ETOILES AND VALUATIONS

STEVEN DALE CUTKOSKY

ABSTRACT. We establish some properties of étoiles and associated valuations over com-
plex analytic spaces, establishing that Abhyankar’s inequality holds. We give some ex-
amples of pathological behavior of these valuations. We prove a regularization theorem
for complex analytic morphisms. The property of a morphism being regular and the
regularization of a morphism play a major role in this theory.

1. INTRODUCTION

A local blow up of an analytic space X is a blow up 7 : X’ — U where U is an open
subset of X (in the Euclidean topology) and 7 is the blow up of a closed analytic subspace
of U. (An inclusion of an open subset U of X into X is a special case.)

Hironaka defined in [25] and [24] an étoile e over an analytic space X as a subcategory
of the category of finite sequences of local blowups over X which satisfies certain good
properties. In particular, to each 7 : X’ — X € e there is an associated point ex: € X',
and given a factorization

X=X, %X, 1> -=-X3X

by local blow ups, we have m;(ex,) = ex, , for all 7.

In the situation of algebraic geometry (the category of algebraic blowups of an algebraic
variety X over a field k) an étoile e can be represented by a valuation of the function field
k(X) of X which dominates the local ring Ox ., (whose quotient field is k(X)). This is
the original approach of Zariski [33].

The notion of an étoile e on a complex analytic space X cannot be immediately modeled
in valuation theory, even when X is irreducible and nonsingular, as there exist 7 : X’ —
X € e such that X’ is not locally irreducible, and even when X’ is locally irreducible,
Ox' e, 1s generally a very big extension field of Ox .

Valuation theory is an important tool in the birational geometry of algebraic varieties,
and it is useful to know which parts of the classical theory for algebraic function fields
extend to étoiles on an irreducible nonsingular complex analytic space.

In Section 6 we associate to an étoile over a reduced complex analytic space X a
valuation v = v, on a giant field which depends on the étoile e. The valuation ring
Ve is constructed by taking the union of Oy, where X "— X € e is a sequence of local
blow ups from nonsingular varieties. We establish in Section 6 that we have, as in the
classical case of valuations of algebraic function fields, that

rank v < ratrank v < dim X,
and if the rational rank ratrank v = dim X, then the value group I', of v is isomorphic

(as an unordered group) to ZdmX,
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The residue field of the valuation ring V, associated to an étoile e is always isomorphic to
C. Thus v is always a zero dimensional valuation and we see that Abhyankar’s inequality
[1] for a valuation of a field K which dominates a Noetherian local ring whose quotient
field is K, holds for the valuation v, associated to an étoile e.

Unlike in the case of algebraic function fields, a composite valuation which arises from
an étoile can be very badly behaved, as is shown in the following example. The existence
of examples of this type was a major obstruction to a proof of local monomialization of
analytic morphisms.

Example 1.1. (Ezample 7.1) There exists an étoile e on Yy = C* such that the valuation
ring Ve has a proper prime ideal Q) such that there exists an infinite chain of local blow
ups (of a point in Yy, if m is even and of a nonsingular surface if m is odd)

=Y, =21 =Y

with Y, — Yo € e for all m, such that the center of Q on Y,, has dimension 3 if m 1is
even and the center of Q on Y,, has dimension 2 if m is odd.

The construction begins with an example by Hironaka, Lejeune and Teissier [26] of a
germ of an analytic map ¢ : (S,a) — (V,b) from a surface to a 3-fold such that no functions
in Oy, vanish on the image of ¢ but the image becomes a two dimensional analytic sub
variety (a surface) after blowing up b.

Hironaka ([25] and [24]) defines La Voiite Etoilée as

Ex = set of all étoiles over X with a topology making Px : £x — X, e — ex continuous.

Hironaka proves that px is proper. This theorem is a generalization of Zariski’s theorem
[31] on the quasi compactness of the Zariski Riemann manifold of an algebraic function
field.

If ¢ : Y — X is a dominant morphism of algebraic varieties over a field k (the Zariski
closure of ¢(Y) in X is equal to X) then we have a natural inclusion of algebraic function
fields k(X) — Ek(Y). Thus a valuation of k(Y) restricts to a valuation of k(X) and a
valuation of k(X)) can be extended to a valuation of k(Y) (Chapter VI [32]).

However, the situation is much more subtle in the case of complex analytic morphisms
of complex analytic spaces (as is exploited in the construction of the above example).

The most useful generalization of the notion of a dominant morphism of algebraic
varieties to analytic morphisms of complex analytic spaces is a regular morphism.

Let ¢ : (Y,b) — (X,a) be a germ of a morphism of complex analytic spaces. If X and
Y are varieties, then ¢ is regular if ¢(Y') contains an open subset of X (in the Euclidean
topology). Let reg(Y’) be the nonsingular locus of Y. The morphism ¢ is regular if and
only if the open set

U = {pereg(Y) | rank dyp, = dim X'}

is nonempty (see Section 2 or [7]).

Gabrielov gave an example in [19] showing that if ¢ is not regular, it is possible for
the map Ox, — Oy, of analytic local rings to be injective, but the induced map on
completions Ox , — @va to be not injective. (The Zariski subspace theorem (10.6) [3]
fails for analytic maps). Gabrielov’s example begins with an earlier example of Osgood
(explained in Example 2.3 [7]). If ¢ is regular, Gabri¢lov [18] showed that the Zariski
subspace theorem holds for regular morphisms.

Suppose that ¢ : X — Y is a morphism of reduced, irreducible, locally irreducible

complex analytic spaces. It is shown in Proposition 4.11 that if e is an étoile on Y, then
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e induces an étoile on X if and only if ¢ is regular. It is shown in Proposition 4.12 that
if f is an étoile on X, then there exists an étoile e on Y that induces f if and only if ¢ is
regular.

We prove the following regularization theorem, in Theorem 5.3 of Section 5.

Theorem 1.2. (Theorem 5.8) Suppose that ¢ : Y — X is a morphism of reduced complex
analytic spaces and e € Ey is an €toile over Y. Then there exists a commutative diagram
of morphisms

v, % X,
ol '
y % Xx

such that § € e is a finite product of local blow ups of nonsingular analytic sub varieties,
v s a finite product of local blow ups of nonsingular analytic sub varieties, Y, and X. are
smooth analytic spaces and @, is a reqular analytic morphism to a nonsingular analytic
sub variety of Xe.

The proof is rather delicate, and requires the analysis of étoiles of Section 4. An essential
ingredient is the local flattening theorem [26] of Hironaka, Lejeune and Teissier or the later
proof by Hironaka [24]. The local flattening theorem is with reference to a fixed étoile f
on X. We show in Proposition 4.11 that an étoile e on Y only induces an étoile on X if
 is regular. Because of this observation, Theorem 5.3 does not follow directly from the
local flattening theorem.

We state below the principal theorem for local monomialization of complex analytic
spaces along an étoile in [13]. The first proof of Theorem 1.4 required Theorem 5.3, but
the final proof does not require this, and in fact gives an alternate proof of Theorem 5.3
which does not require the local flattening theorem.

Definition 1.3. Suppose that ¢ : Y — X is an analytic morphism of complex analytic
manifolds and p € Y. We will say that ¢ is monomial at p if there exist reqular parameters
Ty Tm 1 Ox pp) and Y1, ... Yn in Oyp, 7 <m and ¢;; € N such that

n
o (i) = [J ;" for1<i<r
j=1

with ¢*(x;) = 0 for r <i < m and rank(c;;) = m.

We will say that yi1yo - - - yn = 0 is a local toroidal structure O at p

Theorem 1.4. ([13]) Suppose that ¢ : Y — X is a morphism of reduced complex analytic
spaces, A is a closed analytic subspace of Y and e € Ey is an étoile over Y. Then there
exists a commutative diagram of complex analytic morphisms

v, % X,
Bl la
Yy & X

such that B € e is a finite product of local blow ups of nonsingular analytic sub varieties,

«a s a finite product of local blow ups of nonsingular analytic sub varieties, Y. and X,

are nonsingular analytic spaces and p, is a monomial analytic morphism for a toroidal

structure O, on Y.. Further, either the preimage of A in Ye is equal to Ye, or ZyOy, =

Oy, (—G) where T, is the ideal sheaf in Oy of the analytic subspace A of Y, G is an
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effective divisor which is supported on O, and has the further condition that the restriction
(Yo \ Oc) = Y is an open embedding.

Local monomialization theorems for real analytic morphisms are also proven in [13].
Local monomialization along an arbitrary valuation is proven for morphisms of algebraic
varieties in characteristic zero in [9] and [11]. Counterexamples to local monomialization
for a morphism of characteristic p > 0 algebraic varieties is given in [12]. A couple of
interesting recent papers which address local monomialization of analytic morphisms and
applications are [15] by Jan Denef and [27] by Ben Lichtin.

Hironaka used the local flattening theorem and the fiber cutting lemma in [24] to prove
rectilinearization of real sub analytic sets. A couple of more recent proofs of rectilin-
earization are given in [16] and [8]. We deduce rectilinearization in [14] from our local
monomialization theorem [13], without using local flattening or the fiber cutting lemma.

We thank Jan Denef for suggesting the local monomialization problem for analytic
morphisms, and for discussion, encouragement and explanation of possible applications.
We also thank Bernard Teissier for discussions on this and related problems.

2. PRELIMINARIES ON COMPLEX ANALYTIC SPACES

In this section we recall some basic properties of analytic local rings and complex ana-
lytic spaces.

Proposition 2.1. Suppose that X is a complex analytic space and p € X. Then
1. Oxp is a Noetherian, Henselian, excellent local ring.
2. Ox, 15 equidimensional if and only if its completion @va is equidimensional.
3. Ox is reduced if and only if @XJJ is reduced.
4. Oxp is a domain if and only if @X,p is a domain.

Proof. The fact that Ox ), is Noetherian and Henselian is proven in Theorem 45.5, and by
fact 43.4, [30]. Excellence is proven in Section 18 of [20] (or Theorem 102, page 291 [29]),
and by (ii) of Scholie 7.8.3 [20]. Let A = Ox,. Since A is a local ring, the natural map
A — A is an inclusion. 4 and A have the same Krull dimension (formula 1’ of page 175
[29]). Statements 2 and 3 follow from (vii) and (x) of Scholie 7.8.3 [20]. Further, Ox,, is
a domain if and only if Ox , is a domain by Corollary 18.9.2 [20]. O

The dimension dim F of a subset E of a complex analytic space X and the local dimen-
sion dim, E of E at a point a € X are defined in II.1 and V.4.4 of Lojasiewicz’s excellent
book [28]. If E is an analytic space, then dim, £ is the Krull dimension of O 4.

Lemma 2.2. Suppose that Y is a reduced complex analytic space, and m : B — Y s
the blow up of a closed complex analytic subspace E of Y. Then Y is reduced. IfY is
equidimensional, then B is equidimensional.

Proof. Suppose that ¢ € B. Let p = n(q) € Y. Then A = Oy, is reduced (respectively
equidimensional if Y is equidimensional) Let I = Zp , be the stalk of the ideal of E in
Oy,p. The A-scheme P = Proj(€p,,~, ") is reduced (respectively equidimensional if Y is
equidimensional) (Section 7 of Chapter IT [21]). There exists a point ¢’ above p in P such
that Op 4 is the analytification of the local ring Op, so that these two local rings have
the same completion. Op 4 is excellent (by (ii) of Scholie 7.8.3 [20]). Thus the completion
of Opy is reduced (respectively equidimensional if Y is equidimensional), and so Op 4 is
reduced (respectively equidimensional if Y is equidimensional). O
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Let Reg(X) denote the open subset of nonsingular points of a complex analytic space
X.

Suppose that ¢ : X — Y is a morphism of complex analytic spaces. Suppose that p € X
and ¢ = ¢(p). Let @) : Oyy — Ox be the induced homomorphism of germs of analytic

functions, with associated homomorphism ¢y : (’A)yyq — @XJ, of complete local rings.
Suppose that X and Y are reduced and ¢ : X — Y is a morphism. For a € Reg(X),
define rank, () to be the rank of the map on tangent spaces dpg : T(X)a = T(Y)y(a);
and
rank(y) = max{rank,p | a € reg(X)},

and for p € X (possibly not in Reg(X)),
rank,(¢) = min{rank(¢|U) such that U is an open neighborhood of p}.

We have that rank(¢) = dim ¢(X) by Theorem 4 of V.3.3 [28].
If X is irreducible, then for p in X, we have that

(1) rank(yp) = rank,(¢) = dimg(,) ¢(X) = dim ¢(X),
by Theorem 4 and Corollary 2 of V.3.3 [28].

Definition 2.3. Suppose that ¢ : X — Y is a morphism of reduced, irreducible complex
analytic spaces. ¢ is said to be regular if ¢(X) contains an open subset of Y.

Suppose that ¢ : X — Y is an analytic morphism of connected complex analytic
manifolds. Let
U ={¢e X |rank dp, = dimY}.
Then Z = X \ U is an analytic subspace of X and by Theorem 4 of V.3.3 [28], U # 0 if
and only if ¢ is regular.

Lemma 2.4. Suppose that ¢ : X — Y is a regular morphism of reduced, irreducible, locally
wrreducible complex analytic spaces. Then there exists a nowhere dense closed analytic
subset G of X such that p(X \ G) is an open subset of Y, the restriction ¢|(X \ G) is an
open mapping and dim p(G) < dimY'.

Proof. For x € X, let £, be the germ at = of the fiber of ¢(x) by ¢ (defined on page
267 of V.3.2 [28]). By the Cartan Remmert Theorem (Theorem 5, V.3.3 [28]), dim (¢ is
upper semi continuous on X in the analytic Zariski topology. Let
t = min{dim ¢ | z € X}.
We have that
t = dim X — rank(y) = dim X — dim¢(X) = dim X — dim Y,

by formula (1) of V.3.3 [28], Theorem 4, V.3.3 [28] and the assumption that ¢ is regular.
Now
G={re X |diml,p >t}

is a proper subset of X which is closed in the analytic Zariski topology, so that it is a thin
set (Proposition of I1.3.5 [28]), and V' = X \ G is an open subset of X on which ¢ has
constant minimal fiber dimension ¢. Further, by Remmert’s Rank Theorem (Theorem 1
of V.6 [28]), for every p € X there exist arbitrarily small neighborhoods U of p in X such
that p(U) is locally analytic in Y, of dimension dim X — ¢. We further have that

dimp(G) <dimG - (t+1) <dimX —t =dimY

by Theorem 2, V.3.2 [28], since dim {,(¢ | G) >t for all z € G.
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Finally, by Remmert’s Open Mapping Theorem (Theorem 2, V.6, [28]), the restriction
of ¢ to X \ G is an open mapping to Y, since t = dim X — dimY. O

Proposition 2.5. Suppose that ¢ : X — Y is a morphism of irreducible nonsingular
complex analytic spaces, and ¢ is reqular. Then $* : Oy, — Oxp s 1-1 for allp € X.

Proof. We have that for all p € X, ranky(¢) = rank(y) = dime(X), by (1), so that
¢p : Oy p(p) = Oxp is 1-1 for all p € X by Lemma 4.2 [18]. O

Lemma 2.6. Suppose that A is an analytic local ring and p is a prime ideal in A. Then
there exists a field K C Ay such that the induced map to the residue field K — (A/p), is
a finite field extension.

Proof. We have a representation A = O,,/I for some n where I is an ideal in the ring
O,, of germs of analytic functions at the origin in C™. There is a prime ideal P in O,
containing I, such that P/I = p. By the Proposition of II1.2.5 [28], there exists a set of
coordinates z1, ..., z, in Oy, so that O, = C{z1,...,2,}, and k < n such that the induced
map C{z1,...,2x} = O,/P is a 1-1 finite map. In particular, C{z1,..., 2} N P = (0).
Thus the induced map C{z1,...,2x} — On/I = Ais 1-1 and p N C{z1,..., 2} = (0), so
that we have an inclusion of the quotient field K = C{{z1,...,2}} into Ay, such that
(A/p)p is finite over K. O

A fundamental theorem in complex analytic geometry is Hironaka’s theorem [23] on the
existence of a resolution of singularities of a reduced complex space X (which is countable
at infinity), by a sequence of blow ups of nonsingular subvarieties. The sequence is finite if
X is compact. In the case of a germ (X, p), this already follows from Hironaka’s Theorem
Iév ™ [22], since Oy is excellent and reduced. The general Theorem is proven in the
monograph of Aroca, Hironaka and Vicente [4]. A simplified proof is given in [6].

3. LA VOUTE ETOILEE
In this section, we recall some definitions and results from [25].

Definition 3.1. (Definition 1.4 [25]) A morphism w:Y' =Y of complex analytic spaces
is called strict if there exists a complex analytic subspace E' of Y' such that 7 is étale at
all points of Y/ \ E' and (Y', E') is minimal, in the sense that if Z is a closed analytic
subspace of Y' such that Y\ E' = Z \ E', thenY' = Z.

Let Y be a complex analytic space. A local blow up of Y (page 418 [25]) is the morphism
7w :Y' = Y determined by given (U, E, ) where U is an open subset of Y, F is a closed
analytic subspace of U and 7 is the composite of the blow up of E with the inclusion of
U into Y.

A sequence of local blow ups of Y is the composite of a finite sequence of local blow
ups (U;, E;, m;). Any sequence of local blow ups is strict ([25]).

Let Y be a complex analytic space. £(Y) will denote the category of morphisms 7 : Y —
Y which are sequence of local blow ups. For 7 : Y1 - Y € £(Y)and e : Yo = Y € £(Y),
Hom(my,m2) denotes the Y-morphisms Y; — Y5 (morphisms which factor 71 and m3).
Hom(mq, m2) has at most one element.

Definition 3.2. (Definition 2.1 [25]) Let Y be a complex analytic space. An étoile over
Y is a subcategory e of E(Y') having the following properties:

1) Ifn:Y' =Y €e then Y #£0.



2) If mj € e for i = 1,2, then there exists w3 € e which dominates m and mwo; that is,
Hom(7ws, m;) # 0 fori=1,2.

3) For all m;Y1 — Y € e, there exists ma : Yo — Y € e such that there exists
q € Hom(mg, ), and the image q(Y2) is relatively compact in Y7.

4) (mazimality) If €' is a subcategory of E(Y') that contains e and satisfies the above
conditions 1) - 3), then ¢’ = e.

The set of all étoiles over Y is denoted by Ey.

Using property 3), Hironaka shows that for e € &y, and 7 : Y/ — Y € e, there exists
a uniquely determined point p;(e) € Y’ (which we will also denote by ey+) which has the
property that if a: Z — Y € e factors as

75y &y
then B(pa(€)) = pr(e). In particular, we have a natural map py : & — Y defined by
py(e) = pia(e). Hironaka shows (in Theorem 3.4 [25]) that & has a natural topology so

that py is continuous, surjective and proper.
Ey with this topology is called “La votite étoilée.

4. BLOW UPS AND MORPHISMS ALONG AN ETOILE AND THE DISTINGUISHED
IRREDUCIBLE COMPONENT

The join of 71,y € £(Y) is defined in Proposition 2.9 [25]. We will denote this join by
J(my,m2). It is a morphism J(m,m2) : Yy — Y. It has the following universal property:
Suppose that f: Z — Y is a strict morphism. Then there exists a Y-morphism Z — Y if
and only if there exist Y-morphisms Z — Y; and Z — Y5. It follows from 2.9.2 [25] that
if mp,m, € e € &y, then J(m,m2) € e. We describe the construction of Proposition 2.9
[25]. In the case when 7 and 7y are each local blowups, which are described by the data
(UZ', Ei, 7TZ'), J(ﬂ'l, 7T2) is the blow up

J(7T1,7r2) 1Yy = B(ZEleQOy‘Ul N UQ) —Y.

Now suppose that m; is a product agag ---«a, where o; : Y;4+1 — Y; are local blow ups
defined by the data (U, Ej, «;), and 72 is a product aga)---«j where oj : Y| — Y/
are local blow ups defined by the data (U], E., ;). We may assume (by composing with
identity maps) that the length of each sequence is a common value r. We define J(71, m2)
by induction on r. Assume that J, = J(agaq - -+ ap—1, o) - - - al._;) has been constructed,
with projections v :Y; — Y, and § : Y;, — Y. Then we define J(m1,m2) to be the blow
up
J(mi,m2) 1 Yy = B(Zp,Ip Oy vy (U,) N6 1 (U)) = Y.
Suppose that e € £y is an étoile. By Lemma 2.3 [25], there exists a point pr(e) € Y’
for all 7 : Y/ — Y € e, such that if m,m € e and ¢ € Hom(my, m2), then

(2) Pry(€) = @(pr, (€))-

(Condition 3) of Definition 3.2 is essential for this result.) Suppose that Y is a reduced
complex analytic space, ¢ € £y and 7 : Y/ — Y € e. Suppose that U is a neighborhood
of pr(e) € Y. We will define the distinguished irreducible component DC.(U) of U.
Let Fy, Fy, ..., Fs be the distinct irreducible components of U. Let ' : U’ — U be a
global blowup of a nowhere dense closed algebraic set, which separates out the irreducible
components of U into distinct connected components Z1, ..., Zs such that 7'(Z;) C F; for
all i, and Z; — Y] is strict (such as a resolution of singularities of U). Then 7’7 € e by

Corollary 2.11.4 [25]. There exists a unique component Z; of U’ such that p,./(e) € Z;.
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Define DC.(U) = F;. This is well defined, since if 7" : U” — U is another global blowup
of a nowhere dense closed analytic subset of U which separates the components of U,
then by 2) of Definition 3.2, there exists A : W — Y € e and maps a € Hom(\, 7'),
B e Hom()\,Tr”) such that Oé(p)\(e)) = pww’(e) and 5(]9)\(6)) = p7r7r”(e)' Since 7' and 7"
are blow ups of nowhere dense closed analytic sets, there is an open subset of U’ which
intersects all components of U’ non trivially which is isomorphic to an open subset of U”
which intersects all components of U” non trivially. Thus the component of U” which
contains p,(e) must map to DC.(U).

Lemma 4.1. Suppose that Y = Yy is a reduced complex analytic space, e € E and
7:Y' =Y €e. Suppose that ™ has a factorization ® = momwy - - - m where w; : Yig1 — Y;
are local blow ups determined by the data (U;, E;, m;). Then mg---m; € €, Pryooomy_, (€) € U;
and DCe(U;) ¢ E; for all i.

Proof. We will first show that my---m; € e for all i. We will use the criterion of Lemma
2.10 on page 431 of [25]. Suppose that ¢, : Zo — Y € e. We must show that there exists
g Zg — Y € e such that Hom(pg, o) # 0, and if J(¢g,mo---m;) : Z; — Y is the join,
then the natural image of Z; in Y;41 is relatively compact and non empty.

By 2) and 3) of Definition 3.2, there exists pg : Zg — Y € e such that Hom(Zg, Z,) # 0,
Hom(Z3,Y') # 0 and if ¢ : Zg — Y is the induced map, then ¢(Z3) is relatively compact
in Y'. Let J(pg,mo---m;): Zy — Y be the join.

Then Z; = Zg since mg factors through 7 ---m;. Since the image of Zg is relatively
compact in Y, the image of Z3 in Y; 1 is also relatively compact. The fact that py,...r, () €
Uit for all i now follows from (2).

Let h=mg---m—1. Let A: Z — U; be a global blow up which separates the irreducible
components of U;. Then hA € e. Since hm; € e, there exists (by 2) of Definition 3.2)
7: W — Y € e with factorizations

w
a N\ B
Yip Z
i N\ A

Ui;

Lh

Y

Let H be the irreducible component of W which contains p,(e). Then A\G(H) must be
dense in DC.(U;). Thus Y;11 contains an irreducible component G such that m;(G) is
dense in DC,(U;), so that DC.(U;) ¢ E;. O

Lemma 4.2. Suppose that'Y is a reduced complex analytic space, e € Ey, my: Yy = Y € ¢,
and (U, E,h) is a local blow up of Yy. Then moh € e if and only if p,(e) € U and
DC.(U) ¢ E.

Proof. The conditions pr,(e) € U and DC.(U) ¢ E are certainly necessary for moh to be
in e (by Lemma 4.1).

Suppose that pr,(e) € U and DC.(U) ¢ E. We will verify the criterion of Lemma 2.10
on page 431 of [25]. Suppose that 7, : Y, =+ Y € e. Let our map h be h : Y/ — Y.
We must show that there exists 73 : Y3 — Y € e such that Hom(mg,m,) # 0, and if
J(mg,moh) : Yy — Y is the join, then the natural image of Y in Y’ is relatively compact
and non empty.
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We have that U — Y is in e (by Corollary 2.11.4 [25]), so we can replace Yy with U,
and assume that U = Yp, and FE is closed in Yy with DC.(Yy) ¢ E. By 2) and 3) of
Definition 3.2, there exists 73 : Y3 — Y € e and maps A € Hom(ng, mg), 7 € Hom(7g, 74)
such that A(Yj3) is relatively compact in Yy. By the universal property, we have that
the joins J(mg, moh) and J(A, h) are isomorphic, which we will denote by Yj. We have a
commutative diagram:

Ys
b N
v, S v &y
TN\ mod o hmo
Y, X Y
Let K be the closure of A(Yp) in Yo, which is compact. §(YVj) C h~Y(\(K)), which is
compact since h is a global blow up, so it is proper. Thus ¢ (Yﬁ’) is relatively compact.

It remains to show that Y; # (. We have that Ys # 0 (since 75 € e). The map g
is strict, by Proposition 1.7 [25], so it is an open immersion on an open subset W of Yj
which intersects DC.(Y}3) nontrivially. X is thus necessarily also an open immersion on W.
Thus V = A(W) is an open subset of Yj such that DC.(Yy) NV # (). By our assumption
on E, we have that ENDC.(Yp) NV is nowhere dense in DC.(Yy) NV. Let Fi,..., F, be
the irreducible components of Yy, with F; = DC,.(Yp). h is an isomorphism over the non
trivial open set V\ (EUF, U---UF,). Let Z = Y3\ ' (V\(EUFRU---UF,)). Let
€:Z — Y’ be the morphism induced by X and i : Z — Y} be the inclusion. Now Z # 0,

and since A\i = he, we have that Hom(e, §) # 0 be the universal property of the join. Thus
Y, #0. 0
Using resolution of singularities, and resolution of indeterminancy ([22], [23], [4],[6]) we

deduce the following Lemma.

Lemma 4.3. Suppose that Y is a reduced complex analytic space and e € Ey. Suppose
that ™ € e factors as a sequence of local blow ups

Y=Y, 11— =Y =Y
where each m; : Yiy1 — Y is a local blow up (U;, E;, ;). Then there exists ©' € e which is
a composition of local blow ups

Y, Y = =Y =Y
such that each Y] is nonsingular, m; : Y/ | — Y/ is a local blow up (U], Ej, ;) (which is

) e
a sequence of blowups with nonsingular centers over U!), and there exists a commutative

diagram of strict morphisms

Y, - Y, —- - = Y
! ! AN
Y. - Y1 —» -+ - Y1 —- Y.

Suppose that ¢ : X — Y is a morphism of complex analytic spaces, and 7 : Y’ — Y €
E(Y). o7 tnm] : oY) = X will denote the strict transform of ¢ by 7 (Section 2 of [26]).

In the case of a single local blowup (U, E, 7) of Y, ¢~ 1[Y’] is the blow up B(ZgOx|¢ 1 (U)).
In the case when m = momy - - - m with m; : Yiy1 — Y; given by local blow ups (U;, E;, m;),
we inductively define p~![r]. Assume that 7 ![my---m_1] has been constructed. Let
h = my-- my_1, o that m = hm,.. Let ¢’ : ¢~ ![Y,] — Y, be the natural morphism. Then
define o~ 1[Y;11] to be the blow up B(Zg, Ou-1py,|(¢) "1 (U})).

9



Lemma 4.4. Suppose that 71,79 € E(Y). Then
T~ ml o7 m2)) = o7 I (1, m)).

Proof. The fact that these two constructions are canonically isomorphic can be realized
by comparing the explicits constructions given above. The essential case is that of the
strict transform of the join of two local blow ups 71 : Y1 — Y and 75 : Yo — Y given by
local data (Ui, Ey,71) and (Us, Ea, m2). The join J(mq, ) is then the blow up

J(7T1,7T2) : B(IEIIE2|U1 N Uz) —Y,
and ¢~ ![J (71, m2)] is the blow up
(3) @ ' [J(m1, )| B(Zg, I, Ox o~ (U1 N Ua)) = X.

However, o; *[m;] are the blow ups ¢; '[mi] : B(Zg,Ox|¢~ (U;)) — X Thus the construc-
tion of J(p~t[m], o ![ms]) described at the beginning of this section gives us again the
blow up (3). O

We now introduce a concept which will play a central role in determining when we can
push an étoile forward by a morphism.

Lemma 4.5. Suppose that ¢ : X — Y is a morphism of complex analytic spaces and
e€ Ex. Let

S(p,e) ={m e E(Y) |~ [n] € e}.
Then S(p, e) satisfies properties 1), 2) and 3) of Definition 3.2.
Proof. This follows from Lemma 4.4 and 2.9.2 of [25]. O

Lemma 4.6. Suppose that ¢ : X — Y is a morphism of reduced complex analytic spaces
and e € Ex. Suppose that f € Ey contains S(p,e), and w:Y' =Y € S(p,e). Then

Px(f) = ¢/ (Py-1(x) ()
and
¢ (DCe(p™'[Y"])) € DC(Y"),
where @' : Y] = Y’ is the induced morphism.

Proof. Suppose that U is any neighborhood of ¢'(p,-1[5(e)) in Y'. Then 7|U € S(p,e)
(by Lemma 4.2). Thus
pr(f) = &' (Pp-117(€))-

Suppose that ¢'(DC.(p7'[Y"])) ¢ DCs(Y’). Then there exists a global blowup S :
Y"” — Y’ such that DC#(Y") is a connected component of Y and the induced morphism
7 Y" =Y € S(p,e). We have an induced commutative diagram of analytic morphisms

Sofl[yll] 4P_>” vy

al 1B

UG
where the vertical arrow are global blow ups. By our construction, ¢”(DC.(¢ 1[Y"])) is
disjoint from DC¢(Y"). But pr(f) = ¢" (py-1z(€)) by the first part of this proof, so we
have that ¢”(DC¢(X")) C DC#(Y"), a contradiction. Thus ¢'(DCe(p1[Y"]) C DCf(Y).

g
10



Proposition 4.7. Suppose that ¢ : X — Y is a morphism of reduced complex analytic
spaces. Then S(p,e) € Ey if and only if for all w : Y — Y € S(p,e), with associated
morphism ¢’ : o Y] = Y, ¢'(DC.(¢~1[Y"])) is not contained in a proper analytic
subset of an irreducible component of Y.

Proof. Suppose that f € &y contains S(p,e) and there exists 7 : Y/ — Y € S(p,e)
such that ¢’'(DC.(¢1[Y’])) is contained in a proper analytic subset E of an irreducible
component of Y/, Let o : Z — Y’ be the blow up of E. Then 7o € f by Lemma 4.2. We
have a commutative diagram of morphisms

Y I S/

pllald  da

oY 5 v
DC. (¢~ 1[Y"]) is a subspace of (¢')"1(E) and p~t[a] : ¢71[Z] — ¢~ 1[Y] is the blow up of
(@) "HE). Thus ¢~ [ra] = ¢~ !r]¢~ta] € e by Lemma 4.2.

Now suppose that for all 7 : Y/ — Y € S(g,e), with associated morphism ¢’
e Y] = Y, ¢/(DCe(p~1[Y])) is not contained in a proper analytic subset of an ir-
reducible component of Y’. Suppose that f € £y contains S(p,€e). Suppose that © € f.
We will show that 7 € S(¢, e).

We prove this by induction on the length r of a factorization @ = hohy---hy—1h,
where (U;, E;, h;) are local blow ups h; : Y41 — Y;. By Lemma 4.1, hg---hy—1 € f,
phO"'hr—l(f) € U, and DCf( ) ¢ B,

We have a commutative diagram of morphisms

-y &y
0 1[ ] 4 b hy
[Y] SOT_—)l Yr

o ho - rfl]i Lho--hr_y
X 5 v

By our induction assumption, hg---h,—1 € S(p,e), so that ¢~ ![hg---h,_1] € e. We
have that pp,..h,_,(f) € Uy by Lemma 4.1. Thus a = hg---h,—1|U, € f by Lemma 4.2.
0 a] : ¢ U] — X is in e by Lemma 4.6, since pwfl[ho---h,.,l](e) € w;_ll(pho...m_l(f)).
Thus @ € S(p,e), so that ¢,_1(DCe(¢. " (U,))) is not contained in a proper analytic
subset of an irreducible component of U,., by assumption. Since ¢, _1(DCc(¢r—1)"1(U,)) C
DC¢(U,) by Lemma 4.6, and DC;(U,) ¢ E, (by Lemma 4.1), we have that

pr-1(DCe(p;14(Ur) By,

50 DCe(, 11 (Ur)) & @, 11 (E,NU,). Thus ¢~ '[x] = ¢ ko - - hy—1], 1 [hr] € € by Lemma
4.2, so that m € S(p, e). O

Theorem 4.8. Suppose that ¢ : X — Y is a morphism of reduced complex analytic
spaces, and e € Ex. Then there exists T :Y' — Y € S(p,e) (so that o~ L[] € e) such that
either ¢ = @ Y'] = Y is flat at p,-1jz(e) or @' (DCe(p™1[Y"])) is contained in a proper
analytic subset of an irreducible component of Y.

Proof. Let f € & be such that S(p,e) C f. By Theorem 3 [26] or Theorem 4.4 [24],
there exists m1 € f such that ¢’ : p '[Y'] — Y’ is flat at points of (')~ (p.(f)) N
11



(M) (pig(e))- I 7 € S(p,e), then o~ '[7] € e, so that p,-117(e) € (¢') ' (p(f)) N
(o m]) " (p;q(e)) by Lemma 4.6, so that ¢’ is flat at Po-1ix](€)-

Now suppose that m & S(p, e). We can factor m = hoh; - - - h, where (U;, E;, h;) are local
blow ups h; : Y41 — Y;. By Lemma 4.1, hg - - hgs € f, prg...n,(f) € Ur and DCy(Us) ¢ Ej
for all s. There exists a largest s such that hg---hs—1 € S(p,e), but hg---hs & S(p,e).
Us C Y, contains pp,...n, ,(f), so that Us - Y € S(¢, e) by Lemma 4.2.

Let A = (ho---hs_1)|Us, and ¢" : ¢~ '[Us] — Us be the induced morphism. Then
¢"(DCe(¢tUs]) € DC(Us) by Lemma 4.6. Since Ahg & S(i, €), we have that

SOH(DCe(‘Pil[USD CEsN Dcf(US)’

which is a proper analytic subset of the irreducible component DCf(Us) of Us. Now
replacing 7w with A, we have obtained the conclusions of the theorem. ]

Corollary 4.9. Suppose that ¢ : X — Y is a morphism of reduced complex analytic
spaces, and e € Ex. Then there exists a commutative diagram of morphisms

X 5 v
74 19
X 5 v

such that v € e, ¢ is sequence of morphisms consisting of local blow ups and inclusions of
proper analytic subsets, X is reduced, Y is reduced, and ¢ is flat at p(e).

Proof. The proof is by induction on the dimension of Y. If dimY = 0, then Y is a finite

union of points, so ¢ is necessarily flat, since Oy, is a field for all ¢ € Y. Suppose that the

Corollary is true for all reduced complex analytic spaces of dimension less than dimY'.
By Theorem 4.8, there exists 7 : Y’ — Y € S(«, e) such that either

(4) the induced morphism ¢ : ' Y'] = Y” is flat at py-1(7(e),

()

¢'(DCe (¢~ 1[Y"])) is contained in a proper analytic subset of an irreducible component of Y.

If (4) holds then we have achieved the conclusions of the Corollary. Suppose that (5)
holds. There exists an irreducible analytic subset F of Y’ such that ¢/ (DC(7~1[Y"])) C F
and F is not an irreducible component of Y’ (so that dim F' < dimY").

Let 7 : X” — ¢~ ![Y’] be a resolution of singularities, obtained by blowing up a nowhere
dense closed analytic subspace of ¢~ '[Y’]. Then ¢ ![r]r € e. Then X* = DC.(X") is
a connected component of X”, so the composition of inclusion of X* into X” and the
morphism ¢~ 1[r]7 is in e. We have an induced morphism of X* to F. By induction on
the dimension of Y, the conclusions of the Corollary hold. g

Proposition 4.10. Suppose that ¢ : X — Y is a morphism of reduced, irreducible, locally
irreducible complex analytic spaces and o is reqular. Further suppose that o : X' — X,
B:Y' — Y are sequences of local blow ups such that X' and Y' are reduced, irreducible,
locally irreducible, and there is a commutative diagram of morphisms

x5y
al 1B
X 5 v

Then ¢ is reqular.
12



Proof. There exists an analytic subset F' of Y’ such that dimF < dimY’ = dimY,
dimB(F) < dimY, Y'\ F = Y'\ B~Y(B(F)), and B|(Y'\ F) : Y'\ F — Y is an iso-
morphism onto an open subset of Y.

There exists an analytic subset H of X’ such that dim H < dim X’ = dim X, dim«(H) <
dim X,V = X'\ H = X'\ a!(a(H)) is an open subset of X’ and a|V : V — X is an
isomorphism onto an open subset of X.

Since ¢ is regular, by Lemma 2.4, there exists a nowhere dense closed analytic subset
G of X such that ¢(X \ G) is an open subset of Y, dim p(G) < dimY, and ¢|(X \ G) is
an open mapping.

dim G < dim X —1 implies W := (X \ G) Na(V) is a nonempty open subset of X. p(W)
is an open subset of Y. (W) C B(Y’) = B(Y'\ F) U B(F). Since dim 8(F) < dimY, we
have that (W) N B(Y’\ F) is a nonempty open subset of Y. Since « is an isomorphism
over W and 3 is an isomorphism over 3(Y'\ F'), we have that ¢'(V') contains the nonempty
open set 3~ (o(W) N B(Y'\ F)). Thus ¢’ is regular. O

Proposition 4.11. Suppose that ¢ : X — Y is a morphism of reduced, irreducible, locally
irreducible complex analytic spaces, and e € Ex. Then S(p,e) € Ey if and only if ¢ is
reqular.

Proof. In Corollary 4.9, ¢ is an open morphism to Y, since ¢ is flat ([17] or Theorem V.2.12
[5]) so ¢ is regular if and only if § is a sequence of local blowups. Thus the Proposition
follows from Proposition 4.7, and since a local blow up is strict. O

Proposition 4.12. Suppose that ¢ : X — Y is a morphism of reduced, irreducible, locally
irreducible complex analytic spaces and f € Ey. Then there exists e € Ex such that
S(¢,e) = f if and only if ¢ is regular.

Proof. By Proposition 4.11, if such an e exists then ¢ must be regular, so suppose that
@ is regular. We may restrict ¢ to a relatively compact open subset of X. Let ey be
the subcategory of £(X) of morphisms of analytic spaces determined by the associated
morphisms = 1[Y;] = X of 7: Y1 — Y € f. Since ¢ is regular and 7 is strict, ¢ ~1[Y3] # )
for all m € f so e satisfies 1) of Definition 3.2 of an étoile. Since f is an étoile, e satisfies
2) and 3) of the definition of an étoile. By Zorn’s lemma, there exists a étoile e € Ex
containing ey (Lemma 2.2 [25]).

Now f C S(p,e) and S(p,e) is an étoile on Y (by Proposition 4.11) so f = S(yp,e€)
since f satisfies the maximality condition 4) of Definition 3.2. O

5. REGULARIZATION OF ANALYTIC MAPS

Theorem 5.1. Suppose that p : X — Y is a morphism of reduced complex analytic spaces,
and e € Ex. Then there exists a commutative diagram of morphisms

X 5 v
74 16
X 2 v

such that v € e, 6 is sequence of morphisms consisting of local blow ups and inclusions of
proper analytic subsets, X is nonsingular and irreducible, Y is nonsingular and irreducible
and @ is reqular.

Proof. By Corollary 4.9, we may assume that ¢ is flat. Let p = p;q(e).
There exists an open subset V' of Y which contains ¢(p), such that all irreducible
components of V' are locally irreducible.
13



There exists an open subset U of ¢~1(V) containing p such that DC(U) is locally
irreducible. Let G be the union of the irreducible components of U other than DC.(U).
Let W =DC.(U) \ G. W is a nonempty open subset of X, so (W) is an open subset of
V, since ¢ is flat, [17] or Theorem V.2.12 [5]. Let V* be the irreducible component of V'
containing p(DC.(U)). By definition, the induced map ¢ : DC.(U) — V* is regular at p.

Let 7 : V! — V be a resolution of singularities. 7 is the blow up of a nowhere dense
closed analytic set E, and H = ¢~ 1(F) is nowhere dense in X since ¢ is flat. Let Z be
the ideal sheaf of H in X.

Let m: X’ — U be a resolution of singularities, obtained by a sequence of global blow
ups of nowhere dense closed analytic sets, so that ZOx- is invertible. The composition of
7 with the inclusion of U into X is in e. Since DC.(X’) is a connected component of X',
the induced morphism DC,(X’) — X is in e.

DC,(X") is necessarily the strict transform of DC¢(U) in X’. Thus DC.(X’) — DC.(U)
is a product of blow ups. Thus the induced morphism X = DCq(X’) — Y = (V/)* is
regular by Proposition 4.10, where (V')* is the connected component of V’ which contains
the image of DC.(X"). O

Theorem 5.2. Suppose that ¢ : Y — X is a morphism of reduced complex analytic spaces
and e € Ey is an étoile over Y. Then there exists a commutative diagram of morphisms

vy 4 X
(6) 6l by
Yy % X

such that § € e is a finite product of local blow ups of nonsingular analytic sub varieties,
7 is a finite product of local blow ups of monsingular analytic sub varieties and inclusions
of analytic sub varieties, Y and X are smooth analytic spaces and ¢ is a regular analytic
morphism.

Proof. The proof is by induction on the dimension of Y. When Y has dimension zero then
letting X = o(pia(e)) and Y be the connected component of a resolution of singularities
of Y (which is a product of blowups of nonsingular nowhere dense sub varieties) we have
that ¢ is regular.

Suppose that dimY = r and the theorem is true when Y has dimension less than r.
Let

X 5 v
74 19
X 2 v

be the diagram constructed in Theorem 5.1.
We can factor the diagram as

X 5 v
72 )
X, 2 v
74 1o
X 5 v

where 01 € S(p,e), 71 € e, and either X; = XandY; =Y or

©1(DCe(X7)) is contained in a proper analytic subset of Y.
14



Factor 41 : Y1 — Y as
(7) Vi=Z. 57,5 B Z =Y

where each «; is a local blow up.

The morphism «4 is the blow up of an analytic subspace Fy of an open subset Uy of Y.
By principalization of ideals, there exists a sequence of blow ups of nonsingular analytic
subspaces W1 — Uy such that the ideal sheaf Zg Oy, is locally principal. Then by the
universal property of blow ups of ideals, there is a factorization W; 2 Z; — Y. Factor
the proper map W7 — Uy as a sequence of blow ups of nonsingular analytic sub varieties

(8) W=V, B Viqg—- =W 3.

Suppose there exists an index ¢ in (8) such that V; = Y € S(p,e) but Vi1 = Y ¢
S(¢,e). This can only happen if the image of DC.(¢~1[V;]) in V; is contained in the
analytic subspace F; of V; blown up in Vi41 — V;. We have a commutative diagram

/

e 'Vl 5 v
ol 1B
X 2 v

such that g is a sequence of local blow ups of nonsingular analytic sub varieties and
e V] = X ce.

Let A : X” — X € e be a sequence of local blow ups of nonsingular analytic sub
varieties such that X” is nonsingular and there is a factorization X" — ¢~ 1[V}] — X.
Let X* = DC.(X"). The sub variety X* is a connected component of X” since X" is
nonsingular, so that composition of the inclusion of X* into X” and the morphism X is
in e. We have an induced morphism X* — F;. The theorem now follows by induction on
dimY, asdimF; <r=dimY.

Now suppose that W, — Y € S(¢,e). Recall that o : W7 — Z; is the induced
morphism. The local blow up ag : Zy — Z; in (7) is the blow up of an analytic subspace
FE4 of an open subset Uy of Z;. We now construct a sequence of blow ups of nonsingular
analytic sub varieties Wy — 1(U) such that Zg, Oy, is a locally principal ideal sheaf.
We either have that the composition Wo — W7 — Y & S(¢, e), in which case we obtain, as
explained above, a reduction in the dimension of Y from which the theorem follows, or we
obtain Wy — W1 — Y € S(p,e) which is a composition of local blow ups of nonsingular
analytic subspaces.

Continuing in this way, we either obtain a reduction to dimY < r, from which the
theorem follows, or we construct a morphism e : W — Y] such that A = d1e € S(¢,e) is a
composition of local blow ups of nonsingular sub varieties. We have the induced diagram

144
le
X, 2 vy
mi L dy
X 5 v

By resolution of singularities and principalization of ideals, there exists a sequence of local
blow ups of nonsingular analytic sub varieties v : X* — X € e such that X™* is nonsingular
15



and connected and there is a commutative diagram of morphisms

X*
e N\
X1 Ly ¢t [W]
N\ v

X.

First suppose that ¢; : X1 — Y] is regular. Let £ : W* — W be a sequence of blow ups
of nonsingular analytic sub varieties which are nowhere dense such that W* is nonsingular.
Then W* - W — Y € S(¢,e) by Proposition 4.11. Let X** — X € e be a sequence of
blow ups of nonsingular analytic sub varieties such that there is a commutative diagram

X = W
) L€
X* = W

The morphism X** — W™ is regular by Proposition 4.10, and we have obtained the
conclusions of Theorem 5.2.

Now suppose that ¢1(DC.(X1)) is contained in a nowhere dense analytic subspace G
of Y1. Then the image of X™* in W is contained in the preimage Y* of G in W, which is
nowhere dense in W. The theorem now follows from induction on r with the morphism
X* — Y* since dim Y™ < r.

O

Theorem 5.3. Suppose that ¢ :' Y — X is a morphism of reduced complex analytic spaces
and e € Ey is an étoile over Y. Then there exists a commutative diagram of morphisms

v, % X,
ol '
y % Xx

such that § € e is a finite product of local blow ups of nonsingular analytic sub varieties,
v is a finite product of local blow ups of nonsingular analytic sub varieties, Y, and X. are
smooth analytic spaces and @, is a reqular analytic morphism to a nonsingular analytic
sub variety of Xe.

Proof. The Theorem follows from Theorem 5.2 and the observation that if W is an analytic
space, Z C W is a closed analytic subspace and V' C Z is a closed analytic subspace, then
the blow up of V in Z is the strict transform of Z in the blow up of V in W. U

6. THE VALUATION ASSOCIATED TO AN ETOILE

Suppose that Y is a reduced complex analytic space, e € & and m € e. We will call 7
nonsingular if 7 is a composition of local blow ups

Y=Y, 11— =Y =Y
such that each Y; is nonsingular.
We associate to a nonsingular 7 € e the local ring Ar = Ox , (). The set
{A, | 7 € e is nonsingular}

is then a directed set, by Lemma 4.3 and Definition 3.2. The set of quotient fields K of
the A, also form a directed set. Let

Q. =1lim K, and V., = lim A,.
— —
16



Q. is a field, and V, is a local ring with quotient field €.
Lemma 6.1. V, is a valuation ring.

Proof. Suppose that f € K.. Then there exists m € e such that f € K. f = { with
g,h € A, where A, is the local ring associated to 7 : X; — Y. Let U C X, be an open
neighborhood of pr(e) on which g and h are holomorphic. There exists an ideal sheaf
Z C Oy such that the blow up X’ = B(Z) of Z is nonsingular, and (g, h)Ox: is locally
principal. Let A : X’ — X be the induced local blow up. m\ € e by Lemma 4.2. We have
that either g | h or h | g in A;y. Thus f or % € A\ C V. O

Proposition 6.2. Suppose that X and Y are reduced, irreducible and locally irreducible
complex analytic spaces, ¢ : X — Y is a regular morphism, and e € Ex. Then f =
S(p,e) €&y, Qf C Qe and Vi =V N Q.

If p: X — Y is not regular, then by Proposition 4.11, the valuation ring V. associated
to an étoile e on Y does not induce an étoile on Y and does not induce an associated
valuation ring.

Proof. f € & by Proposition 4.11.
Suppose that 7 : Y/ — Y € f is nonsingular. By Lemma 4.3, there exists a nonsingular
a:Z — X € e such that Hom(Z, p~![Y’]) # 0. We have associated local homomorphisms

(¢')*
(9) Oy pa() . Op 1oy (€) 7 OZpale)

where ¢’ : ¢ 1[Y’] — Y is the natural morphism. By Proposition 4.10, the homomorphism
of the sequence of complete local rings

N

(10) Oy i) Op1vp,-11,1(0) = OZpale)

is 1-1. Thus the homomorphism in (9) is 1-1. We have an associated inclusion of rings
A — A, with induced inclusion of quotient fields K, — K,. This gives us 1-1 homomor-
phisms A, — V, and K, — Q..

Taking the limit over the nonsingular elements of f, we have natural 1-1 homomorphisms
Vi — Ve and Qp — Q..

Suppose that h € Q N V.. Then there exist nonsingular o : Y1 - Y € f and 8: X; —
X € e such that h € Ag N K4. h has an expression h = § with a,b € A,. Let U be
a neighborhood of p,(f) on which a and b are analytic. There exists v : Yo — Y such
that Y3 is the blow up of an ideal sheaf of Oy, Y3 is nonsingular and (f, g)Oy, is locally
principal. Thus v € f is nonsingular, and either h or % € A,. There exists § : Xo — X in
e which is nonsingular, such that Hom(Xs, ¢~ ![¥2]) # 0 and Hom(X3, X7) # 0. We have
constructed a commutative diagram:

Xo
v ol N
Vi — Yo — ¢l Xy
a N v N v B
Y X

If h € A, then h € Vy. Suppose that h ¢ A,. Then % € m where m is the maximal
ideal of A,. Now A, — A; is a local homomorphism, so % is in the maximal ideal n of

As. But this is impossible since h € As. Thus we must have h € A, C V.. O
17



Suppose that Y is a reduced complex space and e € £y . Let V. be the valuation ring
associated to e. We have a directed system {A;} for 7 : Y/ — Y € e, where we define
Ar = ODC,(y/)px(e)- 10 the case when 7 is nonsingular, Y’' = DC.(Y’), so this agrees
with our earlier definition. Taking the limit over this larger directed system again gives
us the same limit V;, by Lemma 4.3.

Form:Yy =Y €e, let V; = V.N K, which is a valuation ring of K, which dominates
Ay. Let m; be the maximal ideal of A,. Let v, be a valuation of €2, whose valuation ring
is Ve, and let v, be the restriction of v to K, so that V; is the valuation ring of v;.

Lemma 6.3. V. has finite rational rank, which is less than or equal to dimY .

Proof. Suppose that V, has rational rank larger than n = dim Y. Choose t1,...,t,11 € Ve
such that their values are rationally independent. There exists a nonsingular 7 : Y’ — Y €

e such that ¢1,...,t,+1 € Vz. Thus v, has rational rank > dim Y. But v; dominates the
noetherian local domain Oy, (), which has dimension < dim Y. This is a contradiction
to Abhyankar’s inequality [1], Appendix 2 of [32]. O

Thus the rank r of V; is finite (by Lemma 6.3), with
r = rank(V;) < ratrank(V;) < dimY.

Theorem 6.4. Suppose that Y is a reduced complex analytic space and e € Ey. Let V. be
the valuation ring associated to e and suppose that V. has mazximal rational rank equal to
the dimension n of Y. Then the value group of Ve is isomorphic to Z™ (as an unordered

group).

To prove Theorem 6.4, we require the following two Lemmas, which follow from the
very nice properties of Abhyankar valuations.

Lemma 6.5. Suppose that R is an equidimensional regular local ring of dimension n and
w is a valuation of the quotient field of R which dominates R and has rational rank n.
Suppose that R has a regular system of parameters x1,..., T, such that w(xy),...,w(Ty)
generate the value group I'y, of w.

Then there exists a unique extension @ of w to a valuation of the quotient field of the
mp-adic completion R of R which dominates R, and its value group L'y, = T',.

Proof. Let k be a coefficient field of R, so that R = k[[z1,...,,]]. The unique extension
w of w is then defined by

O(f) = min{iyw(zy) + - + inw(@n) | a6, 70}
for f = Zail,,,_,inazil .. ';Uﬁ{l € R with Qi ,...in € k. O

Lemma 6.6. Suppose that R is an equidimensional regular local ring of dimension n and
w is a valuation of the quotient field of R which dominates R and has rational rank n.

Suppose that R has a regular system of parameters x1,..., T, such that w(zy),...,w(T,)
generates the value group T'y, of w. Suppose that I is an ideal in R. Then there exist
monomials My, ..., M, in x1,...,x, such that
M. M,
S:R|:]\4277]\4r:| v
1 1 mwﬂR[M—?,...,%]

18



1s a reqular local ring with reqular parameters yi,...,Yyn such that there exist a matriz
A = (aij) of natural numbers with determinant +1 such that

n
T; = Hy;l” for1<i<n
j=1
and R — S factors as a finite sequence of local blow ups of nonsingular sub varieties, whose
ideals are generated by Laurent monomials in x1, ..., %y, such that IS is a principal ideal.

Proof. This follows from the maximal rank case of Zariski’s proof of embedded local uni-
formization [33]. O

We now prove Theorem 6.4.
Let fi,...,fn € V. be such that ve(f1),...,ve(fn) are rationally independent. There

exists a nonsingular o € e such that fi,..., f, € A,. Let v, be the restriction of v, to
the field K,. Then v, has rational rank n = dim A,, so by Abhyankar’s Theorem [1], the
value group I' = T',; of v, is isomorphic to Z™ as an unordered group. Let ¢1,...,9, € Vo

be such that vs(g1),...,vs(gn) generate I', and let A, — B be a sequence of algebraic
blow ups along v, of regular prime ideals such that the regular local ring B has regular
parameters x1,...,x, such that each g; is a monomial in x1,...,x, (this is possible for
instance by [33]). Then vy (x1),...,v,(xy,) are a free basis of the unordered group T',.
By our construction, there exists a nonsingular A : Z — Y in e such that Ay, = B*".
By Lemma 6.5, we have that the value group I'y of vy = 1| K is I', and Ay has a regular
system of parameters x1,...,z, such that v(z1),...,v(z,) is a free basis of the group T
Suppose that 7 € e is nonsingular. Then 7 has a factorization by local blow ups
Y=Yy, 5 ... Oy Ry, =Y
where each 7; is the blow up of a closed analytic subspace E; of an open neighborhood U;
of ey, , and each Y; is nonsingular (for i > 0).
We will show that there exists a nonsingular Z’ — Z — Y € e which has a factorization
Z'=2"53 ... 372 8 2,=2-Y
of local blowups such that each Z; — Y € e is nonsingular, and there exist morphisms
«; : Z; — Y; for all 4, giving a commutative diagram

Y=Yy, =5 ... %y B y=Y
(11) T o, T o Tag=A\

Z'=z. 5 ... 3z B z,=z
and further, the restriction vy,...,; of v, to the field Ky,,...;, has value group I'yr,....; =T
and Ayr,..r, has a regular system of parameters z1,...,z, (depending on i) such that
v(z1),...,v(zp) is a free basis of T.

We will construct the diagram (11) by induction on 7. Suppose that we have constructed
Zj and morphisms 7; and «; for for j <. Let R = OZi,pzi(e)‘ R satisfies the assumptions
of Lemma 6.6 (with w = vxry...r,_,) and I = I, p, (). We apply Lemma 6.6 to R and
I to obtain R — S such that IS is principal. Let W be an open subset of a;l(Ui) which
contains pgz, (e) and so that 21, ..., z, are coordinates on W, and let W; be the blow up of
(My, ..., M,)Ow (with the notation of Lemma 6.6). There exists an open neighborhood
Zit1 of pw,(e) in Wy such that Z;y; — Yy € e is nonsingular and Zg, Oz, , is locally
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principal. Thus there is a factorization a;41 : Z;+1 — Yit+1 by the universal property of
the blow up. By our construction, we have that Ax..,,,, = S*" so that the value group
Cargooripy = I (by Lemma 6.5).

By induction, we may construct a diagram (11) for any nonsingular 7 € e. Since
Ar C Axzy..r_, We have that the value group I'z of the restriction of v, to the field K is
contained in I'. Thus I'. =T is isomorphic to Z" as an unordered group.

7. PATHOLOGICAL BEHAVIOR OF THE VALUATION ASSOCIATED TO AN ETOILE

Suppose that K is an algebraic function field over a field k, and v is a valuation of K
(which vanishes on &k \ {0}). If Z is a proper model of K (the function field k(Z) = K),
then there exists a unique (not necessarily closed) point a € Z such that the valuation
ring V,, in K dominates the local ring Oz ,. This point is called the center of v on Z.

Let r be the rank of v, and let

O=FPCPC---CP

be the chain of distinct prime ideals in V,,.

Suppose that Zy, Z; are proper models of K, and Zs dominates Z; in a neighborhood
of the center of v. Then we have a commutative diagram (in a neighborhood of the center
of v)

spec(V) B 7y

N 4
Z1
Let Wj(i) be the Zariski closure of 7;(P;) in Z; for 0 < j < r. Then for all j,
(12) dim W;(1) < dim W;(2).

In fact, after an appropriate blow up, the dimensions of the centers W, on Z stablilize
to trdegy (V/P,)p,).

The case of analytic spaces is completely different from that of algebraic varieties, as
the inequality 12 does not hold for the centers of a valuation associated to an étoile.

Ife ey and 7 : Y — Y € e, then there is a natural homomorphism Spec(V,) —
Spec(Oyp. (). Suppose that @ is a prime ideal in V.. Let @’ = Q N Oy, (), a prime
ideal in Oy’ (). In an analytic neighborhood of pr(e) in Y’ we have an irreducible
analytic set Z(a’). We will call this the center of @ on Y.

Example 7.1. There exists an étoile e on Yy = C* such that V, has rank larger than 1,
and V, has a proper prime ideal Q such that there exists an infinite chain

- =Y, —= - =2>Y =Y =Y

with Y, — Yy € e for all m, such that the center of Q on Yy, has dimension 3 if m is
even and the center of Q on Y,, has dimension 2 if m is odd.

To construct the example, we need the following lemma.

Lemma 7.2. Suppose that K is a field and R is a local subring. Suppose that g1 C g2

are distinct nonzero prime ideals in R. Then there exists a valuation ring V of K and

nonzero prime ideals p1 C pg in 'V such that V dominates R, pt "R = q1 and poN R = qo.
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Proof. By Proposition 2.22 [2], there exists a valuation ring W of K with maximal ideal
myy such that R C W and my N R = p;. We have a commutative diagram where the
horizontal arrows are inclusions,

R - W

{ {
R/pr — W/mw

Again by Proposition 2.22 [2], there exists a valuation ring D of W/my, such that
R/p1 C D and mp N R/p1 = p2/p1. Let V. = 77 1(D). V is a valuation ring of K as
proven on page 57 of [2]. By Lemma 2.31 [2]|, Q = mw NV satisfies W = Vj.

By our construction, V satisfies the conclusions of the lemma. O

We now recall an example in [26]. Consider the local C-algebra homomorphism of
analytic local rings

(13) ¢ : C{u,v,w} — C{z, y}
defined by

uw=y,v=ye*, w=ye .

We have that ¢ is 1-1. This can be seen as follows. Suppose that there is a nonzero

series A(u,v,w) such that A(y, ye®, ye® ) = 0. Collecting y terms, we must then have that
1,e%, e" are algebraically dependent over C, which is a contradiction.

Now make the substitution v = uj,v = ui(v1 — 1),w = ui(w; — e). We have that

up =y,v1 = e*—1,w; = e —e. We thus have an induced local C-algebra homomorphism
(14) o1 : Cfur, v, wn} — C{z, y}

1 has a nontrivial kernel which is generated by w; — e”' ! + e.
Now extend ¢ and ¢ to a commutative diagram of C-algebra homomorphisms

C{t1,u1,v1, w1}

by defining ¢t = uit; and @, (t1) = 0, so that $(¢t) = 0. Then the kernel of @ is (¢) and the
kernel of () is (t1, w1 — et ! +e).

Let Ry = C{t,u,v,w} with prime ideal Qo = (¢t) and Ry = C{t1,u1,v1, w1} with
prime ideal Q1 = (t1,w; — et +€). Let Ry = C{tz, us, v, wo} and define a C-algebra
homomorphism R; — Ry by the substitutions

t1 = t2, U1 = U2, V] = V2, W1 — evﬁ_l + e = tows.

Let Qo = (tz). We have @2 N R1 = @1 and Q1 N Ry = Q.

Now we define Ry — R3 — R4 to be the sequence Ry — Rq — Ro with the variables
ti, u;, v, w; for 0 < 4 < 2 changed to t;49,Ujt9, Vire, wits. Let @Q; for 2 < ¢ < 4 be the
corresponding prime ideals in R;. Repeating this construction we construct an infinite
chain of convergent power series rings in four variables

(15) R0—>R1—>"-

such that the R; have prime ideals ); such that Q; N R;,_1 = Q;_1 for all ¢ and @Q; has
height 1 in R; if ¢ is even and @; has height 2 in R; if ¢ is odd.

Let Yy be the germ of C* at the origin pg which has local ring Oy, po- Let Y7 be the
blow up pg, and let p; be the point of Y7 whose local ring is R;. Let W be the germ of a
nonsingular surface at p; which has local equations t; = w; = 0, and let Y5 be the blow up
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of W. Let ps be the point of Ys which has local ring Rs. Continuing this way, we see that
the sequence of local rings (15) is a sequence of local rings of a sequence of local blowups

(16) o= Y1 = Y.

Let K; be the quotient field of R; for ¢ > 0. Set L(0) = lim_, L; and A(0) = lim_, R;.
There exists a valuation ring V' (0) of L(0) which dominates A(0), with prime ideals Q(0) C
m(0) such that Q(0) N R; = Q; for all i and m(0) N R; = mp, by Lemma 7.2.

Suppose that W — Spec(R;) is a projective birational morphism such that W is smooth.
Let pyy € W be the unique point in the scheme W such that V' (0) dominates Oy, . We
further restrict to W such that the center of Q(0) on W is smooth at pyy .

Let W be the germ of a complex analytic space associated to W at py. The center of
Q(0) on W is nonsingular, and extends uniquely to a prime ideal in O - Then the
analytic local rings Oy - form a directed system as do their quotient fields. Let A(1) be
the limit of the local rings Oy, . and let L(1) be the quotient field of A(1).

Since V(0) is the union of the local rings Oy, , we have that A(1) dominates V (0).
Further, by our construction, there exists a prime ideal Q" in A(1) which dominates Q(0).
By Lemma 7.2 there exists a valuation ring V(1) of L(1) which dominates A(1) (and
thus dominates V'(0)), with prime ideals Q(1) € m(1) such that @Q(1) N A(1) = Q" and
m(1) N A(1) = my(). We necessarily have that V(1) N L(0) = V/(0).

We now construct a local ring A(2) with a distinguished (non maximal) prime ideal
Q". Associated to any projective birational morphism X — Spec(Oyp ,,..) where W is
a germ of an analytic space used in the construction of A(1), and X is smooth with
smooth center by Q(1), we obtain an associated germ of a complex analytic space X,
and we have a directed system of local rings associated to such X. Let A(2) be the limit
of these local rings, with quotient field L(2). That is, A(2) is the union of all O (U)
with U an open neighborhood in X" of the center of V(1). Again, we have that A(2)
is a local ring with a distinguished (nonmaximal) ideal @”. We have that V(1) C A(2)
and m ) NV (1) = myq), Q"N V(1) = Q(1). By Lemma 7.2 there exists a valuation
ring V(2) of L(2) which dominates A(2) (and thus dominates V' (1)), with prime ideals
Q(2) € m(2) such that Q(2) N A(2) = Q" and m(2) N A(2) = m 4(2). We necessarily have
that V(2) N L(1) = V(1).

We now repeat this construction over all natural numbers, starting by applying the
construction of A(1) and then A(2) from A(0) to A(2), to construct an increasing sequence
of fields L(i) with valuation rings V(i) (for ¢ € N) such that V(i) contains a nonmaximal
ideal Qi) with L(i) C L(i+ 1), V(i+1)NL() = V(E), Qi+ 1)NV() = Q) and
m(i+ 1) NV (i) = m(i) for all .

Let L = lim L(i). A =1lim V(i) is a local ring with a distinguished nonmaximal prime
ideal @*. By Lemma 7.2 there exists a valuation ring V' of L which dominates A , with
prime ideals Q C my such that QN A = Q* and my N A =my.

Let ey be the subcategory of £(Yy) of morphisms of analytic spaces used in the con-
struction of V and L. Then eq satisfies 1) - 3) of Definition 3.2 of an étoile, so there exists
by Zorn’s lemma an étoile e € &y, containing ep (Lemma 2.2 [25]).

By Lemmas 4.2 and 4.3 e is unique. In particular, we have that K. = L and V, = V|
so the conclusions of the example hold.
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