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ABSTRACT. A rational map ¢ : P}* --» P} is defined by homogeneous polynomials
of a common degree d. We establish a linear bound in terms of d for the number of
(m — 1)-dimensional fibers of ¢, by using ideals of minors of the Jacobian matrix.
In particular, we answer affirmatively Question 11 in [Tral5].

1. INTRODUCTION

Let k be a field and ¢ : P' --» P} be a rational map. Such a map ¢ is de-
fined by homogeneous polynomials fy, ..., f,, of the same degree d, in a standard
graded polynomial ring R = k[X), ..., X,,], such that ged(fo, ..., fn) = 1. The ideal
I of R generated by these polynomials is called the base ideal of ¢. The scheme
B := Proj(R/I) C P}* is called the base locus of ¢. Let B = k[Iy,...,T,] be
the homogeneous coordinate ring of IP;. The map ¢ corresponds to the k-algebra
homomorphism ¢ : B — R, which sends each T; to f;. Then the kernel of this
homomorphism defines the closed image . of ¢. In other words, after degree renor-
malization, k[fo,..., f.] = B/Ker(y) is the homogeneous coordinate ring of .&.
The minimal set of generators of Ker(y) is called its implicit equations and the
implicitization problem is to find these implicit equations.

The implicitization problem for curves or surfaces has been of increasing interest to
commutative algebraists and algebraic geometers due to its applications in Computer
Aided Geometric Design as explained by Cox [Cox05].

We blow up the base locus of ¢ and obtain the following commutative diagram

re . pnxpp
T lﬂ?

The variety I' is the blow-up of P}* at B and it is also the Zariski closure of the graph
of ¢ in P;* x P}. Moreover, I' is the geometric version of the Rees algebra of I, i.e.
Proj(Rz) =T'. As Rz is the graded domain defining I', the projection mo(I') = .7 is
defined by the graded domain RzNk[Ty, ..., T,] and we can thus obtain the implicit
equations of . from the defining equations of Rrz.

In geometric modeling, it is of vital importance to have a detailed knowledge of
the geometry of the objects and of the parametric representations one is working
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with. The question of how many times the same point is being painted (i.e. corre-
sponds to distinct values of parameter) depends not only on the variety itself, but
also on the parameterization. It is of interest to determine the singularities of the
parameterizations, in particular their fibers. More precisely, we set

T = ’/T2|FIF—>]P)Z‘

For every closed point y € P}, we will denote by k(y) its residue field. If & is assumed
to be algebraically closed, then k(y) ~ k. The fiber of m at y € P} is the subscheme

1 (y) = Proj(Rz @5 k(y)) C Py, ~ Py".
Suppose that m > 2 and ¢ is generically finite onto its image. Then the set
Vi1 ={y e P} | dimﬁ_l(y) =m—1}

consists of only a finite number of points in P¥. For each y € YV, 1, 7 '(y) is a
(m — 1)-dimensional subcheme of P}* and thus the unmixed component of maximal
dimension is defined by a homogeneous polynomial h, € R. Our main purpose is to
establish a bound for }° _,  deg(hy) in terms of the degree d. A quadratic bound
in d for this sum of one-dimensional fibers of a parameterization surface ¢ : P2 --» P?
is given by the third named author [Tral5]. More precisely, he proved the following.

Theorem. [Tral5, Theorem 7 & 9] Let I be a homogeneous ideal of R = k[Xo, X7, X5]
generated by a minimal generating set of homogeneous polynomials fo, ..., f3 of de-
gree d. Suppose that I has codimension 2 and B = Proj(R/I) is locally a complete
intersection of dimension zero. Let I3 := I: r(Xo, X1, X2)* be the saturation of I

and p = inf{v | I?** # 0}.
(i) If p < d, then ) deg(hy) < p.

yeEW

(ii) If u = d, then

4 if d=3,
Zdeg(hy)g{gjd—l if d>4

In this paper, we refine and generalize the above theorem. Recall that if f :=
fo, -, fn are polynomials in R = k[X,..., X,,], then the Jacobian matrix of f is
defined by

9f ... Bfo
0Xo 0Xm
J(f) = : :
Ofn .. Ofn
X0 0Xom

Denote by I;(J(f)) the ideal of R generated by the s-minors of J(f), where 1 < s <
min{m + 1,n + 1}. Our main result is the following.

Theorem (Theorem 3.5). Let I be a homogeneous ideal of R = k[Xo,...,Xn]

generated by a minimal generating set of homogeneous polynomials £ := fo,..., fn
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of degree d. Suppose that ged(fo, ..., fn) =1 and I3(J(f)) # 0. Let F be the greatest
common divisor of generators of I3(J(f)). Then

D deg(hy) < > > (26, — 1) deg(hy) < deg(F) < 3(d — 1),
YEYm—1 YEYVm—1 =1

(&
where hy = hi'---hy)’

. ts an irreducible factorization of hy in R.

If the field k is of characteristic zero, then the assumption I3(J(f)) # 0 is always
satisfied, due to the hypothesis that ¢ is generically finite onto its image. Therefore,
the above theorem is a significant improvement and generalization of the results in
[Tralb], at least in the case where k is of characteristic zero.

For a parameterization of surfaces ¢ : P2 --» P we give a linear bound for
> yey, deg(hy) which answers affirmatively Question 11 in [Tral5].

Corollary (Corollary 4.4). Let I be a homogeneous ideal of R = k[Xo,..., Xn]
generated by a minimal generating set of homogeneous polynomials £ := fo,..., f3 of

degree d. Suppose that I has codimension 2. Assume further that the characteristic
of k does not divide d and [k(f) : k(X)] is separable. Then

> " deg(hy) < 3(d — 1) — indeg(Syz(I)) < 3(d — 1).

yeEMN

Observe that the last two conditions in the above corollary are automatically
satisfied if k is of characteristic zero.

2. TANGENT SPACE MAPS AND JACOBIAN MATRICES

Suppose that X is a k-scheme where k is an algebraically closed field, and g € X
is a closed point. The tangent space T'(X), of X at ¢ is the k-vector space

T(X), = Homk(mq/mg, k)

where m, is the maximal ideal of Ox,. Suppose that Y is another k-scheme and
¢ : X — Y is a morphism of k-schemes. Then ¢* : Oy — Ox,q induces a
homomorphism of k-vector spaces dg, : T(X)y = T(Y )4 If V is a subscheme
of X and W is a subscheme of Y such that ¢(V') C W, then we have a natural
commutative diagram of homomorphisms of k-vector spaces

TV), < T(X),
(2.1) ! J
TW)s € T(Y)o(q)-

From now on, we will consider the following situation. Suppose that k is an
algebraically closed field of characteristic p > 0. Consider fy,..., f, homoge-
neous polynomials of a common degree d in the standard polynomial ring R :=

k[Xo, ..., Xm], such that ged(fo,...,fn) = 1. Let ¢ : P{* --» P} be a rational
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map defined by fo,..., f,. The maximal open set on which ¢ is a morphism is
Q¢ = ]P)ZL \ Z(fo, . 7fn) Let

Of ... LOf
0Xo 0Xm
JE) = :

dfn Ofn

aXo 1 Xm
be the Jacobian matrix of f = fy, ..., f,. For any closed point ¢ = (g0 : -+ : gm) €
P, we denote by J(gq) the matrix obtained from J(f) by mapping X; to ¢; for all
1 =0,...,m. The entries of this matrix are defined by ¢ up to multiplication by a

common non zero scalar.

Proposition 2.1. Suppose that p does not divide d and q € €y is a closed point.
Then

rank J(q) = rank doy + 1,
where dog : T(P1) g — T(Py)s(q) is the tangent space map.

Proof. After possibly making linear changes of homogeneous coordinates in P} and
P?, we may assume that g =(1:0:---:0)and ¢(¢) =(1:0:---:0). Letyi:;(—é
for 1 <i<m. Let F; = )’;—% € k[X1,...,X ], which is the affine coordinate ring of
Pr\ Z(Xo). As ¢ is a regular map near ¢,

o=(fo:fririfu)=(L:igi:i-1gn),
where gi:ﬁ:;—é. Let o = (1,0,...,0). We have that

fo
of; , \ _
a_)(o(a) - df] (CV)
for all 7 =0,...,n, by Euler’s formula. Thus
dfo(cr) ?z—);;%(a) %(%(a)
df; (« L (v NN L (o
rank J(p) = rank fl( ) aXlﬁ( ) axm'( )
dfa(0) F(a) o (o)
thla) Hela) - He(a)
0 a)]zll () ﬁ(a)
= rank . ‘
0 (o) (o)
) o ()
= rank : : +1
g—fﬁ(a) aijg:@ ()



df; oF;

7% (0= 5% @

for 1 <i<nand1<j<m (it suffices to check this on a monomial), so

rank : : = rank : :
@ o () O(m) - (@)
0, — g1 (—
o (@) (@)
= rank : .
ogn (= Ogn (—
ox; (@) oy (@)
since
0 (F\ _ OF ., __,0F
X (_> 2 A ot
an FO an an
SO
99i 1 O0F, _
—(0) = ——=(a)
0X; Fy(@) 0X;
for 1 <i<nand1l<j<m,as Fy(a) # 0 and F;(a) =0 for 1 <i<n. .

Remark 2.2. If p divides d the proof of Proposition 2.1 shows that we can either
have

rank J(q) = rank d¢, + 1 or rank J(q) = rank dg,.
Both options are possible.

Proposition 2.3. Suppose that r € N and V s a subvariety of P such that V N
Qs #0 andr =dimV —dim ¢(V). ThenV C Z(Lp—rio(J(F))), where Ly —ria(J(f))
is the ideal generated by the (m — r + 2)-minors of J(f).

Proof. There exists a dense open subset U of V such that for any ¢ € U, V
is smooth at ¢ and ¢(V) is smooth at ¢(q) (take U to be the intersection of
smooth locus of V' with the preimage of the smooth locus of ¢(V')). We have that
dimT(¢(V))g(q) = dimV —r for ¢ € U, so by consideration of diagram (2.1), it
follows that dim Ker d¢, > r for ¢ € U, hence rank dp, < m —r for ¢ € U. By
Proposition 2.1 and Remark 2.2, we have that

rank J(q) <rankdp,+1<m—r+1

for ¢ € U. Thus U is contained in the closed set Z(I,,,—,42(J(f))), so the closure V'

of U is contained in this set. O
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3. BOUND FOR THE NUMBER OF (m — 1)-DIMENSIONAL FIBERS OF A RATIONAL
MAP ¢ : P ——» P}

We adopt in this section the notations and hypotheses of the introduction. Recall
that

¢ Pr— -5 P}
x> (folx) 1+ fulw))

is a rational map whose closed image is a subvariety % in P} and I' C P}* x P} is
the closure of its graph. We have the following diagram

PP x Pr
T T2

Py - - ~Py.

Furthermore, I' is the irreducible subscheme of P}' x P} defined by the Rees
algebra Rz := Reesg(I) (see [Har77, Chapter 11, §7]). Let B := k[Ty,...,T,] be
the homogeneous coordinate ring of P} and S := R ®y B = R[Ty,...,T,] with the
standard bigraded structure by the canonical grading deg(X;) = (1,0) and deg(7}) =
(0,1) for all ¢ = 0,...,m and j = 0,...,n. The natural bigraded morphism of
bigraded k-algebras

a: S— RI = @szol(d)s = @520]S<Sd)
Ti— fi
is onto and corresponds to the embedding I' C P}* x P}.

Let B be the kernel of . Then it is a homogeneous ideal of S and the part of
degree one of ‘B in T}, denoted by PB; = B, 1), is the module of syzygies of the f;

aJOTO—i_"'—i_anTneml@aofo—i_"'—’_a/nfnzo

Set Sz := Symp([) for the symmetric algebra of /. The natural bigraded epimor-
phisms

S — S/(q31> ZSI and SI ~ S/(ml) — S/mZRI

correspond to the embeddings of schemes I' C V' C P}' xIP} where V' is the projective
scheme defined by Sz.

As the construction of symmetric algebras and Rees algebras commute with lo-
calization, and both algebras are the quotient of a polynomial extension of the base
ring by the Koszul syzygies on a minimal set of generators in the case of a complete
intersection ideal, it follows that I' and V' coincide on (P* \ X) x P}, where X is
the (possibly empty) set of points where B is not locally a complete intersection.

Now we set 7 := mop : ' — P}. For every closed point y € P}, we will denote
by k(y) its residue field, that is, k(y) = (B,/pB,)o, where p is the defining prime
ideal of y. As k is algebraically closed, k(y) ~ k. The fiber of m at y € P} is the
subscheme

7 '(y) = Proj(Rz ®p k(y)) C Py, ~ Py,
6



Let 0 < /¢ < m. We define
Vo={ycP}|dimr *(y) = ¢} C P}

We are interested in studying the structure of ). First, Chevalley’s theorem shows
that the subsets ), are constructible, that is, they can be written as

Ve = |_|(Uz N Z;),
i=1
where U; (respectively Z;) are open (respectively closed) subsets of P}.

Lemma 3.1. Let ¢ : P* --» P} be a rational map and I' be the closure of the graph
of ¢. Consider the canonical projection m : I' — P}}. Then

dim Y, + ¢ < m.

Furthermore, this inequality is strict for any £ > m —dim ., where . is the closed
mmage of .

Proof. Set Vy :== n=1())), a subvariety of I'. For the first statement
dim Yy + /¢ =dim V, <dim I' = dim . < m.

Moreover, if dim ), + ¢ = m, then dim V; = dim I" = m. It implies that ), = .¥
and proves the second assertion. O

From now on, we will always assume that ¢ is generically finite onto its image,
or equivalently that the closed image . of ¢ is a subvariety in P} := Proj(B), of
dimension m. Therefore, by Lemma 3.1, dim }),, < 0, which shows that ), = 0.
This was noticed in [BBC14, Lemma 14]. Now if £ = m — 1 > 1, as m > 2, then
Y,n_1 only consist of a finite number of points in P?. In other words, 7 only has a
finite number of (m — 1)-dimensional fibers.

For any y € V,,_1, 7 '(y) is a subcheme of Py, = Py of dimension m — 1, as k
is algebraically closed. Thus the unmixed part of the fiber 77!(y) is defined by a
homogeneous polynomial h, € R, as R is factorial. Our purpose is then to bound
> yev,,_, deg(hy) in terms of the degree d.

The fibers of 7 are defined by specialization of the Rees algebra. However, Rees
algebras are hard to study. Fortunately, the symmetric algebra of I is easier to
understand than Rz and the fibers of 7w are closely related to the fibers of

7=yt V — Py
Recall that for any closed point y € P, the fiber of 7" at y is the subscheme
' (y) = Proj(S; ®5 k(y)) C PJy,) ~ Py

We have the following lemma. Recall that X is the (possibly empty) set of points
where B is not locally a complete intersection.

Lemma 3.2. The fibers of m and 7' agree outside X, hence they have the same
(m — 1)-dimensional components.



Proof. The first statement holds since I' and V' coincide on (P}*\ X') x P}. Moreover,
as I is assumed to have codimension at least 2, dim B < m — 2, showing that
dim X < m — 2. The second statement follows. O

The following lemma is a simple generalization of [BBC14, Lemma 10].

Lemma 3.3. Let I be a homogeneous ideal of R generated by a minimal gener-
ating set of homogeneous polynomials £ := fo,..., f, of degree d and suppose that
ged(fo, - .., fu) = 1. Assume that the fiber of ' over a closed point y with coordinates
(po : -+ : pn) 1S of dimension m — 1, and its unmized components are defined by
hy € R. Let {, be a linear form in T =Ty, ..., T, such that £,(po,...,p,) =1 and
set 0;(T) :=T;, — pily(T) (i =0,...,n). Then, h, = ged(lo(f), ..., L, (f)) and

I'=10,(£)+ hy(g0,---,n)
with ¢;(f) = hyg; and Cy(go, ..., gn) = 0.

Proof. The proof of this result goes along the same lines as in the proof of [BBC14,
Lemma 10]. O

For f = fy,..., fn, set

Ofo ... Bf
X0 X om
JE) =1 : :
Ofn ... Ofn
0Xo 0Xm

for the Jacobian matrix of f and I(J(f)) for the ideal of R generated by the s X s
minors of J(f), where 1 <s <m+ 1.

Lemma 3.4. Suppose that dimy, Iy =n-+1 and letf = fo,..., fn and g = go, ..., gn
be two bases of 1. Then I;(J(f)) = I,(J(g))), for any s.

Proof. Indeed, these are the Fitting ideals (with the same indices) of two matrices
that are equal after change of basis over the base field. OJ

Recall that for any y € V,,—1, we denote by h, € R a defining equation of the
unmixed part of the fiber 77!(y) (recall that k is algebraically closed and R is
factorial). Assume that h, = hS'---h,? is an irreducible factorization of h, in R.

Theorem 3.5. Let I be a homogeneous ideal of R generated by a minimal gen-
erating set of homogeneous polynomials £ = fo,..., f. of degree d. Suppose that
ged(fo, ..oy fu) = 1 and I3(J(f)) # 0. Let F' be the greatest common divisor of
generators of I5(J(f)). Then

S deg(h) < 3 S (26— 1) deg(hy) < deg(F) < 3(d — 1),

yeymfl yeyanl =1

Proof. By Lemma 3.2, the unmixed components of 7~ 1(p) and 7'~ (p) are the same
for every closed point p € V,,_1. By Lemma 3.3, there exists a homogeneous poly-
nomial f € I of degree d such that, for any p € V,, 4

I = (f) + hy(g1y7 R agny)7
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for some g1y, ..., 9ny € R.

The Jacobian matrix of ' = (f, hyg1y, ...,
of
. Qa1 TO 8hy
J(f) = vax, T Iyax,
hy ?)g)?y + Iny gg{%
Forall j =0,...,m
Oh, &
0xX;

=1

therefore the ith-row of J(f') has a common factor h¢™'...
2,...,n+ 1. It follows that, for any subset Z of {1,...
,m + 1} with 3 elements,

2(er,, —1
Y S 1V | P

and a subset J of {1,...

(3.1) [J(f,)]IJ
where M is the (n + 1)

of
~ 5 0Xo
91y
hy 8X0 + 91400

~ gy
hy, ax, T Iny00

T hy Oh;
where hy = hy---h,, andaj—ZeZ -2

h2(61 1)

X (m + 1)-matrix

ket (7=0,...,

hyGny) 18
i

8gly
hyax X m + gly

Bhy

Ohy
X

Ogny
hy ax,, T 9nwax,,

h Oh;
h@X

hi;fl, for all i =
,n + 1} with 3 elements

Ty

of
X m

/],z 8gly

YOXm + glygm

/hj Ogny

vax, T 9nyOm

m). Thus there is a homoge-

neous polynomial P such that [M]_’[’j = hyP+[N]IJ, where N is the (n+1) x (m+1)-

matrix
of
X0

91400

Gny00

of
0Xm

g1yOm

GnyOm

which shows that [N]z,7 =0, as rank N < 2. By (3.1), we obtain

(3:2) [J(E)zg =

Ty

hl 61 1) . h2(6ry*1)/},zyp — h%el_l . h

Qery —1
Ty

P

Y

for all Z, J. Let G be the greatest common divisor of generators of I3(.J(f’)). Then

Qery -1

hiet... hr,
divisor of F.

Moreover, if y # y' in V,,—1, then ged(hy, hy) =

is a divisor of G by (3.2).

Qery

By Lemma 3.4, hi"* - h;, lisa

1, hence ged(hy, b)) =

i I 1, for every

factor h; (ves. h}) of hy (res. h,). We deduce that

]j]: }1261 1 .

yeym 1

QeTy 1

| F



which gives

)3 Zy@ei — 1) deg(h;) < deg(F) < 3(d —1).

YEYm—1 =1

OJ

Remark 3.6. Let p = char(k) be the characteristic of the field k. Then there are
two cases:

(i) Case 1: p does not divide d. Then I, 1 (J(f)) # 0 if and only if [k(f) : k(X)] is
separable, where X := X, ..., X,,. In particular, if p = 0, then the condition
Iia (J(£)) # 0 always holds.

(ii) Case 2: p divides d. Then I,,11(J(f)) # 0 only if [£(f) : £(X)] is separable.

Note that if I,;,+1(J(f)) # 0, then [;(J(f)) # 0, for all 1 < j < m+1. In particular,
if the characteristic of k is 0, then the assumption I3(J(f)) # 0 is always satisfied.

Remark 3.7.
(i) The inequality

Z deg(hy) < Z Zy(Qei_Ddeg(hi)

YEYVm—1 YEYVm—1 1=1

becomes an equality if and only if the defining equation of the unmixed
component of the fiber 7~!(y) has no multiple factors, for every y € V1.
(ii) The bound

Z zy:(%i — 1) deg(h;) < deg(F)

YEYVm—1 1=1

is optimal as the following example shows.

Example 3.8. [Tral5, Example 10] Let d > 4 be an integer. Consider the param-
eterization given by f = fo, ..., f3, with

fo=Xg2X0(Xg = XT),  fo= X§ OXo(XT - X3),
fr=X37Xo(X5 = X7),  fa= X{TXo(XF — X3).
Using Macaulay2 [GS], the greatest common divisor of generators of I3(J(f)) is
F = X3 TX5(X5 = XP) (X} = X5),
It is known as in [Tral5, Example 10] that
Z deg(hy) =d+2

yeEW
and
D) (26— 1) deg(h;) = 2(d — 1) = deg(F) < 3(d — 1).

yeY i=1
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Furthermore, if d = 4, then

> deg(hy) = i(zei — 1) deg(h;) = deg(F).

yeEN yeW =1

4. BOUND FOR THE NUMBER OF ONE-DIMENSIONAL FIBERS OF A
PARAMETERIZATION SURFACE

In this section, we will treat the case of parameterization ¢ : P2 --» P? of alge-
braic rational surfaces. Such a map ¢ is defined by four homogeneous polynomials
fo, ..., f3, not all zero, of the same degree d, in the standard graded polynomial ring
R = k[Xo, X1, X5]. Our objective is to refine the bound for the cardinality of the set
of points in P¥ with a one-dimensional fiber, that is, the cardinality of the set

Vi={yecP | dimr '(y) =1}.

The following result is a direct consequence of Theorem 3.5. It improves the results
of [Tral5] and the question [Tral5, Question 11] is answered in the affirmative.

Corollary 4.1. Let I be a homogeneous ideal of R = k[Xo, X1, X5] generated by
a minimal generating set of homogeneous polynomials £ := fo,..., f3 of degree d.
Suppose that I has codimension 2 and I3(J(f)) # 0. Let F' be the greatest common
divisor of generators of I3(J(f)). Then

S deg(hy) < 373 (26 — 1) deg(hi) < deg(F) < 3(d— 1),

yeEVL yeY: i=1
where hy, = h{" - - hi;y is an irreducible factorization of a defining equation h, € R
of the unmized component of the fiber 7= (y), for all y € V1.

Now we study the syzygies of f;’s in relation with the degree of the greatest
common divisor of the generators of I3(J(f)).

Proposition 4.2. Let f := fy, ..., f3 be the homogeneous polynomials of degree d.
Let F' be the greatest common divisor of generators of I3(J(f)). Suppose that p does
not divide d. If deg(F) = 3(d — 1) — 6, then I = (fo, ..., f3) has a syzygy of degree
0 : there exist the homogeneous polynomials ag, . ..,as € R, not all 0, of degree 6,
such that

apfo+---+asfs=0.
Proof. 1t D; is the i-th signed 3 x 3 of minor of J(f), one has

ofi
;Dian =0

for j = 0,1,2. It then follows from the Euler formula that (Dg, Dy, Ds, D3) is a
syzygy of the f;’s, whenever d is prime to p. Set a; := D;/F. OJ

Corollary 4.3. Under the assumptions of Proposition 4.2, deg(F) = 3(d—1) if and
only if fo, ..., f3 are linearly dependent over k.
11



Proof. Suppose that deg(F') = 3(d — 1). By Proposition 4.2, there exist aq, ..., a9 €
k, not all zero, such that

aopfo +arfi +asfo+asfs =0.

Suppose that fy, ..., f3 are linearly dependent over k. Then there are \g, ..., \3 €
k, not all 0, such that \ofy + --- + A3fs = 0. Without loss of the generality, we
assume that A\g = —1, hence fy = A1 f1 + Aafa + A3 fs. It follows that

of O . Ofr . Ofs o
an = /\1an +)\28Xj +/\38Xj7 for allj = 0,1,2.

ThU.S, we obtain [3(J(f)) = (Fl, )\1F1,)\2F1, )\3F1), which shows that F' = Fl- O

We denote by Syz(I) € R* the module of syzygies of I. It is a graded module
and in the structural graded exact sequence

0 — Z1 — R*(—d) ofrf2.f3)

we have the identification Syz(I) = Z;(d). Recall that for a finitely generated graded
R-module M, its initial degree is defined by

indeg(M) := inf{v | M, # 0},
with the convention indeg(M) = +oo when M = 0.

I —0,

Corollary 4.4. Under the assumptions of Corollary 4.1, if p does not divide d, then
> deg(hy) < 3(d — 1) — indeg(Syz(I)) < 3(d — 1),
YyeEV1

where hy, = h{" - - hi;y is an irreducible factorization of a defining equation h, € R
of the unmized component of the fiber m=1(y), for all y € W,

Proof. By Proposition 4.2,
deg(F) < 3(d — 1) — indeg(Syz(1)).
and indeg(Syz(/)) = 0 if and only if fy,..., f3 are linearly dependent over k. O

Notice that the conditions I3(J(f)) # 0 and p does not divide d are automatically
satisfied if k is of characteristic zero.

Example 4.5. [Tral5, Example 2] Consider the parameterization given by f =
f07 f17 f27 f3, Wlth

fo= XXy - X{X35, o= XgXTXG — XgXT,
fr = Xo X5 — X3, fs = Xo X7 — X7 X,
Using Macaulay?2 [GS], the greatest common divisor of generators of I3(.J(f)) is
F = XoX?X5(Xg — X) (X7 — X3).
It is known as in [Tral5, Example 2] that
)~ deg(hy,) =8 < deg(F) = 11 < 3.5 — indeg(Syz(f)) = 13.

yeEVL
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