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Abstract—Leading cloud providers recently introduced a new
instance type named burstable instances to better match the time-
varying workloads of tenants and further reduce their costs.
In the research community, however, little has been done to
understand burstable instances from a theoretical perspective.
This paper presents the first unified framework to model, analyze,
and optimize the operation of burstable instances. Specifically,
we model the resource provisioning of burstable instances in
different service classes, identify key performance metrics, and
derive the performance given the resource provisioning decisions.
We then characterize the equilibrium behind tenants’ responses
to the prices offered for different burstable instance service
classes, taking into account the impact of tenants’ actions on
the performance achieved by each service class. In addition, we
investigate how a cloud provider can leverage the knowledge
of this equilibrium to find the prices that maximize its total
revenue. Finally, we validate our framework on real traces and
demonstrate its usage to price a public cloud.

Index Terms—cloud, burstable instances, equilibrium, revenue
maximization

I. INTRODUCTION

To reduce costs for cloud tenants, today’s cloud providers
offer various pricing schemes, such as on-demand pricing, spot
pricing, and reserved pricing [1]. Under these pricing schemes,
however, tenants always obtain virtual machines (VMs) provi-
sioned with static amounts of resources; for example, 1 virtual
CPU (vCPU) and 2 GB memory. On the other hand, empirical
studies [2]–[5] have reported that workloads executed on VMs
in public clouds are usually time-varying. Therefore, given
the static amount of resources provisioned for VMs, tenants
have to book VM configurations that can satisfy their peak
workload demands. This peak-demand subscription strategy
leads to low actual utilization of the resources allocated to
VMs. Take CPU resource utilization as an example: it is
lower than 35% on average according to a Google cluster
trace study [3], and lower than 20% for 60% of the VMs
according to a Microsoft Azure trace study [4]. These ob-
servations imply that tenants’ costs can be further reduced
by time-varying resource provisioning. In particular, VMs can
benefit from bursts, which mean receiving a high volume of
resources for a short period of time, in exchange for fewer
resources most of the time. To this end, a new class of VMs,
named burstable instances, has recently been introduced by a
number of cloud providers, including Amazon EC2 [6], Google

TABLE I: Samples of Amazon EC2 burstable instances [6].
Instance CPU credits Maximum CPU Resource volume (vCPUs)
type earned per hour credits buffered Maximum Mean
t2.nano 3 72

1
0.05

t2.micro 6 144 0.1
t2.small 12 288 0.2

Cloud Engine [7], and Microsoft Azure [8]. In this paper, we
approach burstable instances from a theoretical perspective,
and present the first unified framework to model, analyze,
and optimize the operation of burstable instances. We show
that cloud providers can use this framework to understand the
performance of burstable instances, and dramatically increase
their total revenue compared to other heuristic pricing methods.

A. Background on Burstable Instances

We list a few sample burstable instance configurations in
Table I. A burstable instance has a resource budget quantified
by CPU credits. A CPU credit provides 100% of the full
capacity of a vCPU for a time slot’s duration (e.g., 1 minute in
Amazon EC2 [9]). CPU credits can be used in fractions, such
as spending 0.1 CPU credits for 10% of a vCPU. The credits
are earned at a constant rate per time slot for an instance, with a
limit on the maximum number of credits that can be buffered.
The maximum resource volume is the maximum amount of
resources that an instance can receive in a time slot, which is
1 vCPU for all instances in Table I. On the other hand, the
rate of credit earning determines the average resource volume
(sometimes also referred to as “baseline”) for an instance. For
example, a t2.nano instance in Table I receives 0.05 CPU
credits per time slot (i.e., 1 minute), enabling it to request
5% of a vCPU on average over time.

Burstable instances are suitable for services that demand
relatively small amounts of resources most of the time, while
requiring large amounts of resources occasionally. For exam-
ple, VMs operating as hot standbys [10] are usually idle with
low CPU utilizations. When a failover occurs, they demand
high resources to take over the jobs, but only for a short while
until the normal services are recovered. Periodic workloads,
such as periodic machine learning in online social networks
[11], transaction updates [12], and statistical calculations [13],
are also suitable use cases for burstable instances.

Compared to traditional static resource provisioning meth-
ods, burstable instances can benefit both tenants and cloud



providers. Tenants no longer need to pay for their peak
resource demands all the time, so their costs are potentially
reduced. Cloud providers can also benefit in terms of over-
commitment1. Though widely employed, over-commitment
traditionally suffers from the difficulty of understanding VMs’
CPU utilization patterns, which providers do not control [3].
Therefore, providers have to co-locate VMs in a relatively
conservative manner to offer a guaranteed Quality-of-Service
(QoS) level, i.e., the chance that a VM can successfully
receive its requested resources [14]. The CPU utilization of
burstable instances, however, is regulated by the CPU credit
mechanism, making the utilization patterns more predictable
for providers. Providers may then be able to co-locate more
burstable instances on a server while offering a guaranteed
QoS level. Moreover, by jointly optimizing the offered QoS
and the prices charged to the tenants, providers can maximize
their total revenues. In this paper, we provide a framework for
them to do so.

B. Our Contributions

Although cloud computing with static resource provisioning
has been extensively studied, burstable instances are still
an emerging research topic with many unanswered ques-
tions. Consider a cloud provider that offers different types of
burstable instances for multiple tenants. Hereinafter, we refer to
tenants as users, and refer to instance types as service classes,
defined by the configuration parameters shown in Table I. In
this paper, we aim to understand three fundamental questions
on burstable instances, and use them to help cloud providers
(i) estimate the performance of burstable instances, and (ii)
increase their total revenue for operating this service.

How can we define and analytically evaluate the per-
formance of burstable instances? The QoS that a burstable
instance receives is determined by the probability that a VM
is successfully allocated the resources that it requests, i.e.,
how well the user’s resource needs can be fulfilled. Note that
the QoS depends on whether the user’s requests are allowed
by the CPU credit mechanism, as well as how the cloud
provider multiplexes its (over-committed) resources. Therefore,
analytically formulating the QoS representation is non-trivial
as it requires us to mathematically translate the CPU credit
mechanism to CPU utilization patterns, and integrate the
result with the resource multiplexing scheme. To this end,
in Section II, we first formally define the QoS metric. We
then model the dynamics of CPU credits as a token bucket
regulation mechanism [15]. Meanwhile, we model the resource
multiplexing scheme that burstable instance services adopt, and
finally derive an analytical QoS representation.

From an individual user’s perspective, which service
class should (s)he select to selfishly maximize his/her
reward? We proceed to study a cloud that offers burstable
instances with multiple service classes configured by different

1Over-commitment in clouds means the resources allocated to the VMs on
a server can exceed the server’s actual capacity, and the VMs are expected not
to fully utilize their reserved resources simultaneously [3]. Therefore, VMs
may not always receive the full resources that they demand.

CPU credit parameters and prices. A rational user favors a
service class that offers higher QoS with less payment. There-
fore, the user will select the service class where his/her reward,
which can be regarded as his/her valuation of the received QoS
minus the payment, is maximized. The service class selection
decision is complicated, however, by the following dynamics:
When a user switches between two service classes, the total
numbers of subscribers to the two service classes change.
Since the resources within a service class are shared by all
the subscribers to this class, the change in the number of
subscribers leads to a change of the QoS offered by the service
class, possibly prompting other users to adjust their service
class selections as well. In Section III, we analytically derive
users’ service class selections at the equilibrium of these user
decision dynamics.

From a cloud provider’s perspective, how should it price
the service classes to maximize its total revenue? The
equilibrium derived above characterizes users’ responses (i.e.,
service class selections) to the prices offered by the service
classes, accounting for individual users’ heterogeneous QoS
valuations. Note that a cloud provider’s total revenue depends
on both the number of users subscribed to each service class
and the prices that the users should pay for their subscriptions.
Therefore, given the service class configurations, a cloud
provider can set the prices leveraging prior knowledge of the
equilibrium on users’ corresponding subscription decisions, so
as to maximize its total revenue at equilibrium. In Section IV,
we study the problem of obtaining such optimal prices for the
cloud provider.

Our answers to these three questions constitute a framework
to model, analyze, and optimize burstable instance services. In
Section V, we numerically validate our framework using real-
world traces, and show that it drastically improves the cloud
provider’s total revenue compared to heuristic pricing methods.

The remainder of the paper is organized as follows. In
Sections II, III, and IV, we answer the three aforementioned
questions sequentially, thus developing an analytical frame-
work to analyze burstable instances. We numerically validate
our framework and study one of its use cases in Section V.
Related works are surveyed in Section VI. We conclude the
paper in Section VII. Due to the limited space, detailed proofs
of lemmas, corollaries and propositions are presented in our
online technical report [16].

II. PERFORMANCE MODELING

In this section, we first introduce the system model of a
cloud offering burstable instances with multiple service classes.
Then we formally define our QoS metric and analytically
derive the QoS that a service class can offer, in terms of
the number of users subscribing to it and the service class
configurations specified by the cloud provider.

A. System Model

We study a slotted time system with N users and M service
classes. The system model is shown in Figure 1. Each service
class provides a certain level of QoS. A user is associated with
a burstable instance running in the cloud, and can subscribe to
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Fig. 1: The system model of M service classes in a cloud.

A user corresponds to an instance (equivalently, a VM) in

the cloud, and maintains a token bucket. Users subscribing

to the same service class share a regulator that multiplexes

the burstable resources. After burst requests are made, these

requests get the corresponding tokens and proceed to the regu-

lator if the number of tokens in the token bucket is no smaller

than the number of burst requests; otherwise, the requests are

discarded. The regulator guarantees that the burstable resources

allocated to instances do not exceed the capacity of each

service class.

a service class. Suppose service class j ∈ M = {1, 2, ...,M}
has nj subscribed users. A dedicated token bucket is employed

to model the CPU credit mechanism for each individual user

[15]. In our model, we convert CPU credits to a more fine-

grained unit named tokens. A token stands for the smallest

resource unit that can be scheduled in the system with one

time slot’s duration. In the beginning of a time slot, rj tokens

are generated to the token bucket of each user subscribing to

service class j. As an example to demonstrate the CPU-credit-

to-token conversion, suppose a token stands for 1% of the full

capacity of a vCPU, and the duration of a time slot is 1 minute.

A t2.nano instance shown in Table I receives 0.05 CPU credits

per time slot, equivalent to 5 tokens. The maximum number

of buffered tokens for a user subscribing to service class j is

bj . Moreover, an instance is guaranteed to receive agrntd token

units2 of resources to maintain its underlying essentials, such as

the operating system. Therefore, even if an instance’s resource

2We refer to a token unit as a resource unit representing the amount of
resources corresponding to one token.

requests are rejected in a time slot (for example, due to too

many simultaneous resource requests from peer instances), the

instance will not halt due to insufficient resources received.

Our model falls back to the basic burstable instance design

presented in Table I when agrntd = 0. Since guaranteed

resources are always available and the same for each service

class, they do not affect users’ QoS and thus agrntd is not

included in our following performance model. Apart from

guaranteed resources, an instance may make burst requests

for additional resources, which are referred to as burstable

resources hereinafter. The resource multiplexing strategy con-

sidered in this paper is to reserve cj token units of burstable

resources for the requests from all subscribers of service class

j. To sum up, a service class j can be characterized by three

parameters, bj , cj , and rj , which are set by the cloud provider.
In a time slot after tokens are accumulated, a user can send

requests for burstable resources. Each burst request is for one

token unit. For example, if the user wants 5% of a vCPU, with

one token standing for 1% of a vCPU, a batch of five burst

requests will be sent. Upon arrival, each burst request checks if

there is an available token in the token bucket; if all requests

can be matched with available tokens, the requests proceed

to the burst request regulator and the corresponding tokens are

deducted from the user’s token bucket. Otherwise, the requests

will be discarded. The user may send new requests in the

coming time slots if (s)he still demands burstable resources.
The regulator of service class j receives burst requests from

users, and admit users’ requests according to the following

policy: the regulator uniformly at random selects a user and

admits his/her requests, until the resource capacity is used up

or all users’ requests are admitted.

B. Quantifying Users’ QoS
In this paper, we are interested in the analytical form of

a user’s received QoS when subscribing to a service class.

For simplicity, we assume that users are homogeneous. (We

will demonstrate in our trace-driven simulations in Section

V that our model can still handle realistic scenarios with

heterogeneous users.) The probability that a user has at least

one burst request in a time slot is denoted by δ. The number of

burst requests that a user sends in a time slot, given that (s)he

has burst requests, is a random variable θ ∈ [1, θmax] ∩ Z
+.

For example, if a token stands for 1% of a vCPU, with

the maximum resource volume as 1 vCPU and guaranteed

resources as 2% of a vCPU (agrntd = 2) for each instance,

an instance can request up to 98% of a vCPU as its burstable

resources (θmax = 98). Denote the probability that θ takes the

value x by P (θ = x). The distribution of θ can be estimated

from historical data of CPU utilization.
The QoS that user i ∈ N = {1, 2, ..., N} subscribing

to service class j receives is defined as the probability that

the user can successfully receive all the burstable resources

that (s)he requests, denoted by qj . (We assume users are not

strategic in the timing of their burst requests.) For simplicity,

we do not consider partial fulfillment of burst requests. In other

words, a user’s burst requests in a time slot either all receive

tokens and proceed to the regulator, or are all rejected.



In order for a user’s burst requests to be satisfied in a given
time slot, two conditions have to be met: (i) sufficient tokens
are available in the user’s token bucket, and (ii) the regulator
admits the user’s burst request. The QoS equation is thus

qj = stknj · srgltrj , (1)

where stknj is the probability that the first condition is satisfied,
and srgltrj is the probability that the second condition is
satisfied given that the first condition has already been satisfied.
In what follows, we respectively derive stknj and srgltrj .

1) Derivation of stknj : We model the dynamics of the token
bucket as a Markov chain, with the state defined as the number
of tokens in the token bucket in a time slot, after rj tokens
are generated, but before the potential burst requests are sent
and processed. In this case, the token bucket has at least rj
tokens and thus we have bj − rj + 1 states. Denote state d =
rj , rj + 1, ..., bj as the (d − rj + 1)th state of the Markov
chain with d tokens in the bucket. We observe that normally
bj > 2θmax holds.3 Therefore, we suppose this relationship
also holds for this paper. Note that even if bj > 2θmax does
not hold, our derived results can be easily generalized by using
the same methodology. The state transition probabilities of the
Markov chain are given by Proposition 1.

Proposition 1. The transition probability Pd→h from state d
to state h for the Markov chain is as follows:

(i) When rj ≤ d ≤ θmax − 1, we have

Pd→h =



δ · P (θ = d+ rj − h) rj ≤ h
≤ d+ rj − 1,

δ ·
θmax∑
k=d+1

P (θ = k) + (1− δ) h = d+ rj ,

0 otherwise;

(ii) When θmax ≤ d ≤ bj − rj , we have

Pd→h =


δ · P (θ = d+ rj − h) d+ rj − θmax ≤ h

≤ d+ rj − 1,

1− δ h = d+ rj ,

0 otherwise;

(iii) When bj − rj + 1 ≤ d ≤ bj , we have

Pd→h =



δ · P (θ = d+ rj − h) d+ rj − θmax
≤ h ≤ bj − 1,

δ ·
d+rj−bj∑
k=1

P (θ = k) + (1− δ) h = bj ,

0 otherwise.
The Markov chain is recurrent and aperiodic, so it is ergodic

[17]. Denote the steady state probability of state d by πdj . We

3As typical values, suppose one token stands for 1% of a vCPU and the
maximum resource volume for an instance is 1 vCPU. Let agrntd = 0, so
θmax will go up to 100. Practically, the token bucket size is the total number
of tokens that can be buffered within 24 hours (cf. Table I). Therefore, even
if our token generation rate is rj = 1, with the duration of a time slot as 1
minute, our token bucket size is bj = 1440, much greater than θmax.

can obtain πdj by solving the balance equation. Consequently,
stknj is given by

stknj =

θmax∑
d=rj

P (θ ≤ d)πdj +
bj∑

d=θmax+1

πdj , (2)

where each term of the summations on the right-hand side
represents that there are enough tokens available in the token
bucket to accommodate d arriving burst requests.

2) Derivation of srgltrj : Since we assume users are homo-
geneous, it suffices to derive srgltrj from the perspective of
a single user. Let θ̃ ∈ [1, θ̃max] ∩ Z+ denote the number of
burst requests that the regulator receives from a user, given
that the user has enough tokens for its burst requests to reach
the regulator. The range of θ̃ is the same as that of θ (i.e.,
θ̃max = θmax). The probability that θ̃ takes the value x is

P (θ̃ = x) =


P (θ=x)

stkn
j

1 ≤ x ≤ rj ,

P (θ=x)·

bj∑
d=x

πdj

stkn
j

rj + 1 ≤ x ≤ θmax.

(3)

Equation (4) on top of the next page gives the analytical
form of srgltrj , i.e., the probability that the examined user’s θ
burst requests, which have already traversed the token bucket,
are admitted by the regulator. To derive srgltrj , we recall the
regulator’s selection policy: The regulator uniformly at random
selects a user to admit. If there is not enough residual capacity
to admit the user currently under consideration, the regulator
does not admit any more users, either. Therefore, we first
need to know the number of other users who also have burst
requests reaching the regulator, denoted by k in Equation (4),
with

(
nj−1
k

) (
δstknj

)k (
1− δstknj

)nj−1−k as its probability of
occurrence. Let θ̃h be the number of burst requests received
by the regulator from peer user h. The probability that the
examined user is the hth user (1 ≤ h ≤ k + 1) to be selected
by the regulator is 1/(k+1), and the probability that this user
is admitted as the hth-picked user is P (θ +

∑h−1
l=1 θ̃l ≤ cj).

Substituting Equations (2), (3), and (4) into (1), we obtain
the analytical form of qj . In what follows, when referring to
Equation (1), we mean its complete representation after all the
above substitutions. Since bj , cj , and rj are pre-configured
parameters and θ follows a known probability distribution, the
offered QoS qj of service class j depends only on nj , the
number of users subscribing to it.

III. EQUILIBRIUM ANALYSIS

Given a performance model for users’ received QoS from
each service class, in this section, we further study users’
service class selections. Suppose service class j ∈M charges
each of its subscribers a price pj . Meanwhile, we let each user
i ∈ N specify a coefficient ui that represents his/her valuation
of the received QoS; the user will therefore harvest a utility
of uiqj by subscribing to service class j. We also assume that
each user’s ui value lies on a continuum within the range (0, γ],
where γ is a parameter. Let f(x) be the cumulative distribution



srgltrj =

nj−1∑
k=0

(
nj − 1

k

)(
δstknj

)k (
1− δstknj

)nj−1−k
(

1

k + 1

k+1∑
h=1

P

(
θ +

h−1∑
l=1

θ̃l ≤ cj

))
(4)

function (CDF) of the random variable ui at x ∈ (0, γ]. Denote
the reward that user i earns from subscribing to service class j
by wi,j , which can be calculated by the user’s harvested utility
minus payment, i.e.,

wi,j = uiqj − pj . (5)

We are interested in how user i will select the service
class, denoted by η(i), which yields the maximum reward wi,j ,
j ∈M. Without loss of generality, we suppose the indices of
service classes are sorted in a non-decreasing order according
to the QoS that they offer (i.e., qj ≤ qk, ∀j < k). Note that
the QoS qj that service class j offers depends on the actual
number of its subscribers nj . Therefore, this service class index
ordering may change as users switch among service classes.

In this section, we focus on deriving the Nash equilibrium
of users’ service class selections. An advantage of our fol-
lowing equilibrium analysis is that it makes no assumption on
the exact form of users’ QoS representation; the QoS may be
as specified in Equation (1), or take another form. Thus, our
equilibrium results can be generalized to other QoS models.
When a Nash equilibrium is reached, each user should receive
more reward from his/her selected service class than from any
other service classes when all other users’ selections remain
unchanged, which can be represented as

wi,η(i) ≥ max {wi,j , 0} ,∀j ∈M\{η(i)}. (6)

Note that a rational user always selects a service class that
delivers a non-negative reward to him/her. Therefore, the
reward wi,η(i) offered by service class η(i) should be non-
negative. Practically, users can report their QoS valuations ui
to the cloud provider. The provider then makes service class
subscription recommendations to its users by computing the
user selection equilibrium. Then users can subscribe to their
best service classes, so that their rewards are maximized.

In the rest of this section, we characterize the Nash equilib-
rium properties. Our first result finds necessary conditions on
the prices charged by service classes:

Lemma 1. Consider two service classes, j and k, where qj ≥
qk. If pj < pk, no user has an incentive to subscribe to service
class k at equilibrium.

Lemma 1 indicates that a service class that offers a relatively
lower QoS to its users should also charge a lower price. Other-
wise, the service class will have no subscribers at equilibrium.
Additionally, we derive the conditions for service classes that
offer equal QoS in the following corollary.

Corollary 1. For two service classes, j and k, where qj = qk,
pj = pk should hold. Otherwise, one of the service classes will
have no users at equilibrium.

Corollary 1 suggests that if multiple service classes offer
the same QoS to users, they should charge the same price.

In this paper, we assume that the prices are set according to
Lemma 1 and Corollary 1. Otherwise, some service classes
will become redundant and can be eliminated because rational
users have no incentive to subscribe to them, and the cloud
provider will derive no profit from them. Without loss of
generality, we suppose that if two users, i and k with ui < uk,
have decided to subscribe to different service classes with the
same offered QoS (and thus the same price) at equilibrium,
their subscriptions follow η(i) < η(k). In the next lemma,
we qualitatively illustrate the relationship between users’ QoS
valuations and their service class selections.

Lemma 2. Suppose user i selects service class η(i). For any
user k with a QoS valuation uk > ui, his/her service class
selection η(k) satisfies η(k) ≥ η(i).

Next we derive a necessary condition when each user has
an incentive to subscribe to a service class.

Corollary 2. Each user will have an incentive to subscribe to
a service class at equilibrium if p1 = 0.

Lemma 2 shows that users’ service class selections are
monotonic with regard to their QoS valuations: users with
higher QoS valuations ui will subscribe to service classes
with higher QoS levels (i.e., higher indices) at equilibrium. In
other words, as users’ ui values lie on a continuum within
the region (0, γ], we can partition the region into multiple
non-overlapping intervals (0, v0), [vj−1, vj), j ∈ M \ {M},
and [vM−1, vM ], where vM = γ. Users with QoS valuations
ui ∈ [vj−1, vj), j ∈ M \ {M} will subscribe to service
class j, while users with ui ∈ [vM−1, vM ] will subscribe to
service class M . Users with ui ∈ (0, v0) do not have incentives
to subscribe to any service class. (If p1 = 0, then v0 = 0
according to Corollary 2.) Given this quantitative description,
we can fully characterize users’ service class selections by
determining the boundary points {vj , j = 0, 1, ...,M − 1}
of the intervals, at which a user is indifferent to the choice
between the neighboring service classes. Therefore, the rela-
tionship between the number of subscribers nj of service class
j and the corresponding boundary points vj−1 and vj is

nj = N (f (vj)− f (vj−1)) , j ∈M. (7)

Note that f(vM ) = f(γ) = 1. Define n0 as the number of
users that have no incentive to join any service class. We have

n0 = Nf(v0). (8)

Now we are ready to derive users’ selections of service classes
at equilibrium as shown in Proposition 2.

Proposition 2. At equilibrium, pj can be written by

pj = v0q1 +

j∑
k=2

vk−1 (qk − qk−1) , ∀j ∈M. (9)



With the performance model in Section II, the interactions
among pj , qj , vj , and nj at equilibrium can therefore be jointly
defined by Equations (1), (7), (8), and (9).

IV. REVENUE MAXIMIZATION FOR CLOUD PROVIDER

The equilibrium derived from Section III provides an oppor-
tunity for the cloud provider to maximize its total revenue via
optimal pricing. More specifically, with the prior knowledge
of users’ responses (i.e., service class selections) to the prices
as given in Proposition 2, the cloud provider can indirectly
control the number of users in each service class via setting the
corresponding prices. Because the total revenue of the provider
is related to both the prices and the actual numbers of users
subscribed to the service classes, we can define a revenue
maximization problem to find the prices that maximize the
provider’s total revenue at the Nash equilibrium.

We optimize the provider’s total revenue given the ser-
vice class configuration parameters bj , cj , and rj . We also
consider n0 and v0 as provider-specified, which characterize
the provider’s preference in accepting users. (For example,
a provider that wishes to accommodate every user will take
p0 = 0 and v0 = 0 with all users being accepted.) Let p =
[p1, . . . , pM ]T , q = [q1, q2, . . . , qM ]T , n = [n1, n2, . . . , nM ]T ,
and v = [v1, . . . vM−1]

T be the concatenated vectors of deci-
sion variables. With the performance model and user selection
equilibrium respectively derived in Sections II and III, we
formulate the revenue maximization problem as

maximize
p,q,n,v

M∑
j=1

pjnj , (10)

subject to constraints (1), (7), and (9),
qj ≤ qj+1, ∀j ∈M \ {M}, (11)
nj ∈ Z+, ∀j ∈M. (12)

In the objective function (10), the provider’s total revenue is the
summation over the revenue pjnj gained by each service class
j. Constraints (1), (7), and (9) jointly define the relationship
among the decision variables at equilibrium. Since vector q is
sorted in a non-decreasing order at equilibrium, without loss
of generality, we configure the service classes as bj ≤ bj+1,
cj ≤ cj+1, rj ≤ rj+1, j ∈ M \ {M}. Therefore, it is natural
to expect that service classes with richer resources will offer
higher QoS levels, as indicated in Constraint (11).

The revenue maximization problem is a non-linear integer
program, a hard problem in general. Due to the limited space,
we propose to solve the problem by general-purpose methods
[18] in this paper, and leave the design of a customized approx-
imation algorithm as our future work. General-purpose meth-
ods are likely sufficient for determining the optimal burstable
instance configurations as these configurations usually do not
change much over time (cf. Section V-B).

V. NUMERICAL VALIDATION AND CASE STUDY

Above, we have defined our theoretical framework to ana-
lytically model the performance of burstable instances, analyze
the user selection equilibrium, and maximize the total revenue

TABLE II: Service class configurations.
j rj bj cj Resource volume (vCPUs) agrntd

Maximum Mean
1 4 1, 152 100

1

0.05
2 6 1, 728 200 0.07 1%
3 9 2, 592 300 0.1 of a
4 14 4, 032 400 0.15 vCPU
5 19 5, 472 500 0.2

of a cloud provider. In this section, we first numerically validate
this framework, and then demonstrate how it can be used to
price a public cloud. A Java-based simulator is implemented to
simulate the operations of token buckets, regulators, and VMs.
The simulations are driven by the Microsoft Azure traces [4];
released in 2017, these traces are the latest characterization of
VM resource utilization in public clouds.

A. Framework Validation

1) Validating the performance model: The Microsoft Azure
traces record CPU utilization of VMs at a time granularity
of 5 minutes. Therefore, the duration of a time slot in our
simulations is also set to be 5 minutes, and a token refers to
1% of the full capacity of a vCPU for 5 minutes. We examine
five different service class configurations listed in Table II. We
set the token bucket sizes bj as the number of tokens earned
in 24 hours, and the number of initial tokens for a service
class as 1/6 of the token bucket size for a smooth bootstrap.
Since the average resource volume received per instance is no
larger than 20% according to Table II, we exclude the VMs
with average CPU utilizations higher than 20%, because they
definitely cannot receive their requested resources, and are
thus not suitable for our burstable instance services. (These
VMs may subscribe to traditional static instances due to their
relatively high CPU requirements.)

We sort the instance records in chronological order, and
randomly select 100 of the first 2, 600 records4 as samples to
estimate δ, the probability that a user initiates a burst request,
and the distribution of the random variable θ ∈ [1, 99] ∩ Z+.
We use these estimates to set our parameters throughout this
section. The remaining 2, 500 instance records are used as
testing data in the simulations of this sub-section. The δ value
and the θ distribution are respectively obtained by simply
counting the number of times that users have burst requests to
send, and the frequencies of appearance for different θ values
in the 100 sample instance records. Our obtained δ value is
0.9970.

We simulate a total time span of 5 days, and play back the
workloads in the traces. Figure 2a shows the simulated QoS as
we vary the number of users nj in each of Table II’s service
classes from 1 to 100. For each service class j with a given
number of users nj , the figure shows the average QoS over 20
runs with nj instance records randomly drawn from the 2, 500
testing records in each run. We also plot two representative
comparisons between our analytical (from Section II) and
simulated QoS curves in Figures 2b and 2c for service classes

4All of these 2, 600 instances start in the first time slot of the time horizon,
and have durations longer than 5 days.



j = 1 and j = 5, respectively. Qualitatively, it can be observed
that our analytical curves are close to the simulated curves. The
average error ratios of our analytical curves for service classes
j = 1 and j = 5 are 1.91% and 2.15%, respectively, which are
relatively small. Thus, our analytical performance model can
both qualitatively and quantitatively reflect the actual QoS.

2) Validating the equilibrium analysis and revenue maxi-
mization: Consider that users’ QoS valuations ui follow a
uniform distribution within (0, 1]. The CDF at vj is thus

f(vj) = vj , j = 0, 1, . . . ,M . (13)

Substituting Equation (13) into (7), (8), and (9), we obtain the
analytical equilibrium representation.

To evaluate our revenue maximization scheme, we compare
it with two benchmarks, the uniform and the random schemes,
with different numbers of users N and the service class config-
urations in Table II. Both benchmarks heuristically determine
nj , j ∈M. Note that n0 users with the lowest QoS valuations
ui do not have incentives to subscribe to service classes; we
then set n0/N = 0.05. Among the remaining N − n0 users,
the uniform scheme sets nj equally while the random scheme
selects nj , j ∈ M \ {5} from a normal distribution with
mean (N − n0)/5 and standard deviation (N − n0)/15, and
n5 is calculated by Equation (7) afterwards. The service class
prices are then determined by Equations (1) and (9) to ensure
that they constitute a Nash equilibrium. The other simulation
settings stay unchanged from those presented in Section V-A1.
By varying the total number of users N , the corresponding
revenues under the three schemes are shown in Figure 3, where
our optimal scheme always derives the maximum revenue,
around 50% higher than the revenues generated by the other
two benchmarks.
TABLE III: Service-class-wise results for the N = 300 case
in Figure 3. The result that generates the median revenue over
25 runs for the random scheme is reported.

j 1 2 3 4 5

Optimal

pj 0.0055 0.3551 0.4636 0.5034 0.5072
qj 0.1055 0.7435 0.8481 0.9591 0.9656
uiqj 0.0319 0.4436 0.5884 0.7741 0.8907
nj 146 26 33 36 44
vj 0.5367 0.5900 0.7333 0.8533 1.0000

Random

pj 0.0215 0.0221 0.0587 0.1967 0.4092
qj 0.3898 0.3922 0.4823 0.6763 0.8701
uiqj 0.0478 0.1224 0.2598 0.5062 0.7997
nj 40 68 69 56 52
vj 0.1833 0.4100 0.6400 0.8267 1.0000

Uniform

pj 0.0149 0.0672 0.1168 0.1741 0.3320
qj 0.2757 0.4604 0.5877 0.6528 0.8134
uiqj 0.0426 0.1614 0.3160 0.4775 0.7411
nj 57 57 57 57 57
vj 0.2400 0.4300 0.6200 0.8100 1.0000

We next investigate the reasons why our optimal scheme
outperforms the others. For each service class j, we elaborate
the price (pj), simulated QoS on average (qj), simulated user
utility on average (uiqj), number of admitted users (nj), and
the corresponding QoS valuation boundary points (vj) for the
three schemes under the N = 300 case in Table III. It can be
observed that our optimal scheme attaches more importance

to improving the QoS offered by service classes 2 to 5 by
restricting them to few users. These users also have higher
QoS valuations ui according to Lemma 2, resulting in higher
utilities (uiqj) achieved. They are thus willing to pay higher
prices, leading to an increase of the provider’s revenue.

3) Impact of n0 on the revenue: From the provider’s per-
spective, n0/N can be interpreted as the acceptance rate of
users. A smaller n0/N means more users whose QoS valua-
tions satisfy ui ∈ [v0, γ] will be admitted by service classes
at equilibrium. To gain insights into how n0 influences the
revenue, we vary n0 with N fixed, and report the corresponding
optimal revenue in Figure 4. When n0 starts to increase from
0, the overall ui values of the admitted users also increase. As
fewer users are admitted, the offered QoS qj increases for each
service class. According to Equation (5), higher uiqj values
leave more room for providers to set higher prices pj , so the
corresponding revenue rises. On the other hand, when n0 is
too high, the number of admitted users becomes extremely low.
Setting higher prices can no longer compensate for the smaller
number of users admitted, ultimately leading to a decrease in
the total revenue.

B. Pricing a Public Cloud: A Use Case Scenario

In this sub-section, we apply our framework to pricing
a public cloud for burstable instance services. We use the
Microsoft Azure traces as the VM workloads in the cloud.
Through trace analysis, we find that although VMs are dy-
namically created and terminated over time, the number of
simultaneously running VMs is periodic on a daily basis.
Therefore, we regard the workload records from day 1 and
day 2 as historical data, which we use to calculate the prices.
We then run simulations to evaluate our derived prices using
the workload records in a 5-day period from day 3 to day 7.

To accommodate the large number of simultaneously run-
ning VMs in the traces, more resources are needed. However,
simply increasing the resource capacity cj of a service class
may make the service class not implementable on one single
physical server, leading to VM migration issues. Therefore,
we duplicate each service class j in Table II by 450 times,
and refer to such a duplicated service class as a type-j service
class. In this case, we have 2, 250 service classes from five
types in total. The other parameters stay the same as those
in Section V-A2. We set N = 135, 000, corresponding to
the peak number of VMs in the system over time. We then
partition the service classes into 450 groups, with five different
types of service classes and N/450 users in each group. A
group can be practically implemented as a server with 18
(= agrntd ·N/450 +

∑5
j=1 cj , where agrntd = 0.01) vCPUs.

Since a group represents a separate set of VMs, a VM’s
received QoS depends only on the behaviors of other VMs
within the same group. We can thus calculate the prices under
the optimal, uniform, and random schemes within a group at
equilibrium, the same to that in Section V-A2.

The cloud assigns VMs to service classes as follows to tackle
the dynamic creation and termination of VMs. When a new
VM i needs to be created, we first examine its ui to determine
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Fig. 2: (a) presents the simulated QoS curves for all five service classes. (b) and (c) compare the analytical and simulated QoS
curves for two representative service classes, whose parameters are listed in Table II. The error ratios of our analytical curves
are 1.91% and 2.15% for (b) and (c), respectively. In summary, our analytical performance model can reflect the actual QoS.
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schemes for Section V-A2.
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Fig. 5: Hourly revenue over 5 days for
the case study in Section V-B.

which service class type it should belong to. The VM is then
assigned to the service class of this type that has the minimum
number of active VMs, i.e., VMs that are currently running.
As the QoS and prices are designed with regard to the peak
demand, the number of active VMs in a service class is smaller
than the designed number most of the time. In this case, VMs
can receive higher actual QoS than that guaranteed by our
pricing scheme during off-peak periods. When an existing VM
terminates, we remove it from its belonged service class. We
regard our derived prices as the payment of an active VM for
a time slot’s (i.e., five minutes’) duration. For example, a VM
subscribing to service class j for an hour should pay 12pj
in total. The hourly-based revenues in the time horizon under
three different schemes are presented in Figure 5. Our optimal
scheme is shown to yield the best revenue, which is around
50% higher than the revenues generated by the benchmarks.

VI. RELATED WORK

Existing works on burstable instances mainly report empir-
ical measurement results and discuss use cases. A use case
for backup servers is presented in [10]. Through extensive
measurements, Leitner et al. [19] have verified that the CPU
credit mechanism works as advertised by cloud providers, and
Wang et al. [15] further point out that this mechanism essen-
tially follows a token bucket model. This finding has motivated
us to model burstable instances and analytically study the

performance. To the best of our knowledge, our work is the first
to study burstable instances from a theoretical perspective. Yan
et al. [20] explore the initial CPU credits assigned to burstable
instances for smooth bootstraps. They study how to shape the
CPU utilizations of applications to make use of the initial CPU
credits, while our work focuses on the stationary behaviors of
burstable instances after bootstrapping.

Similar techniques to those employed in our work, including
the token bucket model and optimal pricing, have been used in
the literature to address different problems. For instance, token
bucket models have been extensively adopted to regulate data
traffic [21], [22]. Other works have priced service classes with
differentiated QoS levels in data networks [23], [24]. However,
due to the different system dynamics and characteristics, these
results cannot be directly applied to our burstable instance
scenario. In the same vein, the distinct features of burstable
instances compared to traditional cloud instances with static
resource provisioning prevent existing models on cloud pricing
(e.g., [25]) from being applied to our scenario.

Some early works have proposed alternative resource pro-
visioning ideas to tackle bursty workloads in clouds. Wang et
al. [26] propose to aggregate the bursty workloads in a cloud
broker for cost savings to users. The broker reserves cheap
long-term resources from the cloud provider and profits from
the aggregation. A similar notion has been studied in [27].
The brokerage strategy follows a different business model and



system characteristics compared to ours. The model we study
stems from current practices in the industry. Another stream
of works has investigated, from the applications’ perspective,
how burst requests should be made via proactive prediction
[28], [29] or online algorithmic decision processes [30], [31],
while our work focuses on how burst requests already made
by users can be accommodated by a cloud provider.

VII. CONCLUSION

This paper introduces a framework to analytically model
the performance of burstable instances given the service class
configurations (Section II), characterize users’ selections of
service classes at the Nash equilibrium (Section III), and
maximize the provider’s total revenue by finding the optimal
prices at equilibrium (Section IV). We validate our framework
via trace-driven simulations. We show that our performance
model can estimate the QoS received by burstable instances
with a small average error ratio, and our revenue maximization
scheme can drastically increase the provider’s revenue.

As the first to study burstable instances from a theoretical
perspective, we regard this work as an initial framework that
captures the fundamental features of burstable instances. To
extend this work, we can investigate a customized approxima-
tion algorithm for the revenue maximization problem in our
framework. Such an algorithm may allow our framework to
adapt to changes in users’ resource demand patterns over time.

ACKNOWLEDGMENT

We thank Hedyeh Beyhaghi, Ting-Jung Chang, Zhe Huang,
Tri Nguyen, Liang Zheng, and anonymous reviewers for their
feedback. This material is based on research sponsored by
the NSF under Grants No. CNS-1751075 and CCF-1453112,
Air Force Research Laboratory (AFRL) and Defense Ad-
vanced Research Projects Agency (DARPA) under agreement
No. FA8650-18-2-7846, FA8650-18-2-7852, and FA8650-18-
2-7862. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA), the NSF, or the U.S. Government.

REFERENCES

[1] “Amazon EC2 pricing.” [Online]. Available:
https://aws.amazon.com/ec2/pricing/

[2] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in Proc. ACM Symp. Cloud Comput., 2012, pp. 7:1–7:13.

[3] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Toward energy-
efficient cloud computing: Prediction, consolidation, and overcommit-
ment,” IEEE Netw., vol. 29, no. 2, pp. 56–61, 2015.

[4] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms,” in Proc.
ACM Symp. Operating Syst. Princ., 2017, pp. 153–167.

[5] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via vm multiplexing,”
in Proc. Int. Conf. Autom. Comput., 2010, pp. 11–20.

[6] “Amazon EC2: T2 standard.” [Online]. Available:
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-std.html

[7] “Google Cloud Platform: Shared-core machine types.” [Online]. Avail-
able: https://cloud.google.com/compute/docs/machine-types#sharedcore

[8] “Microsoft Azure: B-series burstable virtual machine sizes.”
[Online]. Available: https://docs.microsoft.com/en-us/azure/virtual-
machines/linux/b-series-burstable

[9] “Amazon EC2: CPU credits and baseline performance.” [Online].
Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-
credits-baseline-concepts.html

[10] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang, “Exploiting
spot and burstable instances for improving the cost-efficacy of in-memory
caches on the public cloud,” in Proc. Eur. Conf. Comput. Syst., 2017, pp.
620–634.

[11] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 793–804.

[12] K. Ramamritham, “Real-time databases,” Distrib. Parallel Databases,
vol. 1, no. 2, pp. 199–226, 1993.

[13] S. A. Golder, D. M. Wilkinson, and B. A. Huberman, “Rhythms of social
interaction: Messaging within a massive online network,” in Communities
Technol., 2007, pp. 41–66.

[14] M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and D. Went-
zlaff, “Incentivizing self-capping to increase cloud utilization,” in Proc.
ACM Symp. Cloud Comput., 2017, pp. 52–65.

[15] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis, “Using burstable
instances in the public cloud: Why, when and how?” Proc. ACM
Measurement Anal. Comput. Syst., vol. 1, no. 1, pp. 11:1–11:28, 2017.

[16] Y. Jiang, M. Shahrad, D. Wentzlaff, D. H. K. Tsang, and
C. Joe-Wong, “Burstable instances for clouds: Performance modeling,
equilibrium analysis, and revenue maximization.” [Online]. Available:
http://c2e.ece.ust.hk/papers/infocom19-tr.pdf

[17] R. G. Gallager, “Finite state markov chains,” in Discrete Stochastic
Processes. Springer, 1996, pp. 103–147.

[18] D. Li and X. Sun, Nonlinear integer programming. Springer Science
& Business Media, 2006, vol. 84.

[19] P. Leitner and J. Scheuner, “Bursting with possibilities–an empirical
study of credit-based bursting cloud instance types,” in Proc. IEEE/ACM
Int. Conf. Utility Cloud Comput., 2015, pp. 227–236.

[20] F. Yan, L. Ren, D. J. Dubois, G. Casale, J. Wen, and E. Smirni, “How
to supercharge the amazon T2: Observations and suggestions,” in Proc.
IEEE Int. Conf. Cloud Comput., 2017, pp. 278–285.

[21] C. Courcoubetis and V. A. Siris, “Managing and pricing service level
agreements for differentiated services,” in Proc. IEEE/ACM Int. Symp.
Qual. Service, 1999, pp. 165–173.

[22] F. M. F. Wong, C. Joe-Wong, S. Ha, Z. Liu, and M. Chiang, “Improving
user QoE for residential broadband: Adaptive traffic management at the
network edge,” in Proc. IEEE/ACM Int. Symp. Qual. Service, 2015, pp.
105–114.

[23] S. Shakkottai, R. Srikant, A. Ozdaglar, and D. Acemoglu, “The price of
simplicity,” IEEE J. Sel. Areas Commun., vol. 26, no. 7, 2008.

[24] A. Odlyzko, “Paris metro pricing for the internet,” in Proc. ACM Conf.
Electron. Commerce, 1999, pp. 140–147.

[25] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” in ACM SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, 2015, pp. 71–84.

[26] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., 2013, pp. 400–409.

[27] L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang,
“On the viability of a cloud virtual service provider,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 44, no. 1, pp. 235–248, 2016.

[28] J. Tai, J. Zhang, J. Li, W. Meleis, and N. Mi, “Ara: Adaptive resource
allocation for cloud computing environments under bursty workloads,”
in Proc. IEEE Int. Perf. Comput. Commun. Conf., 2011, pp. 1–8.

[29] D. J. Dubois and G. Casale, “Performance prediction for burstable cloud
resources,” in Proc. EAI Int. Conf. Perform. Eval. Methodologies Tools,
2017, pp. 217–218.

[30] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload
management in hybrid cloud computing,” IEEE Trans. Netw. Serv.
Manag., vol. 11, no. 1, pp. 90–100, 2014.

[31] N. Morris, C. Stewart, L. Chen, R. Birke, and J. Kelley, “Model-driven
computational sprinting,” in Proc. Eur. Conf. Comput. Syst., 2018, pp.
38:1–38:13.


