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1. INTRODUCTION

Suppose that K is a field. Associated to a valuation v of K is a value group ®, and a
valuation ring V,, with maximal ideal m,. Let R be a local domain with quotient field K.
We say that v dominates R if R C V,, and m, N R = mg where mpg is the maximal ideal
of R. We have an associated semigroup

Sfw) ={v(f) | f € R\ (0)},

as well as the associated graded ring of R along v

(1) =P P,(r)/PF(R)= P P(R)/P(R)

vEDL veSE(®v)
which is defined by Teissier in [18]. Here

Py(R)={f € R|v(f) 27} and P (R) = {f € R|v(f) >~}
This ring plays an important role in local uniformization of singularities ([18] and [19]).
The ring gr,(R) is a domain, but it is often not Noetherian, even when R is. In fact, a
necessary condition for gr,(R) to be Noetherian is that ®, be a finitely generated group.
In this paper, we answer the following question, which is a natural generalization of
local uniformization.

Question 1.1. Suppose that R is a Noetherian local domain which is dominated by a
valuation v. Does there exist a reqular local ring R’ of the quotient field K of R such that
v dominates R’ and R’ dominates R, a prime ideal p of the mp -adic completion R of
R’ such thclt\p’ N R = (0) and an extension U of v to the quotient field of j%\’/p which

dominates R'/p such that
g, (R') = gry (R /p)?
A nonzero prime ideal p may be necessary to obtain the conclusions of Question 1.1, as
is shown in [17] and [10].
If v has rank 1, then we easily obtain a prime p in the completion of R such that

gr, (R) = gry(R/p)
as we now indicate.
Suppose that R is a Noetherian local domain which is dominated by a rank 1 valuation
v. For f € R, we write v(f) = oo if there exists a Cauchy sequence {f,} in R which
converges to f, and such that lim, . v(f,) = co. We define ([7, Definition 5.2]) a prime
ideal

P(R)o ={f € R | v(f) = o0}
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in R. We then have a canonical immediate extension 7 of v to QF(R/P(R)s) which
dominates R/P(R).
The following lemma appears in [11].

Lemma 1.2. Suppose that v is a rank 1 valuation of a field K and R is a Noetherian local
domain which is dominated by v. Let U be the canonical extension of v to QF(R/P(R))
which dominates R/P(R)s. Then the inclusion R — R/P(R)~ induces an isomorphism

g1, (R) = gry (R/P(R)c)-

Proof. Suppose h € R \ P(R)oo. There exists a Cauchy sequence {f,} in R such that
lim,, o0 fr, = h. Let m be a positive integer such that mv(mpg) > v(h) (where v(mpg) =
min{v(g) | ¢ € mg}). There exists ng such that f, —h € mpR for n > ng. Then
in, (fn) = iny(h) for n > ny. O

From Lemma 1.2, we obtain a positive answer to Question 1.1 for local domains R and
rank 1 valuations v which admit local unformization. A po/s\itive answer to Question 1.1
for rank 1 valuations with the additional conclusion that R’/p is a regular local ring is
given in [4] and in [7, Theorem 7.2] for R which are essentially of finite type over a field
of characteristic zero. This is generalized somewhat in [6] and [9].

Related to Question 1.1 is the following question, which we will also answer.

Question 1.3. Suppose that R is a Noetherian local domain which is dominated by a
valuation v. Does there exist a reqular local ring R’ of the quotient field K of R such that
v dominates R and R' dominates R, and an extension v of v to the quotient field of the
Henselization (R')" of R' which dominates (R')" such that

gr, (R') = grn(R)"))?

A positive answer to Question 1.1 would imply a positive answer to Question 1.3.

We prove the following proposition on the extension of associated graded rings under
an unramified extension in [5], which gives a start on answering Question 1.3. Related
problems are considered in [11].

Proposition 1.4. (][5, Proposition 1.7]) Suppose that R and S are normal local rings
such that R is excellent, S lies over R and S is unramified over R, U is a valuation of the
quotient field L of S which dominates S, and v is the restriction of U to the quotient field
K of R. Suppose that L is finite over K. Then there exists a normal local ring R of K
which is dominated by v and dominates R, such that if R” is a normal local ring of K
which is dominated by v and dominates R and S” is the normal local ring of L which is
dominated by U and lies over R”, then R" — S” is unramified, and

gr5(S") = gr, (R") @prjmy,, 5" /msn.

We give an example at the end of of [5, Section 5] showing that it may be necessary
to take R’ # R to obtain the conclusions of Proposition 1.4 if v has rank greater than
1. The ring R is regular and there is no residue field extension in the example. This
example shows that it may be necessary to perform a proper extension R — R’ take
R’ # R to obtain a positive answer to Question 1.3 or 1.1, even if R is a regular local ring.
This problem arises from the fact that the residue field under blowing up of the center
of a composite valuation can increase. Related examples are considered in [11]. In [11,
Remark 2], it is already observed that the increase of residue field under blowing up of
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the center of a composite valuation is a critical issue in understanding an extension of a
valuation dominating a local domain to its completion.

In this paper, we show that Question 1.3 and Question 1.1 have a negative answer in
general. This is accomplished in Theorems 1.5 and 1.6 stated below, which are proven in
Section 5. The examples of the theorems are on three dimensional regular local rings which
are a localization at a maximal ideal of a polynomial ring over an arbitrary algebraically
closed field.

Theorem 1.5. Suppose k is an algebraically closed field. Then there exists a three dimen-
sitonal reqular local ring Ty, which is a localization of a finite type k-algebra, with residue
field k, and a valuation ¢ of the quotient field K of Ty which dominates Ty and whose
residue field is k, such that if T is a reqular local ring of K which is dominated by ¢
and dominates Ty, T" is the Henselization of T and ©" is an extension of ¢ to the quo-
tient field of T" which dominates T", then ST" (") # ST (p), under the natural inclusion

ST(p) € ST (h).

Theorem 1.6. Suppose k is an algebraically closed field. Then there exists a three dimen-
sional regular local ring Ty, which is a localization of a finite type k-algebra, with residue
field k, and a valuation ¢ of the quotient field K of Ty which dominates Ty and whose
residue field is k, such that if T is a reqular local ring of K which is dominated by ¢ and
dominates Ty and T is the my-adic completion of T, then there does not exist a prime
ideal p of T such that pN'T = (0) with an extension ¢ to the quotient field of T'/p which

dominates T/p such that ST/?(p) = ST (), under the natural inclusion ST (o) C ST/p(@).

A very interesting related problem, which is still open, is [11, Conjecture 1.1] on the
existence of “scalewise birational” extensions of associated graded rings. [11, Conjecture
1.1] is a refinement of [18, Statement 5.19]. The two results Theorem 1.5 and Theorem
1.6 of this paper are counterexamples to possible hopes of improving the statements of
Conjecture 1.11 and Theorem 7.1 of [11].

This paper relies on the construction of generating sequences (Section 3), using the
algorithm of [8], which is a generalization of the algorithm of [17]. The construction of
generating sequences in a local domain which is dominated by a valuation which provide
enough information to determine the associated graded ring along the valuation is an
important problem. Some recent papers addressing this are [9], [12], [14] and [16].

2. NOTATION

The nonnegative integers will be denoted by N and the positive integers will be denoted
by Z,. If A is a subset of an Abelian group G then G(A) will denote the group generated
by A and S(A) will denote the semigroup (containing zero) generated by A.

The maximal ideal of a local ring R will be denoted by mp. Suppose that K is a field.
A local ring of K is a local domain whose quotient field is K. We will say that a local
domain B dominates a local domain A if A C B and mg N A = my4. If a regular local
ring B dominates a local domain A and B is a local ring of the blow up of an ideal I in
A, then a strict transform of an element f € A in B is a generator g of the principal ideal
(f) :B IB; that is, g is a generator of the ideal of the strict transform of Spec(A4/(f)) in
Spec(B).

If v is a valuation of a field K, V, will denote the valuation ring of v, m, will denote
the maximal ideal of V,, and ®, will denote the value group of v. The basics of valuation
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theory are explained in [21, Chapter VI] and [3, Chapter II]. We will say that a valuation
v dominates a local domain R if V,, dominates R. We define the semigroup

Stw) ={v(f) | f € R\ {0}}.
3. CONSTRUCTION OF GENERATING SEQUENCES OF A VALUATION

Suppose that R is a local domain and v is a valuation dominating R. A sequence of

elements {P} in R is called a generating sequence for v if the classes in, (P;) of the P; in
P/ P (P, generate gr, (R) as an R/mp-algebra.

Let k be an algebraically closed field, The regular local ring Ry = k[z,y,t](,) =
k(t)[z, Y] (z,y) has regular parameters x,y and residue field Ro/mpg, = k(t). We will induc-
tively define a generating sequence

PO = l’,Pl = y,PQ,...

in Ro, defining a valuation v dominating Ry, using the method of the proof of [8, Theorem
1.1]. The generating sequence will satisfy the good conditions of the conclusions of [8,
Theorem 4.2]. Let py, P, . . . be the sequence of prime numbers, excluding the characteristic
of k. Define a; = p; + 1 and inductively define positive integers a; by
Qit1 = PiPip10i + 1.

Define

Prpy = Pl — (14 t)ah
for i > 1. Set v(z) =1 and

v(P;) = (9:) for i > 1.

p
)

We have ged(a;,p;) = 1 for all i. Thus G(v(FRy),v(P)) = %Z and
n; = [GW(Ry),...,.v(P)): Gw(R),...,v(Pi-1)] =p;

for i > 1.
We have v(P;) > p?_,v(P;—1) for i > 2 and the value group
1
(2) O, =Ui>1——Z.
P1p2 D

Let 5 be an algebraic closure of k(t) and let o; € 5 be a root of f;(u) = uPi — (1+1t) € k[u]
for ¢ > 1. Since the p; are all pairwise relatively prime, by induction on i, we see that
fi(u) is the minimal polynomial of «; over k(aq,...,a;—1) and

di =D = [k(t)(alv s 7ai) : k(t)(alv s 7041'71)]
for i > 1. Since n; = d;jn; = p? for i > 1, by the algorithm of the proof of [8, Theorem 1.1],
the P; are the generating sequence of a valuation v dominating Ry which has the property
that setting U; = 2% for i > 1, we have V,,/m, = k({o; | i > 1}) with
D;

71' S Vy/my

Q; =

for 7 > 1.
From p,v(y) = ajv(x) with ged(ag,p;) = 1, there exist @, by € Zy such that p;by —
arag = 1. Set
v =2 g, y = 2P,
4



Then v(z1) > 0 and v(g;) = 0. Set

Rl = Ro[xla gl]mVﬂRo[wl,ﬂl]‘
By [8, Theorem 7.1],

Py
xT1,Y1 = —5
a1py
Ty
are regular parameters in R; and
P
Pop=m,P10 = ——,
Palpl
0,1
P
Pin=—
2..p2
Pyt
for 4 > 1 is a generating sequence for v in Ry. For ¢ > 1, we have
) =2 — = = (= 52, 2%
Pi+1 | = ]j12+272 _ Pz‘pi-H o (1 + t)g?0a1+lpi+11.1171'+1(plai+1*alp%'”pzzpi+1).
’ PP Pit ’
0,1
Set
5 2. .52
Qi1 = P1Qi+1 — a1P1 " PiPi1
and _
_ ~20Qi+1
Til = Yq ‘ )
a unit in Ry for ¢ > 1. Then we have expressions
s L
) _ i+1 Pit1 Pi+14i,1
(3) Piiig = Pfl -1+ t)Tm Ty
for ¢ > 1. We have
1 1 ;1
v(z) = —v(z) = — and v(P;) = ——v(x1)
P Py Pit1

with ged(a;1,p;4q) =1 for all @ > 1.
We have that
D2
1
Py

Ry /mpg, = Ro/mr, = Ro/mp,[oa] = k(t)(a1),

niy = [GW(Po),-- -, v(Fin)) : GW(Pon)s- - v(Pic11))] = M1 = Py
for i > 1 and setting U; 1 = xtlli’l for i > 1 and
Dit1
i1
Ui

Q1 = S V,,/ml,.

Let 751 € R1/mp, = k(t)(a1) be the class of 7 ; in V,,/m,. We have that
fia(u) = uPir — (14 )70
is the minimal polynomial of o 1 over
Ri/mp,)(c1,. .. ai—11) = k(t) (a1, ..., q).

Thus

di1 = [Ri/mpg,(a11,...,051) : Ri/mpg, (11, .., 0i-11)] = Divq
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and
ni1 = d; 1M1 = P

for i > 1.

Iterating this construction, we have an infinite sequence of birational extensions of
regular local rings

Ry— Ry — - —=Rj—---
which are dominated by v where R; has regular parameters x;,y; and a generating se-
quence {P; ;} for v defined by
Poj =5, Prj =y,

and for ¢ > 1,

, _ _
- _ pPitj Ditj PitjQij
P =P ;7 — A+ )7 )

where 7; j are units in R; and ged(a;;,D;4,) = 1. We have

1 am
v(zj) = ﬂ and v(P; ;) = a”(fﬂj)
for 7 > 1.
We have that
P1+;
Rj/mp, = Rj_1/mg,_, P((};fj_,lll =Rj_1/mp,_,[on 1] = k@) (..., a5),
J—

nij = [GW(Poy), .- v(Pij) : GW(Roj),- - v(Pim1,5))] = Nitj = Diyj
for i > 1 and setting U, ; = x(;” for s > 1 and
P@‘H

P i?-]
Qg5 = — S Vy/ml/.
Z7J

Let ?7,,] S Rj/mR] = k(t) (Oé]_, couy Oé]) be the class of Tij in Vy/m,/, We have
fig(w) = wPes = (14 )75

is the minimal polynomial of «; ; over

Rj/ij (Oél’j, RN Oéi—l,j) = k(t)(ozl, ... ,Oéi_1+j).
Thus
di,j = [R/ij (Ozl,j, e ,Oéi,j) : Rj/ij (OzLj, c. ,ai_l’j)] = Tji—i—j
and
nij = d; jnij = T?zzﬂ'
for ¢ > 1.

Suppose A is a regular local ring of the quotient field K of Ry which is dominated by v
and dominates Ry. Then there exists a largest [ such that A dominates R, so there exist
regular parameters z and w in A such that x; and y; are monomials in z and w. We thus
have a factorization (by [2, Theorem 3])

(4) Ri=Dy—-Dy—---—>D,=A
where Dy has regular parameters z = z;,w = y; and D;;1 has regular parameters z;;1,

Wi+41, such that either Z; = Zij41, Wi = Zj41Wi41, O 2 = Zj41Wi41, W; = Wi41-
6



We have shown that Dy has a generating sequence {Q;} with Q; = P;; for i > 0, so
that

Qo = 20, Q1 = wo,
and
Quir = QU — (L4 )y icee
where e; g = a;; for i > 1. We have Dy/mp, = k(t )(al, ..., 0q). Set

Vi = 04 =

Q@H
Zei,l
0
for ¢ > 1. We have that
5 i1(u) = uPitt — 1—|—t*p7‘+l
( b
is the minimal polynomial of ; over

Do/mp,(11,- - 7vi-1) = k() (a1, ..., qi—141)
SO
[Do/mpy (11, ---57) : Do/mpy(m1,- -+, %i-1)] = Piy-
We will show by induction on j that D; has a generating sequence {Q; ;} defined by

) Qo = zj, Q15 = wy,
(7) QQ,] — Qp1+LCJ _ (1 + t) p1+lQp1+l61]
with ¢; = [G(¥(Qo;,¥(Q1,)) : Gw(Q1,))] and v(QY;) = v(QG) with ged(cj, e1;) = 1

and for i > 2,
(8) Qi1 = szJrl (144 pz+zsz+le”Q?ijivj
with v(Q]") = v(Q57 Q15), and with
Pirj = [G((Qoy)s- -, v(Qij)) : G((Qoy),- - v(Qi-1))]-

Further,
v(Q2,5) > P14civ(Q1,5) = Pryie1v(Qo.)
and
V(Qs;) > Prar—1v(Qs-1,5)
for s > 2.

We also have that D;/mp, = k(t)(a1,...,qa;) and

ch p1+l
i
(9) Y1 = el,Jj and Vi = % € VI//ml/
0,5 Qo Q1]
2 7] 7‘7
for i > 2.

We inductively construct the generating sequence Qg j, Q1,5, - - - as follows. Suppose that
Qo,j,@1,j, - - - has been constructed. We will construct Qo j+1,@1,j+1,--.. We either have
that
(10) Zj = Zj41Wj41, Wj = Wj41
or
(11) Zj = Zj4+1,Wj = Zj41Wj+1-
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Suppose (10) holds, so that v(w;) < v(z;). Then

(12) wj+1 = Q1441 = Quj and 241 = Qo i1 = O
Substitute for Qo ;, @1,; in

Q2= Q"7 = (L+ 0" Qoy™
to obtain B B B
Q2 = QUJ1Y — L+ 07 Qo i QU
Since v(Qo,;) > v(Q1,5), and Py y¢;v(Q1,5) = Piy€1,;¥(Qo,;), we have pye1; < Prycj.
Thus a strict transform of Q2 ; in Djy1 is

) - QQ,j _ APiqilci—e1j) D141 AP141€1,5
(13) Q2J+1 T A Piye1,; | vLij+l - (1 + t)Tll 0,j+1 -
Lj+1
Suppose we have constructed the generating sequence out to
Qi1 = Qij
Lt el,j731+lﬁ12+2"'1712+i—1 '
1,5+1

Substituting into

Q7,+1 J sz+l _ (1 + t) p2+l sz+l€z ]Q?F.Hfi'j
, ’] )
we have

6173.?1‘”5[2 ﬁIQ i ﬁ? 1 pz 1 pz 1€1,5 pz l(el +f’b )
Qiy1,j = Q1,j+1 I Qz‘,jtﬂ -1+ t) i onﬂ JQ1,]++1 S
We have that
_9 _ _ _
Pipiv(Qig) = Pigi€ijv(Qoy) + Digi fijv(Q1,5) < Pigaleiy + fij)v(Qo,j)
since v(Q1,j) < ¥(Qo,5), and from the inequalities

v(Qsj) > T?erqu(qu,j)

for s > 2 and
v(Q2,5) > Pryer,iv(Qo,j)
we have
€1,D141D5 41+ Dot < Piga(€ij + fi)
and thus
(14)
. . =2 .
Qurrger = —— 28— = QI (L) Qi QT T T )
1,41

is a strict transform of Q;41; in Dj 1.
Now suppose (11) holds, so that v(w;) > v(z;). Then

(15) zj+1 = Qoj+1 = Qo and wjp1 = Q1,541 =
Substitute for Qo ; and Q1 ; in
Q2 Qpl J1C5 (1 + t) P1+1QP1+161]
7‘7

to obtain B B
. P1+1% AP14+1C5 p1+l D14i€1,5
Q25 = Qo 41 Qi — (A +8)7m " Qo7
8



Since v(Q1,;) > v(Qo,;) and Py (@) = Pryge1v(Qoy) < Pryerv(Qu;) we have
P141¢j < P1ye1,5- Thus a strict transform of Q2 5 in Djiq is

o Q2,j _ P16 P1+l D1i(e1,5—¢5)
(16) Qojr1 = —=— = Qi — (1 +7,7 Qo :
0,j+1
Now suppose we have constructed the generating sequence out to
Qi iy = Qij
Lt CjﬁlJrlp%H”'ﬁ?le
0,j+1

Then substituting into

Qisry = QU — (14 )i Qe Qi T,
we have that

=2 =2 =
Q z+l QCJP1+1P2+1'”7’i+l _ (1 + t) pz+lQPz+l (€i,j+fi5) pi+lfi,j‘

Qit1, = i,j+1%0,5+1 0,j+1 1,j+1

We have
Prav(Qij) = Pi€ijv(Qoy) + Pip figv(Quy) < Piyy(eiy + fij)v(Quy)
since v(Qo,j) < v(Q1,5), and from the inequalities
V(Qsj) > Pr1v(Qs—1)

for s > 2 and

v(Q2,5) > P1uciv(Q15),

we have

-2 -2 -2 —

DiviPi—141 " PaiP1416 < Pigileij + fij)
and thus
(17)

. . =2 2 = =
. R QlJrl,] _ Pi+ Pz+z Piti(eijt+fij— CJp1+lp2+z“ Pi_141Piv1) ~Pivifij

Qz+1,]+1 = = Qi,j+1 (1+t) QO J+1 Ql,jH

= =2 =2
chp1+lp2+l"'pi+l
0,j+1

is a strict transform of Q;41; in Dj 1.
Since ged(cj, er1,5) =1,
(18) [G((Qo,5),v(Q1)) : G(¥(Qo; )] = ¢
and since G(v(Qo,j+1), V(Q1,j41), - - -, ¥(@s,j+1)) = G(V(Qo,5), ¥(Q1,5), - - -, ¥(Qs,)) for s >
1, we have

(19) [G((Qo,4), v(Q1j), - - v(Qiy)) : GW(Qoy), ¥(Quy), - - ¥(Qi-15))] = Pits
for ¢ > 2. Dividing the relation (7) by Qp“’le1 7 and taking the residue in V,, /m,,, we obtain

Q2,5
D14i€1,5
O?j

(20) 0= = fru(m)

where f1, defined by (5), is the minimal polynomial of v over D;/mp, = k(t)(a1,...,a).
Dividing the relation (8) by (Qg" Q{ZJ )Pitt, and taking the residue in V,,/m,,, we obtain

Qit1,5
(21) 0= [e. — ] = fir(vi),
(@5 Q1 P
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where f;;, defined by (5), is the minimal polynomial of v; over D;/mp,(y1,...,vi-1) for
> 2.

We now verify (9) by induction on j. If we are in case (10), then the formula follows
for j 4+ 1 from induction and (12), (13) and (14). If we are in case (11), then the formula
follows for j + 1 from induction and (15), (16) and (17).

The formula D(i) of [8, Theorem 4.2] holds for the Qg ;, Q1,j,.... That is, if we have a
natural number ¢, a positive integer m and natural numbers f,(s) for 1 < n < such that
0 < fi(s) <Dprycj for 1 <s <mand 0 < fr(s) <f)721+l for2<s<mandl<n<i If

v(@QEIQMNT QI = vV QIY - )
for 1 < s < m, then

Qg)c?j(Q)Q{,lj(g) T ij@)] .. [ngj(m)Q{Z(m) o Q{S(m)
Jo(D) A/1(1 M| oM aal fild
QO(.)j( )Ql,lj( )"‘Qm’( ) of}( )Ql,lj( )'"Qi,j( )
are linearly independent over D;/mp, = k(t)(a1,...,a;). This formula follows from in-

duction on ¢ and (9), (5), (18) and (19) as in the proof of D(i) of [8, Theorem 4.2]. Since
v has rank 1 by (2), the fact that Qo j, Q1,, ... is a generating sequence in D; is verified
as in the proof of [8, Theorem 4.10 and Lemma 4.9].

4. CONSTRUCTION OF UNRAMIFIED EXTENSIONS WHICH HAVE LARGER VALUATION
SEMIGROUPS

Let notation be as in the previous section. Let K = k(t,z,y). Let A be a regular local
ring of K which dominates Ry and is dominated by v. Then there exists a factorization of

R0—>R12D0—>Dn:A
of the form (4). Let
(22) A be a py-th root of 1+
in an algebraic closure of K, L = K(\) and 7 be an extension of v to L. Let w € k be a
primitive p;,;-th root of unity.
Let p = p; 4y and f(u) = uP—(1+t), the minimal polynomial of A over K. Let B = A[)].
The ring B is finite over A. We have the formula for the discriminant
B(p-1) P daf
Ll du
i=1

Drg (LA, AP = (=1) (W)

by [13, Proposition 8.5 on page 204] and [13, Formula (4) on page 204]. Thus

Dpyic(L A, WY = ()M P (1 4 1)L,

Now 1+t € Ry and 1+t & mp,, so 1 +¢ & ma. Thus the discriminant ideal D(B/A) in
A is equal to A, and so B is normal and A — B is unramified by [3, Proposition 1.43] and
[3, Theorem 1.44]. Let C' = By, np. Then A — C is unramified, and so C is a regular
local ring, since the maximal ideal of C is generated by a regular system of parameters in

A.

Proposition 4.1. With the above notation, we have inequalities of semigroups
§9(w) # 54w,

under the natural inclusion S4(v) C S¢ (D).
10



Proof. Since A = D,, in (4), A has regular parameters z,,w, and a generating sequence
QO,n = Zn, Ql,n = Wn, QQ,na cee
defined by (6), (7) and (8). so

S (v) = S{v(Qin) | 2 0}).

We have
(23) V(Qit1,n) > V(Qim)
fori>1,

[G(V(Qo,l), V(Ql,n)) : G(V(QO,n)] = Cn
and

(24) [G(V(QO,n)v V(Ql,n)a KRR V(Qi-‘rl,n)) : G(V(Qo,n)v V(Ql,n)a s 7V(Qi,n))] = ﬁi-‘rH—l
for i > 1.
By (7), we have

_ AP1yiln Piti AP1+1€1,n _  P14iCn P11 _P14i1€1,n
Qo =0Q1, " — (1+ t)TLl 01 = Wy —(1+ t)TLl Zn .
We have

wen
v = [e’fn} e V,/my, C Vi/mp.
SeL

n
Let 8 = [A7;;] € Viz/my which is nonzero since A and 71, are units in C. There exists at
most one index j with 1 < j < p;,; such that w’/B = ;. We have that

hj = wng - wj)\TLjZle’n eC
for all j. If w/ 3 # 1, then U(hj) = e1nv(2p). Since
P11
Zv(hj) = V(Q2,n) > 171+l€1,ny(zn)a
j=1
there exists a unique value of j such that w/8 = 1, and U(hj) > e1,v(2,). If U(h;) €
S4(v), we must then have that 7(hj) € S(v(2,), v(wy)), since

v(hj) = V(Q2,n) - (le—l-l - 1)el,ny(zn) < V(QQ,n)
and by (23). Thus v(Q2.,) € G(v(zy),v(wy)), which is a contradiction to (24). O

Let p be a valuation of V,/m, = k(t)[{(1 + t)%i}iem] which is an extension of the
(t)-adic valuation on k[t];). The value group of y is Z. Let ¢ be the composite valuation
of v and p on K, so that the valuation ring of ¢ is V,, = 7= 1(V},) where 7: V,, — V,,/m,
is the residue map ([3, Section 10]). The residue field of ¢ is V,,/m, = V,,/m, = k. Let
To = kl[t, %, Y] (t,,y), which is dominated by ¢.

Proposition 4.2. Suppose that T is a reqular local ring of K which dominates Ty and is
dominated by w. Then there exists a finite separable extension field L of K such that T is
unramified in L. Further, if @ is an extension of ¢ to L, and if U is the normal local ring
of L which lies over T and is dominated by @, then the following properties hold:

1) U is a regular local ring

2) the extension T — U is unramified with no residue field extension

3) SY(p) # ST(p) under the natural inclusion ST (¢) C SY ().
11



Proof. Let Ry = (To)m,n1, = k(t)[z,y] and A = T,,,,~r. By consideration of the factor-
ization Ry — R} — A = D,, in (4), let A be a p;;-th root of 1 4 ¢ in an extension field
of K, and let L = K(\) (as in (22)). Let ® be an extension of ¢ to L and let 7 be the
extension of v to L with which P is composite.

Let U be the normal local ring of L which is dominated by @ and lies over T'. Then U is
a regular local ring and the extension 7' — U is unramified with no residue field extension,
by the argument before Proposition 4.1 and since Viz/mgz = V,,/m, = k by [21, Corollary
2, page 26]. Let C' = U,,,ny. Then C is a regular local ring and A — C' is unramified (by
the argument before Proposition 4.1). We have that

(25) SC() # 5 ()

by Proposition 4.1.

By the explanation on [3, page 56] or [21, Theorem 17, page 43], we have a commutative
diagram of homomorphisms of value groups, where the horizontal sequences are short exact
and the vertical arrows are injective,

0O - ¢, - ¢, - & — 0

| 1 |

0 = &5 — &7 — Iy — 0,

which induce a commutative diagram of homorphisms of semigroups, where the horizontal
arrows are surjective and the vertical are injective,

ST(p) — S4)
| 1
SU(p) — SYw).
We will show that the first horizontal arrow is surjective. The proof for the second horizon-
tal arrow is the same. Suppose a € S4(v). Then there exists f € A such that v(f) = a.
There exists g € T'\ (z,y) such that gf € T. Thus ¢(g) € ®, and ¢(g9f) = ¢(g9) + ©(f) so
©(gf) € ST(p) maps onto v(f) = a. Thus ST (p) # SY(p) by (25). O

5. PROOFS OF THEOREMS 1.5 AND 1.6

We first give the proof of Theorem 1.5.

A Henselization T" of T can be constructed as follows, as is explained in [15, Chapter
VII]. Let N be a separable closure of K. Then N is an (infinite) Galois extension of K
with Galois group G(N/K). Let E be a local ring of the integral closure of T'in N, and
let

G*(E/T)={0c € G(N/K) |o(E) = E}.
A Henselization T" of T is then T" = EG*(E/T) which is a local ring of the fixed field
M = NG (E/T) of G*(E/T) which lies over T.

Let K — L be the field extension of Proposition 4.2. Choose an embedding K — L — N
of L as a subfield of N, and let U be the local ring of the integral closure of T"in L which
is dominated by E. By Proposition 4.2, U is unramified over T" with no residue field
extension. Thus G*(E/T) C G(N/L) (c.f. [2, Section 2| or [5, Section 4]). Thus we have
that

L = NCW/L) ~ NG (E/T) — pr.

Thus U is dominated by T" since U = ENL and T" = EN M. Let § = ¢"|L. Then
% dominates U and T" dominates U, so SU(p) c ST"(¢"). But SU(p) # ST () by
Proposition 4.2, so ST" (") # ST ().
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We now give the proof of Theorem 1.6.

By [15, Theorem 43.5], the completion T of T is a Henselian local ring, and so by [15,
Theorem 30.3], T dominates the Henselization T" of T.

Now T" = F,, where F is the integral closure of T in the quotient field M of T" and
m is a maximal ideal of F. Suppose ¢ is a nonzero prime ideal of T". Then there exists
a nonzero element f € ¢, so that f = 7 where g,h € F and h ¢ m. Now g is integral
over T"and T is normal, so the norm Ny 4/ (g) satisfies 0 # Ng(4)/x(9) € ¢NT by [20,
Theorem 4, page 260] and [20, formula (15) on page 91]. Thus ¢ N T # (0).

A

Suppose there exists a prime ideal p in T" with an extension ¢ of ¢ to the quotient field
of T'/p which dominates T'/p such that S7/?(p) = ST (). Then pNT" = (0), and so T'/p
dominates T". Let ¢ be the restriction of ¢ to the quotient field of T". We then have
natural inclusions

ST(p) € ST (") € ST ().
But ST(p) # ST" (") by Theorem 1.5, giving a contradiction to our assumption that
ST/P(@) = 57 (p)-
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