Moving towards Objective Measures of Program
Comprehension

Sarah Fakhoury
Washington State University, USA
School of Electrical Engineering and Computer Science
sarah.fakhoury@wsu.edu

ABSTRACT

Traditionally, program comprehension research relies heavily on
indirect measures of comprehension, where subjects report on their
own comprehension levels or summarize part of an artifact so that
researchers can instead deduce the level of comprehension. How-
ever, there are several potential issues that can result from using
these indirect measures because they are prone to participant biases
and implicitly deduce comprehension based on various factors.
The proposed research presents a framework to move towards
more objective measures of program comprehension through the
use of brain imaging and eye tracking technology. We aim to shed
light on how the human brain processes comprehension tasks,
specifically what aspects of the source code cause measurable in-
creases in the cognitive load of developers in both bug localization
tasks, as well as code reviews. We discuss the proposed methodol-
ogy, preliminary results, and overall contributions of the work.

CCS CONCEPTS

« Social and professional topics — Software maintenance; «
Human-centered computing — Empirical studies in HCI;

KEYWORDS

Program Comprehension, Cognitive Load, Source Code Lexicon,
NIRS, Eyetracking, Biometrics

ACM Reference Format:

Sarah Fakhoury. 2018. Moving towards Objective Measures of Program
Comprehension. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE ’18), November 4-9, 2018, Lake Buena Vista, FL, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3236024.3275426

1 THE RESEARCH PROBLEM

The process of program comprehension is a time-intensive and
fundamental activity for every developer during the software devel-
opment life cycle [22][23][24]. Thus, over the past few decades, pro-
gram comprehension has been studied extensively by researchers
who aim to understand more about how developers comprehend
source code, and look for ways to improve the process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3275426

936

Research has shown than an important contributor to software
comprehension has to do with the quality of the lexicon, i.e., the
identifiers and comments that are used by developers to embed
domain concepts and to communicate with their teammates. There
is also evidence of a correlation between the quality of identifiers
and the quality of a software project [1, 5-7, 15, 17].

However, until recently, understanding the role of source code
lexicon on developers’ comprehension involved measuring the in-
ternal cognitive process using indirect measures of comprehension,
such as self-reported verification or summarization tasks designed
to implicitly deduce comprehension. For example, Binkley et al.
[4] studied the impact of identifier style on code readability. The
authors recorded the time and accuracy of participants during com-
prehension tasks to deduce which identifier style written leads to
more accurate results. Lawrie et al. [13] use source code summaries
and self reported confidence levels to assess comprehension levels
of participants reading source code snippets containing single letter,
abbreviated, and full length identifiers.

In recent years researchers have begun exploring how to use
physiological data to supplement our perspective on comprehen-
sion with direct, empirical measures that can provide a more ob-
jective understanding of the cognitive process behind program
comprehension. For example, Lee et al. [14] used a combination
of EEG and eye tracking metrics to predict task difficulty and pro-
grammer expertise. They found that both metrics could accurately
predict expertise and task difficulty. Fritz et al. [11] combined EEG,
eye tracking, and electro dermal activity (EDA) to investigate task
difficulty during code comprehension.

Despite considerable advancement in biometric research in re-
cent years, very little is known about how the human brain pro-
cesses program comprehension tasks. Recent efforts to investigate
this involve the use of functional magnetic resonance imaging
(fMRI). For example Siegmund et al. conduct a study involving the
use of fMRI to study program comprehension in the brain [20] and
to understand the cognitive processes related to bottom-up and
top-down comprehension strategies [21]. Similarly, Floyd et al. use
fMRI to compare areas of brain activation between source code and
natural language tasks [10]. Despite the success of fMRI studies in
the domain, fMRI machines remain a costly and invasive approach,
with which it is hard to reproduce the real life working conditions
of software developers.

We aim to expand the knowledge on human cognition by in-
troducing functional near infrared spectroscopy (fNIRS) as a more
practical tool to empirically investigate the effects of source code on
brain activity through the hemodynamic response within physical
structures of the brain. FNIRS is a brain imaging technique com-
parable to fMRI [9] as both rely on blood-oxygen-level dependent

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

(BOLD) response and show highly correlated results for cognitive
tasks. The low cost and minimally invasive nature of fNIRS makes
it particularly well suited to the task of uncovering a deeper un-
derstanding of how developers comprehend source code. Existing
research involving the use of fNIRS by Nakagawa et al. [16] inves-
tigates the hemodynamic response during mental code execution
tasks of varying difficulty. The only other fNIRS study in the domain
by Ikutani and Uwano, uses fNIRS to investigate the effects of vari-
ables and control flow statements on blood oxygenation changes
in the prefrontal cortex [12].

Our research aims to improve on the existing research by re-
lating NIRS data to specific terms in the source code in real time
through the use of modern eye tracking devices. This allows re-
searchers to pinpoint problematic elements within the source code
at a very fine level of granularity. To the best of our knowledge, no
previous studies map and analyze biometric data at such fine level
of granularity that is terms that compose identifiers.

By using technology that can provide direct and objective mea-
sures of comprehension we aim to understand how human factors
impact the cost and quality of the software they develop and define
guidelines and tools needed to help those developers create soft-
ware that both requires less mental effort to be understood, and is
easier to maintain.

The rest of the paper is organized as follows: Section 2 discusses
the overall goals of our research and how we plan to contribute to
the existing body of program comprehension research throughout
the thesis. In section 3 we propose a methodology to answer the
research problems presented in this section. Section 4 presents
the preliminary results we have obtained for a subset the research
questions proposed in section 3.

2 EXPECTED CONTRIBUTIONS

The goal of this research is to establish fNIRS and eyetracking as
objective measures of program comprehension in software engi-
neering research as a means to improve software development
practices.

We establish an fNIRS study framework with which we can
tackle advanced research questions and allow fNIRS to be adopted
as a practical measure for program comprehension research. We
expect that by doing this we can provide a methodology to facilitate
the acceptance of {NIRS and eyetracking as objective measures of
comprehension in the research community. Once we have assessed
the suitability of the technology, we obtain objective evidence of
the impact of poor quality lexicon and readability on the cognitive
load of developers during bug localization tasks.

We also expect to shed light on difficult aspects of code reviews
and how lexical, readability, and design antipatterns affect devel-
opers cognitive load during code review tasks. Finally, we expect
to uncover a deeper understand on the aspects of source code that
less experienced developers find more challenging as compared to
more experienced developers.

Ultimately, our contributions will be consolidated and presented
to the research community in the form of guidelines and recom-
mendations for software naming and documentation based on the
insights gained from our investigation of the neuro-cognitive per-
spective of program comprehension.

Sarah Fakhoury

3 METHODOLOGY

In order to explore the effects of various aspects of the source code
on developers’ cognitive load, we break down our methodology
into four main steps. The first step is to assess whether fNIRS and
eyetracking technology can be established together as suitable mea-
surements of comprehension, which to the best of our knowledge
has never been explored before. We then investigate the role of the
source code lexicon, source code readability and developer expe-
rience on program comprehension during bug localization tasks.
Next, we aim to uncover difficult aspects of the code review process
using different lexical, structural, readability and design metrics
within the source code. Finally, using the insights gained through
the studies conducted we will develop new software naming and
documentation guidelines.

3.1 Using fNIRS and Eyetracking as Objective
Measures of Comprehension

RQ1: Can developers’ cognitive load be accurately associated with
identifiers’ terms using fNIRS and eye tracking devices?

Previous work by Nakagawa et al. [16] and Ikutani et al. [12] map
{NIRS data to overall task difficulty or specific methods. We improve
upon this by mapping fNIRS data to an identifier level of granularity.
Our primary goal is to determine if fNIRS and eye tracking devices
can be used to successfully together to capture high cognitive load
within text or source code, at a word level of granularity. We de-
velop a systematic methodology to relate cognitive load data to
eyetracking data over the course of a comprehension task, as well
as, an approach to characterize high cognitive load across partici-
pants. Measuring cognitive load at word level of granularity allows
us to make a distinction between parts of the source code that are
understood and those that are confusing to the developer, which
cannot be achieved if we only consider the cognitive load over an
entire source code snippet.

In order to achieve this we first modify the iTrace plugin [19],
which is a plugin for Eclipse that interfaces with an eyetracker to
determine what source code elements a participant is looking at.
We extend the iTrace plugin to identify source code elements at
identifier level. Next, we come up with a systematic methodology
to synchronize fNIRS and eyetracking data, by mapping fixation
data points from the eyetracker to consolidated data points from
the fNIRS device using system time as our reference point. We also
create an algorithm to determine fixations that contain high cogni-
tive load using average normalized blood oxygenation values over
an entire snippet. Initial thresholds indicating high cognitive load
will be determined with developer input, in the form of highlighted
areas of code that the developers found difficult to understand.

3.2 The Impact of Inconsistencies on Cognitive
Load During Bug Localization Tasks

RQ2: Do inconsistencies in the source code lexicon cause a measur-
able increase in developers’ cognitive load during program
comprehension?

RQ3: Do structural inconsistencies related to the readability of
the source code cause a measurable increase in developers’
cognitive load during program comprehension?

Moving towards Objective Measures of Program Comprehension

Previous work by Arnaoudova et al. [2] investigates the percep-
tion of Linguistic Antipatterns, defined as recurring poor practices
in the naming, documentation, and choice of identifiers in the imple-
mentation of program entities, on internal and external developers.
They find that the majority of developers perceive these inconsis-
tencies as poor practices and should be avoided. Similarly, there
exists a depth of research about how various structural aspects of
source code can affect both the readability of the source code and
impede the comprehension of developers [5][18]. Inspired by these
works we will empirically investigate the effect of poor source code
lexicon and poor readability on developers cognitive load.

In order to investigate both the impact of poor source code lexi-
con and readability on developer’s cognitive load we will conduct
an empirical study in which developers are asked to perform bug
localization tasks on source code snippets that have been altered
to either contain linguistic antipatterns, poor readability, or both.
Using fNIRS and eyetracking technology we will be able to map
instances of high cognitive load of developers to identifiers in the
source code throughout the tasks. We will then be able to com-
pare this data about areas of code that developers found difficult to
that of control tasks that do not contain poor source code lexicon
or readability and draw conclusions about the effects that both
treatments have on cognitive load.

3.3 The Impact of Inconsistencies on Cognitive
Load During Code Review Tasks

RQ4: What aspects of the code review process cause an increase
in the cognitive load of developers?

RQ5: Do inconsistencies in the source code lexicon cause an in-
crease in the cognitive load of developers during the code
review process?

RQ6: Do structural inconsistencies related to the readability of
the source code cause an increase in the cognitive load of
developers during the code review process?

RQ7: Do design anti-patterns in the source code cause an increase

in the cognitive load of developers during the code review
process?

Code reviews are conducted to improve several aspects of soft-
ware maintenance and development. Work by Bacchelli and Bird
[3] suggests that one of the main motivations of modern code re-
views is to improve the quality of a change to the software. During
code reviews developers assess various aspects of the source code,
including the source code lexicon and it’s overall readability. By in-
vestigating developers’ cognitive load during code review tasks we
are able to gain a more in depth idea of what aspects of the source
code developers are looking at and what aspects of the code review
processes are most difficult. This augments insights learned from
answering RQ2 and RQ3 because developers are now tasked with
reviewing the quality of an entire source code snippet, as opposed
to only finding a bug in the source code.

To answer the above research questions we will ask participants
to review code snippets and use fNIRS and eye tracking devices to
capture data during code review tasks. We will analyze collected
data and determine which aspects of the code review process in-
curred the highest amount of cognitive load. We will then investi-
gate various source code metrics of the reviewed code snippets to

938

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

determine which aspects may have contributed to increased cog-
nitive load. The code review tasks will consist of reading various
source code snippets, determining if the code is appropriate, and
leaving comments on the code for the original authors.

3.4 Role of Experience on Cognitive Load
During Program Comprehension Tasks

RQ8: Does developer experience impact the cognitive load of de-
velopers during program comprehension tasks?

Developer experience is a significant factor in the amount of cogni-
tive load experienced during a program comprehension task. Using
data from the empirical studies conducted in sections 3.2 and 3.3,
we aim to take a closer look at how developer experience affects
cognitive load by analyzing the data collected from groups of expert
and novice programmers. We will observe the impact of linguistic
antipatterns and poor readability on both groups, as well as deter-
mine what aspects of the code review processes were more difficult
to one group as compared to another. This will allow us to answer
questions about what factors are the most detrimental to novice
programmers and enable a better understanding about how to more
effectively educate students.

3.5 Improving Existing Software Naming and
Documentation Guidelines

Using insights gained from answering the research questions pre-
sented above, we will augment existing software naming and doc-
umentation guidelines by developing new antipatterns and cata-
loging a list of practices that have been shown to increase cogntive
load in developers. Our ultimate goal is to learn how to best help
educate inexperienced students on how to write source code that
is easy to understand and does not cause unneeded increase in
cognitive load by other developers who maintain their code.

4 CURRENT RESULTS

We have obtained preliminary results relating to RQ1, RQ2, and
RQ3 as defined in Section 3. To answer our research questions
we conduct an empirical study where we include different tasks,
such as a comprehension task and a bug localization task. Figure 1
illustrates the experimental procedure used. The comprehension
task is used to answer RQ1 and determine whether developer’s
cognitive load can be accurately associated to identifier terms. After
the comprehension task, participants are asked to carefully high-
light areas of the code that were difficult or took a lot of time to
understand. This data is used as a means to evaluate the accuracy
of our results. We find that using fNIRS and eyetracking devices,
developers’ cognitive load can be accurately associated with identi-
fiers in source code and text, with a similarity of 78% compared to
self-reported high cognitive load.

Next, as described in Section 3.2, we answer RQ2 and RQ3
through a bug localization task. Participants perform the task on
source code that has been altered to either contain poor lexicon or
poor readability. Follow up questions and a post analysis survey
are used for qualitative analysis of our results. In summary, Re-
sults show that the existence of linguistic antipatterns in the source

ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

Sarah Fakhoury

Repeat

v @ N\

ONLINE Comprehension Bug Localization
Setup Task
Eligibility Survey 5 minut Task
Demographic Survey minutes 2 minutes 6 minutes

Follow-up

Rest Period Post Analysis
. Questions .) Survey
3 minutes 1 minute 5 minutes

Figure 1: Overview of the experimental procedure.

code significantly increases the cognitive load experienced by par-
ticipants. Additionally, we are able to pinpoint instances of high
cognitive load over identifiers containing linguistic antipatterns in
multiple participants.

However, we do not find any evidence to conclude that cog-
nitive load is increased for snippets that contain poor structural
and readability characteristics. When a snippet contains both poor
readability and linguistic antipatterns, program comprehension is
significantly impacted and 60% of participants are unable to com-
plete the task successfully. Although we do not observe an increase
in cognitive load over the treatment snippet for those participants,
we do observe and increase in the remaining 40% of participants
who do complete the tasks successfully. More details on the empiri-
cal study and results may be found in our paper [8].

5 CONCLUSION

Through the proposed research presented in this paper, our goals
are twofold, first we aim to encourage the research community to
adopt more objective measures of program comprehension as a
way of more accurately capturing the nature of developer compre-
hension in research studies and gaining a deeper understanding of
how the human brain processes comprehension tasks. Second, we
aim to improve the current guidelines for the naming and documen-
tation of source code using evidence from these objective measures
about what aspects of source code cause significant increases in
the cognitive load of developer’s trying to understand them.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Venera Arnaoudova, for her
invaluable feedback and constant support. This work is supported
by the NSF (award number CCF-1755995).

REFERENCES

[1] Surafel Lemma Abebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and
Yann Gaél Guéhéneuc. 2012. Can Lexicon Bad Smells improve fault prediction?. In
Proceedings of the Working Conference on Reverse Engineering (WCRE). 235-244.
Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-
guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (2016), 104-158.

Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proceedings of the International Conference on
Software Engineering (ICSE). 712-721.

David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
CamelCase or Under_score. In Proceedings of the International Conference on
Program Comprehension (ICPC). 158-167.

Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a metric for code
readability. IEEE Transactions on Software Engineering (TSE) 36, 4 (2010), 546-558.
Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating
Identifier Naming Flaws and Code Quality: An Empirical Study. In Proceedings of
the Working Conference on Reverse Engineering (WCRE). 31-35.

[2

[

939

—_

7]

—

8]

—

9]

[10

[11

[12

(13]

[14

jpory
&

(16

(17

(18

=
)

[20

[21

[22

~
=

[24]

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring the
Influence of Identifier Names on Code Quality: An empirical study. In Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR).
156-165.

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The Effect of Poor Source Code Lexicon and Readability on Developers’ Cognitive
Load. IEEE International Conference on Program Comprehension (ICPC) (2018).
Frank A. Fishburn, Megan E. Norr, Andrei V. Medvedev, and Chandan J. Vaidya.
2014. Sensitivity of fNIRS to cognitive state and load. Frontiers in human neuro-
science 8 (2014), 76.

Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017. Decoding the
Representation of Code in the Brain: An fMRI Study of Code Review and Expertise.
In Proceedings of the International Conference on Software Engineering (ICSE). 175—
186.

Thomas Fritz, Andrew Begel, Sebastian C Miiller, Serap Yigit-Elliott, and Manuela
Zuger. 2014. Using Psycho-physiological Measures to Assess Task Difficulty in
Software Development. In Proceedings of the International Conference on Software
Engineering (ICSE). 402-413.

Yoshiharu Ikutani and Hidetake Uwano. 2014. Brain activity measurement during
program comprehension with NIRS. In Proceedings of the International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). 1-6.

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In Proceedings of International Conference on
Program Comprehension (ICPC). 3-12.

Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heuiseok Lim.
2017. Mining biometric data to predict programmer expertise and task difficulty.
Cluster Computing (2017), 1-11.

Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the Concep-
tual Cohesion of Classes for Fault Prediction in Object-Oriented Systems. I[EEE
Transactions on Software Engineering (TSE) 34, 2 (2008), 287-30.

Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi
Matsumoto, and Daniel M. German. 2014. Quantifying programmers’ mental
workload during program comprehension based on cerebral blood flow measure-
ment: a controlled experiment. In Proceedings of the International Conference on
Software Engineering (ICSE). 448—-451.

Denys Poshyvanyk, Yann-Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2006. Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification. In Proceedings of the International Conference
on Program Comprehension (ICPC). 137-148.

Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A Simpler Model
of Software Readability. In Proceedings of the Working Conference on Mining
Software Repositories (MSR). 73-82.

Timothy R Shaffer, Jenna L Wise, Braden M Walters, Sebastian C Miiller, Michael
Falcone, and Bonita Sharif. 2015. iTrace: Enabling eye tracking on software
artifacts within the IDE to support software engineering tasks. In Proceedings of
the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 954-957.
Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the International Conference on Software Engineering (ICSE). 378—
389.

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Késtner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 140~150.
Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering (TSE) 10, 5 (September 1984), 494-497.

Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Obser-
vational Study. In Proceedings of the Workshop Software Reengineering (WSR).
36-37.

A. von Mayrhauser and A.M. Vans. 1995. Program comprehension during soft-
ware maintenance and evolution. IEEE Computer 28, 8 (August 1995), 44-55.

	Abstract
	1 The Research Problem
	2 Expected Contributions
	3 Methodology
	3.1 Using fNIRS and Eyetracking as Objective Measures of Comprehension
	3.2 The Impact of Inconsistencies on Cognitive Load During Bug Localization Tasks
	3.3 The Impact of Inconsistencies on Cognitive Load During Code Review Tasks
	3.4 Role of Experience on Cognitive Load During Program Comprehension Tasks
	3.5 Improving Existing Software Naming and Documentation Guidelines

	4 Current Results
	5 Conclusion
	References

