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Experiment-directed simulation (EDS) is a technique to minimally bias molecular dynamics
simulations to match experimentally observed results. The method improves accuracy but does
not address the sampling problem of molecular dynamics simulations of large systems. This
work combines EDS with both the parallel-tempering or parallel-tempering well-tempered en-
semble replica-exchange methods to enhance sampling. These methods are demonstrated on the
GYG tripeptide in explicit water. The collective variables biased by EDS are chemical shifts,
where the set-points are determined by NMR experiments. The results show that it is possible to
enhance sampling with either parallel-tempering and parallel-tempering well-tempered ensem-
ble in the EDS method. This combination of methods provides a novel approach for both
accurately and exhaustively simulating biological systems.

Keywords: Molecular dynamic; experiment-directed simulation.

1. Introduction

Molecular simulations are connected to experiments through ensemble properties,
called observables. Often, experimental and simulated values disagree due to chal-
lenges such as limited accuracy of force-fields and discrepancies between how
experiments can be represented in a simulation. This disagreement can be improved by
adding an auxiliary biasing potential energy function.'? For example, a simulation can
be improved by incorporating experimental results as structural restraints in simu-
lations.® Often, these restraints are a type of harmonic energy penalty that brings
conformational ensembles closer to the experimentally observed values.*® Visiting
states that are outside structural restraints are unfavored with harmonic biases. This
introduces some ambiguity in how strong these energetic restraints should be.

To address the ambiguity in using energetic restraints to match experimental
data, a maximum entropy principle® can be applied to find an energy bias that is
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minimal.”® This bias acts only in the dimension of the collective variable which
corresponds to the experimental observable.” Experiment-directed simulation (EDS)
is an implementation of maximum entropy biasing. EDS uses an adaptive biasing
method to converge to the maximum entropy bias that achieves agreement between
molecular simulation collective variables and experimental observables.'® This bias
is also provably the smallest change that can be made to match experimental
data 81011

EDS utilizes a single replica, whereas most other maximum entropy methods
utilize multiple replicas.’ Other biasing methods, such as replica-exchange chemical
shift restrained molecular dynamics simulations* and restrained-ensemble molecular
dynamics simulation method'? that utilize multiple replicas require multiple replicas
in order to match simulated results to some reference values. This increases the
required computational effort, although there is an improvement in sampling due to
the inherent increase of samples with the replicas. EDS, being a single-replica
technique, provides no improvement to sampling. EDS has been applied to classical
molecular dynamics,'’ ab initio molecular dynamics'® and coarse-graining.'* EDS
was able to give more accurate results on dynamic properties such as the self-diffusion
coefficient of lithium in electrolyte solutions,'” and the proton-diffusivity in ab initio
water™® as well.

EDS is a biasing method and this is designed to match the ensemble average
of some collective variables to a certain reference value. EDS lets the underlying
simulation determine the fluctuations and underlying distribution of the collective
variable. Only the expected value is shifted to match the experimental value.
Because EDS is only a method of simulation, it cannot correct or mitigate any error
in the reference value, such as experimental error, human error, or instrumentation
error. If the experimental value instead is a distribution or becomes a distribution,
because a Bayesian inference approach with prior belief is desired, other techniques
allow matching to that desired distribution like experiment-directed metadynamics'!
or metainference.'’

Aside from accuracy, another challenge in molecular dynamics simulations is
insufficient sampling of phase space. The so-called “sampling problem” ! is especially
true in solvated macromolecules, where systems can become trapped in energy
minima. EDS introduces a bias in the potential to match experimental averages; it is
not an enhanced sampling technique. Thus, there is a need to use an enhanced
sampling technique with EDS. Multiple enhanced sampling methods have been
developed to alleviate this problem,'” often by biasing sampling to occur along a
certain collective variable.'® This presents a complication with EDS if both enhanced
sampling technique and EDS are applied on the same set of collective variables. For
example, metadynamics'® will add Gaussian bias to the potential energy with respect
to a collective variable, thereby modifying the potential of mean force (PMF) of that
CV. EDS cannot be applied to a collective variable with a biased PMF because EDS
requires canonical samples. For example, if metadynamics is applied to ® dihedral
angle and EDS is applied to ¥ dihedral angle, the ¥ angle needs to be re-weighted to
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achieve canonical sampling due to bias on ® and the inherent correlation between the
® and ¥. EDS needs the ¥ variable to be canonically sampled. Hence, EDS and
Metadynamics cannot be applied simultaneously in a simulation. The well-tempered
ensemble method (WTE) provides an alternative approach because it biases the fluc-
tuations in energy, and with an assumption of the underlying potential energy distri-
bution, does not affect the canonical sampling of other CVs. WTE can be further
combined with parallel-tempering replica-exchange to improve the sampling further.?’-22

In this work, we consider the parallel-tempering well-tempered ensemble (PT-
WTE) combined with EDS?? to improve both sampling and accuracy on an example
system. Like in parallel-tempering replica-exchange, N replicas of the simulation
system are run concurrently. The coldest replica is the system of interest, yet it can
escape free energy minima by swapping configurations with higher temperatures.
The goal of PT-WTE is to reduce the number of replicas while maintaining similar
replica efficiency.?? It has been shown that PT-WTE metadynamics decreases the
number of replicas from 100 to 10 while maintaining the similar energy landscape of
solvated tryptophan-cage protein.?® It has also been shown to improve speed of
convergence to an accurate FES in model and real systems.?>?* The technique can be
applied to larger systems such as proteins to efficiently sample their large confor-
mational space.”* The tri-peptide glycine-tyrosine-glycine (GYG) was used as a
model system to demonstrate the implementation. GYG is found in structural and

26

transport proteins, such as collagen®® and ion channels.?’ Either mutations or

complete deletions of this sequence from proteins showed complete or partial loss of a

2729 g0 it has specific functional relevance. The experi-

function in those proteins,
mental data utilized here are from backbone chemical shifts*’ of GYG peptide. These
are used to assess accuracy of the simulation and the free energy surface along the
®—U dihedral angles is used to assess sampling.

Metadynamics metainference®’ and replica-averaged metadynamics®> are the
nearest examples of the method proposed here in the literature. Metadynamics
metainference is a combination of the enhanced sampling technique of metady-
namics'? with the ability to match the experimental data of metainference.?' Rep-
lica-averaged metadynamics is the combination of the replica-averaging approach to
matching experimental data®’ with the enhanced sampling of metadynamics. A
distinguishing difference between our approach and these is that the biasing force
from EDS can be calculated with an enhanced-sampling method first and then be
applied to a second simulation without replicas. This capability allows dynamic

properties like autocorrelation functions or diffusivities to be computed.

2. Theory
In the WTE method,?” Newton’s equation of motion becomes

UR) 9V(U(R),1)

"R= "R R
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where m is the mass vector, R is the position vector, U(R) is the system potential
energy and V(-) is a time-dependent function of the instantaneous potential energy
which biases the system. V(-) is defined with the following time-derivative:

V(U,t) = we VUD/AT S — U (1)), (2)

where w and AT are tuned constants. The intuition of this equation is to add a
Guassian at each time ¢ centered at U(t), just like in the metadynamics method."?>**
The key parameter in WTE is the bias factor, like in well-tempered metadynamics,>
which is defined relative to system temperature and AT as v = (T + AT)/T.

Simulating according to this bias will asymptotically lead to the following dis-
tribution of potential energy, assuming normality of the potential energy probability
distribution?®?:

PU)Y7 U~ [AU? (3)

where (U) and AU? are the expected value and variance of the potential energy of
the unbiased canonical sampling. This expression shows that under the WTE bias,
the average energies are the same but the variance of distribution is increased by /7.
A bias factor of 1 thus leads to canonical sampling. Increasing the bias factor increases
the fluctuations in potential energy.

EDS modifies the potential energy of a system with a maximum entropy linear
bias in a collective variable.” After equilibration, EDS will have the following biased
potential energy:

U'(R) =U(R) +af(R), (4)

where « is a Lagrange multiplier determined from an equilibration process described
in White et al.'” and f(R) is a differentiable collective variable. « is selected such
that (f) = f, where f is a pre-determined value for what the expected value of the
collective variable should be. In this work, we have experimentally determined NMR
chemical shifts for f. The limitation of EDS is that finding « requires calculating N
with good sampling of the underlying canonical distribution. The PT-WTE method
can ensure we have sufficient sampling of the distribution of f values. The WTE
process only needs to be modified to replace U(R) with U’(R) and the previous
analysis holds.

The benefit of WTE is that the increased energy fluctuations arising from the
choice of bias factor can improve replica-exchange efficiency in a parallel-tempering
setting. The probability of exchange for replicas i and j becomes®*

P(exi, j) = min[l,exp(y™'B,[U;(R,) — Uj(Ry)] + 77 B,[Uj(R;) — Uj(R)])],  (5)

where 3; = 1/kgT; and U/ is the potential energy of the ith replica including the EDS
bias. Note that EDS will have different « for each replica because (f) is a function of
temperature. This exchange rule ensures that the resulting simulation will arrive at a
canonical distribution without re-weighting. The result of this method is both an
enhanced-sampled ensemble and a value for a.
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3. Methods

A short peptide GYG was simulated with EDS'® and PT-WTE?*? to enhance
sampling and improve fit to experimental NMR chemical shifts from Platzer et al.*"
To compare the performance of EDS with enhanced sampling to other simulations,
EDS with PT-WTE was compared to a single replica-unbiased simulation, a single
replica-biased simulation, a parallel-tempering replica-exchange molecular dynamics
(PT) simulation, and replica-unbiased PT-WTE simulation.

About 0.008 mg/cm® of GYG peptide in 10mM NaCl counter-ions was first
energy minimized, then annealed and equilibrated in the NVT ensemble using
the Canonical Sampling through Velocity Rescaling (CSVR) thermostat.*> The
CHARMZ27°% force field and TIP3P?” water model were used throughout. Electro-
static forces were calculated with the particle mesh Ewald method **, and dispersion
forces were calculated with shifted van der Waals potentials with a cutoff distance of
10 A. The covalent hydrogen bonds were constrained using the LINCS algorithm®’ to
enable a 2fs time step. All simulations were performed in the Gromacs-5.1.4 simu-
lation engine.’’ To automatically run Gromacs commands in python, Gromacs-
Wrapper was used.! To generate an initial extended structure of GYG, the python
package PeptideBuilder was used.*?

An equilibration is required for the PT-WTE method. Sixteen replicas of
PT-WTE were tuned for 400 ps to find parameters that gave increased replica
efficiency. The replica temperatures used for the 16 replica systems were 293, 299,
304, 310, 316, 323, 329, 336, 342, 349, 355, 363, 370, 377, 385, and 392 K, as generated
by the method of Nemoto et al.*® The exchanges were attempted every 250 time
steps. The WTE parameters were chosen following Barducci et al.*?
Table 1.

After the aforementioned short PT-WTE equilibration step, EDS was begun
with the static bias from PT-WTE equilibration step. This combined PT-WTE with
EDS had 16 replicas with the same set of temperatures as mentioned above and was
40ns long. To control against the presence of either EDS bias, or PT-WTE bias, or
both biases, 16 replicas of 40ns PT simulations with and without EDS bias in the
absence of WTE bias and 16 replicas of 40ns PT-WTE simulations with and
without EDS bias were run and are shown in Table 1. The large amount of time is
not necessary for the convergence of EDS, but was chosen to get good sampling
statistics. The EDS collective variables biased were chemical shifts®’
the Plumed2 molecular simulation plugin®*. The EDS parameters chosen are shown
in Table 1.

Eight replicas of PT-WTE simulation were also done with and without EDS.
These simulations demonstrate how PT-WTE can use fewer replicas than PT and
still achieve good efficiency. The parameters are in Table 1. The replicas ran at the
following temperatures: 293, 306, 320, 335, 350, 366, 383, and 400 K. Similar to 16
replicas of PT-WTE, 8 replicas of PT-WTE initially consisted of 400 ps equilibration
step, followed by a static production step of 40ns. There were 3620 atoms in

and are shown in

calculated via
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Table 1. Overview of simulation systems and their parameters.

Simulation parameters EDS + PT-WTE* No EDS + PT-WTE* EDS+PT No EDS + PT Exp®
Replicas 16 16 16 16 —_
Bias factor 10 10 — — —
Hill width (£) 100 100 — — —
Hill height (1) 0.1 0.1 — — —
Dim. Prop 0.2 — 0.2 — —
Range 0.01 — 0.01 — —
Time (ns) 40(0.4) 40(0.4)* 40 40 —
Results

Cp 6 (ppm) 38.52+2.35 36.39 +2.13 3848 +£1.84 39.06 +£2.89 38.60 +0.08
Ca 6 (ppm) 57.89+3.21 59.38 £2.35 57.93+3.25 58.23 £3.34 58.00 +0.08
H 6 (ppm) 8.29 £0.50 8.20£0.48 8.20 +£0.46 8.25+£0.47 8.16 £0.02
Ha 6 (ppm) 4.58 £0.51 4.04£0.52 4.54+0.42 4.61+0.55 4.55+0.02
CO 6 (ppm) 176.28 +1.30 174.78 £1.11 176.25+1.26 175.34+1.64  176.30£0.08
N § (ppm) 120.06 £+ 5.34 118.34 +7.43 120.09 £5.35 119.88 £6.58 120.1£0.08
Repl Efficiency (%) 39(31)* 21(31)* 22 23 —
Aver Efficiency (%) 41(40)* 28.2(40)" 23 25 —

Simulation parameters EDS +PT-WTE No EDS +PT-WTE EDS + No PT No EDS + No PT Exp®

Replicas 8 8 1 1 —
Bias factor 20 20 — — —
Hill width () 250 250 — — —

Hill height (&) 1 1 — — —
Dim. Prop 0.2 — 0.2 — —
Range 0.001 — 0.01 — —
Time (ns) 40(0.4)* 40(0.4)* 40 40 —
Results

Cp 6 (ppm) 38.48 £2.06 37.77+3.05 3847+1.71 39.18 £2.58 38.60 +0.08
Ca 6 (ppm) 57.94+3.35 58.91+3.14 57.94+3.06 57.99 +3.33 58.00 £0.08
H 6 (ppm) 8.20+£0.47 8.22+£0.48 8.37+0.50 8.21+0.49 8.16 =0.02
H o é (ppm) 4.5440.45 4.26 £0.61 4.54+0.41 4.68+£0.51 4.55+0.02
CO 6 (ppm) 176.25+1.30 175.00 + 1.55 176.30+1.14 175.40+1.54  176.30 £0.08
N 6 (ppm) 120.12+5.49 117.90+7.20 120.01+4.79 119.43+5.84  120.140.08
Repl Efficiency (%) 55 (40)* 43(39)" — — —
Aver Efficiency (%) 62 (51)" 58(53)" — — —

Notes: These are the computed averages during various simulations. Both 2.5th and 97.5th percentile of the computed
values are shown as well. The EDS and PT-WTE parameters are shown first as well as the simulation time. The
chemical shifts are the cumulative averages. The replica-exchange efficiency is the percentage of attempted replica
swaps that are successful for the least efficient replica. The average is the efficiency averaged over all replicas.

(a) PT-WTE was equilibrated for 400 ps and then restarted without further addition of gaussian hills for the 40 ns
simulation. RMSD due to Camshift"” for N,HN,HA,CA,CB, and C are 3.01,0.56,0.28,1.3,1.36, and 1.38 ppm.

(b) Experimental values are from Platzer et al.”’

the simulation with 1197 TIP3P water molecules and 38 peptide atoms. We used
bias factor of 10 for 16 replicas of PT-WTE and 20 for 8 replicas of PT-WTE.
Deighen et al. studied the effect of bias factor in 10 replicas of simulation that studied 39
amino acids long Trp-cage protein.?* They found that increasing the bias factor from 10
to 24 decreased the time it takes to converge to the reference FES.? Hence, we used
larger bias factor for 16 replicas of PT-WTE compared to 8 replicas of PT-WTE.
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4. Results and Discussion

Table 1 provides an overview of the simulations run for this work. Multiple combi-
nations of enhanced sampling methods with and without EDS were simulated. Each
simulation ran for 40 ns. Sixteen replicas of PT-WTE simulations were equilibrated
for 400 ps to find the biasing potentials that increased the replica-exchange efficiency,
prior to enabling EDS. This PT-WTE tune step was run long enough to ensure that
the efficiency exceeded 30%. Parallel-tempering replica-exchange (PT) with 16
replicas has 23% replica efficiency, as shown in Table 1. The replica efficiency is
defined here as the minimum acceptance rate of configuration swapping between
replicas. In other words, the lowest among the 16 replicas is taken to be the efficiency.
This ensures that all replicas exchange at certain threshold rate prohibiting a
different independent system of simulations that are exchanging only with replicas
that have closer temperatures. The averages are also shown for the 40 ns simulations.
Replica-exchange of 20% is the minimum for a well-sampled system,” and thus
16 was the minimum number of replicas for PT.

The choice of PT-WTE simulation parameters achieved good exchange with the
smaller, 8 replicas system, despite spanning the same temperature range as the 16
replicas systems (293 K—400 K). Since 8 replicas system had a different set of WTE
parameters, EDS parameters were modified as well, which included the reduction of
the speed of convergence of EDS (lower range parameter) and increased the speed of
convergence of the PT-WTE method (larger hill height).?” The bias factor was
correspondingly decreased to reduce the strength of bias more quickly. PT-WTE
with 16 replicas had smaller replica efficiency than 8 replicas PT-WTE in Table 1.
This may be the result of a different set WTE and EDS parameters used in 8 replicas
and 16 replicas simulations.

The EDS method moved the calculated backbone chemical shifts to the experi-
mental values when applied as seen in Table 1. There is a good agreement between
the average chemical shifts in the EDS simulations and experiments with any of the
enhanced sampling methods applied. Even with the slower parameters used in the 8
replica system, the EDS method still achieved the correct values.

Figure 1 shows the cumulative calculated mean backbone chemical shifts over
time during 16 replica PT-WTE with EDS bias, (a) 16 replicas of PT-WTE without
EDS, (b) 16 replicas of PT with EDS, (c) 16 replicas of PT without EDS, 8 replicas of
PT-WTE with EDS (e), 8 replicas of PT-WTE without EDS (f), single replica of
EDS (g), and a standard MD (h). Chemical shifts were modified to show the absolute
difference between cumulative averages and the corresponding experimental chem-
ical shifts. Therefore, the exact match between simulation and experiment is indi-
cated by the convergence of cumulative calculated mean chemical shifts to 0. As
expected, EDS-biased average chemical shifts converge to the reference value with
16 replicas of PT-WTE (Fig. 1(a)), with 16 replicas of PT (Fig. 1(c)), and with
8 replicas of PT-WTE (Fig. 1(e)). EDS does not make instantaneous values of biased
chemical shifts which converge with the reference value, but makes the ensemble
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average to approach the reference value as shown in Fig. S1 of the Supporting
Information. In all of the EDS cases (Figs. 1(a), 1(c), 1(e), and 1(g)), EDS converges
within 1ns. In all EDS bias simulations (Figs. 1(a), 1(c), 1(e), and 1(g)), average
chemical shifts of the hydrogen connected to backbone nitrogen atom had the highest
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Fig. 1. Convergence of chemical shifts to the reference experimental value. Absolute difference between
calculated cumulative average and experimental chemical shifts are shown. EDS was used with PT-WTE
for enhanced sampling as shown in (a). (b) Shows that without EDS. (c) EDS with 16 replicas of PT
converges to experiments. The lack of EDS lowers the convergence (d). (e) Displays with fewer replicas,
EDS still converges to experiments. (f) Without EDS, agreement with experiments is poor.
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Fig. 1. (Continued)

deviation from the predicted value when compared to other atoms. The Camshift
root mean square deviation for H connected to N is 0.56 ppm, whereas Camshift
predicts deviations to be the highest for N with RMSD of 3.01 ppm in a 28 protein
test set.”” During 40 ns simulation, the cumulative average backbone “H chemical
shift was within 1% of the reference chemical shift. Since PT-WTE and PT swap
configurations between different temperature replicas, chemical shifts also change
whenever the conformations change as indicated by the greater fluctuations
between mean chemical shifts and reference values in PT-WTE and PT with EDS
(Figs. 1(a), 1(c) and 1(d)) simulation compared to single replica EDS (Fig. 1(g)). In
the absence of EDS bias, average chemical shifts in various simulations, shown in
Figs. 1(b)-1(f), do not converge to 0 because the simulation is less accurate. When
EDS was absent in both 16 replicas of PT-WTE (Fig. 1(b)) and 16 replicas of PT
(Fig. 1(d)), the average chemical shifts fluctuated more drastically in Fig. 1(b)
compared to simulation without PT-WTE as shown in Fig. 1(d). This is due to the
better exploration of phase-space with the PT-WTE method. The convergence under
a variety of enhanced sampling methods shows that EDS still works well when
combined with enhanced sampling.

To see the effect of enhanced sampling and the effect of biased chemical shifts to
other collective variables in a simulation, ® and ¥ dihedral angles were compared to
regular unbiased MD and to Ramachandran plots from X-ray crystallography.*® The
simulated free energy landscapes of Tyrosine in GYG peptide along ® and ¥ dihedral
angles are displayed in Fig. 2. Dihedral angles were computed during the simulations
and their histograms were used to compute the FES. EDS predicted the same global
minimum regardless of presence (Fig. 2(a)) or absence of PT-WTE (Fig. 2(c)) at
® =—-1.2 and ¥ = —0.9. The free energy surface shows different global minimum
with EDS because the free energy distribution is biased to satisfy experimental
conditions. As shown in Figs. 2(a) and 2(c), EDS simulations show the global min-
imum to be at ® = —1.2 and ¥ = —0.9, different from the one observed by enhanced
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Fig. 2. Free energy surface (FES) of ®-¥ dihedral angles of Y amino acid from GYG simulations. (a)
shows the FES with EDS and PT-WTE so that backbone chemical shifts match experimental values and
sampling is enhanced. (b) without EDS bias, PT-WTE explores ® around 1.5 and ¥ in [—3.14, 3.14]
interval more, and finds a global minimum at about ® = 1.5 and ¥ = 1. (c) shows less sampling of global
minimum at ® = 1.5 radians and ¥ = 1, compared to (a). (d) shows no exploration of the global minimum
at ® = 1.5 and ¥ = 1 and seems to be stuck on negative ® angles. All FESs were generated from a 20 ns
NVT simulation at 293 K.

sampling alone (Fig. 2(b)). PT-WTE (Fig. 2(b)) found a different global minimum at
around ¢ = 1.2 and ¥ = 1 in the absence of EDS compared to the presence of EDS
(Fig. 2(a)). Also, PT-WTE without EDS explored a region at ® = 1 and ¥ in the
[—7, 7] in Fig. 2(b). This is similar to Tyrosine Ramachandran plot from Vitalini
et al.” and from Ting et al.”® neither of the single replica EDS (Fig. 2(c)), EDS with
PT-WTE (Fig. 2(a)) nor regular MD (Fig. 2(d)) sampled this region. Although EDS
in the presence of PT-WTE (Fig. 2(a)) did not show aberrant behavior from the
absence of PT-WTE in Fig. 2(c), it showed improved sampling of global minimum
observed in PT-WTE alone at ® around 1 radians and at ¥ = 1 radians compared to
the absence of PT-WTE (Fig. 2(c)) and regular MD (Fig. 2(d)). Overall, PT-WTE
improved sampling and EDS modified the FES to achieve agreement with the NMR
chemical shifts.
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Enhanced sampling and experiment directed simulations
Ramachandran plots from Ting et al.’® of Tyrosine in the sequence GYG were
compared to our results. The result of Ting et al.* are derived from a bioinformatics
analysis of X-ray crystallographic data of whole proteins. Tyrosine dihedral angle
plot of Tyrosine in YG peptide from Ting et al.,*® was compared to our results, since
YG was closest to GYG. Ting et al. observed three regions of minimum in Tyrosine:
at about (®=-1.0, ¥ =2.8, which was the global minimum), (® = -1.0,
¥ =[-1,1]),and (& =1, ¥ = 1). Out of all the FES for simulations that are shown,
Fig. 2(a) was closest to experimentally observed FES by Ting et al.,"® because, local
minimum at (® =1, ¥ =1) was predicted correctly and minima at (& = —1.0,
¥ =28) and (® =—-1.0, ¥ = [-1,1]) were close relative to each other in Ting
et al."® and in Fig. 2(a). Ting et al."® also reported the global minima to be on the
negative ® angle axis. A local minimum at around ® =1 and ¥ =1 radians
reported by Ting et al.," was also observed as a minimum in Figs. 2(a)-2(c). This
local minimum was not predicted by the standard MD at all within 20 ns, as seen
in Fig. 2(d). EDS did not show drastic deviation in unbiased structural proper-
ties, such as a dihedral angle of Tyrosine. Indeed, dihedral angles in EDS simu-
lations with or without enhanced sampling showed similar results as X-ray
crystallography did.

Another major question about disagreement between simulations and experi-
ments is whether the underlying cause is lack of sampling or inaccuracy of the force-
field /system. Eight replicas of PT-WTE without EDS show that even with good
sampling, the simulation matches neither the chemical shifts nor the FES from the
EDS simulation, as shown in Fig. 2(b). This is not necessarily due to a deficiency in
the CHARMM force field, but instead could be due to a difference in concentration,
ions, and termini between the simulations and the work of Platzer et al.,*’ from
which the chemical shifts were measured.

5. Conclusion

Simultaneous enhanced sampling and EDS was demonstrated on the GYG peptide in
explicit solvent. EDS improved the accuracy of the simulation by minimally biasing
the backbone chemical shifts of the peptide to match experimental data from Platzer
et al.>® Single replica simulations with and without EDS bias ran for comparable
time. Both parallel-tempering replica-exchange (PT) and parallel-tempering well-
tempered ensemble (PT-WTE) were used with EDS to improve sampling. Theory
was presented to justify why using both concurrently preserves cannonical sampling.
Compared to the absence of enhanced sampling in normal MD, the system benefited
from enhanced sampling. PT and PT-WTE provided improved sampling and did not
interfere with EDS, with EDS converging within 1ns. PT-WTE with 8 replicas
spanning 293K to 400K was also demonstrated with EDS, showing that the
PT-WTE method is able to reduce the number of replicas required relative to PT.
We hope to use this new method on larger system to take advantage of both
enhanced sampling and biasing with experiments.
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