
Moving towards Objective Measures of Program
Comprehension

Sarah Fakhoury
Washington State University, USA

School of Electrical Engineering and Computer Science

sarah.fakhoury@wsu.edu

ABSTRACT

Traditionally, program comprehension research relies heavily on

indirect measures of comprehension, where subjects report on their

own comprehension levels or summarize part of an artifact so that

researchers can instead deduce the level of comprehension. How-

ever, there are several potential issues that can result from using

these indirect measures because they are prone to participant biases

and implicitly deduce comprehension based on various factors.

The proposed research presents a framework to move towards

more objective measures of program comprehension through the

use of brain imaging and eye tracking technology. We aim to shed

light on how the human brain processes comprehension tasks,

specifically what aspects of the source code cause measurable in-

creases in the cognitive load of developers in both bug localization

tasks, as well as code reviews. We discuss the proposed methodol-

ogy, preliminary results, and overall contributions of the work.

CCS CONCEPTS

· Social and professional topics → Software maintenance; ·

Human-centered computing→ Empirical studies in HCI;

KEYWORDS

Program Comprehension, Cognitive Load, Source Code Lexicon,

fNIRS, Eyetracking, Biometrics

ACM Reference Format:

Sarah Fakhoury. 2018. Moving towards Objective Measures of Program

Comprehension. In Proceedings of the 26th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software En-

gineering (ESEC/FSE ’18), November 4ś9, 2018, Lake Buena Vista, FL, USA.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3236024.3275426

1 THE RESEARCH PROBLEM

The process of program comprehension is a time-intensive and

fundamental activity for every developer during the software devel-

opment life cycle [22][23][24]. Thus, over the past few decades, pro-

gram comprehension has been studied extensively by researchers

who aim to understand more about how developers comprehend

source code, and look for ways to improve the process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4ś9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275426

Research has shown than an important contributor to software

comprehension has to do with the quality of the lexicon, i.e., the

identifiers and comments that are used by developers to embed

domain concepts and to communicate with their teammates. There

is also evidence of a correlation between the quality of identifiers

and the quality of a software project [1, 5ś7, 15, 17].

However, until recently, understanding the role of source code

lexicon on developers’ comprehension involved measuring the in-

ternal cognitive process using indirect measures of comprehension,

such as self-reported verification or summarization tasks designed

to implicitly deduce comprehension. For example, Binkley et al.

[4] studied the impact of identifier style on code readability. The

authors recorded the time and accuracy of participants during com-

prehension tasks to deduce which identifier style written leads to

more accurate results. Lawrie et al. [13] use source code summaries

and self reported confidence levels to assess comprehension levels

of participants reading source code snippets containing single letter,

abbreviated, and full length identifiers.

In recent years researchers have begun exploring how to use

physiological data to supplement our perspective on comprehen-

sion with direct, empirical measures that can provide a more ob-

jective understanding of the cognitive process behind program

comprehension. For example, Lee et al. [14] used a combination

of EEG and eye tracking metrics to predict task difficulty and pro-

grammer expertise. They found that both metrics could accurately

predict expertise and task difficulty. Fritz et al. [11] combined EEG,

eye tracking, and electro dermal activity (EDA) to investigate task

difficulty during code comprehension.

Despite considerable advancement in biometric research in re-

cent years, very little is known about how the human brain pro-

cesses program comprehension tasks. Recent efforts to investigate

this involve the use of functional magnetic resonance imaging

(fMRI). For example Siegmund et al. conduct a study involving the

use of fMRI to study program comprehension in the brain [20] and

to understand the cognitive processes related to bottom-up and

top-down comprehension strategies [21]. Similarly, Floyd et al. use

fMRI to compare areas of brain activation between source code and

natural language tasks [10]. Despite the success of fMRI studies in

the domain, fMRI machines remain a costly and invasive approach,

with which it is hard to reproduce the real life working conditions

of software developers.

We aim to expand the knowledge on human cognition by in-

troducing functional near infrared spectroscopy (fNIRS) as a more

practical tool to empirically investigate the effects of source code on

brain activity through the hemodynamic response within physical

structures of the brain. FNIRS is a brain imaging technique com-

parable to fMRI [9] as both rely on blood-oxygen-level dependent

936

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Sarah Fakhoury

(BOLD) response and show highly correlated results for cognitive

tasks. The low cost and minimally invasive nature of fNIRS makes

it particularly well suited to the task of uncovering a deeper un-

derstanding of how developers comprehend source code. Existing

research involving the use of fNIRS by Nakagawa et al. [16] inves-

tigates the hemodynamic response during mental code execution

tasks of varying difficulty. The only other fNIRS study in the domain

by Ikutani and Uwano, uses fNIRS to investigate the effects of vari-

ables and control flow statements on blood oxygenation changes

in the prefrontal cortex [12].

Our research aims to improve on the existing research by re-

lating fNIRS data to specific terms in the source code in real time

through the use of modern eye tracking devices. This allows re-

searchers to pinpoint problematic elements within the source code

at a very fine level of granularity. To the best of our knowledge, no

previous studies map and analyze biometric data at such fine level

of granularity that is terms that compose identifiers.

By using technology that can provide direct and objective mea-

sures of comprehension we aim to understand how human factors

impact the cost and quality of the software they develop and define

guidelines and tools needed to help those developers create soft-

ware that both requires less mental effort to be understood, and is

easier to maintain.

The rest of the paper is organized as follows: Section 2 discusses

the overall goals of our research and how we plan to contribute to

the existing body of program comprehension research throughout

the thesis. In section 3 we propose a methodology to answer the

research problems presented in this section. Section 4 presents

the preliminary results we have obtained for a subset the research

questions proposed in section 3.

2 EXPECTED CONTRIBUTIONS

The goal of this research is to establish fNIRS and eyetracking as

objective measures of program comprehension in software engi-

neering research as a means to improve software development

practices.

We establish an fNIRS study framework with which we can

tackle advanced research questions and allow fNIRS to be adopted

as a practical measure for program comprehension research. We

expect that by doing this we can provide a methodology to facilitate

the acceptance of fNIRS and eyetracking as objective measures of

comprehension in the research community. Once we have assessed

the suitability of the technology, we obtain objective evidence of

the impact of poor quality lexicon and readability on the cognitive

load of developers during bug localization tasks.

We also expect to shed light on difficult aspects of code reviews

and how lexical, readability, and design antipatterns affect devel-

opers cognitive load during code review tasks. Finally, we expect

to uncover a deeper understand on the aspects of source code that

less experienced developers find more challenging as compared to

more experienced developers.

Ultimately, our contributions will be consolidated and presented

to the research community in the form of guidelines and recom-

mendations for software naming and documentation based on the

insights gained from our investigation of the neuro-cognitive per-

spective of program comprehension.

3 METHODOLOGY

In order to explore the effects of various aspects of the source code

on developers’ cognitive load, we break down our methodology

into four main steps. The first step is to assess whether fNIRS and

eyetracking technology can be established together as suitable mea-

surements of comprehension, which to the best of our knowledge

has never been explored before. We then investigate the role of the

source code lexicon, source code readability and developer expe-

rience on program comprehension during bug localization tasks.

Next, we aim to uncover difficult aspects of the code review process

using different lexical, structural, readability and design metrics

within the source code. Finally, using the insights gained through

the studies conducted we will develop new software naming and

documentation guidelines.

3.1 Using fNIRS and Eyetracking as Objective

Measures of Comprehension

RQ1: Can developers’ cognitive load be accurately associated with

identifiers’ terms using fNIRS and eye tracking devices?

Previous work by Nakagawa et al. [16] and Ikutani et al. [12] map

fNIRS data to overall task difficulty or specific methods. We improve

upon this by mapping fNIRS data to an identifier level of granularity.

Our primary goal is to determine if fNIRS and eye tracking devices

can be used to successfully together to capture high cognitive load

within text or source code, at a word level of granularity. We de-

velop a systematic methodology to relate cognitive load data to

eyetracking data over the course of a comprehension task, as well

as, an approach to characterize high cognitive load across partici-

pants. Measuring cognitive load at word level of granularity allows

us to make a distinction between parts of the source code that are

understood and those that are confusing to the developer, which

cannot be achieved if we only consider the cognitive load over an

entire source code snippet.

In order to achieve this we first modify the iTrace plugin [19],

which is a plugin for Eclipse that interfaces with an eyetracker to

determine what source code elements a participant is looking at.

We extend the iTrace plugin to identify source code elements at

identifier level. Next, we come up with a systematic methodology

to synchronize fNIRS and eyetracking data, by mapping fixation

data points from the eyetracker to consolidated data points from

the fNIRS device using system time as our reference point. We also

create an algorithm to determine fixations that contain high cogni-

tive load using average normalized blood oxygenation values over

an entire snippet. Initial thresholds indicating high cognitive load

will be determined with developer input, in the form of highlighted

areas of code that the developers found difficult to understand.

3.2 The Impact of Inconsistencies on Cognitive

Load During Bug Localization Tasks

RQ2: Do inconsistencies in the source code lexicon cause a measur-

able increase in developers’ cognitive load during program

comprehension?

RQ3: Do structural inconsistencies related to the readability of

the source code cause a measurable increase in developers’

cognitive load during program comprehension?

937

Moving towards Objective Measures of Program Comprehension ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Previous work by Arnaoudova et al. [2] investigates the percep-

tion of Linguistic Antipatterns, defined as recurring poor practices

in the naming, documentation, and choice of identifiers in the imple-

mentation of program entities, on internal and external developers.

They find that the majority of developers perceive these inconsis-

tencies as poor practices and should be avoided. Similarly, there

exists a depth of research about how various structural aspects of

source code can affect both the readability of the source code and

impede the comprehension of developers [5][18]. Inspired by these

works we will empirically investigate the effect of poor source code

lexicon and poor readability on developers cognitive load.

In order to investigate both the impact of poor source code lexi-

con and readability on developer’s cognitive load we will conduct

an empirical study in which developers are asked to perform bug

localization tasks on source code snippets that have been altered

to either contain linguistic antipatterns, poor readability, or both.

Using fNIRS and eyetracking technology we will be able to map

instances of high cognitive load of developers to identifiers in the

source code throughout the tasks. We will then be able to com-

pare this data about areas of code that developers found difficult to

that of control tasks that do not contain poor source code lexicon

or readability and draw conclusions about the effects that both

treatments have on cognitive load.

3.3 The Impact of Inconsistencies on Cognitive

Load During Code Review Tasks

RQ4: What aspects of the code review process cause an increase

in the cognitive load of developers?

RQ5: Do inconsistencies in the source code lexicon cause an in-

crease in the cognitive load of developers during the code

review process?

RQ6: Do structural inconsistencies related to the readability of

the source code cause an increase in the cognitive load of

developers during the code review process?

RQ7: Do design anti-patterns in the source code cause an increase

in the cognitive load of developers during the code review

process?

Code reviews are conducted to improve several aspects of soft-

ware maintenance and development. Work by Bacchelli and Bird

[3] suggests that one of the main motivations of modern code re-

views is to improve the quality of a change to the software. During

code reviews developers assess various aspects of the source code,

including the source code lexicon and it’s overall readability. By in-

vestigating developers’ cognitive load during code review tasks we

are able to gain a more in depth idea of what aspects of the source

code developers are looking at and what aspects of the code review

processes are most difficult. This augments insights learned from

answering RQ2 and RQ3 because developers are now tasked with

reviewing the quality of an entire source code snippet, as opposed

to only finding a bug in the source code.

To answer the above research questions we will ask participants

to review code snippets and use fNIRS and eye tracking devices to

capture data during code review tasks. We will analyze collected

data and determine which aspects of the code review process in-

curred the highest amount of cognitive load. We will then investi-

gate various source code metrics of the reviewed code snippets to

determine which aspects may have contributed to increased cog-

nitive load. The code review tasks will consist of reading various

source code snippets, determining if the code is appropriate, and

leaving comments on the code for the original authors.

3.4 Role of Experience on Cognitive Load

During Program Comprehension Tasks

RQ8: Does developer experience impact the cognitive load of de-

velopers during program comprehension tasks?

Developer experience is a significant factor in the amount of cogni-

tive load experienced during a program comprehension task. Using

data from the empirical studies conducted in sections 3.2 and 3.3,

we aim to take a closer look at how developer experience affects

cognitive load by analyzing the data collected from groups of expert

and novice programmers. We will observe the impact of linguistic

antipatterns and poor readability on both groups, as well as deter-

mine what aspects of the code review processes were more difficult

to one group as compared to another. This will allow us to answer

questions about what factors are the most detrimental to novice

programmers and enable a better understanding about how to more

effectively educate students.

3.5 Improving Existing Software Naming and

Documentation Guidelines

Using insights gained from answering the research questions pre-

sented above, we will augment existing software naming and doc-

umentation guidelines by developing new antipatterns and cata-

loging a list of practices that have been shown to increase cogntive

load in developers. Our ultimate goal is to learn how to best help

educate inexperienced students on how to write source code that

is easy to understand and does not cause unneeded increase in

cognitive load by other developers who maintain their code.

4 CURRENT RESULTS

We have obtained preliminary results relating to RQ1, RQ2, and

RQ3 as defined in Section 3. To answer our research questions

we conduct an empirical study where we include different tasks,

such as a comprehension task and a bug localization task. Figure 1

illustrates the experimental procedure used. The comprehension

task is used to answer RQ1 and determine whether developer’s

cognitive load can be accurately associated to identifier terms. After

the comprehension task, participants are asked to carefully high-

light areas of the code that were difficult or took a lot of time to

understand. This data is used as a means to evaluate the accuracy

of our results. We find that using fNIRS and eyetracking devices,

developers’ cognitive load can be accurately associated with identi-

fiers in source code and text, with a similarity of 78% compared to

self-reported high cognitive load.

Next, as described in Section 3.2, we answer RQ2 and RQ3

through a bug localization task. Participants perform the task on

source code that has been altered to either contain poor lexicon or

poor readability. Follow up questions and a post analysis survey

are used for qualitative analysis of our results. In summary, Re-

sults show that the existence of linguistic antipatterns in the source

938

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Sarah Fakhoury

Figure 1: Overview of the experimental procedure.

code significantly increases the cognitive load experienced by par-

ticipants. Additionally, we are able to pinpoint instances of high

cognitive load over identifiers containing linguistic antipatterns in

multiple participants.

However, we do not find any evidence to conclude that cog-

nitive load is increased for snippets that contain poor structural

and readability characteristics. When a snippet contains both poor

readability and linguistic antipatterns, program comprehension is

significantly impacted and 60% of participants are unable to com-

plete the task successfully. Although we do not observe an increase

in cognitive load over the treatment snippet for those participants,

we do observe and increase in the remaining 40% of participants

who do complete the tasks successfully. More details on the empiri-

cal study and results may be found in our paper [8].

5 CONCLUSION

Through the proposed research presented in this paper, our goals

are twofold, first we aim to encourage the research community to

adopt more objective measures of program comprehension as a

way of more accurately capturing the nature of developer compre-

hension in research studies and gaining a deeper understanding of

how the human brain processes comprehension tasks. Second, we

aim to improve the current guidelines for the naming and documen-

tation of source code using evidence from these objective measures

about what aspects of source code cause significant increases in

the cognitive load of developer’s trying to understand them.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Venera Arnaoudova, for her

invaluable feedback and constant support. This work is supported

by the NSF (award number CCF-1755995).

REFERENCES
[1] Surafel LemmaAbebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and

Yann Gaël Guéhéneuc. 2012. Can Lexicon Bad Smells improve fault prediction?. In
Proceedings of the Working Conference on Reverse Engineering (WCRE). 235ś244.

[2] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-
guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (2016), 104ś158.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proceedings of the International Conference on
Software Engineering (ICSE). 712ś721.

[4] David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. 2009. To
CamelCase or Under_score. In Proceedings of the International Conference on
Program Comprehension (ICPC). 158ś167.

[5] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a metric for code
readability. IEEE Transactions on Software Engineering (TSE) 36, 4 (2010), 546ś558.

[6] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating
Identifier Naming Flaws and Code Quality: An Empirical Study. In Proceedings of
the Working Conference on Reverse Engineering (WCRE). 31ś35.

[7] Simon Butler, MichelWermelinger, Yijun Yu, andHelen Sharp. 2010. Exploring the
Influence of Identifier Names on Code Quality: An empirical study. In Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR).
156ś165.

[8] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The Effect of Poor Source Code Lexicon and Readability on Developers’ Cognitive
Load. IEEE International Conference on Program Comprehension (ICPC) (2018).

[9] Frank A. Fishburn, Megan E. Norr, Andrei V. Medvedev, and Chandan J. Vaidya.
2014. Sensitivity of fNIRS to cognitive state and load. Frontiers in human neuro-
science 8 (2014), 76.

[10] Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017. Decoding the
Representation of Code in the Brain: An fMRI Study of Code Review and Expertise.
In Proceedings of the International Conference on Software Engineering (ICSE). 175ś
186.

[11] Thomas Fritz, Andrew Begel, Sebastian CMüller, Serap Yigit-Elliott, and Manuela
Züger. 2014. Using Psycho-physiological Measures to Assess Task Difficulty in
Software Development. In Proceedings of the International Conference on Software
Engineering (ICSE). 402ś413.

[12] Yoshiharu Ikutani and Hidetake Uwano. 2014. Brain activity measurement during
program comprehension with NIRS. In Proceedings of the International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). 1ś6.

[13] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In Proceedings of International Conference on
Program Comprehension (ICPC). 3ś12.

[14] Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heuiseok Lim.
2017. Mining biometric data to predict programmer expertise and task difficulty.
Cluster Computing (2017), 1ś11.

[15] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the Concep-
tual Cohesion of Classes for Fault Prediction in Object-Oriented Systems. IEEE
Transactions on Software Engineering (TSE) 34, 2 (2008), 287ś30.

[16] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi
Matsumoto, and Daniel M. German. 2014. Quantifying programmers’ mental
workload during program comprehension based on cerebral blood flow measure-
ment: a controlled experiment. In Proceedings of the International Conference on
Software Engineering (ICSE). 448ś451.

[17] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2006. Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification. In Proceedings of the International Conference
on Program Comprehension (ICPC). 137ś148.

[18] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A Simpler Model
of Software Readability. In Proceedings of the Working Conference on Mining
Software Repositories (MSR). 73ś82.

[19] Timothy R Shaffer, Jenna L Wise, Braden MWalters, Sebastian C Müller, Michael
Falcone, and Bonita Sharif. 2015. iTrace: Enabling eye tracking on software
artifacts within the IDE to support software engineering tasks. In Proceedings of
the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 954ś957.

[20] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the International Conference on Software Engineering (ICSE). 378ś
389.

[21] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In Proceedings of the
Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 140ś150.

[22] Thomas A. Standish. 1984. An Essay on Software Reuse. IEEE Transactions on
Software Engineering (TSE) 10, 5 (September 1984), 494ś497.

[23] Rebecca Tiarks. 2011. What Maintenance Programmers Really Do: An Obser-
vational Study. In Proceedings of the Workshop Software Reengineering (WSR).
36ś37.

[24] A. von Mayrhauser and A.M. Vans. 1995. Program comprehension during soft-
ware maintenance and evolution. IEEE Computer 28, 8 (August 1995), 44ś55.

939

	Abstract
	1 The Research Problem
	2 Expected Contributions
	3 Methodology
	3.1 Using fNIRS and Eyetracking as Objective Measures of Comprehension
	3.2 The Impact of Inconsistencies on Cognitive Load During Bug Localization Tasks
	3.3 The Impact of Inconsistencies on Cognitive Load During Code Review Tasks
	3.4 Role of Experience on Cognitive Load During Program Comprehension Tasks
	3.5 Improving Existing Software Naming and Documentation Guidelines

	4 Current Results
	5 Conclusion
	References

