a’j7 T)) € Z[T]

This gives a set of generators for the ideal }_ 122 Ljx C Z[T).
Hence, for a point ¢ € C™ we have that

max Orbg, ¢(a;) < L
V7j

(6.4)

if and only if ¢ lies in the zero set of the W, ; ;’s. By our hypothesis on
the set in (6.2), the number of such ¢’s is finite and bounded by K.

Forv=1,...
variables given by

R,

For k > 0, we have that R,(,k)

we obtain that

deg F{M < d",

h(FM) <

h

— (F,T) € Z|X, T]"*".

, 7, consider the family of m + n polynomials in m +n

= (FV( ,T). Applying Lemma 3.2 to R,,

drF —
d—1

1 dk—l
+d(d+1)

-1
log(n+m+1).

d—1

Appluing Lemma 3.1, we deduce from this that, for all v,% and 7,
h(\Ill/,i,j> <<m,n,r,s,d,h LdL

deg W, ;; < Ld*

and

By Lemma 3.3 applied to the family of polynomials in (6.3), there
exists an integer A > 1 with log2A <, nr.s5.d.n (LdL)3n+2 such that the

system of equations

(6.5)

U, (a; mod p,t) =0

at most K solutions t € FZ. Similarly as before, this is equivalent to

the statement that

max #Orbpg, , (a; mod p)
ll?.]

> L,

for all but at most K values of t € FZ.

I also prefer F),;
(the ith compo-
nent of F,)) rather
than Fj, .

In  think  we
needed a bigger
set of equations
to translate the

condition  (6.4).
This enlargement
does mnot affect

our conclusion



Silverman treats
more general dy-
namical systems
on quasiprojec-
tive varieties over
number fields

We should spec-
ify that the im-
plicit constant in
the notation > is
> 0.

This has to be
verified. it would
good be good to
state this corol-
lary 6.3 in terms
of natural density
of primes.
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Corollary 6.2. Under the conditions of Theorem 6.1, for any prime
p we have

max #O0rbpg, , (a; mod p) >, n.r.s.4n loglogp
V?]

for all but at most K wvalues of t € FZ.

Proof. We can assume that p is sufficiently large. Theorem 6.1 applied

with

B loglog p

~13(n+1)logd
implies log A < (log p)'~1/B"+3) (log log p)>"+2. Since p is large enough,
we have p {2 and the result now follows. 0

In the case when n = 0, that is, when there are no parameters,
Corollary 6.2 applied to a a point a € Z™ with infinite orbit over C,
gives that

(6.6) #Orbpg, (@ mod p) >, 5,54, loglogp

for every prime p. This is [Sil08, Corollary 12| for a dynamical system
on P defined by polynomials with integer coefficients.
For almost all primes, we have a stronger result.

Corollary 6.3. Under the conditions of Theorem 2.1, for any fixed
e > 0 and sufficiently large integer Q) > 2, for all but Q° primes p < Q)
we have

max #O0rbpg, , (a; mod p) >, nrsdn €10gD
V7‘7

for all but at most K wvalues of t € FZ.
Proof. Theorem 6.1 applied with

L= Le—bg@ J
| 3(n+1)logd

implies log 2l < g4 mn.r QU BnH3)e (Jog Q)3 +2. The divisibility p | 2
is possible for at most log2(/log2 primes p. Since @ is large enough,
the result follows. O

This result should contain both [Sil08, Theorem 1] and [AkbGhi09,
Theorem 1.1], for a dynamical system on P defined by polynomials
with integer coefficients, and a point with infinite orbite.
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