LOCALIZATION C*-ALGEBRAS AND K-THEORETIC
DUALITY

MARIUS DADARLAT, RUFUS WILLETT, AND JIANCHAO WU

ABSTRACT. Based on the localization algebras of Yu, and their subse-
quent analysis by Qiao and Roe, we give a new picture of K K-theory in
terms of time-parametrized families of (locally) compact operators that
asymptotically commute with appropriate representations.

1. INTRODUCTION

Let A be a unital C*-algebra, unitally represented on a Hilbert space H.
Assume that there is a continuous family (g;);c(o,00) of compact projections
on H that asymptotically commutes with A, meaning that [¢;,a] — 0 as
t — oo for all @ € A. Note that if p is a projection in A, then the family
t — pg; of compact operators gets close to being a projection, and is thus
close to a projection that is uniquely defined up to homotopy; in particular,
there is a well-defined K-theory class [pg| € Ko(K(H)) = Z. It is more-
over not difficult to see that this idea can be bootstrapped up to define a
homomorphism

(1) (9] : Ko(A) = Z,  [p] = [pg:.

This suggests using such parametrized families (q¢);c[o,c) to define elements
of K-homology.

Indeed, something like this has been done when A = C'(X) is commuta-
tive. In this case, the condition that [g, a] — 0 is equivalent to the condition
that the ‘propagation’ of ¢; (in the sense of Roe, [5, Ch. 6]) tends to zero, up
to an arbitrarily good approximation. Motivated by considerations like the
above, and by the heat kernel approach to the Atiyah-Singer index theorem,
Yu [14] described K-homology for simplicial complexes in terms of families
with asymptotically vanishing propagation using his localization algebras.
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Subsequently, Qiao and Roe [10] gave a new approach to this result of Yu
that works for all compact (in fact, all proper) metric spaces.

In this paper, we present a new picture of Kasparov’s K K groups based
on asymptotically commuting families. Thanks to the relationship between
asymptotically vanishing propagation and asymptotic commutation, our pic-
ture can be thought of as an extension of the results of Yu and Qiao-Roe from
commutative to general (separable) C*-algebras, and from K-homology to
K K-theory. We think this gives an attractive picture of K K-theory. We
also suspect that the ease with which the pairing in line (1) is defined — note
that unlike in the case of Paschke duality, there is no dimension shift, and
unlike in the case of E-theory, there is no suspension — should be useful for
future applications. Having said this, we should note that the picture of the
pairing in line (1) is overly simplified, as in general to get the whole KK
group one needs to consider formal differences of such families of projections
(¢¢) in an appropriate sense.

We now give precise statements of our main results. For a C*-algebra B,
we denote by C, (T, B) the C*-algebra of bounded and uniformly continuous
functions from 7' = [0, 00) to B. Inspired by work of Yu [14] and Qiao and
Roe [10], we define the localization algebra Cr(7) associated to a represen-
tation 7 of a separable C*-algebra A on a separable Hilbert space to be the
C*-subalgebra of C\, (T, L(H)) consisting of all the functions f such that for
alla € A,

[fym(a)] € Co(T,K(H)) and w(a)f € Cu(T, K(H)).

Let us recall that a representation 7 is ample if it is nondegenerate, faithful
and m(A) N K(H) = {0}. One verifies that the isomorphism class of Cr ()
does not depend on the choice of an ample representation 7. In this case,
we write Cr(A) in place of Cr(7) and view A as a C*-subalgebra of L(H).
Note that if A is unital, then

CL(A) = {f € Cu(T, K(H)): [f.a] € Co(T, K(H)), Ya € A}.

In this paper we establish canonical isomorphisms K*(A) = K;(Cr(A)),
1 = 0,1, between the K-homology of A and the K-theory of the localization
algebra Cr(A). More generally, we use results of Thomsen [12] to show
that for separable C*-algebras A, B and any absorbing representation 7 :
A — L(Hp) on the standard infinite dimensional countably generated right
Hilbert B-module Hp, there are canonical isomorphisms of groups

(2) KKi(A,B) — Ki(Cp(m)), i=0,1,
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where the localization C*-algebra Cp(m) consists of those functions f €
Cu(T, L(Hp)) such that for all a € A,

[f,7(a)] € Co(T,K(Hp)) and w(a)f € Cu(T, K(Hp)).

The isomorphism in line (2) is defined and proved by combining Paschke
duality with a generalization of the techniques used by Roe and Qiao in the
commutative case.

The paper is structured as follows. In Section 2, we discuss absorbing

representations and give a version of Voiculescu’s theorem appropriate to
localization algebras. In Section 3, we define the various dual algebras and
localization algebras that we use, and show that they do not depend on the
choice of absorbing representation. In Section 4, we prove the isomorphism
in line (2). Finally, in Section 5, we construct maps K;(Cr(mw)) — E;i(A, B)
and show that they ‘invert’ the isomorphism in line (2) in the sense that the
composition K K;(A, B) — K;(Cr(m)) — E;(A, B) is the canonical natural
transformation from K K-theory to E-theory.
Acknowledgements: Part of this research was conducted during the au-
thors’ visits to the University of Miinster, the University of Hawai‘i at
Manoa, and the Institut Mittag-Leffler. We are grateful for the hospital-
ity of the host institutes. We would also like to thank the referee for a close
reading of the paper, and several useful suggestions.

2. ABSORBING REPRESENTATIONS

Let A, B be separable C*-algebras. If F, F' are countably generated right
Hilbert B-modules, we denote by L(FE,F) the C*-algebra of bounded B-
linear adjointable operators from E to F. The corresponding C*-algebra
of “compact” operators is denoted by K(FE,F), [7]. Set L(E) = L(E,E)
and K(F) = K(E, E). Recall that Hp is the standard infinite dimensional
countably generated right Hilbert B-module.

We shall use the notion of (unitally) absorbing x-representations 7 : A —
L(Hpg), see [12].

Definition 2.1. (i) Suppose that A is a unital separable C*-algebra. A
unital representation w : A — L(Hp) is called unitally absorbing for the
pair (A, B) if for any other unital representation o : A — L(E), there is an
isometry v € Cp(N, L(E, Hp)) such that vo(a) — m(a)v € Co(N, K(E, Hp))
for all a € A.

(ii) Suppose that A is a separable C*-algebra. We denote by A the uni-
talization of A, with the convention that A= A, if A is already unital. A
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representation m : A — L(Hp) is called absorbing for the pair (A, B) if its
unitalization 7 : A — L(Hp) is unitally absorbing for the pair (A, B).

Note that in Definition 2.1, if we denote the components of v by v,, we
have vyo(a) — m(a)v, € K(E, Hg) and lim,_,« ||[vno(a) — w(a)v,|| = 0 for
all a € A.

Theorem 2.2 (Voiculescu, [13]). Any ample representation of a separable
C*-algebra on a separable infinite dimensional Hilbert space is absorbing.

Theorem 2.3 (Kasparov, [7]). Let A be a unital separable C*-algebra and
let B be a o-unital C*-algebra. If either A or B are nuclear, then any unital
ample representation 7 : A — L(H) C L(Hp) is absorbing for the pair
(A, B).

Theorem 2.4 (Thomsen, [12]). For any separable C*-algebras A and B
there exist absorbing representations w: A — L(Hp).

Given two *-representations 7; : A — L(E;) we write that w1 < 9 if there
is an isometry v € C, (T, L(E1, E3)) such that ’
vmi(a) — ma(a)v € Co(T, K(En, E2)).
If in addition v € C (T, L(E1, E2)) is a unitary with the same property, then
we write m ~ .
Let w® : éfo — E1 @ Ef° be the unitary defined by w™ (ho, h1, ha,...) =
ho @ (ha, ha, ...).

Lemma 2.5 (Lemma 2.16, [3]). Let m; : A — L(E;) be two representa-
tions and let v € L(ES°, Ea) be an isometry such that vn(®(a) — ma(a)v €
K(E°,Es) for all a € A. Then u = (1g, ® v)w>®v* + (1g, — vv*) €
L(Ey, E1 ® E3) is a unitary operator such that m(a) ® ma(a) — uma(a)u* €
K(Ey @ E3) for all a € A and moreover

Im1(a) ® m2(a) — uma(a)u®|| < 6[vmy®(a) — mo(a)v| + 4[lvmy®(a”) — ma(a”)v].

Using this lemma, one obtains the following strengthened variation of
Voiculescu’s theorem [13]. This result appears in [2] as Theorem 3.11, except
that the uniform continuity of the isometry v and the unitary w were not
addressed explicitly in the statement.

Theorem 2.6. Let A, B be separable C*-algebras and let w; : A — L(E;),
1 = 1,2 be two representations where E; = Hp. If mo is absorbing, then
T <X ma for some isometry v € Cy(T, L(E1, E2)). If both m and ma are

v
absorbing, then 1 ~ my for some unitary uw € Cy, (T, L(E, E2)).
u
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Proof. Since g absorbs 75° there is an isometry u = (up)n € Cp(N, L(ES®, E2))
such that und®(a) — ma(a)u € Co(N, K(ES°, Es)) for all a € A. Since mo
absorbs 71, there is a sequence of isometries w, € L(Ej, E) with mu-
tually orthogonal ranges such that w,mi(a) — 73°(a)w, € K(E1, E3®) and
limy, o0 ||wpmi(a) — 75°(a)wy|| = 0 for all @ € A. Then v, = u,w, €
L(E1, E) is a sequence of isometries with orthogonal ranges such that the
corresponding isometry v € Cy(N, L(E1, E»)) satisfies vmi(a) — ma(a)v €
Co(N, K(E1, E2)) for all a € A. This follows from the identity

Upwpm (a) —ma(a)upwy, = Up (W, (a) =780 (@) wy) 4+ (un s (a) — o (a)un, )wy,.

Since vv,, = 0 for n # m, one observes that v(n + s) = (1 — 5)/?v, +
st/ 2vn+1, 0 < s <1, extends v to a uniformly continuous isometry v €
Cyu(T, L(E1, E2)) that satisfies m < mo.

v
For the second part of the statement, we note that by the first part
7 < ma. Thus, vaf®(a) — ma(a)v € Co(T, K(E°, Es)), for all a € A

v
where v = (v4)ter is a uniformly continuous isometry with v; € L(ET°, E»).
It follows by Lemma 2.5 that

ur = (1g, @ v)w™v; + (1, — vvy)

is a uniformly continuous unitary such that m; @ mo &~ m. By symmetry we
u

have that 71 @ m9 ~ m; and hence m =~ mo. O
u u

3. DUAL ALGEBRAS

Let A, B be separable C*-algebras and let m : A — L(Hp) be a *-
representation.

Definition 3.1. The localization algebra Cr(m) associated to 7 is the C*-
subalgebra of C (T, L(Hp)) consisting of all the functions f such that
[f,m(a)] € Co(T,K(Hg)) and w(a)f € Cu(T, K(Hp)) for alla € A.

While Cr, () is the central object of the paper, we also need to consider
a series of pairs of C*-algebras and ideals which will play a supporting role:

D(r)={be L(Hp): [b,m(a)] € K(Hp), Ya € A},
C(r)={be L(Hp): m(a)b € K(Hp), Ya € A},
and their parametrized versions,
Dr(m)={f € Cu(T,L(Hp)): [f,7(a)] € Cu(T,K(Hp)), Va € A} = C,(T,D(r)),

Cr(n) = {f € Cu(T, L(Hp)): 7(a)f € Co(T, K(Hp)), Ya € A} = C,(T,C()).
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The evaluation map at 0 leads to the pair
Dy (r) = {f € Dr(m): f(0) =0},
C(m) = {f € Cr(m): f(0) = 0}.

Finally, we view the localization algebra Cp(7) as an ideal of
Dp(w) ={f € Cu(T, L(Hp)): |f,7(a)] € Co(T, K(Hp)), Va € A},

Cr(m)={f€Dr(n): n(a)f € Cu,(T,K(HR)), Ya € A}.

To simplify some of the statements it is useful to introduce the following
notation: Aj(m) = Dp(r), As(w) = Cr(nw), As(m) = DX(w), As(m) = C(n),
As(m) = Dr(m) and Ag(m) = Cr(m). We are going to see that the isomor-
phism classes of these C*-algebras are independent of w, provided that 7 is
an absorbing representation. We follow the presentation from [5, Section 5.2]
where analogous properties of D(7) and C() are established, except that we
need to employ a strengthened version of Voiculescu’s theorem, contained
in Theorem 2.6 above.

Let m,my : A — L(Hp) be two representations.

Lemma 3.2. If my < ma, then the equation ®,(f) = vfv* defines a *-

homomorphism ®,, : Y;T(m) — Drp(ma) with the property that ®,(A;(m)) C

Aj(mg) for all1 < j <6.

Proof. This follows from the identities:

[vfv*, ma(a)] = v[f, m(a)v*+ (vmi(a) —m2(a)v) fo* —v f(vmi(a®) —m2(a”)v)",
ma(a)vfv* = vmi(a) fo* — (vri(a) — ma(a)v) fo*. O

Corollary 3.3. Let m,m2 : A — L(Hp) be two absorbing representations.
Then Aj(m) =2 Aj(ma) for all 1 < j <6.

Proof. Proposition 2.6 yields a unitary v € C, (T, L(Hp)) such that m; ~ 7.
v

The corresponding maps ®, : A;j(m) — Aj(m2) are isomorphisms. O

Lemma 3.4. Let m,m : A — L(Hp) be two representations of A and
suppose that vi,v9 are two isometries such that m1 < mo, © = 1,2. Then

(P )s = (Poy)x : Ku(Aj(m1)) = Ki(Aj(m2)) for all lvéj <6.

1—vvf  vv3

Proof. The unitary v = ( .
Vo] 1 —wv9v5

*> € My(Dp(me)) conjugates

Po ) ver [V 9 ) g follows that (B, ). = (@y,). : Ku(Dr(m1)) —
0 0 0 @,
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K.(Dr(m2)). Similarly, one verifies that the equality (®y,)s = (Do)« :
K. (Aj(m)) = K.(Aj(m2)) holds for all 1 < j <6. O

Denote by 7 the direct sum 7° = @2 7 : A — L(HY) = L(P,., Hp).

Corollary 3.5. If 7 : A — L(Hp) is an absorbing representation, then
the inclusion Dr(n) — Drp(n>°), f — (£,0,0,...) induces isomorphisms on
K -theory: K.(Aj(m)) = K.(A;(n>)), for all1 < j <6.

Proof. We have m < 7, where v € Cy(T,L(Hp,HY)) is the constant

v
isometry defined by v(t)(h) = (h,0,0,...) for any ¢t € T and h € Hp. The
inclusion map from the statement coincides with ®,. On the other hand
m ~ 7 since 7 is absorbing and hence ®,, is an isomorphism. We conclude

u
the proof by noting that (®,). = (P)« by Lemma 3.4. O

4. A DUALITY ISOMORPHISM

Let A and B be separable C*-algebras. We are going to show that when
we fix an absorbing representation m: A — L(Hpg) (the existence of such an
absorbing representation is guaranteed by Theorem 2.4), the K-theory of
Cr(m) is canonically isomorphic to the K K-theory of the pair (4, B).

We start with a technical lemma that will be used several times later.

Lemma 4.1. For any separable C*-algebra D C Cy(T,L(Hpg)) there is a
positive contraction x € C(T, K(Hg)) such that:

(a) [z,d] € Co(T,K(Hg)) for alld € D, and
(b) (1 —2z)d e Co(T,K(Hp)) for alld e DNC(T,K(Hg)).

Proof. Our arguments will in fact show that the statement holds true in
the more general situation where L(Hp) is replaced by a C*-algebra L and
K(Hp) is replaced by a two-sided closed ideal I of L. Let D denote the
C*-subalgebra of L generated by all images d(t) as d ranges over D and ¢t
over T. This is separable, and contains C' = DN T as an ideal. Let (), be
a positive contractive approximate unit for C which is quasi-central in D.
Choose countable dense subsets (dj);2; and (c;)72, of D and DN Cy(T, 1)
respectively. As for each n, the subsets |J,_,{dx(t) : t € [0,n + 1]} and
Up—{ck(t) : t € [0,n + 1]} of D and C respectively are compact, we may
assume on passing to a subsequence of (x,) that

(1) [|[dr(t), za]ll < n%q forall1 <k <mnandallte[0,n+1], and

(ii) [[(1 —zp)ex(t)]| < n%rl forall1 <k <nandallte|0n-+1]
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For t € [n,n+ 1), write s =t —n and set x(t) = (1 — s)x,, + sTp4+1; nOte
that the function x : ¢t — z(t) is uniformly continuous. Then from (i) and
(ii) above we have

(1) [|[dr(t), z(t)]]| < %‘Fl foralll1 <k <mnandallte€nn+1), and
(ii) (1 —2(t))ex(t)]| < n%rl foralll1 <k <nandalltenn+1).

This implies that = has the right properties. ([

We have obvious inclusions Dy (7)) C Dyp(w) and Cr(w) C Cp(w) which
induce a *-homomorphism

n:Dr(m)/Cr(m) = Dr(m)/Cr(m).

Proposition 4.2. For any separable C*-algebras A, B and any representa-
tion m: A — L(Hp), the map n is a *-isomorphism.

Proof. Tt is clear from the definitions that Cr(w) = Dr(m) NCp(w) and hence
71 is injective. It remains to prove that 7 is surjective. It suffices to show
that for any f € Dy(n) there is f € Dp(n) such that f — f € Cp(w). Let
f € Dr(m) be given.

Let D be the C*-subalgebra of C, (T, L(Hpg)) generated by m(A) (em-
bedded as constant functions) and f, and let x be as in Lemma 4.1. With
this choice of z (that depends on f) we define f = (1 — z)f. Note that
f=f—af € Dp(r) since f,z € Dp(r), and f — f = —xf € Cu(T, K (Hp))
since € C, (T, K(Hpg)). In particular it follows that f — f € Cp(r).

It remains to verify that f € Dy, (). This follows as for any a € A,

[f,7(a)] = [(1 —2)f,m(@)] = [r(a),2]f + (1 - 2)[f, 7(a)]. -

An adaptation of the arguments from the paper [10] of Qiao and Roe

gives:

Proposition 4.3. Let A, B be separable C*-algebras and let m: A — L(Hp)
be an absorbing representation. Then
(a) K«(Dr(m)) =0 and hence the boundary map
0: Ki(Dp(m)/CL(7)) = Kit1(CL(m)) is an isomorphism.
(b) The evaluation map at t = 0 induces an isomorphism.
e« : Ku(Dr(m)/Cr(m)) = K«(D(m)/C(r)).

Proof. Fix an ample representation 7 of A. One verifies that if f € Dp (),
then the formula

F(t) = (f(t), f(t+ 1), ..., f(t+7),...)
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defines an element F' € Dp (7). Indeed,

[F(t),w(a)] = ([f(t), w(a)], [f(t + 1), 7(a)], ..., [f (£ + n), w(a)], ...)
and each entry belongs to Cy (7', K (Hp)) and is bounded by ||[f, 7(a)]||. This
shows that [F,7(a)] € Cu(T,K(HY)). Since [f,7(a)] € Co(T, K(Hp)), it
follows immediately that in fact [F,7(a)] € Co(T, K(HE)).

With these remarks, the proof of (a) goes just like the proof of Proposition
3.5 from [10]. Indeed, define *-homomorphisms «; : Dr(7w) — Dr(7),
i=1,2,3,4 by

a1 (f) = (f(t),0,0,...),
ag(f) = (0, f(t+1), f(t+2),...),

a4(f) - (f(t)7f(t + 1)a f(t + 2)7 )

It is clear that a; + as = «4. The isometry v € L(H%O) defined by
v(ho, h1, ha,...) = (0, hg, h1, ha,...) commutes with 7°°(A) and hence v €
Dr (7). Moreover a4(a) = vaz(a)v* and hence (aq)« = (a3)« by [5, Lemma
4.6.2]. Using uniform continuity, one shows that s is homotopic to ag, via
the homotopy f(t) — (0, f(t+s), f(t+s+1),...), 0 < s < 1. We deduce
that
(a1)s + (a2)s = (a1 + a2)s = (aa)s = (a3) = (@2)«

and hence (a1), = 0. This concludes the proof of (a), since (aq)s« is an
isomorphism by Corollary 3.5.

(b) One follows the proof of Proposition 3.6 from [10] to show that both
K. (DY(m)) = 0 and K,(C(m)) = 0. The desired conclusion will then follow
in view of the split exact sequence:

0 —— Di.(m)/Cy(x) — Dr(r)/Cr(r) — D(m)/C(7) — 0.
Any f € DY () can be extended by 0 to an element of C,,(R, L(Hg)). With
this convention, define four maps 3; : D%(w) — DH(7>), i = 1,2,3,4 by

Au(f) = (f(2),0,0,...),
Ba(f) = (0, f(E—1), f(t—2),...),
Bs(f) = (0, f(t), f(t = 1),...)
Ba(f) = (f(), f(t = 1), f(t = 2),...).
This definition requires that one verifies that if f € D%(r), then
Fi(t) = (f(t), f(t = 1), e f(t = 1), )
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defines an element of DY.(7°°). This is clearly the case, since if f is uniformly
continuous, then so is F’ and moreover, just as argued in [10], for each ¢ in a
fixed bounded interval only finitely many components of F’(t) are non-zero,
and hence [F'(t),7*(a)] € K(HY) if [f(t),m(a)] € K(Hp) for all t € T.
Note that (84)« = (83)« since f4(a) = vfs(a)v* where v € Dp(7w™) is the
same isometry as in part (a). Using uniform continuity, one observes that
B3 is homotopic to B2, via the homotopy f(t) — (0, f(t—s), f(t—s—1),...),
0 < s <1. We deduce that

(B1)x + (B2)x = (B1+ B2)x = (Ba)x = (B3)« = (B2)«

and hence (B1). = 0. This shows that K,(D% (7)) = 0, since (81)« is an
isomorphism by Corollary 3.5. The proof for the vanishing of K, (Ch(m)) is
entirely similar. Indeed, with the same notation as above, one observes that
if f € Co(m) then F' € CA(7*>). Moreover, the four maps 3; : DH(w) —
DY.(7%°) restrict to maps 3] : C3(m) — C3(7>°) with 8} homotopic to 85 and
(B])« is an isomorphism by Corollary 3.5. O

Theorem 4.4. Let A, B be separable C*-algebras and let m : A — L(Hp) be
an absorbing representation. There are canonical isomorphisms of groups

a: KKi(A, B) = Ki(Cp(r)), i=0,1.

Proof. Consider the diagram

2

KK(A,B) —~ K;1(D(n)/C(r)) — = K41 (Dr(m) /Cr(m))

-1
|

Ki(Cp(m)) Ki1(Dr(m)/Cr())

where P is the Paschke duality isomorphism, see [9], [11, Remarque 2.8], [12,

-1

Theorem 3.2], and ¢ is the canonical inclusion. The maps 0 and ¢, = e;

are isomorphisms by Proposition 4.3 and 7, is an isomorphism by Proposi-
tion 4.2. (]

As a corollary we obtain the following duality theorem, mentioned in the
introduction. Recall from the introduction that Cr(A) stands for Cr(m),
where 7 is ample (and thus absorbing, by Theorem 2.2), and A is identified
with w(A).

Theorem 4.5. For any separable C*-algebra A there are canonical isomor-

phisms of groups K'(A) = K;(Cr(A)), i=0,1. O
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5. AN INVERSE MAP

Let a : KK;(A,B) =, K;(Cr(m)) be the isomorphism of Theorem 4.4.
Recall that K(Hp) 2 B® K(H). Consider the x-homomorphism
Cu(T,L(HpR))

Co(T,K(Hp))
defined by ®(f ® a) = fm(a) and its restriction to Cr(7) ®max A
Cu(T, K(Hp))
Co(T,K(Hp))

We want ¢ to define a class in E-theory that we can take products with,

P :Dr(7) Qmax A —

@ :Cr(T) @max A —

but have to be a little careful due to the non-separability of the C*-algebra
Cr(m) ®max A. Just as in the case of the K K-groups [11], if C is any
C*-algebra and B is a non-separable C*-algebra one defines F,(B,C) =
1'&nB1 E(B;,C), with By C B and By separable. Moreover if D is separable,
then E(D,B) = ligB1 E(D,By), with By C B and B; separable. With
these adjustments, one has a well-defined product

E(D,B) x Eyp(B,C) — E(D,C).

Moreover, it is clear that [[¢]] defines an element of the group Fgep(Cr(T)®max
A, B).
Recall the isomorphism K;(Cr (7)) = E;(C,Cr(m)). We use the product

Ez(C,CL(W)) X Esep(CL('/T) Qmax A, B) — EZ(A,B)

to define a map (3 : K;(Cr(7)) — Ei(A, B) by 8(2) = [[¢]] o (z @ id4).
The map g is an inverse of « in the following sense.

Theorem 5.1. The composition 8 o a coincides with the natural map
KK;(A,B) - E;(A,B),i=0,1.

Proof. We will give the proof for the odd case ¢ = 1 and leave the even
case for the reader. Recall that the E-theory group E1(A, B) of Connes and
Higson [1] is isomorphic to [[SA, K (Hp)]] by a desuspension result from [4].

For two continuous functions f,g : T — L(Hpg) we will write f(s) ~
g(s) (or f(t) ~ g(t) if f—g € Co(T,K(Hp)). Let {ps : CL(T) Omax
A — K(Hp))}ser be an asymptotic homomorphism representing ¢. More
precisely take ¢ to be a set-theoretic lifting of ¢p. This means that ¢,(f®a) ~
F(s)m(a).

The composition foa: KK (A, B) — E1(A, B) is computed as follows.
Let y € KK (A, B) and let z = Py € Ko(D(w)/C(m)) be its image under
the Paschke duality isomorphism P : KK(A, B) — Ko(D(w)/C(rw)). Let 2z
be represented by a self-adjoint element e € D(7w) C Dr(w) whose image in
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D(m)/C(r) is an idempotent é. We identify D(7) with the C*-subalgebra of
constant functions in Dy (w). Choose an element x € C,(T, K(Hp)) as in
Lemma 4.1 with respect to the (separable) C*-subalgebra D of C, (T, L(Hg))
generated by m(A), e, and K(Hp). Therefore both [z,7(a)] and (1 —
x)[e,m(a)] belong to Co(T, K(Hp)) for all a € A, and moreover (1 — z)e €
Dpr(m) as

(1 —-2x)e,m(a)] =[1—x,7(a)le+ (1 —z)[e,m(a)] € Co(T, K(Hp))

for all a € A. Let e, = (1 — z)e and let é;, be its image in Dr(7)/Cr(m).
Under the isomorphism Dy, (7)/Cr(7) = Dy(mw)/Cr(7) of Proposition 4.2 we
see that ér is just the image of e € Dp(w) in the quotient, which is an
idempotent since é is so. It is then clear that n; 1. (2) = [éL].

Define a #-homomorphism ¢ : C — Dp(n)/Cr(m) by £(1) = é1, and set
S = Cp(0,1). Then (B o «a)(y) is represented by the composition of the
asymptotic homomorphisms from the following diagram.

(3)
4 1 s
S©Co® AL s (n)/Crin) 0 A2EE crm) @ A2~ K(Hp),
where here and throughout the rest of the proof the tensor products are
maximal ones, and the map labelled ¢; is defined by taking the product
with a canonical element ¢ of Ey sep(Dr(m)/Cr(7),Cr (7)) associated to the
extension

0— CL(ﬂ') — DL(W) — 'DL(TF)/CL(F) — 0

that we now discuss. Fixing a separable C*-subalgebra M of Dy (r)/Cr(x),
the image of & in Ey(M,Cr(r)) is defined as follows. Choose a separable
C*-subalgebra M of Dy (m) that surjects onto M, and for each m € M
choose a lift m € M. Let (v)ier be a positive, contractive, and continuous
approximate unit for M N Cr(7) which is quasicentral in M. Then for g €
S = Cp(0,1), ¢ is characterized by stipulating that d;(g ® 1) satisfies

0t(g @ m) ~ g(vy)m

(the choices of (v;) and the various lifts do not matter up to homotopy).
In our case, to compute the composition we need, let M be a separable
C*-subalgebra of Dy, (7) containing e and x, and let (v¢) be an approximate
unit for M N Cr(7) that is quasicentral in M.

On the level of elements, we can now concretely describe the composition
in line (3) as follows. If g € S = Cy(0,1) and a € A, then under the asymp-
totic morphism {u; : SA — K(Hp)}: defined by diagram (3), elementary



LOCALIZATION C*-ALGEBRAS AND K-THEORETIC DUALITY 13

tensors g ® a are mapped as follows

(4)
gRar— gReérL®a I g(v)(1—xz)e®a BAGIN g(ve(s(t)) (1—z(s(t)))em(a)

for any positive map ¢t — s(¢) which increases to oo sufficiently fast. Since
the map t — x(t) is an approximate unit of K (Hp), (1—x)y € Co(T, K(Hp))
for all y € K(Hpg). In particular it follows that (1 — z(s(¢)))ele, w(a)] ~ 0
since [e,m(a)] € K(Hp). Since en(a) = en(a)e + ele, m(a)], it follows from
(4) that

(5) pe(g ® a) ~ gue(s(t))) (1 — z(s(t)))em(ae.

On the other hand, the natural map KK;(A, B) — E1(A, B), maps y to
[[v¢]], where {v; : S® A — K(Hp)}; is described in [1] as follows. Consider
the extension:

0— K(Hp) —» en(A)e+ K(Hp) - A — 0.

Let (ut)ter be a contractive, positive, and continuous approximate unit of
K (Hp) which is quasicentral in em(A)e + K(Hp). Then

V(g ® a) ~ g(ut)em(a)e.

Applying Lemma 4.1 (this time with D the C*-subalgebra of C, (T, L(Hp))
generated by e, m(A), K(Hp), and t — x(s(t))), we can choose (u;); such
that limy oo (1 — ug)z(s(t)) = 0. Since the C*-algebra Cy[0, 1) is generated
by the function f(0) =1 — 6, it follows that lim; o g(u)x(s(t)) = 0 for all
g € ([0, 1), and in particular for all g € Cy(0,1).

Our goal now is to verify that (u¢); is homotopic to (v)¢. Due to the
choice of (u¢); and the comments above, we have that

(6) (g ® a) ~ g(ur)em(a)e ~ g(ue) (1 — x(s(t)))em(ae,

for all a € A and g € Cyp(0,1). Finally, define ,wt(r) = (1 —7r)ve(s(t)) + ruy,
0<r<1. As

[g(w,?’”)), (1 — m(s(t)))eﬂ(a)e} —0ast— o

for all » € [0,1] and a € A, there is an asymptotic morphism H; : SA —
C[0,1] ® K(Hp) defined by the condition

Ht(r) (g®a) ~ g(wgr)) (1 - x(s(t)))eﬂ(a)e.

This gives the desired homotopy joining (1) with (7). O
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As suggested by the referee, we finish this section by sketching another
proof which is maybe a little less self-contained, but more conceptual. The
proof below is analogous to the approach used by Qiao and Roe to establish
[10, Proposition 4.3]. The basic idea in their approach is to apply naturality
of the connecting map in E-theory for the diagram of strictly commutative
asymptotic morphisms

0 — Cr(T) @max A —= DL(7) @max A — (Dr(7)/CL(T)) @max A —= 0

- :

0 — K(Hp) L(Hp) L(Hp)/K(Hp) — 0,

where ¢, and ¢; represent the asymptotic morphisms induced by the -
homomorphisms ® and ¢ from the beginning of this section. The family
¢ is the quotient family induced by ¢, and consists of *-homomorphisms.
Naturality of the boundary map in E-theory in this case amounts to the
equality

(7) [lieel] o [[d¢ @ ida]] = [[wl] o [[¢¢]],

where §; is the boundary map for the top sequence of the diagram before
tensoring with A and ~; is the boundary map for the bottom sequence. See
[1, Lemme 10] for the definition of the boundary maps associated to ex-
tensions (here and elsewhere below one should use limits to deal with the
non-separable algebras involved in the way discussed earlier in this section).
The naturality property of the boundary map with respect to general asymp-
totic morphisms that was discussed in [6, Thm. 5.3] seems to be the closest
statement in the literature to the equality in line (7), but it is nonetheless
not sufficiently general to justify the equality. However, one can combine
the arguments from the second part of the proof of Theorem 5.1 with those
from [6] to verify naturality in full generality and in particular to justify (7).

Now (7) allows us to conceptualize the proof of Theorem 5.1. Let y €
KK;(A,B) and let z = Py € K;11(D(m)/C(w)) be its image under the
Paschke duality isomorphism P : K K;(A, B) = K;+1(D(mw)/C(x)). Consider
na(2) € Kipa(Dp(m)/Co(n)) = Eipr(C, Dy(r)/Cr(m)), where the maps
tx and 7, are isomorphisms as in the proof of Theorem 4.4. We may view
0y L (2) ® [[id4]] as an element of E; 1 (A, Dr(7)/CpL(7) @max A). From (7)
we obtain that

8) [leddlo(B:®idallo (ny " w(2) @ lidal]) = [l o [[de]] o (1 " ex () @ [[id a]])-

The left hand side of (8) represents the element (8 o a)(y) of E;(A, B) by
the very definition of o and S.
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In order to identif}_f the right hand side of (8), it is useful to note that
each individual map ¢, is a *-homomorphism given by ko (evy ®id 4), where
eve: Dp(m)/Cr(m) = D(w)/C(r)

is the evaluation map at ¢t and
ki (D(m)/C(m)) ®max A = L(Hp)/K(Hp), [b]®ar [b-7(a)]

is the “multiplication” *-homomorphism. Thus the asymptotic morphism
{¢:} is homotopic to the constant asymptotic morphism given by @g, which
is equal to K o (evo ®id4). Hence the right hand side of (8) is equal to

[e]) o [[K]] © ((evo)srs " ea(2) @ [[idal])-
It follows from the following commutative diagram of x-homomorphisms

id

D(m)/C(m) D(m)/C(m)

evg
L €vo

Dr(m)/Cr(w) <— Dr(r)/CL(T)

that (evg)«n; '1x(2) = 2. This allows us to simplify the right hand side of
(8) further to
[vell o [[s]] o (= @ [[ida]])

where z is viewed as an element in E;;1(C, D(7w)/C(x)). This can be seen to
be equal to the image of y under the natural map K K;(A, B) — E;(A, B).

Indeed, focusing on the odd case, where y € KK;(A,B) and z = Py €
Ko(D(m)/C(m)), we may choose e € D() as in the first part of the proof of
Theorem 5.1, such that z = [¢] € Ko(D(m)/C(w)). Then the x-homomorphism
a€ A [e-m(—)] € L(Hp)/K(Hp), which represents [[x]] o (z ® [[id4]]), is
the Busby invariant of the extension corresponding to e € D(w). Hence its
composition with the asymptotic morphism {v;}: L(Hp)/K(Hp) — K(Hp)
represents the image of y under the natural map KK;(A4, B) — E1(A, B).
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