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ABSTRACT

It has been well documented that a large portion of the cost of any
software lies in the time spent by developers in understanding a
program’s source code before any changes can be undertaken. One
of the main contributors to software comprehension, by subsequent
developers or by the authors themselves, has to do with the quality
of the lexicon, (i.e., the identifiers and comments) that is used by
developers to embed domain concepts and to communicate with
their teammates. In fact, previous research shows that there is a
positive correlation between the quality of identifiers and the qual-
ity of a software project. Results suggest that poor quality lexicon
impairs program comprehension and consequently increases the
effort that developers must spend to maintain the software. How-
ever, we do not yet know or have any empirical evidence, of the
relationship between the quality of the lexicon and the cognitive
load that developers experience when trying to understand a piece
of software. Given the associated costs, there is a critical need to
empirically characterize the impact of the quality of the lexicon on
developers’ ability to comprehend a program.

In this study, we explore the effect of poor source code lexi-
con and readability on developers’ cognitive load as measured by
a cutting-edge and minimally invasive functional brain imaging
technique called functional Near Infrared Spectroscopy (fNIRS). Ad-
ditionally, while developers perform software comprehension tasks,
we map cognitive load data to source code identifiers using an eye
tracking device. Our results show that the presence of linguistic
antipatterns in source code significantly increases the developers’
cognitive load.
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1 INTRODUCTION

Program comprehension is a fundamental activity within the soft-
ware development life cycle. An important contributor to software
comprehension has to do with the quality of the lexicon, i.e., the
identifiers (names of programming entities such as classes or vari-
ables) and comments that are used by developers to embed domain
concepts and to communicate with their teammates. Previous stud-
ies show that source code contains 42% of the domain terms [19]
meaning that the lexicon is a way to express understanding of the
problem domain and solution, and comment upon the ideas that
underlie developers’ work. Previous research also shows that there
is a correlation between the quality of identifiers and the quality of
a software project [1, 7-9, 24, 29].

However, despite considerable advancement in software engi-
neering research in recent years, very little is known about how
the human brain processes program comprehension tasks. Cutting
edge research conducted by Siegmund et al. involves the use of
functional magnetic resonance imaging (fMRI) to study program
comprehension in the brain [35] and to understand the cognitive
processes related to bottom-up and top-down comprehension strate-
gies [36]. Similarly, Floyd et al. use fMRI to compare areas of brain
activation between source code and natural language tasks [15].
Despite the success of fMRI studies in the domain, fMRI machines
remain a costly and invasive approach, with which it is hard to
reproduce the real life working conditions of software developers.

Functional Near Infrared Spectroscopy (fNIRS) is a brain imaging
technique comparable to fMRI [14] that can provide a minimally
invasive way to empirically investigate the effects of source code on
human cognition and the hemodynamic response within physical
structures of the brain. To our knowledge, only two studies explore
the use of NIRS in the domain. Nakagawa et al. [27] investigate
the hemodynamic response during mental code execution tasks of
varying difficulty and Ikutani and Uwano investigate the effects
of variables and control flow statements on blood oxygenation
changes in the prefrontal cortex [22].

However, the effect of lexicon and readability of source code on
developers’ cognitive load during software comprehension tasks
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remains unexplored. The low cost and minimally invasive nature of
fNIRS makes it particularly well suited for this task. FNIRS data can
be related to specific aspects of source code in real time through the
use of modern eye tracking devices. This would allow to pinpoint
problematic elements within the source code at a very fine level of
granularity.

We present an fNIRS study focused on investigating how the hu-
man brain processes source code comprehension tasks, in particular,
the hemodynamic response of the prefrontal cortex to instances
of poor programming practices pertaining to the lexicon and read-
ability of the source code. At a high level, we aim at answering
whether we can use fNIRS and eyetracking technology to asso-
ciate identifiers in source code to cognitive load experienced by
developers. Furthermore, we aim to understand how and if poor
linguistic, structural, and readability characteristics of source code
affect developers’ cognitive load.

Our results show that the presence of linguistic antipatterns in
source code significantly increases the participants’ cognitive load.
Overall, when both linguistic antipatterns and structural inconsis-
tencies are introduced to the source code, we do not observe an
increase in cognitive load, but, the number of participants that are
unable to complete the tasks increases to 60%.

The contributions of this work are as follows:

(1) We provide a methodology to relate terms that compose
source code identifiers to direct and objective measures to
assess developers’ cognitive load.

(2) We provide empirical evidence on the significant negative
impact of poor source code lexicon on developers’ cognitive
load during program comprehension.

(3) We provide a replication package [13], which includes the
source code snippets used for our experiment, to allow re-
producibility of our results.

Paper organization. The rest of the paper is organized as fol-
lows. Section 2 discusses the background, in particular metrics and
technologies used throughout the study. Section 3 defines our re-
search questions and presents the experimental set up and method-
ology used to answer those research questions. Section 4 presents
the results and analysis of our findings. Section 5 discusses the
threats to validity of this work. Section 6 discusses related work
and Section 7 concludes the study.

2 BACKGROUND

In this section, we provide a brief background on Linguistic An-
tipatterns (Section 2.1), structural and readability metrics (Section
2.2), Functional Near Infrared Spectroscopy (Sections 2.3), and Eye-
tracking (Section 2.4).

2.1 Linguistic Antipatterns (LAs)

Linguistic Antipatterns (LAs), are recurring poor practices in the
naming, documentation, and choice of identifiers in the implemen-
tation of program entities [4]. LAs are perceived negatively by
developers as they could impact program understanding [3]. In this
section, we briefly summarize a subset of the catalog of Linguistic
Antipatterns used in our study.
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“Get" - more than an accessor: A getter that performs actions
other than returning the corresponding attribute without docu-
menting it.

“Set” method returns: A set method having a return type different
than void and not documenting the return type/values with an
appropriate comment.

Not implemented condition: The method’ comments suggest a
conditional behavior that is not implemented in the code. When
the implementation is default this should be documented.
Expecting but not getting a collection: The method name suggests
that a collection should be returned, but a single object or
nothing is returned.

Get method does not return corresponding attribute: A get method
does not return the attribute suggested by its name.

Method signature and comment are opposite: The documentation
of a method is in contradiction with its declaration.

Says one but contains many: An attribute name suggests a single
instance, while its type suggests that the attribute stores a
collection of objects.

Name suggests Boolean but type does not: The name of an at-
tribute suggests that its value is true or false, but its declaring
type is not Boolean.

Says many but contains one: Attribute name suggests multiple
objects, but its type suggests a single one.

Attribute signature and comment are opposite: Attribute declara-
tion is in contradiction with its documentation.

A3

B.1

B.6

B.7
C.2

D.1

D.2

E1l

F.2

2.2 Structural and Readability Metrics

There exists a depth of research about how various structural as-
pects of source code can affect both the readability of the source
code and impede the comprehension of developers. Buse and Weimer
[7] conduct a large scale study investigating code readability metrics
and find that structural metrics such as the number of branching
and control statements, line length, the number of assignments,
and the number of spaces negatively affect readability. They also
show that metrics such as the number of blank lines, the number
of comments, and adherence to proper indentation practices pos-
itively impact readability. Metrics such as McCabe’s Cyclomatic
Complexity [25], nesting depth, the number of arguments, Hal-
stead’s complexity measures [20], and overall number of lines of
code have also been shown to impact code readability [30].

Table 1 lists method level metrics that have been shown to corre-
late with readability and comprehensibility [7, 20, 25, 30, 33]. The
‘+” symbol indicates that a feature is positively correlated with high
readability and comprehensibility of the code, and the ‘-” symbol in-
dicates the opposite. The number of symbols indicate how strongly
correlated each feature is. Three is high, two is medium, and one
is low. A subset of these metrics, which are bold in the table, are
used in our study.

2.3 Functional Near Infrared Spectroscopy
(fNIRS)

Functional Near Infrared Spectroscopy is an optical brain imaging
technique that detects changes in oxygenated and deoxygenated
hemoglobin in the brain by using optical fibers to emit near-infrared
light and measure blood oxygenation levels. The device we use is
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Table 1: Metrics shown to correlate positively (+) or nega-
tively (-) with source code readability.

Feature Corr.  Feature Corr.
Cyclomatic Complexity - —— Halstead vocabulary -
Number of Arguments - —— Halstead length -

Number of casts

Number of loops

Number of expressions
Number of statements
Variable Declarations
Number of Comments
Number of Comment Lines
Number of Spaces

Number of operators

Number of operands

Class References

Local Method References
Lines of Code

Halstead effort

Halstead bugs

Max depth of nesting
External Method References
Halstead volume

Halstead difficulty

++

++

++

+

the fNIR100, a stand-alone functional brain imaging system, in the
shape of a headband, produced by BIOPAC [5]. Overall, the device
is light weight, portable, and easy to set up.

Light sources are arranged on the headband along with light
detectors. The light sources send two wavelengths of near-infrared
light into the forehead, where it continues through the skin and
bone 1 to 3cm deep into the prefrontal cortex. These light sources
and detectors form 16 distinct optodes which allow the fNIR100
to collect data from 16 distinct points across the prefrontal cortex.
Biological tissues in the prefrontal cortex are relatively transpar-
ent to these wavelengths, but the oxygenated and deoxygenated
hemoglobin are the main absorbers of this light. After the light scat-
ters in the brain, some reaches the light detector on the surface. By
determining the amount of light sensed by the detector, the amount
of oxygenated and deoxygenated hemoglobin in the area can be cal-
culated using the modified Beer-Lambert Law [10]. Because these
hemodynamic and metabolic changes are associated with neural
activity in the brain, fNIRS measurements can be used to detect
changes in a person’s cognitive state while performing tasks [38].
For example, fNIRS have been successfully used to detect task dif-
ficulty in real-time on path planning for Unmanned Air Vehicle
tasks [2] and tasks designed to invoke working memory [14].

From the measured oxygenated hemoglobin (HbO) and deoxy-
genated hemoglobin (HbR) concentration levels we are able to
calculate HbT, which is the total hemoglobin HbO + HbR, as well as
Oxy, which is the difference between HbO and HbR and reflects the
total oxygenation concentration changes. In this study, we use Oxy,
which has been shown in a wide variety of studies [14, 17,21] tobe a
function of task difficulty, as a measure of cognitive load during the
various code reading tasks. Due to the fact that {NIRS devices are
highly sensitive to motion artifacts and light, users should remain
relatively still and not touch the device during recording. Before
any analysis can take place, {NIRS data must be refined and filtered
to remove any motion artifacts and noise, as well as to exclude data
collected by individual optodes that may not have been fit properly
against the forehead. These optodes are usually optodes 1 and 5,
which are located on the outer edge of the device, near the user’s
hairline. These optodes are easily identifiable as they show patterns
of either sharp peaks and dips or remain flat. The exclusion of an
optnode does not effect the data collected by other optodes. To
remove noise, all data is filtered using a linear phase, low pass filter
that attenuates high frequency components of the signal. We use
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the filtering provided by Biopac’s {NIRSoft [6]. If a user has any
unexpected movement, such as sneezing or coughing, we place a
marker in the data and such peaks are excluded during the data
analysis process.

2.4 Eyetracking

There are an ample amount of studies within the eye tracking re-
search domain that give insight into visual attention patterns and
behavior during reading tasks. For example, fixations, which are
defined as a relatively steady state between eye movements, and
fixation duration, which is the amount of time spent in one location.
Research suggests that processing of visual information only occurs
during a fixation and that fixation duration is positively correlated
with cognitive effort [31]. Therefore, we will use fixation and fixa-
tion duration to determine areas participants spent a substantial
amount of time reading.

We use the EyeTribe eyetracker [12] throughout this experiment.
The Eyetribe offers a sampling rate of 60 Hz and an accuracy of
around 0.5-1 degrees of visual angle which translates to an average
error of 0.5 to 1 cm on a screen (19-38 pixels). To mitigate the effects
of this error we set the font size of the source code to 18 pt which
translates to an average error of one to three characters. The 60 Hz
sampling rate of the Eyetribe is not suitable for eyetracking studies
that study saccades, however it is appropriate for our purpose of
investigating fixations within the source code [28]. We calibrate
the eyetracker using 16 gaze points (as opposed to 9 or 12 points)
to cover the screen with higher accuracy. To ensure the integrity of
the eyetracking data collected, only calibration quality that is rated
as 4 out of 5 stars or higher is accepted for use in the experiment.
Calibration quality at these levels indicate an error of < 0.7 and 0.5
degrees respectively.

Participants use the Eclipse IDE [11] as their environment dur-
ing the experimental tasks. We will be using iTrace [34], a plugin
for Eclipse that interfaces with the eyetracker to determine what
source code elements the participants are looking at. We extend
the iTrace plugin to identify source code elements at a lower level
of granularity, which is terms that compose identifiers. iTrace has
a fixation filter to filter out noisy data that may arise due to errors
from the eyetracker. This filter estimates fixations on source code
elements using the median and joins fixations that are spatially
closer together within a threshold radius of 35 pixels (3 characters).

3 METHODOLOGY

The goal of this study is two-fold: First, to determine if fNIRS and eye
tracking devices can be used to successfully capture high cognitive
load within text or source code, at a word level of granularity. Sec-
ond, to determine if structural or linguistic inconsistencies within
the source code increase developers’ cognitive load during soft-
ware comprehension tasks. The perspective is that of researchers
interested in collecting and evaluating empirical evidence about the
effect of poor lexicon and readability of source code on developers’
cognitive load during software comprehension. Specifically, the
study aims at answering the following research questions:

o RQ1: Can developers’ cognitive load be accurately associated

with identifiers’ terms using fNIRS and eye tracking devices? We
ask participants to perform a comprehension task and then
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explore the similarity between fixations on text highlighted
as difficult to comprehend by participants and fixations that
are automatically classified as having high cognitive load.
RQz2: Do inconsistencies in the source code lexicon cause a
measurable increase in developers’ cognitive load during pro-
gram comprehension? We ask participants to perform bug
localization tasks on a snippet that does not contain lexical
inconsistencies and one that does. We then explore the aver-
age cognitive load experienced on the two snippets as well
as the percentage of fixations that contain high cognitive
load in each snippet.

RQs3: Do structural inconsistencies related to the readability
of the source code cause a measurable increase in developers’
cognitive load during program comprehension? We ask par-
ticipants to perform bug localization tasks on a snippet that
contains structural inconsistencies and one that does not.
We then explore the average cognitive load experienced on
the two snippets.

RQu4: Do both structural and lexical inconsistencies combined
cause a measurable increase in developers’ cognitive load dur-
ing program comprehension? We ask participants to perform
bug localization tasks on a snippet that contains both struc-
tural and lexical inconsistencies and one that does not. We
then explore the average cognitive load experienced on the
two snippets.

3.1 Source Code Snippets

In an effort to replicate real life development environment as close
as possible we aim at identifying four code snippets from open-
source projects to use in our experiment. Snippets had to meet the
following criteria:

e The snippet should be able to be understood on its own
without too much external references.

o The snippets must be around 30-40 lines of code including
comments so that all chosen snippets take similar time to
comprehend without interference due to length.

o The snippets should be able to be altered in such a way that a
reasonably difficult to detect semantic defect can be inserted.

o The snippets should be able to be altered to contain Linguistic
Antipatterns.

The snippets were chosen from JFreeChart, JEdit, and Apache
Maven projects. Two snippets were chosen Apache Maven—methods
replace and indexOfAny (from StringUtils.java), one from JEdit—
method LoadRuleSets (from SelectedRules.java), and one from JFree-

Chart—method calculatePieDatasetTotal (from DatasetUtilities.java).

After conducting a pilot study to assess the suitability of each snip-
pet we discarded method LoadRuleSets from JEdit as it required a
good understanding of surrounding source code and domain knowl-
edge. Thus, the experiment is performed with the remaining three
code snippets.

3.1.1 Altering snippets. In this section we first describe how
original snippets are altered to contain bugs to become control
snippets. Then, we describe how control snippets are altered to
contain either linguistic antipatterns, structural inconsistencies,
or both. All snippets and treatments can be found online in our
replication package.
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Table 2: Participants’ demographic data.

Demographic Variables # of Participants
Programming Languages C++ 5
Java 1
Both 9
Degree Pursuing or Completed Bachelor 8
Master 2
PhD 5

Bugs. Source code snippets are altered to contain a semantic fault.
Participants are asked to locate the fault as a way to trigger program
comprehension. Semantic defects are inserted in the code snippets
as opposed to syntactic defects, which can be found without deep
understanding of source code snippets. All bugs inserted are one line
defects, inserted at around the same location in the code snippets
to control for any unwanted location-based effect (i.e., finding a
defect earlier if it located higher up in the code).

Linguistic Antipatterns. Section 2.1 describes a subset of the cata-
log of LAs defined by Arnaoudova et al. [4]. We alter the snippets to
contain the listed LAs. Due to the limited number of code snippets
it is impossible to include all seventeen LAs, which is why a subset
is selected. We aimed at including a variety of antipatterns that
arise in method signatures, documentation, and attribute names.

Structural and Readability metrics. We alter the code snippets
by introducing a subset of the metrics described in Section 2.2
that have been shown to correlate with the readability and com-
prehensibility of code snippets. Snippets are formatted in a way
that is against conventional Java formatting standards in order to
reduce readability. This implies opening and closing brackets are
not on their own lines and are not indented properly. Metrics that
are described as having negative correlation to readability, such
as number of loops, are increased in the snippet. Metrics that are
shown to have positive correlation to readability, such as number
of comments, are decreased in the snippet.

3.2 Participants

The participants were recruited from a pool of undergraduate and
graduate Computer Science students at the authors’ institution. A
total of 70 participants indicated their interest. Participants were
asked to complete an online eligibility survey to ensure that they
have some programming experience, thus we require that they must
have taken at least one introductory course in C++ or Java. This is
to ensure the participants will be able to navigate the source code
for the tasks and provide legitimately informed input. Participants
receive a $15 giftcard as compensation for participation.

Due to constraints with the eyetracker device used, participants
who require the use of bi-focal or tri-focal glasses, or are diagnosed
with persistent exotropia or esotropia, are considered ineligible to
participate as the eyetracking data may be significantly impacted.
Fifteen participants satisfied the eligibility criteria and participated
in the experiments. Table 2 summarizes the programming language
in which participants declare themselves as more proficient and
their educational background.
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Figure 1: Overview of the experimental procedure.

Table 3: Study design.

Task: Comprehension Bug Localization

Snippet 1 Snippet 2 Snippet 3
Group 1 Prose Control LA Structural
Group 2 German Code LA & Structural  Control LA
Group 3 Prose LA Structural LA & Structural
Group 4 German Code Structural LA & Structural  Control

3.3 Study Design

Participants are randomly assigned to one of four different groups,
following a balanced design. Each group is shown one comprehen-
sion task snippet and three bug localization code snippets. The
order of the type of treatment received is randomized to ensure
the order of which the tasks are completed does not affect the data.
Table 3.3 summarizes the design of the experiment.

Group 1 contains 5 participants, groups 2 and 4 contain 3 par-
ticipants, and group 3 contains 4 participants. Participants have
between 1-15 years of programming experience, with an average
of around 4 years of experience, first quartile at 2.25 and the third
quartile at 4 years.

3.4 Procedure

Figure 1 illustrates the steps of experimental procedure!. Each step
has an estimated time for completion, determined through a pilot
study. Overall, the experiment is planed to take no longer than one
hour. Each step is described in the following sections.

3.4.1 Setup. The researcher explains every step of the experi-
ment to the participants beforehand to ensure that they understand
the experimental procedure and what is expected of them. Partici-
pants are given a consent form to read and sign if they agree. Next,
participants are fit to the fNIRS device and positioned in front of
the eye tracking device, computer screen, and keyboard. After this,
the participant is asked to relax and a baseline for the fNIRS is
conducted. Participants are then asked to calibrate the eye tracker
by using their eyes to follow a sequence of dots on the screen in
front of them. Anytime a baseline is conducted throughout the
experiment, participants are shown a video of fish swimming for
one minute. This has been used in similar fNIRS research studies
to provide a controlled way to relax participants.

3.4.2 Comprehension Task. To answer RQ1, participants are
shown either a short code snippet or a comment containing a
paragraph of an English prose. The code snippet contains easy

!The experiment was approved through a full board review for human subject research
from the Institutional Review Board (IRB) at the author’s university (IRB #16113-001).
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to comprehend identifiers in English as well as difficult to compre-
hend identifiers in a language that the participant is not familiar
with (i.e., German). The prose task was taken from an appendix of
GRE questions used to test reading comprehension, and we used
one reading comprehension question related to the text to assess
comprehension. For both prose and code snippets, participants are
asked to carefully go through the task, reading the text carefully.
Upon completion, participants are asked describe the functionality
of the code snippet or answer the comprehension question to en-
sure that they have properly understood the text and thus engaged
throughout the task.

3.4.3 Bug Localization Task. The bug finding task allows us
to answer RQz2, RQ3, and RQa. During this task participants are
shown a relatively short code snippet on the computer screen. They
are told that the code contains a semantic bug and that they should
locate the fault in the code. Participants are asked to continue the
task until they find the bug but they are also given the option to
end the task if no bug could be found.

We create four versions for each code snippet. Thus, a code
snippet shown to a participant will be from one of the following
categories:

(1) Code snippet containing a bug and lexical inconsistencies as
described in Section 2.1.

(2) Code snippet containing a bug and poor structural/readabil-
ity characteristics as measured by the metrics described in
Section 2.2.

(3) Code snippet containing a bug and both lexical inconsisten-
cies and poor structural/readability characteristics, (i.e., cat-
egories (1) and (2)).

(4) Code snippet containing a bug and no lexical inconsistencies or
poor structural/readability characteristics, (i.e., the control
snippet).

3.4.4 Follow-up questions. In this step participants fill out a
questionnaire about the snippet they have read. They are asked to
explain if the code snippet provided in the bug localization task had
any features that impeded their task of finding the bug, and if yes
to describe the feature of interest and highlight it. They are also
asked to rate, on a scale of 1 to 5 the effort taken to find the bug (1
being ’little to no effort’ and 5 being ’considerable effort’). These
follow-up questions are used to add another level of validation to
our results.

3.4.5 Rest Period. Participant are asked to relax for a minute so
that a new fNIR baseline is recorded to ensure that the measured
cognitive load is not impacted by the strain of the previous task.
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3.4.6  Post Analysis. The features of interest for each code snip-
pet shown to the participant will be revealed and the participant
will be asked questions about comprehension and the impact of the
features.

Eye tracking and fNIRS data is only collected during the compre-
hension and bug finding tasks. Steps outlined in blue are repeated
three times, sequentially, per participant before moving onto the
post analysis survey.

3.5 Pilot Study

A pilot study is conducted with four participants so that every snip-
pet/treatment combination can be assessed. During the pilot study
we make sure that bugs can be found within a reasonable amount
of time and that they are not too difficult or too simple. We also
determine if the experiment layout can be done within a reasonable
amount of time (1 hour) and does not induce unneeded fatigue
for the participants. Initially, we included four bug localizations
tasks, and decided to reduce this to three. One of the snippets that
was initially chosen makes references to external methods; it was
discarded after the pilot study.

3.6 Analysis Method

3.6.1 High Cognitive Load. In order to determine fixations that
contain high cognitive load, we analyze the Oxy values over the
entire source code snippet. We classify fixations containing Oxy
values in the highest 20% to be indicative of high cognitive load.
Additionally, we calculate fixations that cause a peak, or a sharp
increase in cognitive load, as causing high cognitive load. We refer
to both of these high cognitive load points as ’points of interest’.
A sharp increase is defined as a delta between two immediate fixa-
tions that is in the highest 10% of delta values. In order to obtain
the most accurate classification of high cognitive load data points,
we use participants’ highlighted identifiers as a ground truth to
determine the percentage thresholds. Therefore, it is important that
participants accurately highlight areas of code and identifiers dur-
ing the follow up question portion of the experiment. We choose
the thresholds that balance between classifying the maximum num-
ber of highlighted identifiers as high cognitive load, while still not
over classifying fixations that are not highlighted. Thresholds are
optimized using a subset of 5 out of 15 participants.

3.6.2  Feature Scaling. Due to natural biological differentiation
between participants and inherent HbO and HbR concentration
differences in the prefrontal cortex, raw Oxy values cannot be
reliably compared across subjects. Within subject comparisons can
also be problematic. For example, if the baseline values for the
fNIRS are sampled while the participant is not properly relaxed
for one snippet, and then again while the participant is relaxed
for another snippet, raw Oxy data will be skewed. To mitigate
this, we normalize all raw Oxy data using feature scaling before
comparing within participant. Feature scaling is a method used to
standardize a range of independent variables within the dataset. To

normalize Oxy values to a range between 0 and 1 inclusive, we use
OXyraw_Oxymin
Oxymax_oxymin
OxYraw is the raw Oxy value, Oxypm;p is the minimum Oxy value

the following formula: normalizedOxy = where
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recorded over the snippet and Oxypqx is the maximum Oxy value
recorded over the snippet. Similar normalization on {NIRS data was
performed by Ikutani and Uwano [22].

3.6.3 fNIRS and Eyetracking Data. To map fNIRS data to fixation
points we use the output from our modified version of iTrace using
system time as our reference point. Fixation data may not always
be consistent with the areas of code that participants highlighted
during the post analysis questions. This is due to participants error
during the follow-up questions phase. In such cases, participants are
asked to verify fixation data at the end of their experiment session.
We use our visualization tool to identify areas of high cognitive load
and peaks during the post analysis step of the procedure. These are
then shown to the participants and they are asked about specific
areas of code where we identify fixations with high cognitive load
and are not highlighted by the participants. If the participants agree
with the data, they are given the choice to highlight additional
sections.

3.6.4 Simple Matching Coefficient (SMC). To answer RQ1, we
use the Simple Matching Coeflicient [37]—a statistic used to com-
pare similarity between two or more datasets. SMC is similar to
the Jaccard index but counts mutual presence (when an attribute
is present in both sets) and mutual absence (when an attribute is
absent in both sets). The Jaccard index only counts mutual pres-
ence. We use SMC to calculate the similarity between the fixations
on identifiers that are highlighted by participants and the set of
fixations that are flagged as having high cognitive load. This way
we count mutual absence (no high cognitive load, and not high-
lighted code) as part of the similarity to assess the algorithm used
to determine high cognitive load.

3.6.5 Wilcoxon Signed-Rank Test. To answer RQz, RQ3, and
RQu4 we need to determine if there is a significant increase between
the average normalized Oxy on treatment snippets compared to the
average normalized Oxy on control snippets. To this end, we use
the paired Wilcoxon signed-rank test, a non-parametric statistical
test used to compare two related samples, to assess whether the
population mean ranks differ. Our null hypothesis is that there is
no difference between the normalized average Oxy values for the
control snippets and treatment snippets. Our alternative hypothesis
is that the normalized average Oxy values for the control snippets
are lower than the normalized average Oxy values for the treatment
snippets.

3.6.6  Cliff’s Delta (d) Effect Size. After performing a Wilcoxon
signed-rank test, we measure the strength of the difference between
the average normalized Oxy on treatment snippets and the average
normalized Oxy on control snippets. Cliff’s delta (d) effect size [18]
is a non-parametric statistic estimating whether the probability that
arandomly chosen value from one group is higher than a randomly
chosen value from another group, minus the reverse probability.
Possible values for effect size range from -1 to 1, with 1 indicating
there is no overlap between the two groups and all values from
group 1 are greater than the values from group 2, -1 indicating there
is no overlap between the two groups but all values from group
1 are lower than the values from group 2, and 0 indicating there
is a complete overlap between the two groups and thus there is
no effect size. The guideline for interpreting effect size between 0
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Table 4: Similarity between fixations with high cognitive
load and highlighted fixations.

Treatment SMC Treatment SMC
German Code 0.87  Prose 0.81
0.76 0.81
0.82 0.70
0.79 0.73
0.81 0.65
0.82 0.75
Average 0.81  Average 0.74
Total Average 0.78

and 1 is as follows: 0 < |d| < 0.147: negligible, 0.147 < |d| < 0.33:
small, 0.33 < |d| < 0.474: medium, 0.474 < |d| < 1: large.

4 RESULTS

RQ1: Can developers’ cognitive load be accurately associated with
identifiers’ terms using fNIRS and eye tracking devices?

Table 4 contains the SMC values calculated between fixation data
containing identifiers highlighted by participants and fixations that
have high cognitive load values. Each SMC value is calculated per
participant. The average SMC for the two comprehension snippets,
German code and English prose, is 0.81 and 0.74 respectively, with
a total average of 0.78. This means that 78% of the fixations are cor-
rectly identified as having high cognitive load and are highlighted
by the participant, or do not have high cognitive load and are not
highlighted by the participant. Interestingly, for code snippets that
contain German code, we observe a higher average similarity.

Achieving 100% similarity is probably too optimistic. For code
snippets that contain German code, for example, participants can-
not be expected to reliably highlight all parts of the code that may
have caused confusion or that caused them difficulties. For instance,
some parts of source code may cause an initial increase in cognitive
load, such as a computational statement, and is picked up by the
fNIRS. However, this statement might not be registered as some-
thing the participant deems as confusing or difficult to understand
and is therefore not highlighted. When exploring the nature of the
discrepancy over the remaining 19% of the data points—i.e., analyz-
ing the fixations that are not highlighted by participants—we find
that three participants exhibit high cognitive load for fixations over
"if statements" containing computations, two participants exhibit
cognitive load over statements that contain return statements, one
participant exhibits high cognitive load on a German comment, and
one participant exhibits high cognitive load initially, at the very
beginning of the code snippet. For example, one participant exhibits
high cognitive load over the line of code: if(pos < @), when asked
if this statement indeed caused them any confusion the participant
explains that it is not a confusing statement, but that it requires
effort to understand and recall the variable pos.

When analyzing the English prose treatment regarding the fixa-
tions recorded as containing high cognitive load and not highlighted
by participants, we see that three participants exhibit high cogni-
tive load over the comprehension questions and three participants
exhibit high cognitive load on words that are in sentences that
contain other highlighted words.
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Figure 2: Percentage of points of interest for fixations in con-
trol treatment and fixations containing LAs in LA treatment.

RQ; Summary: using fNIRS and eyetracking devices, develop-
ers’ cognitive load can be accurately associated with identifiers
in source code and text, with a similarity of 78% compared to
self-reported high cognitive load.

RQ2: Do inconsistencies in the source code lexicon cause a mea-
surable increase in developers’ cognitive load during program com-
prehension?

Figure 2 shows the distribution of the percentage of high cog-
nitive load data points identified automatically, i.e., the points of
interest. The percentage of points of interest are calculated over
fixations that do not contain linguistic antipatterns in snippets with
the control treatment (i.e., all fixations) and over fixations that do
contain linguistic antipatterns in snippets with the LA treatment.
There are a total of 10 participants who completed both a control
snippet and a snippet with the LA treatment. Performing a paired
Wilcoxon signed-rank test we obtain a significant p-value (0.0009
p-value), with a large effect size (d = -1), which indicates that fixa-
tions over identifiers that contain linguistic antipatterns contain a
significantly higher percentage of points of interest, as compared
to fixations in the control snippets.

Figure 3 contains the distribution of normalized Oxy averages
per participant, over both snippets that receive the LA treatment
and control snippets. This data is taken from participants belonging
to groups 1 and 2 as described in Section 3.3. There are a total of
eight participants that completed both a task with a control treat-
ment and a task with an LA treatment. Five participants were able
to complete the bug localization in both code snippets successfully
and three participants were only able to complete the bug local-
ization in control snippets. One of the three participants failed the
task in both code snippets and was excluded from the analysis,
therefore the analysis is carried out on data from seven participants
total. Performing a paired Wilcoxon signed-rank test we obtain
a significant p-value (0.003), with a large effect size (d = -0.81),
which indicates that the presence of linguistic anitpatterns in the
source code significantly increases the average Oxy a participant
experiences.
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Figure 3: Normalized average Oxy
on control vs. LA treatments.

From the post analysis survey, we observe that participants made
comments on source code containing linguistic antipatterns in 9 out
of 12 tasks. Two participants noted linguistic antipattern B.1 (Not
implemented condition), where a condition in a method comment
is not implemented. One of these two participants showed high
cognitive load when reading the line of comment that was not
implemented and both participants explicitly stated that they spent
time searching the code for the unimplemented condition but could
not find it. Also, five participants noted linguistic antipattern C.2
(Method signature and comment are opposite). One such example in
the code snippets is that method signature is getPieDatasetTotals
while the comment states sets the calculated total of all the
values in a PieDataset. One participant highlighted that such
linguistic antipattern is confusing. This participant as well as two
other participants who stated that they were able to filter out the
inconsistency between method names and comments showed high
cognitive load on fixations over the source code containing the LA.

RQ; Summary: The existence of linguistic antipatterns in the
source code significantly increases the cognitive load experi-
enced by participants.

RQ3: Do structural inconsistencies related to the readability of the
source code cause a measurable increase in developers’ cognitive load
during program comprehension?

Figure 4 contains the distribution of normalized Oxy averages
per participant, over both snippets that receive the structural treat-
ment and control snippets. There are a total of eight participants
that completed both a task with a control treatment and a task with
a structural treatment. This data is taken from participants belong-
ing to groups 1 and 4. Four participants were able to complete bug
localization in both code snippets successfully, four participants
were only able to complete bug localization in the control snippets.
Results from a paired Wilcoxon signed-rank test are not statistically
significant (p — value=0.14), with a medium effect size (d=-0.47),
which indicates that there is no evidence that structural inconsis-
tencies alone increase the average cognitive load that participants
experience during program comprehension in the context of a bug
localization task.

Control
Treatment Treatment

Figure 4: Normalized average Oxy
on control vs. structural treatments.

293

LA & Structural
Treatment

Structural Control

Treatment

Figure 5: Normalized average Oxy
on control vs. LA & structural treatments.

From the post analysis survey, we observe that participants made
comments on source code containing poor structure in 10 out of
12 tasks. 9 participants found poor structure, including incorrect
indentation and breaking one line of code into multiple of lines,
created frustration and slowed down their performance in bug local-
ization tasks. One participant commented that “terrible formatting
severely increases readers burden”. Only one participant commented
that the structure was not confusing since she/he was able to click
on opening brackets to find the associated closing brackets.

RQ3 Summary: Although participants found structural incon-
sistencies to be frustrating, there is no statistical evidence that
structural inconsistencies increase the average cognitive load
that participants experience.

RQ4: Do both structural and lexical inconsistencies combined cause
a measurable increase in developers’ cognitive load during program
comprehension?

Figure 5 contains the distribution of normalized Oxy averages
per participant, over snippets with a control treatment and LA &
Structural treatment. There are a total of six participants that com-
pleted tasks with both a control treatment and a treatment with
linguistic anitpatterns and structural inconsistencies. This data is
taken from participants belonging to groups 2 and 4. All six partici-
pants successfully completed the task with the control treatment
but only two participants successfully completed the task in the
treatment snippet. Performing a paired Wilcoxon signed-rank test
did not show statistically significant results (p — value=0.48), with
a small effect size (d=-0.28), meaning that there is no evidence that
structural inconsistencies affecting the readability and comprehen-
sibility of the source code combined with linguistic antipatterns
significantly increase the cognitive load that participants experi-
ence.

Interestingly, in four out of six participants, the average Oxy over
control snippets is higher than over snippets containing the LA &
structural treatment. Using the post analysis survey, as well as the
snippets questionnaire we observe that all four participants were
mislead by the structural and linguistic elements when they are part
of the same treatment. All four participants failed at locating the bug
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Table 5: Bug localization task results: success rate and time.

Treatment #Bugs # Bugs Found (%) Avg. Time (min.)
Control 11 10 (90.9%) 3.7
LA 12 9 (75.0%) 5.0
Structural 12 7 (58.0%) 4.7
LA & Structural 10 4 (40.0%) 6.3

in the code, which indicates that the treatment did in fact negatively
affect their comprehension of the code. For the two participants
that did correctly locate the bug, their average cognitive load is
considerably higher compared to the control snippets (i.e, 0.19 and
0.51 difference between treatments per participant).

From the post analysis survey, we observe that participants made
comments on linguistic antipatterns in 7 out of 10 of the tasks and
structural inconsistencies in 9 out of 10 of tasks with both the LA
and structural treatments. Two participants noted linguistic an-
tipattern E.1 (Says many but contains one), where variable name
replacementValues actually contains a single value. Both partici-
pants commented that they were able to understand from the from
context and the naming did not hinder bug finding. They showed
low cognitive load for the identifiers containing the LA. Also, two
participants noted LA F.2 (Attribute signature and comment are
opposite), where the comment states min double value while the
attribute is assigned with value Integer.MAX_VALUE. Both partici-
pants found this linguistic antipattern misleading, prolonged their
task, and showed high cognitive load. All nine participants who
identified structural inconsistencies in source code highlighted that
such inconsistencies caused distractions and prolonged the bug
localization task. One participant commented that although the
indentations was frustrating, it did not hinder bug localization.

Overall, 30 out of 45 bug localization tasks were completed suc-
cessfully. The distribution of successfully completed tasks amongst
four treatment groups is shown in Table 5. Over 90% of the bugs
were found in the control group with average time of 3.7 minutes.
Performance decreases as linguistic antipatterns and poor struc-
ture characteristics are added (75% and 58%, respectively). At the
same time, the average time spent on bug localization increases as
linguistic antipatterns and poor structure characteristics are added
(5 minutes and 4.71 minutes, respectively). When both linguistic
antipatterns and poor structure are present in the code snippets,
only 40% of the bugs were localized successfully with average time
of 6.25 minutes. The outcome shows that the presence of struc-
tural and lexical inconsistencies slows down and even hinders bug
localization.

RQ4 Summary: When analyzing the within group participant
data, source code containing both lexical and structural inconsis-
tencies mislead more than 60% of the participants. The remain-
ing participants who successfully completed the bug localization
tasks experienced higher cognitive load on code containing both
inconsistencies compared to the control snippets.

5 THREATS TO VALIDITY

This section discusses the threats to validity that can affect our
study. A common classification [39, 40] involves five categories,
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namely threats to conclusion, internal, construct, external, and
reliability threats.

Threats to conclusion validity relate to issues that could affect
the ability to draw correct conclusions about relations between
the treatment and the outcome of an experiment. There is always
heterogeneity in a study group. If the group is very heterogeneous,
there is a risk that the variation due to individual differences is larger
than the one due to the treatment. Our experiment is conducted
with only undergraduate and graduate students instead of a general
population of developers, which reduces the heterogeneity. Another
threat to conclusion validity may come from the statistical tests used
to draw conclusions. Since the collected data cannot be assumed to
be normal, we use non-parametric statistical tests, specifically the
Wilcoxon signed-rank test and the Cliff’s delta effect size.

Threats to internal validity concern the relation between the
independent and dependent variables and factors that could have
influenced the relation with respect to the causality. One potential
confounding factor is the programming experience of participants.
The code snippets used in our study are written in Java but 12 out
of 15 participants consider that they are more proficient in C++
and 5 participants have no previous experience in Java. This might
cause an increased cognitive load. However, that would impact
the results for all treatments equally and thus does not invalidate
our comparison of different treatment groups. Another threat here
might be that as participants perform bug localization tasks, they
can become tired or less motivated as time passes. To mitigate this
threat, we asked feedback from students in the pilot study regarding
the length and difficulty of the snippets to ensure that the exper-
iment is designed with an appropriate length, which is around 1
hour. To minimize the effect of the order, in which participants use
the treatments, the order is assigned randomly to each participant.
Another threat could come from the calibration of thresholds to
define high cognitive load. Indeed, different calibrations could have
produced different results, and also indirectly affected the assess-
ment of the proposed approach. The threshold is experimentally
determined, however, this does not guarantee that the choice is
optimal for every single human subject.

Threats to construct validity concern the relation between theory
and observation. In this study, construct validity threats are mainly
due to measurement errors. As for bug localization tasks, all code
snippets within the same treatment groups are designed to be with
the same difficulty level, which can be affected by subjectiveness
of the researchers. If we conduct the experiment with a different
set of code snippets, the results might not be the same. To mitigate
this threat, performed a pilot study to ensure that the code snippets
are at a similar level of difficulty.

Threats to external validity concern the generalizability of the
findings outside the experimental settings. A potential threat to
external validity in this study might come from the use of students
as participants in the experiment rather than professional develop-
ers, which can raise doubts about how transferable the results are
to the software industry. However, research has shown that given
a carefully scoped experiment on a development approach that
is new to both students and professionals, similar performances
are observed [32]. We believe that students are expected to show
similar performance as professionals when asked to perform bug
localization on an open-source application that they are not familiar
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with. Another potential threat is the selection of the code snippets,
which may not be representative of the studied population. To
mitigate this threat, we extracted code snippets from 2 different
open-source applications from GitHub. We selected code snippets
between 30 and 40 lines of code to ensure that participants will
finish the bug localization tasks within an hour. However, results
might be different on snippets with different length and complexity.

Threats to reliability validity concern the ability to replicate a
study with the same data and to obtain the same results. We provide
details on the selected code snippets and their altered versions in
our replication package [13]. Moreover, we are currently working
on publishing the extension of iTrace and our visualization tool
online.

6 RELATED WORK

A broad range of studies have explored the use of psycho-physiologi-
cal measures to investigate cognitive processes and states in soft-
ware engineering. Eye tracking metrics such as pupil size, saccades,
and fixation duration have been used in combination with other
biometric measures to investigate cognitive processes during soft-
ware engineering tasks. For example, Fritz et al. [16] combined
EEG, eye tracking, and electro dermal activity (EDA) to investigate
task difficulty during code comprehension. Participants performed
mental execution of code and the authors were able to successfully
predict the perceived task difficulty.

Similarly, Miiller et al. conducted a study using heart rate vari-
ability and EDA [26]. They associated biometric data to specific
areas of code changed by developers through the use of interaction
logs in Eclipse and were able to use the data to predict code quality
concerns within areas of changed source code. Lee et al. [23] used
a combination of EEG and eye tracking metrics to predict task dif-
ficulty and programmer expertise. They found that both metrics
could accurately predict expertise and task difficulty.

Although various psycho-physiological measures have proven
to be successful measures of cognitive processes within the domain,
brain imaging techniques as measures of cognitive states remain
a relatively new trajectory of research in empirical software en-
gineering. The first {NIRS study within the domain of software
engineering was conducted by Nakagawa et al. [27] in which they
investigated oxygenation changes in the prefrontal cortex as a re-
sponse to mental code execution tasks of varying difficulty. They
discovered a correlation between increased blood flow in the pre-
frontal cortex and difficulty of the task. The experiment was con-
ducted with 10 subjects and involved showing them code snippets
on a sheet paper.

To the best of our knowledge the only other fNIRS study con-
ducted within the domain was by Ikutani and Uwano [22], who
used fNIRS to investigate the effects of variables and control flow
statements on blood oxygenation changes in the prefrontal cor-
tex. They were able to conclude that oxygenation changes in the
prefrontal cortex reflect working-memory intensive tasks. Their
experiment involved 11 participants reading code on a screen that
consisted of arithmetic and control flow statements.

The first fMRI study within the domain was conducted by Sieg-
mund et al. [35] where participants were asked to read short source
code snippets and find syntax errors in an effort to measure program
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comprehension in the brain. They discovered a network of brain
areas activated that are related to natural language comprehen-
sion, problem solving, and working memory. Another fMRI study
conducted by Siegmund et al. [36] was conducted with the aim of
isolating specific cognitive processes related to bottom up and top
down comprehension strategies. 11 participants were asked to find
syntax and semantic bugs in code that was altered to either remove
semantic cues or obfuscate code through formatting and indenta-
tion changes. They found evidence of semantic chunking during
bottom-up comprehension and lower activation of brain areas dur-
ing comprehension based on semantic cues. Floyd et al. [15] also
conducted an fMRI study, inspired by the work of Siegmund et al.,
which aimed to compare areas of brain activation between source
code and natural language tasks. They use activation patterns to
successfully predict which tasks were being completed.

Although fMRI provides increased spatial resolution over fNIRS
imaging techniques, participants in fMRI studies are asked to read
code from a mirror placed within the fMRI machine. This signifi-
cantly impacts the type and length of the code snippets that can be
used. Moreover, it is difficult to simulate real life working conditions
that developers are used to with studies using fMRI. The portability
and minimally invasive nature of the fNIRS device allows a more
realistic simulation of a real working environment. Moreover, to
the best of our knowledge, no previous studies map and analyze
biometric data at such fine level of granularity that is terms that
compose identifiers. Instead, conclusions are made about the entire
source code snippets. Finally, our work is the first to empirically
investigate the effect of source code lexicon and readability on
developers’ cognitive load.

7 CONCLUSION

In this paper we present an fNIRS study focused on investigating
how the human brain processes source code comprehension tasks,
in particular, whether we can use fNIRS and eyetracking technology
to associate identifiers in source code to cognitive load experienced
by developers. Furthermore, we investigate how poor linguistic,
structural, and readability characteristics of source code affect de-
velopers’ cognitive load. Results show that fNIRS and eyetracking
technology are suitable for measuring and associating cognitive
load to source code at the identifier level of granularity. In addition,
we conclude that the presence of linguistic antipatterns in source
code significantly increases the cognitive load of developers dur-
ing program comprehension tasks. We do not find any evidence
to conclude the same for structural and readability characteristics.
However, when a snippet contains both the structural and linguis-
tic antipattern treatments, program comprehension is significantly
impacted and 60% of participants are unable to complete the task
successfully; we do not observe an increase in cognitive load over
the treatment snippet for those participants. However, for the re-
maining 40% of participants who do complete the tasks successfully,
we observe an increase in cognitive load.

Future work includes replicating the experiment with open-
source/industrial developers as well as evaluating other poor prac-
tices and source code characteristics.
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