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Experiment-directed simulation (EDS) is a technique to minimally bias molecular dynamics

simulations to match experimentally observed results. The method improves accuracy but does

not address the sampling problem of molecular dynamics simulations of large systems. This
work combines EDS with both the parallel-tempering or parallel-tempering well-tempered en-

semble replica-exchange methods to enhance sampling. These methods are demonstrated on the

GYG tripeptide in explicit water. The collective variables biased by EDS are chemical shifts,

where the set-points are determined by NMR experiments. The results show that it is possible to
enhance sampling with either parallel-tempering and parallel-tempering well-tempered ensem-

ble in the EDS method. This combination of methods provides a novel approach for both

accurately and exhaustively simulating biological systems.

Keywords: Molecular dynamic; experiment-directed simulation.

1. Introduction

Molecular simulations are connected to experiments through ensemble properties,

called observables. Often, experimental and simulated values disagree due to chal-

lenges such as limited accuracy of force-¯elds and discrepancies between how

experiments can be represented in a simulation. This disagreement can be improved by

adding an auxiliary biasing potential energy function.1,2 For example, a simulation can

be improved by incorporating experimental results as structural restraints in simu-

lations.3 Often, these restraints are a type of harmonic energy penalty that brings

conformational ensembles closer to the experimentally observed values.4,5 Visiting

states that are outside structural restraints are unfavored with harmonic biases. This

introduces some ambiguity in how strong these energetic restraints should be.

To address the ambiguity in using energetic restraints to match experimental

data, a maximum entropy principle6 can be applied to ¯nd an energy bias that is
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minimal.7,8 This bias acts only in the dimension of the collective variable which

corresponds to the experimental observable.9 Experiment-directed simulation (EDS)

is an implementation of maximum entropy biasing. EDS uses an adaptive biasing

method to converge to the maximum entropy bias that achieves agreement between

molecular simulation collective variables and experimental observables.10 This bias

is also provably the smallest change that can be made to match experimental

data.8,10,11

EDS utilizes a single replica, whereas most other maximum entropy methods

utilize multiple replicas.1 Other biasing methods, such as replica-exchange chemical

shift restrained molecular dynamics simulations4 and restrained-ensemble molecular

dynamics simulation method12 that utilize multiple replicas require multiple replicas

in order to match simulated results to some reference values. This increases the

required computational e®ort, although there is an improvement in sampling due to

the inherent increase of samples with the replicas. EDS, being a single-replica

technique, provides no improvement to sampling. EDS has been applied to classical

molecular dynamics,10 ab initio molecular dynamics13 and coarse-graining.14 EDS

was able to give more accurate results on dynamic properties such as the self-di®usion

coe±cient of lithium in electrolyte solutions,10 and the proton-di®usivity in ab initio

water13 as well.

EDS is a biasing method and this is designed to match the ensemble average

of some collective variables to a certain reference value. EDS lets the underlying

simulation determine the °uctuations and underlying distribution of the collective

variable. Only the expected value is shifted to match the experimental value.

Because EDS is only a method of simulation, it cannot correct or mitigate any error

in the reference value, such as experimental error, human error, or instrumentation

error. If the experimental value instead is a distribution or becomes a distribution,

because a Bayesian inference approach with prior belief is desired, other techniques

allow matching to that desired distribution like experiment-directed metadynamics11

or metainference.15

Aside from accuracy, another challenge in molecular dynamics simulations is

insu±cient sampling of phase space. The so-called \sampling problem"16 is especially

true in solvated macromolecules, where systems can become trapped in energy

minima. EDS introduces a bias in the potential to match experimental averages; it is

not an enhanced sampling technique. Thus, there is a need to use an enhanced

sampling technique with EDS. Multiple enhanced sampling methods have been

developed to alleviate this problem,17 often by biasing sampling to occur along a

certain collective variable.18 This presents a complication with EDS if both enhanced

sampling technique and EDS are applied on the same set of collective variables. For

example, metadynamics19 will add Gaussian bias to the potential energy with respect

to a collective variable, thereby modifying the potential of mean force (PMF) of that

CV. EDS cannot be applied to a collective variable with a biased PMF because EDS

requires canonical samples. For example, if metadynamics is applied to � dihedral

angle and EDS is applied to � dihedral angle, the � angle needs to be re-weighted to
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achieve canonical sampling due to bias on � and the inherent correlation between the

� and �. EDS needs the � variable to be canonically sampled. Hence, EDS and

Metadynamics cannot be applied simultaneously in a simulation. The well-tempered

ensemble method (WTE) provides an alternative approach because it biases the °uc-

tuations in energy, and with an assumption of the underlying potential energy distri-

bution, does not a®ect the canonical sampling of other CVs. WTE can be further

combined with parallel-tempering replica-exchange to improve the sampling further.20–22

In this work, we consider the parallel-tempering well-tempered ensemble (PT-

WTE) combined with EDS22 to improve both sampling and accuracy on an example

system. Like in parallel-tempering replica-exchange, N replicas of the simulation

system are run concurrently. The coldest replica is the system of interest, yet it can

escape free energy minima by swapping con¯gurations with higher temperatures.

The goal of PT-WTE is to reduce the number of replicas while maintaining similar

replica e±ciency.22 It has been shown that PT-WTE metadynamics decreases the

number of replicas from 100 to 10 while maintaining the similar energy landscape of

solvated tryptophan-cage protein.23 It has also been shown to improve speed of

convergence to an accurate FES in model and real systems.22,23 The technique can be

applied to larger systems such as proteins to e±ciently sample their large confor-

mational space.24 The tri-peptide glycine–tyrosine–glycine (GYG) was used as a

model system to demonstrate the implementation. GYG is found in structural and

transport proteins, such as collagen25 and ion channels.26 Either mutations or

complete deletions of this sequence from proteins showed complete or partial loss of a

function in those proteins,27–29 so it has speci¯c functional relevance. The experi-

mental data utilized here are from backbone chemical shifts30 of GYG peptide. These

are used to assess accuracy of the simulation and the free energy surface along the

�–� dihedral angles is used to assess sampling.

Metadynamics metainference31 and replica-averaged metadynamics32 are the

nearest examples of the method proposed here in the literature. Metadynamics

metainference is a combination of the enhanced sampling technique of metady-

namics19 with the ability to match the experimental data of metainference.31 Rep-

lica-averaged metadynamics is the combination of the replica-averaging approach to

matching experimental data32 with the enhanced sampling of metadynamics. A

distinguishing di®erence between our approach and these is that the biasing force

from EDS can be calculated with an enhanced-sampling method ¯rst and then be

applied to a second simulation without replicas. This capability allows dynamic

properties like autocorrelation functions or di®usivities to be computed.

2. Theory

In the WTE method,22 Newton's equation of motion becomes

mR
::
¼ � UðRÞ

@R
� @V ðUðRÞ; tÞ

@R
; ð1Þ
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where m is the mass vector, R is the position vector, UðRÞ is the system potential

energy and V ð�Þ is a time-dependent function of the instantaneous potential energy

which biases the system. V ð�Þ is de¯ned with the following time-derivative:

_V ðU ; tÞ ¼ !e�V ðU ;tÞ=kB�T �ðU � UðtÞÞ; ð2Þ

where ! and �T are tuned constants. The intuition of this equation is to add a

Guassian at each time t centered at UðtÞ, just like in the metadynamics method.19,33

The key parameter in WTE is the bias factor, like in well-tempered metadynamics,33

which is de¯ned relative to system temperature and �T as � ¼ ðT þ�T Þ=T .
Simulating according to this bias will asymptotically lead to the following dis-

tribution of potential energy, assuming normality of the potential energy probability

distribution22:

P ðUÞ1=� / eðU�hUiÞ2=2��U2

; ð3Þ

where hUi and �U2 are the expected value and variance of the potential energy of

the unbiased canonical sampling. This expression shows that under the WTE bias,

the average energies are the same but the variance of distribution is increased by
ffiffiffi

�
p

.

A bias factor of 1 thus leads to canonical sampling. Increasing the bias factor increases

the °uctuations in potential energy.

EDS modi¯es the potential energy of a system with a maximum entropy linear

bias in a collective variable.9 After equilibration, EDS will have the following biased

potential energy:

U 0ðRÞ ¼ UðRÞ þ �fðRÞ; ð4Þ

where � is a Lagrange multiplier determined from an equilibration process described

in White et al.10 and fðRÞ is a di®erentiable collective variable. � is selected such

that hfi ¼ f̂ , where f̂ is a pre-determined value for what the expected value of the

collective variable should be. In this work, we have experimentally determined NMR

chemical shifts for f̂ . The limitation of EDS is that ¯nding � requires calculating hfi
with good sampling of the underlying canonical distribution. The PT-WTE method

can ensure we have su±cient sampling of the distribution of f values. The WTE

process only needs to be modi¯ed to replace UðRÞ with U 0ðRÞ and the previous

analysis holds.

The bene¯t of WTE is that the increased energy °uctuations arising from the

choice of bias factor can improve replica-exchange e±ciency in a parallel-tempering

setting. The probability of exchange for replicas i and j becomes34

P ðex i; jÞ ¼ min½1; expð��1�i½U 0
iðRiÞ � U 0

iðRjÞ� þ ��1�j½U 0
jðRjÞ � U 0

jðRiÞ�Þ�; ð5Þ

where �i ¼ 1=kBTi and U 0
i is the potential energy of the ith replica including the EDS

bias. Note that EDS will have di®erent � for each replica because hfi is a function of

temperature. This exchange rule ensures that the resulting simulation will arrive at a

canonical distribution without re-weighting. The result of this method is both an

enhanced-sampled ensemble and a value for �.
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3. Methods

A short peptide GYG was simulated with EDS10 and PT-WTE22 to enhance

sampling and improve ¯t to experimental NMR chemical shifts from Platzer et al.30

To compare the performance of EDS with enhanced sampling to other simulations,

EDS with PT-WTE was compared to a single replica-unbiased simulation, a single

replica-biased simulation, a parallel-tempering replica-exchange molecular dynamics

(PT) simulation, and replica-unbiased PT-WTE simulation.

About 0.008mg/cm3 of GYG peptide in 10mM NaCl counter-ions was ¯rst

energy minimized, then annealed and equilibrated in the NVT ensemble using

the Canonical Sampling through Velocity Rescaling (CSVR) thermostat.35 The

CHARM2736 force ¯eld and TIP3P37 water model were used throughout. Electro-

static forces were calculated with the particle mesh Ewald method 38, and dispersion

forces were calculated with shifted van der Waals potentials with a cuto® distance of

10�A. The covalent hydrogen bonds were constrained using the LINCS algorithm39 to

enable a 2 fs time step. All simulations were performed in the Gromacs-5.1.4 simu-

lation engine.40 To automatically run Gromacs commands in python, Gromacs-

Wrapper was used.41 To generate an initial extended structure of GYG, the python

package PeptideBuilder was used.42

An equilibration is required for the PT-WTE method. Sixteen replicas of

PT-WTE were tuned for 400 ps to ¯nd parameters that gave increased replica

e±ciency. The replica temperatures used for the 16 replica systems were 293, 299,

304, 310, 316, 323, 329, 336, 342, 349, 355, 363, 370, 377, 385, and 392K, as generated

by the method of Nemoto et al.43 The exchanges were attempted every 250 time

steps. The WTE parameters were chosen following Barducci et al.33 and are shown in

Table 1.

After the aforementioned short PT-WTE equilibration step, EDS was begun

with the static bias from PT-WTE equilibration step. This combined PT-WTE with

EDS had 16 replicas with the same set of temperatures as mentioned above and was

40 ns long. To control against the presence of either EDS bias, or PT-WTE bias, or

both biases, 16 replicas of 40 ns PT simulations with and without EDS bias in the

absence of WTE bias and 16 replicas of 40 ns PT-WTE simulations with and

without EDS bias were run and are shown in Table 1. The large amount of time is

not necessary for the convergence of EDS, but was chosen to get good sampling

statistics. The EDS collective variables biased were chemical shifts30 calculated via

the Plumed2 molecular simulation plugin44. The EDS parameters chosen are shown

in Table 1.

Eight replicas of PT-WTE simulation were also done with and without EDS.

These simulations demonstrate how PT-WTE can use fewer replicas than PT and

still achieve good e±ciency. The parameters are in Table 1. The replicas ran at the

following temperatures: 293, 306, 320, 335, 350, 366, 383, and 400K. Similar to 16

replicas of PT-WTE, 8 replicas of PT-WTE initially consisted of 400 ps equilibration

step, followed by a static production step of 40 ns. There were 3620 atoms in

Enhanced sampling and experiment directed simulations
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the simulation with 1197 TIP3P water molecules and 38 peptide atoms. We used

bias factor of 10 for 16 replicas of PT-WTE and 20 for 8 replicas of PT-WTE.

Deighen et al. studied the e®ect of bias factor in 10 replicas of simulation that studied 39

amino acids long Trp-cage protein.23 They found that increasing the bias factor from 10

to 24 decreased the time it takes to converge to the reference FES.23 Hence, we used

larger bias factor for 16 replicas of PT-WTE compared to 8 replicas of PT-WTE.

Table 1. Overview of simulation systems and their parameters.

Simulation parameters EDSþ PT-WTEa No EDSþ PT-WTEa EDSþ PT No EDSþ PT Expb

Replicas 16 16 16 16 ���
Bias factor 10 10 ��� ��� ���
Hill width kJ

mol

� �

100 100 ��� ��� ���
Hill height kJ

mol

� �

0.1 0.1 ��� ��� ���
Dim. Prop 0.2 ��� 0.2 ��� ���
Range 0.01 ��� 0.01 ��� ���
Time (ns) 40(0.4)a 40(0.4)a 40 40 ���
Results

C� � (ppm) 38.52� 2.35 36.39� 2.13 38.48� 1.84 39.06� 2.89 38.60� 0.08

C� � (ppm) 57.89� 3.21 59.38� 2.35 57.93� 3.25 58.23� 3.34 58.00� 0.08

H � (ppm) 8.29� 0.50 8.20� 0.48 8.20� 0.46 8.25� 0.47 8.16� 0.02

H� � (ppm) 4.58� 0.51 4.04� 0.52 4.54� 0.42 4.61� 0.55 4.55� 0.02

CO � (ppm) 176.28� 1.30 174.78� 1.11 176.25� 1.26 175.34� 1.64 176.30� 0.08

N � (ppm) 120.06� 5.34 118.34� 7.43 120.09� 5.35 119.88� 6.58 120.1� 0.08

Repl E±ciency (%) 39(31)a 21(31)a 22 23 ���
Aver E±ciency (%) 41(40)a 28.2(40)a 23 25 ���

Simulation parameters EDSþ PT-WTE No EDSþ PT-WTE EDSþ No PT No EDSþ No PT Expb

Replicas 8 8 1 1 ���
Bias factor 20 20 ��� ��� ���
Hill width kJ

mol

� �

250 250 ��� ��� ���
Hill height kJ

mol

� �

1 1 ��� ��� ���
Dim. Prop 0.2 ��� 0.2 ��� ���
Range 0.001 ��� 0.01 ��� ���
Time (ns) 40(0.4)a 40(0.4)a 40 40 ���
Results

C� � (ppm) 38.48� 2.06 37.77� 3.05 38.47� 1.71 39.18� 2.58 38.60� 0.08

C� � (ppm) 57.94� 3.35 58.91� 3.14 57.94� 3.06 57.99� 3.33 58.00� 0.08

H � (ppm) 8.20� 0.47 8.22� 0.48 8.37� 0.50 8.21� 0.49 8.16� 0.02

H � � (ppm) 4.54� 0.45 4.26� 0.61 4.54� 0.41 4.68� 0.51 4.55� 0.02

CO � (ppm) 176.25� 1.30 175.00� 1.55 176.30� 1.14 175.40� 1.54 176.30� 0.08

N � (ppm) 120.12� 5.49 117.90� 7.20 120.01� 4.79 119.43� 5.84 120.1� 0.08

Repl E±ciency (%) 55 (40)a 43(39)a ��� ��� ���
Aver E±ciency (%) 62 (51)a 58(53)a ��� ��� ���

Notes: These are the computed averages during various simulations. Both 2.5th and 97.5th percentile of the computed

values are shown as well. The EDS and PT-WTE parameters are shown ¯rst as well as the simulation time. The

chemical shifts are the cumulative averages. The replica-exchange e±ciency is the percentage of attempted replica

swaps that are successful for the least e±cient replica. The average is the e±ciency averaged over all replicas.

(a) PT-WTE was equilibrated for 400 ps and then restarted without further addition of gaussian hills for the 40 ns

simulation. RMSD due to Camshift
45

for N,HN,HA,CA,CB, and C are 3.01,0.56,0.28,1.3,1.36, and 1.38 ppm.

(b) Experimental values are from Platzer et al.
30
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4. Results and Discussion

Table 1 provides an overview of the simulations run for this work. Multiple combi-

nations of enhanced sampling methods with and without EDS were simulated. Each

simulation ran for 40 ns. Sixteen replicas of PT-WTE simulations were equilibrated

for 400 ps to ¯nd the biasing potentials that increased the replica-exchange e±ciency,

prior to enabling EDS. This PT-WTE tune step was run long enough to ensure that

the e±ciency exceeded 30%. Parallel-tempering replica-exchange (PT) with 16

replicas has 23% replica e±ciency, as shown in Table 1. The replica e±ciency is

de¯ned here as the minimum acceptance rate of con¯guration swapping between

replicas. In other words, the lowest among the 16 replicas is taken to be the e±ciency.

This ensures that all replicas exchange at certain threshold rate prohibiting a

di®erent independent system of simulations that are exchanging only with replicas

that have closer temperatures. The averages are also shown for the 40 ns simulations.

Replica-exchange of 20% is the minimum for a well-sampled system,40 and thus

16 was the minimum number of replicas for PT.

The choice of PT-WTE simulation parameters achieved good exchange with the

smaller, 8 replicas system, despite spanning the same temperature range as the 16

replicas systems (293K–400K). Since 8 replicas system had a di®erent set of WTE

parameters, EDS parameters were modi¯ed as well, which included the reduction of

the speed of convergence of EDS (lower range parameter) and increased the speed of

convergence of the PT-WTE method (larger hill height).22 The bias factor was

correspondingly decreased to reduce the strength of bias more quickly. PT-WTE

with 16 replicas had smaller replica e±ciency than 8 replicas PT-WTE in Table 1.

This may be the result of a di®erent set WTE and EDS parameters used in 8 replicas

and 16 replicas simulations.

The EDS method moved the calculated backbone chemical shifts to the experi-

mental values when applied as seen in Table 1. There is a good agreement between

the average chemical shifts in the EDS simulations and experiments with any of the

enhanced sampling methods applied. Even with the slower parameters used in the 8

replica system, the EDS method still achieved the correct values.

Figure 1 shows the cumulative calculated mean backbone chemical shifts over

time during 16 replica PT-WTE with EDS bias, (a) 16 replicas of PT-WTE without

EDS, (b) 16 replicas of PT with EDS, (c) 16 replicas of PT without EDS, 8 replicas of

PT-WTE with EDS (e), 8 replicas of PT-WTE without EDS (f), single replica of

EDS (g), and a standard MD (h). Chemical shifts were modi¯ed to show the absolute

di®erence between cumulative averages and the corresponding experimental chem-

ical shifts. Therefore, the exact match between simulation and experiment is indi-

cated by the convergence of cumulative calculated mean chemical shifts to 0. As

expected, EDS-biased average chemical shifts converge to the reference value with

16 replicas of PT-WTE (Fig. 1(a)), with 16 replicas of PT (Fig. 1(c)), and with

8 replicas of PT-WTE (Fig. 1(e)). EDS does not make instantaneous values of biased

chemical shifts which converge with the reference value, but makes the ensemble

Enhanced sampling and experiment directed simulations
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average to approach the reference value as shown in Fig. S1 of the Supporting

Information. In all of the EDS cases (Figs. 1(a), 1(c), 1(e), and 1(g)), EDS converges

within 1 ns. In all EDS bias simulations (Figs. 1(a), 1(c), 1(e), and 1(g)), average

chemical shifts of the hydrogen connected to backbone nitrogen atom had the highest

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Convergence of chemical shifts to the reference experimental value. Absolute di®erence between
calculated cumulative average and experimental chemical shifts are shown. EDS was used with PT-WTE

for enhanced sampling as shown in (a). (b) Shows that without EDS. (c) EDS with 16 replicas of PT

converges to experiments. The lack of EDS lowers the convergence (d). (e) Displays with fewer replicas,

EDS still converges to experiments. (f) Without EDS, agreement with experiments is poor.
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deviation from the predicted value when compared to other atoms. The Camshift

root mean square deviation for H connected to N is 0.56 ppm, whereas Camshift

predicts deviations to be the highest for N with RMSD of 3.01 ppm in a 28 protein

test set.45 During 40 ns simulation, the cumulative average backbone NH chemical

shift was within 1% of the reference chemical shift. Since PT-WTE and PT swap

con¯gurations between di®erent temperature replicas, chemical shifts also change

whenever the conformations change as indicated by the greater °uctuations

between mean chemical shifts and reference values in PT-WTE and PT with EDS

(Figs. 1(a), 1(c) and 1(d)) simulation compared to single replica EDS (Fig. 1(g)). In

the absence of EDS bias, average chemical shifts in various simulations, shown in

Figs. 1(b)–1(f), do not converge to 0 because the simulation is less accurate. When

EDS was absent in both 16 replicas of PT-WTE (Fig. 1(b)) and 16 replicas of PT

(Fig. 1(d)), the average chemical shifts °uctuated more drastically in Fig. 1(b)

compared to simulation without PT-WTE as shown in Fig. 1(d). This is due to the

better exploration of phase-space with the PT-WTEmethod. The convergence under

a variety of enhanced sampling methods shows that EDS still works well when

combined with enhanced sampling.

To see the e®ect of enhanced sampling and the e®ect of biased chemical shifts to

other collective variables in a simulation, � and � dihedral angles were compared to

regular unbiased MD and to Ramachandran plots from X-ray crystallography.46 The

simulated free energy landscapes of Tyrosine in GYG peptide along � and� dihedral

angles are displayed in Fig. 2. Dihedral angles were computed during the simulations

and their histograms were used to compute the FES. EDS predicted the same global

minimum regardless of presence (Fig. 2(a)) or absence of PT-WTE (Fig. 2(c)) at

� ¼ �1:2 and � ¼ �0:9. The free energy surface shows di®erent global minimum

with EDS because the free energy distribution is biased to satisfy experimental

conditions. As shown in Figs. 2(a) and 2(c), EDS simulations show the global min-

imum to be at � ¼ �1:2 and � ¼ �0:9, di®erent from the one observed by enhanced

(g) (h)

Fig. 1. (Continued)
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sampling alone (Fig. 2(b)). PT-WTE (Fig. 2(b)) found a di®erent global minimum at

around � = 1.2 and � = 1 in the absence of EDS compared to the presence of EDS

(Fig. 2(a)). Also, PT-WTE without EDS explored a region at � = 1 and � in the

[��,�] in Fig. 2(b). This is similar to Tyrosine Ramachandran plot from Vitalini

et al.47 and from Ting et al.46 neither of the single replica EDS (Fig. 2(c)), EDS with

PT-WTE (Fig. 2(a)) nor regular MD (Fig. 2(d)) sampled this region. Although EDS

in the presence of PT-WTE (Fig. 2(a)) did not show aberrant behavior from the

absence of PT-WTE in Fig. 2(c), it showed improved sampling of global minimum

observed in PT-WTE alone at � around 1 radians and at � ¼ 1 radians compared to

the absence of PT-WTE (Fig. 2(c)) and regular MD (Fig. 2(d)). Overall, PT-WTE

improved sampling and EDS modi¯ed the FES to achieve agreement with the NMR

chemical shifts.

(a) (b)

(c) (d)

Fig. 2. Free energy surface (FES) of �-� dihedral angles of Y amino acid from GYG simulations. (a)
shows the FES with EDS and PT-WTE so that backbone chemical shifts match experimental values and

sampling is enhanced. (b) without EDS bias, PT-WTE explores � around 1.5 and � in [�3:14, 3.14]

interval more, and ¯nds a global minimum at about � = 1.5 and � = 1. (c) shows less sampling of global

minimum at � = 1.5 radians and � = 1, compared to (a). (d) shows no exploration of the global minimum
at � = 1.5 and � = 1 and seems to be stuck on negative � angles. All FESs were generated from a 20 ns

NVT simulation at 293K.
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Ramachandran plots from Ting et al.46 of Tyrosine in the sequence GYG were

compared to our results. The result of Ting et al.46 are derived from a bioinformatics

analysis of X-ray crystallographic data of whole proteins. Tyrosine dihedral angle

plot of Tyrosine in YG peptide from Ting et al.,46 was compared to our results, since

YG was closest to GYG. Ting et al. observed three regions of minimum in Tyrosine:

at about (� ¼ �1:0, � ¼ 2:8, which was the global minimum), (� ¼ �1:0,

� ¼ ½�1; 1�), and (� ¼ 1, � ¼ 1). Out of all the FES for simulations that are shown,

Fig. 2(a) was closest to experimentally observed FES by Ting et al.,46 because, local

minimum at (� ¼ 1, � ¼ 1) was predicted correctly and minima at (� ¼ �1:0,

� ¼ 2:8) and (� ¼ �1:0, � ¼ ½�1; 1�) were close relative to each other in Ting

et al.46 and in Fig. 2(a). Ting et al.46 also reported the global minima to be on the

negative � angle axis. A local minimum at around � ¼ 1 and � ¼ 1 radians

reported by Ting et al.,46 was also observed as a minimum in Figs. 2(a)–2(c). This

local minimum was not predicted by the standard MD at all within 20 ns, as seen

in Fig. 2(d). EDS did not show drastic deviation in unbiased structural proper-

ties, such as a dihedral angle of Tyrosine. Indeed, dihedral angles in EDS simu-

lations with or without enhanced sampling showed similar results as X-ray

crystallography did.

Another major question about disagreement between simulations and experi-

ments is whether the underlying cause is lack of sampling or inaccuracy of the force-

¯eld/system. Eight replicas of PT-WTE without EDS show that even with good

sampling, the simulation matches neither the chemical shifts nor the FES from the

EDS simulation, as shown in Fig. 2(b). This is not necessarily due to a de¯ciency in

the CHARMM force ¯eld, but instead could be due to a di®erence in concentration,

ions, and termini between the simulations and the work of Platzer et al.,30 from

which the chemical shifts were measured.

5. Conclusion

Simultaneous enhanced sampling and EDS was demonstrated on the GYG peptide in

explicit solvent. EDS improved the accuracy of the simulation by minimally biasing

the backbone chemical shifts of the peptide to match experimental data from Platzer

et al.30 Single replica simulations with and without EDS bias ran for comparable

time. Both parallel-tempering replica-exchange (PT) and parallel-tempering well-

tempered ensemble (PT-WTE) were used with EDS to improve sampling. Theory

was presented to justify why using both concurrently preserves cannonical sampling.

Compared to the absence of enhanced sampling in normal MD, the system bene¯ted

from enhanced sampling. PT and PT-WTE provided improved sampling and did not

interfere with EDS, with EDS converging within 1 ns. PT-WTE with 8 replicas

spanning 293K to 400K was also demonstrated with EDS, showing that the

PT-WTE method is able to reduce the number of replicas required relative to PT.

We hope to use this new method on larger system to take advantage of both

enhanced sampling and biasing with experiments.
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