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DIFFERENCE OF MODULAR FUNCTIONS

AND THEIR CM VALUE FACTORIZATION

TONGHAI YANG AND HONGBO YIN

Abstract. In this paper, we use Borcherds lifting and the big CM value
formula of Bruinier, Kudla, and Yang to give an explicit factorization formula

for the norm of Ψ( d1+
√
d1

2
) − Ψ( d2+

√
d2

2
), where Ψ is the j-invariant or the

Weber invariant ω2. The j-invariant case gives another proof of the well-
known Gross-Zagier factorization formula of singular moduli, while the Weber
invariant case gives a proof of the Yui-Zagier conjecture for ω2. The method
used here could be extended to deal with other modular functions on a genus
zero modular curve.
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1. Introduction

In the 1980s, Gross and Zagier discovered a beautiful factorization formula for
the singular moduli [GZ85] in preparation of their well-known Gross-Zagier formula.
It was extended slightly by Dorman [Dor88], which can be stated as follows (see
Remark 4.1).

Theorem 1.1 (Gross-Zagier, Dorman). Let Ei = Q(
√
di) be two imaginary qua-

dratic fields of fundamental discriminants di with (d1, d2) = 1, let F = Q(
√
D) with
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3452 TONGHAI YANG AND HONGBO YIN

D = d1d2, and let E = Q(
√
d1,

√
d2). Let j(τ ) be the well-known j-invariant. Then

∑

[ai]∈Cl(Ei)

log |j(τa1
)− j(τa2

)|
8

w1w2

=
∑

t=m+
√

D
2 ∈OF

|m|<
√
D

∑

p inert in E/F

1 + ordp(tOF )

2
ρ(tp−1) log(N(p)).

Here wi is the number of roots of unity in Ei, and for an integral ideal a of F ,

ρ(a) = |{A ⊂ OE : NE/F (A) = a}|.
Finally, for an integral ideal ai of Ei with

ai = Zai + Z
bi +

√
di

2
, ai = N(ai),

its associated CM point is τai
= bi+

√
di

2ai
.

This gives a beautiful factorization formula for N(j(d1+
√
d1

2 ) − j(d2+
√
d2

2 )) (up
to sign). In particular, the biggest prime factor of this norm is less than or equal
to D/4, extremely small compared to the norm. The first few examples of this
phenomenon were discovered by Berwick in the 1920s [Ber28]. For example, one
has

j(
1 +

√
−163

2
)− j(

1 +
√
−3

2
) = −2183353233293 = −262537412640768000,

j(
1 +

√
−163

2
)− j(i) = −2636721121921272163 = −262537412640769728.

In 1997, Yui and Zagier [YZ97] defined a mysterious CM value f(d+
√
d

2 ) via the
three Weber functions of level 48 (when d ≡ 1 (mod 8) and 3 � d) and proved that

it is defined over the Hilbert class field of Q(
√
d). They claimed that its Galois

conjugates are the CM values at other CM points of the same discriminant d with
some modifications, which was later proved by Alice Gee using Shimura’s reciprocity
law. In addition, Yui and Zagier gave a conjectural factorization formula for the

norm of f(d1+
√
d1

2 )a − f(d2+
√
d2

2 )a similar to the Gross-Zagier factorization formula
for any positive integer a|24. For example, when a = 24, the conjecture can be
restated as follows.

Conjecture 1.2. Let the notation be as in Theorem 1.1, and assume further that

d1 ≡ d2 ≡ 1 (mod 8). Let

ω2(τ ) = 212q
∏

n>0

(1 + qn)24 = 212 · Δ(2τ )

Δ(τ )

be the Weber modular function for Γ0(2). Then
∑

[ai|∈Cl(Ei)

log |ω2(τa1
)− ω2(τa2

)|2

=
∑

t=m+
√

D
2

|m|<
√
D,odd

m2≡D (mod 16)

∑

p inert in E/F

1 + ordp(tOF )

2
ρ(tp−1p−2

t ) log(N(p)).
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MODULAR FUNCTIONS AND THEIR CM VALUE FACTORIZATION 3453

Here pt is the unique prime ideal of F above 2 such that ordpt
(tOF ) ≥ 1, and

for each ideal class [ai] ∈ Cl(Ei), we choose a representative ai integral with norm

prime to 2, i.e.,

ai = Zai + Z
bi +

√
di

2
, with 2 � ai, ai > 0, τai

=
bi +

√
di

2ai
.

They provided some numerical evidence in their paper. Notice that the biggest
prime factor of this norm is less than or equal to D/16. In this paper, we will prove
this conjecture.

Theorem 1.3. Conjecture 1.2 is true.

In his 2006 thesis [Sch09], Schofer used regularized theta lifting to generalize the
Gross-Zagier factorization formula to small CM values of the so-called Borcherds
products on the orthogonal Shimura varieties of type (n, 2). Bruinier and Yang
generalized it to big CM values of Hilbert modular forms (which are Borcherds
products) over a real quadratic field [BY06]. More recently, Bruinier, Kudla, and
Yang ([BKY12]) generalized it to big CM values of Borcherds products on Shimura
varieties of orthogonal type (n, 2), following Schofer and [BY09]. On a different
track, Lauter, Goren, and Viray have used geometric methods to generalize the
Gross-Zagier formula to Igusa’s j-invariants for genus two curves, which have im-
portant applications to the genus two curve cryptosystem ([GL07], [GL12], [LV15]).
Yang also proved Lauter’s conjecture on Igusa’s j-invariants by combining the re-
sult in [BY06] with his work on arithmetic intersection [Yan13]. The big CM value
formula in [BY06], [BKY12] has also been used to prove certain cases of the Colmez
conjecture ([Yan10a], [Yan10b], [Yan13], [BHK]) and the average Colmez conjec-
ture ([AGHMP15]). Dongxi Ye is extending the result to other modular curves of
genus zero [Ye17].

This paper is the first part of our effort to prove Yui and Zagier’s conjectural
formula using the big CM value formula.

The general idea is as follows. Let Γ be a congruence subgroup such that the
compactification of XΓ = Γ\H has genus zero, and let Ψ be a generator of the
function field of XΓ, which is a modular function for Γ. Then the difference function
Ψ(z1) − Ψ(z2) is a two-variable modular function on XΓ × XΓ with divisor being
the diagonal divisor. We view XΓ ×XΓ as an orthogonal Shimura variety of type
(2, 2) associated to (V = M2(Q), Q = N det) for some positive integer N . One
can show that the diagonal divisor is a special divisor on the product XΓ × XΓ

so that Ψ(z1) − Ψ(z2) has a chance to be a Borcherds lifting (product) of some
weakly holomorphic modular forms ([Bor98], [Bru02]). The first task is to find a
weakly holomorphic modular form, if any, whose Borcherds lifting is the difference
Ψ(z1)−Ψ(z2) ([Bor98], [Bru02]; see Section 2). There are two complications even
with Bruinier’s converse results ([Bru02], [Bru14]). First, when N > 1, Bruinier’s
converse theorem does not apply. Second, there are two variable modular functions
whose divisors are only supported on the boundary, so it is not enough to compare
the divisors of the Borcherds product with our function only in the open Shimura
variety. We also need to understand their boundary behavior. The Borcherds
product expansion is important in this aspect. In this paper, we are only successful
in this step for the Weber functions ωi (Section 5) but not for the more interesting
Weber functions fi of level 48.

Licensed to Univ of Wisconsin, Madison. Prepared on Sun Apr  7 18:35:56 EDT 2019 for download from IP 128.104.46.206.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3454 TONGHAI YANG AND HONGBO YIN

The second task is to identify a pair of Heegner points (τa1
, τa2

) with a big CM
point on XΓ × XΓ associated to the CM number field E = Q(

√
d1,

√
d2) in the

sense of Bruinier, Kudla, and Yang in [BKY12]. This is done in Section 3. The
third task is to apply the big CM value formula in [BKY12] (assuming that Ψ is
a Borcherds lifting) to provide the expected formula. One serious problem (for
the Yui-Zagier conjecture) is that the big CM cycle in [BKY12] is likely bigger in
size than the ideal class groups used in Yui-Zagier’s conjectural formula in general.
One might need to use Shimura’s reciprocity law to analyze the Galois action on
the values as in [Gee99] to solve the problem. In the case of ω2, the condition
di ≡ 1 (mod 8) allows us to choose an embedding from Ei to GL2(Q) so that the
ideal class group maps into X0(2) nicely. Another minor complication (interesting
feature) is the explicit computation of the Fourier coefficient of the derivatives of
some incoherent Eisenstein series since Schwartz functions are not factorizable in
the ω2 case (Section 5).

Here is the organization of this paper. In Section 2, we review Borcherds lifting,
Borcherds product expansion ([Bor98], [Bru02]), and the big CM value formula
([BKY12]). In Section 3, we identify the product XΓ × XΓ of two copies of a
modular curve with a Shimura variety of orthogonal type (2, 2) and identify its big
CM points with pairs of the CM points on the modular curve XΓ. In Section 4,
we re-prove Theorem 1.1 using the big CM value formula. In Section 5, we first
identify ω2(z1)−ω2(z2) with a Borcherds lifting of some explicit weakly holomorphic
modular forms and then use the big CM value formula to prove Theorem 1.3.

2. Borcherds lifting and the big CM value formula

2.1. Borcherds lifting and Borcherds product expansion. In this subsec-
tion, we review the beautiful work of Borcherds in detail using slightly different
conventions and notation for our purpose. Let (V,Q) be a quadratic space over Q
of signature (n, 2), and let L be an even integral lattice; i.e., Q(x) = 1

2 (x, x) ∈ Z
for x ∈ L. Let

L′ = {y ∈ V : (x, y) ∈ Z, for x ∈ L} ⊃ L

be its dual. We assume in this paper that n is even for simplicity. Let H =
GSpin(V ), and let D be the oriented negative 2-planes in VR. Then for a compact
open subgroup K of H(Af ), there is a Shimura variety XK defined over Q such
that

XK(C) = H(Q)\(D×H(Af )/K).

We will identify XK with XK(C) in this section. We assume that K fixes L and
acts on L′/L trivially. The Hermitian symmetric domain D has two other useful
forms. Let

(2.1) L = {w ∈ VC : (w,w) = 0, (w, w̄) < 0}.

Then one has an isomorphism

L/C× ∼= D, w = u+ iv 	→ Ru+ R(−v).

This isomorphism gives a complex structure on D, and we can view L as a line
bundle over D—the tautological line bundle. It descends to a line bundle LK

over XK—the line bundle of modular forms of weight 1 on XK . Finally, given an
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isotropic element � ∈ V , choose another element �′ ∈ V such that (�, �′) = 1, and
let V0 = (Q�+Q�′)⊥. Then we have a tube domain (associated to (�, �′)):

H = H�,�′ = {z = x+ iy ∈ V0,C : Q(y) < 0}.

The map

w = w�,�′ : H → L, w(z) = z + �′ − (Q(z) +Q(�′))�

gives an isomorphism H�,�′
∼= L/C× and actually a nowhere vanishing section of

the line bundle L. We emphasize that w depends on the choice of the primitive
isotropic vector � and the subspace Q� + Q�′ but not �′. Furthermore, this map
w induces an action of Γ = K ∩ H(Q)+ on H and an automorphy factor j(γ, z)
characterized by the following identity:

(2.2) γw(z) = ν(γ)j(γ, z)w(γz).

Here H(R)+ is the identity component of H(R), H(Q)+ = H(Q) ∩ H(R)+, and
ν(γ) is the spinor norm of γ. This action preserves the two connected components
of H = H+ ∪ H−. A (meromorphic) function Ψ on H+ is called a (meromorphic)
modular form for Γ of weight k if

(2.3) Ψ(γz) = j(γ, z)kΨ(z).

Alternatively, it is a section of the line bundle Lk
K over XK .

For a vector x ∈ V with Q(x) > 0 and h ∈ H(Af ), let

Hx = {g ∈ H : g(x) = x},
Dx = {z ∈ D : (x, z) = 0},

and Kx,h = Hx(Af ) ∩ hKh−1.

Then the map

Hx(Q)\(Dx ×Hx(Af )/Kx,h) → XK(C), [z, h1] 	→ [z, h1h]

gives a divisor Z(x, h) in XK . It is actually defined over Q. For a rational number
m > 0 and φ ∈ S(Vf ), if there is an x ∈ V with Q(x) = m, we define, following
Kudla [Kud97a], the weighted special divisor

Z(m,φ) =
∑

h∈Hx(Af )\H(Af )/K

φ(h−1x)Z(x, h).

When there is no x ∈ V with Q(x) = m, we simply set Z(m,φ) = 0.
Associated to the quadratic space V is a reductive dual pair (SL2, O(V )) and

a Weil representation ω = ωV,ψ of SL2(A) on S(VA) = S(Vf ) ⊗ S(V∞), where

Vf = V ⊗Q Af and V∞ = V ⊗Q Q∞ = V ⊗Q R. Embed SL2(Z) into SL2(Ẑ)
diagonally, and let SL ⊂ S(Af ) be the subspace of Schwartz functions φ which is

supported on L̂′ = L′ ⊗Z Ẑ and is L̂-translation invariant; i.e., φ(x) depends only

on x mod L̂. Then

SL =
⊕

μ∈L′/L

Cφμ, φμ = Char(μ+ L̂).
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3456 TONGHAI YANG AND HONGBO YIN

It is easy to check that SL is SL2(Z)-invariant under the Weil representation ω; we
denote this representation ωL. One has by definition

ωL(n(b))φμ = e(−bQ(μ))φμ, b ∈ Z,(2.4)

ωL(w)φμ = e(
n− 2

8
)([L′ : L])−

1
2

∑

ν∈L′/L

e((μ, ν))φν.

Here

n(b) =

(

1 b
0 1

)

, w =

(

0 −1
1 0

)

,

and we have used the fact that

ψf (x) = ψ∞(−x) = e(−x)

when x ∈ Q. We also write

m(a) =

(

a 0
0 a−1

)

.

If we identify SL
∼= C[L′/L] =

⊕

μ∈L′/L Ceμ via φμ 	→ eμ and let ρL− be the

Weil representation in [Bor98] (also [Bru02]) associated to the quadratic lattice L−,
where L− = L but with quadratic form Q−(x) = −Q(x), then one sees immediately
that

(2.5) ωL = ρL− .

Recall that a meromorphic function f : H → SL is called a weakly holomorphic

modular form of weight k with respect to SL2(Z) and ωL if it satisfies the following
conditions.

(i) One has f |k,ωL
γ = f for all γ =

(

a b
c d

)

∈ Γ, where

f |k,ωL
γ(τ ) = (cτ + d)−kωL(γ)

−1f(τ ).

(ii) There is an SL-valued Fourier polynomial

Pf (τ ) =
∑

μ∈L′/L

∑

n≤0

c(n, μ) qn φμ

such that f(τ )− Pf (τ ) = O(e−εv) as v → ∞ for some ε > 0.

The Fourier polynomial Pf is called the principal part of f . We denote the vector
space of these weakly holomorphic modular forms by M !

k,ωL
. The Fourier expansion

of any f ∈ M !
k,ωL

is of the form

(2.6) f(τ ) =
∑

μ∈L′/L

∑

n∈Q
n	−∞

c(n, μ) qn φμ.

With this notation, we define

(2.7) Z(f) =
∑

n>0,μ∈L′/L

c(−n, μ)Z(n, μ).

Here Z(m,μ) = Z(m,φμ). Let S∨
L be the dual space of SL, the space of linear

functionals on SL, and let {φ∨
μ} be the dual basis in S∨

L of the basis {φμ} of SL.
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Recall that the Siegel theta function (for (z, h) ∈ XK)

θL(τ, z, h) =
∑

μ

θ(τ, z, h, φμ)φ
∨
μ

is an S∨
L-valued holomorphic modular form of weight 0 for SL2(Z) and ω∨

L defined
as follows (see [BY09, Section 2] or [Kud03] for details). For z ∈ D, consider the
orthogonal decomposition

VR = z ⊕ z⊥, x = xz + xz⊥ .

Then for φ ∈ S(Vf ) and (z, h) ∈ XK , one defines

(2.8) θ(τ, z, h, φ) = v
∑

x∈V

φ(h−1x)e(τQ(xz⊥) + τ̄Q(xz)).

Here v = Im(τ ) is the imaginary part of τ . Notice that θ(τ, z, 1, φμ) = θ(τ, z, μ) in
comparison with Borcherds’ Siegel theta functions.

We consider the regularized theta integral

Φ(z, h, f) =

∫ reg

F
〈f(τ ), θL(τ, z, h)〉 dμ(τ ) =

∫ reg

F

∑

μ∈L′/L

fμ(τ )θ(τ, z, h, φμ)dμ(τ )

(2.9)

for z ∈ D and h ∈ H(Af ). Here F is the standard domain for SL2(Z)\H, and we
write

f(τ ) =
∑

μ∈L′/L

fμ(τ )φμ.

The integral is regularized as in [Bor98]; that is, Φ(z, h, f) is defined as the
constant term in the Laurent expansion at s = 0 of the function

lim
T→∞

∫

FT

〈f(τ ), θL(τ, z, h)〉 v−sdμ(τ ).(2.10)

Here FT = {τ ∈ H; |u| ≤ 1/2, |τ | ≥ 1, and v ≤ T} denotes the truncated funda-
mental domain, and the integrand

(2.11) 〈f(τ ), θL(τ, z, h)〉 =
∑

μ∈L′/L

fμ(τ )θ(τ, z, h, φμ)

is the pairing of f with the Siegel theta function, viewed as a linear functional on
the space SL. We remark that our regularized theta integral Φ(z, h, f) is exactly
the same as the one in [Bor98] and [Bru02] when h = 1.

The following is the first part of [Bor98, Theorem 13.3] (see also [Bru02, Theorem
3.22]) in our setting.

Theorem 2.1. Let f(τ ) =
∑

c(m,μ)qmφμ ∈ M !
1−n

2 ,ωL
be a weakly holomorphic

modular form of weight 1 − n
2 for SL2(Z) and ωL, and assume that c(m,μ) ∈ Z

for m < 0. Then there is a meromorphic modular form Ψ(z, h, f)) of weight k =
c(0, 0)/2 on XK (with some characters) such that:

(1) One has

div(Ψ(z, h, f)2) = Z(f) =
∑

m>0,μ∈L′/L

c(−m,μ)Z(m,μ).

Here we count Z(m,μ) with multiplicity 2 or 1 depending on whether 2μ ∈ L
or not.
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3458 TONGHAI YANG AND HONGBO YIN

(2) One has

− log ‖Ψ(z, h, f)‖4Pet = Φ(z, h, f).

Here ‖ ‖Pet is a suitably normalized Petterson norm.

To describe the Borcherds product expansion formula for Ψ(z, h, f), we need
some preparation. First, it works in each connected component. By the strong
approximation theorem, one has

H(Af ) =
∐

H(Q)+hjK,

so

XK =
∐

XΓj
=
∐

Γj\D+,

where Γj = H(Q)+ ∩ hjKh−1
j and D+ is one of the two connected components of

D. In this decomposition, one has

Z(m,φμ) =
∑

j

ZLj
(m,μj),

where Lj = hjL = hjL̂ ∩ V , and μj ∈ L′
j/Lj with μj − hjμ ∈ L̂j , and

ZLj
(m,μj) = {z ∈ D+ : (z, x) = 0 for some x ∈ μj + Lj , Q(x) = m}.

In the following, we will stick with the irreducible component XΓ = Γ\D+ and the
lattice L. The other components are the same.

Assume that V has an isotropic line Q� (a cusp). We assume that � ∈ L is
primitive, i.e., L ∩ Q� = Z�. Choose �′ ∈ L′ with (�, �′) = 1. Assume further that
(�, L) = N�Z and choose ξ ∈ L with (�, ξ) = N�. Let M = (Q�+Q�′)⊥ ∩L, and let

L′
0 = {x ∈ L′ : (�, x) ≡ 0 mod (N�)} ⊃ L.

Then there is a projection

(2.12) p : L′
0 → M ′, p(x) = xM +

(x, �)

N�
ξM ,

where xM and ξM are the orthogonal projections of x, ξ ∈ V to MQ = M ⊗Z Q.
The projection p has the nice property p(L) ⊂ M although it is not an orthogonal
projection anymore (see [Bru02, pp. 40-41]). So it induces a projection from L′

0/L
to M ′/M .

Next, we define the Weyl chamber for

f =
∑

fμφμ =
∑

c(m,μ)qmφμ ∈ M !
1−n

2 ,ωL
.

Define

(2.13) fM (τ ) =
∑

λ∈M ′/M

fλ(τ )φλ,M =
∑

cM (m,λ)qmφλ,M ,

where φλ,M = Char(λ+ M̂),

(2.14) fλ(τ ) =
∑

μ∈L′
0/L

p(μ)=λ

fμ(τ ).

Then fM is an SM -valued modular form by Borcherds [Bor98, Theorem 5.3] with
Weil representation ωM .
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Let Gr(M) be the set of negative lines in MR (the Grassmannian), which is a
real manifold of dimension n − 1 (as M has signature (n − 1, 1)). For λ ∈ M ′/M
and m ∈ Q with m ≡ Q(λ) (mod 1), let

ZM (m,λ) = {z ∈ Gr(M) : (z, x) = 0 for some x ∈ λ+M,Q(x) = m},

which is either empty or a real divisor of Gr(M). The Weyl chamber associated
to a weakly holomorphic form f ∈ M !

1−n
2 ,ωL

is the connected components of (see

[Bru02, p. 88])

Gr(M)−
⋃

μ∈L′
0/L

⋃

m∈Q(μ)+Z
m>0,c(−m,μ) �=0

ZM (m, p(μ)).

Given a Weyl chamber W associated to f , we define its Weyl vector ρ(W, f) =
ρ(W, fM ) ∈ M ′ following Borcherds as in ([Bor98, Section 10.4]; see also [Bru02,
p. 88]). Let W̄ be the closure of W . If M ∩ W̄ is anisotropic, it was defined in
[Bor98, Section 9] with correction and extension given recently in [BS17, Section
5]. We don’t need it in this paper and refer to [BS17] for details. When M ∩ W̄ is
isotropic, choose an isotropic �M ∈ M ∩ W̄ and �′M ∈ M ′ with (�M , �′M ) = 1. Let
P = M ∩ (Q�M + Q�′M )⊥, which is positive definite of rank n − 2. Similar to the
projection p from L′

0/L to M ′/M , one has also a projection p from M ′
0/M to P ′/P

defined in the same way. For the same reason, we have the weakly holomorphic
modular form fP (coming from fM ). Define

ρ�′M = constant term of θP (τ )fP (τ )E2(τ )/24,(2.15)

ρ�M = −ρ�′MQ(�′M )− 1

4

∑

λ ∈ M ′
0/M

p(λ) = 0 + P

cM (0, λ)B2((λ, �
′
M ))(2.16)

− 1

2

∑

γ ∈ P ′

(γ,W ) > 0

∑

λ ∈ M ′
0/M

p(λ) = γ + P

cM (−Q(γ), λ)B2((λ, �
′
M )),

ρP = −1

2

∑

γ ∈ P ′ ∩ M ′

(γ,W ) > 0

cM (−Q(γ), γ)γ,(2.17)

ρ(W, f) = ρP + ρ�M �M + ρ�′M �′M .(2.18)

Here

E2 = 1− 24
∑

n>0

σ1(n)q
n

is the weight 2 Eisenstein series, and B2(x) = {x}2−{x}+ 1
6 is the second Bernouli

polynomial of {x}, where 0 ≤ {x} = x− [x] < 1 is the fractional part of x.
Now we can state the beautiful product expansion formula of Borcherds as follows

in the signature (n, 2) case ([Bor98, Theorem 13.3]; see also [Bru02, Theorem 3.22]).

Theorem 2.2 (Borcherds). Let the notation be as above. Let W be a Weyl cham-

ber of f whose closure contains �M . Then the memomorphic automorphic form
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3460 TONGHAI YANG AND HONGBO YIN

Ψ(z, f) = Ψ(z, 1, f) has an infinite product expansion near the cusp Q� (more pre-

cisely, when Im(z) ∈ W with −Q(Im(z)) sufficiently large):

Ψ(z, f) = Ce((z, ρ(W, f)))
∏

λ∈M ′

(λ,W )>0

∏

μ∈L′
0/L

p(μ)∈λ+M

[1− e((λ, z) + (μ, �′))]
c(−Q(λ),μ)

.

Here C is a constant with absolute value

(2.19)

∣

∣

∣

∣

∣

∣

∏

δ∈Z/N�,δ �=0

(1− e(
δ

N �
))

c(0, δ
N �

�)

2

∣

∣

∣

∣

∣

∣

.

Sketch of proof. We derive the formula from [Bor98, Theorem 13.3]. Let L− = L
with quadratic form Q−(x) = −Q(x) so that L− has signature (2, n), for which we
can apply Borcherds’ theorem. We use subscript − to indicate the corresponding
notation in Borcherds. First notice that the symmetric domain D− = D and the
tautological bundle L− = L. Since (�, �′) = 1, one has (−�, �′)− = 1. So the tube
domains H�,�′ andH−�,�′,− are the same too. Furthermore, for z ∈ H�,�′ = H−�,�′,−,
one has

w−(z) = z + �′ − (Q−(z) +Q−(�
′))(−�) = w(z).

Notice that f |
(−1 0

0 −1

)

= f implies that

(2.20) c(m,μ) = c(m,−μ) and cM (m,λ) = cM (m,−λ).

Since (�M , �′M ) = 1, one has (�M ,−�′M )− = 1. Using [Bor98, Theorem 10.4] (a
minor mistake there missing the 1

4 summation part), one checks that ρ�′M ,− = ρ�′M
(as θP,− = θP ), and

ρ�M ,− = −ρ�′M ,−Q−(�
′
M ) +

1

4

∑

λ∈M ′
0/M,

p(λ)=0

cM (0, λ)B2((λ,−�′M )−)

+
1

2

∑

γ∈P ′

(γ,W )−>0

∑

λ∈M ′
0/M,

p(λ)=0+P

cM (Q−(γ), λ)B2((λ,−�′M )−)

= ρ�′MQ(�′M ) +
1

4

∑

λ∈M ′
0/M,

p(λ)=γ+P

cM (0, λ)B2((λ, �
′
M ))

+
1

2

∑

γ∈P ′

(γ,W )>0

∑

λ∈M ′
0/M,

p(λ)=γ+P

cM (−Q(γ), λ)B2((λ, �
′
M ))

= −ρ�M .

In the last identity, we substitute γ by −γ and λ by −λ and apply (2.20). Similarly,
one checks that ρP,− = −ρP . So Borcherds’ Weyl vector

ρ(W, f)− = ρP,− + ρ�M ,−�M + ρ�′M (−�′M ) = −ρ(W, f).
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So [Bor98, Theorem 13.3] gives for z ∈ H�,�′ ,

Ψ(z, f) = Ce((z, ρ(W, f)−)−)
∏

λ∈M ′

(λ,W )−>0

∏

μ∈L′
0/L

p(μ)=λ+M

[1− e((λ, z)− + (μ, �′)−)]
c(Q−(λ),μ)

= Ce((z, ρ(W, f)))
∏

λ∈M ′

(λ,W )>0

∏

μ∈L′
0/L

p(μ)=λ+M

[1− e((λ, z) + (μ, �′))]
c(−Q(λ),μ)

as claimed. Here we again replace λ and μ by −λ and −μ and apply (2.20).
�

Remark 2.3. It is worthwhile to make a few remarks to clear up some (potentially
confusing) differences in different versions.

(1) The sign difference in the formula above and the formula in [Bor98, Theo-
rem 13.3] (and [Bru02, Theorem 3.22]) is due to the fact that they use L−
(signature (2, n)) while we use L.

(2) The condition p(μ) ∈ λ + M here is a more explicit reinterpretation of
Borcherds’ condition μ|M = λ given by Bruinier ([Bru02, Theorem 3.22]).

(3) The constant C can be taken as the product in (2.19) at a given cusp.
However, once it is fixed, the constants at other cusps are determined by
this constant (they are in the same connected component).

(4) The conditions that n ≥ 3 and that M is isotropic in [Bru02] were for
convenience and not necessary.

(5) The neighborhood near the cusp Q� where the product formula is valid can
be made precise. We refer to [Bru02, Theorem 3.22] for details.

(6) At different cusps, the product formulae look different. This is similar to
the different Fourier expansions of a modular form at different cusps.

2.2. Big CM cycles, incoherent Eisenstein series, and the big CM value

formula. Let E be a CM number field of degree n + 2 with the maximal totally
real subfield F . Let σi, 1 ≤ i ≤ n

2 +1, be distinct real embeddings of F . Choose an
element α ∈ F with σn

2 +1(α) < 0 and σi(α) > 0 for all 1 ≤ i ≤ n
2 , and let W = E

with the F -quadratic form QF (z) = αzz̄. Let WQ = E with the Q-quadratic form

QQ(z) = trF/Q QF (z) = trF/Q(αzz̄).

Notice that (WQ, QQ) is a Q-quadratic space of signature (n, 2). Now we assume
that (WQ, QQ) ∼= (V,Q), where (V,Q) is a given Q-quadratic space of signature
(n, 2). Write n0 = n

2 + 1. Then we have

VR
∼=

⊕

1≤i≤n0

Wσi
,

where Wσi
= W ⊗F,σi

R has signature (2, 0) or (0, 2) according to 1 ≤ i < n0 or
i = n0. The negative two plane Wσn0

gives rise to two ‘big’ CM points z±σn0
, which

turn out to be defined over a finite extension of σn0
(F ). Define an algebraic torus

T over Q by the following diagram:

(2.21) 1 �� Gm
��

��

T ��

��

ResF/Q SO(W ) ��

��

1

1 �� Gm
�� H �� SO(V ) �� 1.
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Then T is a maximal torus in H = GSpin(V ) (thus the names big CM points and
big CM cycles). It is known ([BKY12, Section 2]) that

Z(W, z±σn0
) = {z±σn0

} × (T (Q)\T (Af )/KT ), KT = K ∩ T (Af )

is a zero cycle in XK defined over F , called a big CM cycle of XK . Let Z(W ) be the
formal sum of all its Galois conjugates (counting multiplicity), which is a big CM
cycle of XK over Q. We refer to [BKY12, Section 2] for a more precise definition
and basic properties of this cycle.

Associated to this quadratic space and the additive adelic character ψF =
ψ ◦ trF/Q is a Weil representation ω = ωψF

of SL2(AF ) (and thus T (AQ)) on
S(W (AF )) = S(V (AQ)). Let χ = χE/F be the quadratic Hecke character of F
associated to E/F . Then χ = χW is also the quadratic Hecke character of F
associated to W , and there is an SL2(AF )-equivariant map

(2.22) λ =
∏

λv : S(W (AF )) → I(0, χ), λ(φ)(g) = ω(g)φ(0).

Here I(s, χ) = Ind
SL2(AF )
BAF

χ| · |s is the principal series, whose sections (elements) are

smooth functions Φ on SL2(AF ) satisfying the condition

Φ(n(b)m(a)g, s) = χ(a)|a|s+1Φ(g, s), b ∈ AF and a ∈ A×
F .

Here B = NM is the standard Borel subgroup of SL2. Such a section is called fac-
torizable if Φ = ⊗Φv with Φv ∈ I(s, χv). It is called standard if Φ|SL2(ÔF ) SO2(R)n0

is independent of s. For a standard section Φ ∈ I(s, χ), its associated Eisenstein
series is defined as

E(g, s,Φ) =
∑

γ∈BF \ SL2(F )

Φ(γg, s)

for �(s) � 0.
For φ ∈ S(Vf ) = S(Wf ), let Φf be the standard section associated to λf (φ) ∈

I(0, χf ). For each real embedding σi : F ↪→ R, let Φσi
∈ I(s, χC/R) = I(s, χEσi

/Fσi
)

be the unique ‘weight one’ eigenvector of SL2(R) given by

Φσi
(n(b)m(a)kθ) = χC/R(a)|a|s+1eiθ,

for b ∈ R, a ∈ R×, and kθ =
(

cos θ sin θ
− sin θ cos θ

)

∈ SO2(R). We define for �τ =
(τ1, . . . , τn0

) ∈ Hn0 ,

E(�τ, s, φ) = N(�v)−
1
2E(g�τ , s,Φf ⊗ (

⊗

1≤i≤n0

Φσi
)),

where �v = Im(�τ), N(�v) =
∏

i vi, and g�τ = (n(ui)m(
√
vi))1≤i≤n0

. It is a (non-
holomorphic) Hilbert modular form of scalar weight 1 for some congruence subgroup
of SL2(OF ). Following [BKY12], we further normalize

E∗(�τ, s, φ) = Λ(s+ 1, χ)E(�τ, s, φ),

where ∂F is the different of F , dE/F is the relative discriminant of E/F , and

(2.23) Λ(s, χ) = A
s
2 (π− s+1

2 Γ(
s+ 1

2
))n0L(s, χ), A = NF/Q(∂FdE/F ).

The Eisenstein series is incoherent in the sense that Φ =
⊗

Φv is in the image
of λ on S(C), where C is an incoherent system of quadratic spaces over Fv, given
by Cv = Wv for all places v except the one v = σn0

. This incoherence forces
E∗(�τ, 0, φ) = 0 automatically.
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Proposition 2.4 ([BKY12, Proposition 4.6]). Let φ ∈ S(Vf ) = S(Wf ). For a to-

tally positive element t ∈ F×
+ , let a(t, φ) be the t-th Fourier coefficient of E∗,′(�τ, 0, φ)

and write the constant term of E∗,′(�τ, 0, φ) as

φ(0)Λ(0, χ) logN(�v) + a0(φ).

Let

E(τ, φ) = a0(φ) +
∑

n∈Q>0

an(φ) q
n

where (for n > 0)

an(φ) =
∑

t∈F×
+ , trF/Q t=n

a(t, φ).

Here F×
+ consists of all totally positive elements in F . Then, writing τ∆ = (τ, . . . , τ )

for the diagonal image of τ ∈ H in Hn0 ,

E∗,′(τ∆, 0, φ)− E(τ, φ)− φ(0) (
n

2
+ 1)Λ(0, χ) log v

is of exponential decay as v goes to infinity. Moreover, for n > 0,

an(φ) =
∑

p

an,p(φ) log p

with an,p(φ) ∈ Q(φ), the subfield of C generated by the values φ(x), x ∈ V (Af ).

Remark 2.5. There is a minor mistake in [BKY12, Proposition 4.6]) about the
constant. The corrected form is

E∗,′
0 (�τ, 0, φ) = φ(0)Λ(0, χ) logN(�v) + a0(φ)

(i.e., a0(φ) might not be a multiple of φ(0)). Direct calculation gives

E∗
0 (�τ, s, φ) = φ(0)Λ(s+ 1, χ)(N(�v))

s
2 − (N(�v))−

s
2Λ(s, χ)W̃0,f (s, φ)

where (when φ is factorizable)

W̃0,f (s, φ) =
∏

p�∞
W̃0,p(s, φp) =

∏

p�∞

|A|−
1
2

p Lp(s+ 1, χ)

γ(Wp)Lp(s, χ)
W0,p(s, φp)

is the product of renormalized local Whittaker functions (see (2.25)). With this
notation, one has

(2.24) a0(φ) = −Λ(0, χ)W̃ ′
0,f (0, φ)− 2φ(0)Λ′(0, χ).

Notice that a(t, φμ) = 0 automatically unless μ+ L̂ represents t, i.e., t−QF (μ) ∈
∂−1
F OF . The following is a special case of the main CM value formula of Bruinier,

Kudla, and Yang ([BKY12, Theorem 5.2]).

Theorem 2.6. Let

f(τ ) =
∑

μ∈L′/L

fμ(τ )φμ =
∑

c(m,μ)qmφμ ∈ M !
1−n

2 ,ωL
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with c(0, 0) = 0, and let Ψ(z, f) be its Borcherds lifting. Then

− log |Ψ(Z(W ), f)|4 = C(W,K)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

μ∈L′/L,
m≥0

m≡Q(μ) (mod 1)

c(−m,μ)am(φμ)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Here

C(W,K) =
deg(Z(W, z±σ2

))

Λ(0, χ)
.

To compute the t-th Fourier coefficient a(t, φ) of E∗,′(�τ, 0, φ), one may assume
that φ =

⊗

φp is factorizable by linearity. Write for t �= 0

E∗
t (�τ, s, φ) =

∏

p�∞
W ∗

t,p(s, φ)

n0
∏

j=1

W ∗
t,σj

(τj , s,Φσj
),

where

W ∗
t,p(s, φ) = |A|−

s+1
2

p Lp(s+ 1, χp)Wt,p(s, φ)

for finite prime p with

(2.25) Wt,p(s, φ) =

∫

Fp

ω(wn(b))(φp)(0)|a(wn(b))|spψp(−tb) db,

and for infinite prime σj

W ∗
t,σj

(τj , s,Φσj
) = v

−1/2
j π− s+2

2 Γ(
s+ 2

2
)

∫

R

Φσj
(wn(b)gτj , s)ψ(−bt)db.

Here A is defined in (2.23) and |a(g)|p = |a|p if g = n(b)m(a)k with k ∈ SL2(Op).
The following proposition is well-known and is recorded here for reference. Recall

that W = E with QF (z) = αzz̄, α ∈ F×.

Proposition 2.7. For a totally positive number t ∈ F+, let

Diff(W, t) = {p : Wp does not represent t}
be the so-called ‘Diff’ set of Kudla. Then |Diff(W, t)| is finite and odd. Moreover:

(1) If |Diff(W, t)| > 1, then a(t, φ) = 0.
(2) If Diff(W, t) = {p}, then W ∗

t,p(0, φ) = 0, and

a(t, φ) = (−2i)n0W ∗,′
t,p(0, φ)

∏

q�p∞
W ∗

t,q(0, φ).

(3) When p � αA is unramified in E/F and φp = Char(OEp
), W ∗

t,p(s, φ) = 0

unless t ∈ ∂−1
F . In this case, one has

W ∗
t,p(0, φ)

γ(Wp)
=

{

1 + ordp(t
√
D) if p is split in E,

1+(−1)ordp(t
√

D)

2 if p is inert in E.

Here γ(Wp) is the local Weil index (an 8-th root of unity) associated to the

Weil representation. Moreover, in this case, W ∗
t,p(0, φ) = 0 if and only if

ordp(t
√
D) is odd and p is inert in E. In such a case, one has

W ∗,′
t,p(0, φ)

γ(Wp)
=

1 + ordp(t
√
D)

2
logN(p).
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(4) One has for 1 ≤ j ≤ n0,

W ∗
t,σj

(τ, 0,Φσj
) = −2ie(tτ ), t > 0,

and

W ∗
0,σj

(τ, s,Φσj
) = −iπ− s+1

2 Γ(
s+ 1

2
)v−

s
2 .

Sketch of proof. The Diff set was first defined by Kudla in [Kud97b]. In our case,
the incoherent collection of Fv-quadratic spaces is {Cv} where Cv = Wv for v �= σn0

and Cn0
positive definite. The archimedian places are not in the Diff set as t

is totally positive. Let ψ′
F (x) = ψF (

x√
D
) and W ′ = W with F -quadratic form

Q′
F (x) =

√
DQF (x) = xx̄. Then one has as Weil representations on S(Wf ) =

S(W ′
f):

ωW,ψF
= ωW ′,ψ′

F
,

and thus the Whittaker functions have the relation

WψF

t,p (s, φ) = |
√
D|

1
2
pW

ψ′

t
√
D,p

(s, φ)

for each prime p of F . Recall that W ∗
t,p(0, φ) = 0 if p ∈ Diff(W, t). So (1) is

obvious. Claim (3) follows from [Yan05, Proposition 2.1]. Claim (4) is a special
case of [KRY99, Proposition 2.6]. Claim (2) follows from

E∗
t (�τ, s, φ) =

∏

p�∞
W ∗

t,p(s, φ)

n0
∏

j=1

W ∗
t,σj

(τj , s,Φσj
)

and (4). �

3. Product of modular curves and its diagonal divisor

3.1. Product of modular curves as a Shimura variety of orthogonal type

(2, 2). Let N be a positive integer, and let V = M2(Q) with the quadratic form
Q(X) = N detX. Let H be the algebraic group over Q

H = {(g1, g2) ∈ GL2 ×GL2 : det g1 = det g2}.
Then H ∼= GSpin(V ) and acts on V via

(g1, g2)X = g1Xg−1
2 .

One has the exact sequence

1 → Gm → H → SO(V ) → 1.

Recall the Hermitian symmetric domain D and the tautological line bundle L in
Section 2. For a tube domain, take an isotropic matrix � =

(

0 −1
0 0

)

∈ L and

�′ =
(

0 0
1
N 0

)

∈ V with (�, �′) = 1. Then the associated tube domain is

H�,�′ = {
(

z1 0
0 −z2

)

: y1y2 > 0}, yi = Im(zi),

together with

w : H�,�′ → L, w(
(

z1 0
0 −z2

)

) =
(

z1 −Nz1z2
1
N −z2

)

.

Now the following proposition is clear.
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Proposition 3.1. Define

wN : H2 ∪ (H−)2 → L, wN (z1, z2) =
1

N

(

z1 −z1z2
1 −z2

)

= w(
( z1

N 0

0 − z2
N

)

),

and

pr : L → D, x+ iy 	→ z = Rx+ R(−y).

Then pr gives an isomorphism between L/C× and D, and the composition pr ◦ w
gives an isomorphism between H2 ∪ (H−)2 and D. Moreover, wN is H-equivariant,

where H ⊂ GL2(R) × GL2(R) acts on H2 ∪ (H−)2 via the usual linear fraction

transformations

(g1, g2)(z1, z2) = (g1(z1), g2(z2)),

and acts on L and D naturally via its action on V . Moreover, one has

(3.1) (g1, g2)wN (z1, z2) =
(c1z1 + d1)(c2z2 + d2)

ν(g1, g2)
wN (g1(z1), g2(z2)),

where ν(g1, g2) = det g1 = det g2 is the spin character of H = GSpin(V ). So

j(g1, g2, z1, z2) = (c1z1 + d1)(c2z2 + d2).

For a congruence subgroup Γ of SL2(Z), let XΓ be the associated open modular
curve over Q such that XΓ(C) = Γ\H. Assume Γ ⊃ Γ(M) for some integer M ≥ 1.
Let

ν : A× ↪→ GL2(A), ν(d) = diag(1, d).

Let K(Γ) be the product of ν(Ẑ×) and the preimage of Γ/Γ(M) in GL2(Ẑ) (under

the map GL2(Ẑ) → GL2(Z/M)). Let K = (K(Γ)×K(Γ)) ∩H(Af ). Then one has
by the strong approximation theorem

XK
∼= XΓ ×XΓ.

In this way, we have identified the product of two copies of a modular curve XΓ

with a Shimura variety XK . We will fix this K for a given congruence subgroup Γ
in this paper. The tautological line bundle L descends to a line bundle LK = K\L
of modular forms of 2 variables of weight (1, 1) by (3.1).

Let L be an even integral lattice of V , and let L′ be its dual with respect to the
quadratic form Q. We assume that Γ×Γ acts on L′/L trivially. Then for μ ∈ L′/L
and a rational number m > 0 (and m ≡ Q(μ) (mod 1)), the associated special
divisor Z(m,μ) = ZK(m,μ) is given in this special case by
(3.2)
Z(m,μ) = (Γ×Γ)\{(z1, z2) ∈ H2 : wN (z1, z2) ⊥ x for some x ∈ μ+L,Q(x) = m}.
Alternatively, Z(m,μ) is the sum of Z(x), where x ∈ μ+L with Q(x) = m modulo
the action of Γ × Γ. Here Z(x) is the subvariety of XK given by x⊥ (of signature
(1, 2)):

Z(x) = (Γ ∩ x−1Γx)\H ∼= (Γ× Γ)x\{(xz, z) : z ∈ H}, [z] 	→ [xz, z].

The linear combinations of these divisors Z(m,μ) are called the special divisors of
XK .

Lemma 3.2. Let Γ = Γ(N) and L = M2(Z) with Q(X) = N detX. For each

γ ∈ SL2(Z), let

ZN (γ) = {(γz, z) ∈ XΓ(N) ×XΓ(N) : z ∈ XΓ(N)} ⊂ XΓ(N) ×XΓ(N).
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Then ZN (γ) = Z( 1
N , 1

N γ + L) is a special divisor of XK .

We denote by X(N) the compactification of XΓ(N) (to be compatible with the
usual definition of X(N)).

Proof. If x ∈ 1
N γ + L with Q(x) = N detx = 1/N , then Nx ∈ γ + NL and

det(Nx) = 1. So Nx ∈ SL2(Z), and Nxγ−1 = γ1 ∈ Γ(N), and x = γ1(
1
N γ). This

implies that

Z(
1

N
,
1

N
γ + L) = ZN (γ).

�

Corollary 3.3. Let X∆
Γ be the diagonal embedding of XΓ into XΓ ×XΓ. The X∆

Γ

is a special divisor of XΓ × XΓ in the following sense. Assuming Γ ⊃ Γ(N), we
take L = M2(Z) with Q(X) = N det. Then the preimage of X∆

Γ in XΓ(N) ×XΓ(N)

is equal to
∑

γ∈Γ/Γ(N)

ZN (γ)

in the notation of Lemma 3.2.

3.2. Products of CM cycles as big CM cycles. For j = 1, 2, let Ej = Q(
√
dj)

with ring of integers Oj = Z[
dj+

√
dj

2 ] of discriminant dj < 0 with (d1, d2) = 1. In
this subsection, we describe how to view a pair of CM points (τ1, τ2) ∈ XΓ × XΓ

associated to E1 and E2 as a big CM point in XK in the sense of [BKY12]. For this
purpose, let E = E1 ⊗Q E2 = Q(

√
d1,

√
d2) with ring of integers OE = O1 ⊗Z O2.

Then E is a biquadratic CM number field with real quadratic subfield F = Q(
√
D)

and D = d1d2.
We define W = E with the F -quadratic form QF (x) =

Nxx̄√
D
. Let WQ = W with

the Q-quadratic form QQ(x) = trF/Q QF (x). Let σ1 = 1 and σ2 = σ be two real

embeddings of F with σj(
√
D) = (−1)j−1

√
D. Then W has signature (0, 2) at σ2

and (2, 0) at σ1 respectively, and so WQ has signature (2, 2). Choose a Z-basis of
OE as follows:

e1 = 1⊗ 1, e2 =
−d1 +

√
d1

2
=

−d1 +
√
d1

2
⊗ 1,

e3 =
d2 +

√
d2

2
= 1⊗ d2 +

√
d2

2
, e4 = e2e3.

We will drop ⊗ when there is no confusion. Then it is easy to check that

(3.3) (WQ, QQ) ∼= (V,Q) = (M2(Q), N det),
∑

xiei 	→ ( x3 x1
x4 x2

) .

We will identify (WQ, QQ) with the quadratic space (V,Q) = (M2(Q), N det). Un-
der this identification, the lattice L = M2(Z) becomes OE . Then one can check that
the maximal torus T in (2.21) can be identified with ([HY12], [BKY12, Section 6])

T (R) = {(t1, t2) ∈ (E1 ⊗Q R)× × (E2 ⊗Q R)× : t1t̄1 = t2t̄2},
for any Q-algebra R, and the map from T to SO(W ) is given by (t1, t2) 	→ t1/t̄2.
The map from T to H is explicitly given as follows. Define the embedding

(3.4) ιj : Ej → M2(Q), ιj(r)(ej+1, e1)
t = (rej+1, re1)

t.

Then ι = (ι1, ι2) gives the embedding from T to H.
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Extend the two real embeddings of F into a CM type Σ = {σ1, σ2} of E via

σ1(
√

di) =
√

di ∈ H, σ2(
√

d1) =
√

d1, σ2(
√

d2) = −
√

d2.

Since Wσ2
= W ⊗F,σ2

R ⊂ VR has signature (0, 2), it gives two points z±σ2
in D. In

this case, the big CM cycles in Section 2.2 become

(3.5) Z(W, z±σ2
) = {z±σ2

} × T (Q)\T (Af )/KT ∈ Z2(XK)

and

Z(W ) = Z(W, z±σ2
) + σ(Z(W, z±σ2

)).

For simplicity, we will denote zσ2
for z+σ2

.

Lemma 3.4. On H±,2, one has zσ2
= (τ1, τ2) ∈ H2 and z−σ2

= (τ̄1, τ̄2) ∈ (H−)2,
where

τj =
dj +

√

dj

2
.

Proof. In the decomposition

VR = V ⊗Q R = Wσ1
⊕Wσ2

, Wσi
= E ⊗F,σi

R ∼= C, r 	→ σi(r),

the R-basis {ei, i = 1, 2, 3, 4} becomes

e1 = (1, 1), e2 = (−τ̄1,−τ̄1), e3 = (τ2, τ̄2), and e4 = (−τ̄1τ2,−τ̄1τ̄2).

The negative two plane Wσ2
representing z±σ2

has an R-orthogonal basis

u = (0,
√

|d2|) and v = (0,
√

d2) ∈ Wσ2
⊂ VR.

One checks that

u = −D −
√
D

2
√

|d1|
e1 −

d2
√

|d1|
e2 +

d1
√

|d1|
e3 +

2
√

|d1|
e4

=

(

d1√
|d1|

−D−
√

D

2
√

|d1|
2√
|d1|

− d2√
|d1|

)

and

v =

√
d2(

√
d1 +

√
d2)

2
e1 +

√
d2√
d1

e2 − e3

=

(

−1

√
d2(

√
d1+

√
d2)

2

0

√
d2√
d1

)

.

So

u− iv =
2

√

|d1|
(

τ1 −τ1τ2
1 −τ2

)

=
2N
√

|d1|
wN (τ1, τ2),

and

u+ iv =
2N
√

|d1|
wN (τ̄1, τ̄2)

as claimed. �
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Lemma 3.5. Let Kj = ι−1
j (K(Γ)) and let Cl(Kj) = E×

j \E×
j,f/Kj be the associated

class group of Ej. Then there is an injection

p′ : T (Q)\T (Af )/KT → Cl(K1)× Cl(K2)

with image

IM(p′) = {(C1, C2) ∈ Cl(K1)× Cl(K2) : ∃ tj ∈ E×
j,f with Cj = [tj ], t1t̄1 = t2t̄2}

= {(C1, C2) ∈ Cl(K1)× Cl(K2) : ∃ fractional ideals ai with Cj = [aj ],

N(a1) = N(a2)}.
Proof. Clearly p′ is a group homomorphism. We first check that p′ is injective.
Assume [t1, t2] ∈ ker p, and write tj = gjkj with gj ∈ E×

j and kj ∈ Kj . Then

t1t̄1 = t2t̄2 implies that

g1ḡ1
g2ḡ2

=
k2k̄2
k1k̄1

∈ Q>0 ∩ Ẑ× = {1},

so (g1, g2) ∈ T (Q), and k2k̄2 = k1k̄1. This implies that

(k1, k2) ∈ KT = {(t1, t2) ∈ T (Af ) : (ι1(t1), ι2(t2)) ∈ KΓ = K(Γ)×K(Γ)}.
So (t1, t2) ∈ T (Q)KT . The first formula for IM(p) is the definition. To show the
second formula, assume N(a1) = N(a2). Let tj ∈ Ej,f such that its associated ideal

is aj . Then t1t̄1 = t2t̄2u for some u ∈ Ẑ×. When p � dj , up = wpw̄p for some

wp ∈ O×
Ej,p

. So we can decompose u = u−1
1 u2 such that uj = wjw̄j ∈ NEj/Q Ô×

Ej
.

Replacing tj by tjwj , we find tj ∈ E×
j,f such that t1t̄1 = t2t̄2 and [tj ] = [aj ]. �

Let Hj be the class field of Ej associated to Kj and let H = H1H2 be the
composition of H1 and H2. By the complex multiplication theory, the point [zσ2

] ∈
XK is defined over H. Moreover, one has a natural map induced by ιj in (3.4):
(3.6)
ιj : Cl(Kj) → XΓ = GL2(Q)\H±×GL2(Af )/K(Γ), ιj([t

−1]) = [τj , ιj(t
−1)] = τσt

j .

Here σt ∈ Gal(Hj/Ej) is associated to [t] by class field theory. The last identity is
Shimura’s reciprocity law (see for example [Yan16]). We will also write τσt

j = τσa

j

in ideal language where [aj ] ∈ Cl(Kj) corresponds to the idele class of t. Now the
following two propositions are clear.

Proposition 3.6. Let (t1, t2) ∈ T (Af ), and let σtj ∈ Gal(Hj/Ej) be the associated

Galois element (to tj) via the Artin map. Then

[zσ2
, (t−1

1 , t−1
2 )] = [τ

σt1
1 , τ

σt2
2 ].

Proposition 3.7. Assume (d1, d2) = 1. Then

Z(W, zσ2
) =

∑

([a1],[a2])∈IM(p′)

[τ
σa1
1 , τ

σa2
2 ],

Z(W, z−σ2
) =

∑

([a1],[a2])∈IM(p′)

[(−τ̄1)
σa1 , (−τ̄2)

σa2 ],

Z(W ) =
∑

([a1],[a2])∈IM(p′)

(

[τ
σa1
1 , τ

σa2
2 ] + [(−τ̄1)

σa1 , τ
σa2
2 ] + [τ

σa1
1 , (−τ̄2)

σa2 ]

+[(−τ̄1)
σa1 , (−τ̄2)

σa2 ]) .

The following lemma will be used later.
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Lemma 3.8. Assume again that (d1, d2) = 1. Let Cl(Ej) be the ideal class group

of Ej. Let Cj ∈ Cl(Ej) be an ideal class for each j = 1, 2. Then there is an ideal

aj ∈ Cj such that N(a1) = N(a2). In particular, when Kj = ÔEj
in Lemma 3.5,

then the map p′ is an isomorphism.

Proof. We first show that H1 ∩H2 = Q. Let p be a rational prime; then p � d1 or
p � d2. When p � dj , p is unramified in Hj and thus in H1 ∩H2. So every prime p
is unramified in H1 ∩H2, and thus H1 ∩H2 = Q. This implies that

Gal(H/Q) ∼= Gal(H1/Q)×Gal(H2/Q).

So there is σ ∈ Gal(H/Q) such that σ|Hj = σCj
. In particular, σ ∈ Gal(H/E),

which is abelian. By the class field theory, there is an ideal a of E such that σa = σ.
Let aj = NE/Ej

a. Then σ|Hj = σaj
and N(a1) = N(a2) = N(a). Moreover, one

has Cj = [aj ]. �

4. Gross and Zagier’s singular moduli factorization formula

We will give a different proof of Gross and Zagier’s factorization formula (The-
orem 1.1) in this section. For this, we take L = M2(Z) with Q(X) = detX, and

W = E with QF (x) = xx̄√
D
, where E = Q(

√
d1,

√
d2) and F = Q(

√
D) are as in

Section 3. In this case, the lattice L ∼= OE is unimodular.

Proof of Theorem 1.1. Recall the identification at the beginning of Section 3 of the
product X0(1) × X0(1) of modular curves with the orthogonal Shimura surface
of signature (2, 2) and the isotropic vectors � =

(

0 −1
0 0

)

and �′ = ( 0 0
1 0 ) used for

the identification. We also use them as in Theorem 2.2 for Borcherds product
expansion. Write

j(τ )− 744 =
∑

m≥−1

c(m)qm.

Then Borcherds proved in [Bor95] that

j(z1)− j(z2) = Ψ(j(τ )− 744),

which can be checked easily by Theorem 2.2. Notice that Cl(Ki) = Cl(Ei) is the
ideal class group of Ei and j(−τ̄i) = j(τi). So the map p′ in Lemma 3.5 is an
isomorphism, and

∑

(z1,z2)∈Z(W )

log |j(z1)− j(z2)| = 4
∑

[ai]∈Cl(Ei)

log |j(τσa1
1 )− j(τ

σa2
2 )|

= 4
∑

[ai]∈Cl(Ei)

log |j(τa1
)− j(τa2

)|.

Here

τai
=

bi +
√
di

2ai
if ai = [ai,

bi +
√
di

2
].

So one has by Theorem 2.6,

−4
∑

[ai]∈Cl(Ei)

log |j(τa1
)− j(τa2

)|4 = C(W,K)a1(φ),

with φ = Char(ÔE), and

C(W,K) =
|Z(W,σ±

2 )|
Λ(0, χE/F )

=
2h(E1)h(E2)

Λ(0, χE1/Q)Λ(0, χE2/Q)
=

w1w2

2
,
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where h(Ei) is the class number of Ei. By Proposition 2.7, one has

a1(φ) =
∑

t∈∂−1
F , totally positive

trF/Q t=1

a(t, φ).

When |Diff(W, t)| > 1, a(t, φ) = 0. When Diff(W, t) = {p}, p is inert in E/F ,

and ordp(t
√
Dp) is even, Proposition 2.7 implies that

a(t, φ) = −4
1 + ordp(t

√
D)

2
ρ(t

√
Dp−1)

∏

q<∞
γ(Wq) log(N(p)),

since

∏

q�=p

W ∗
t,q(0, φ)

γ(Wq)
=
∏

q�=p

ρq(t
√
D) =

∏

q

ρq(t
√
Dp−1) = ρ(t

√
Dp−1).

Here we used the fact that ρp(t
√
Dp−1) = 1 when p ∈ Diff(W, t). Next, γ(Wσ1

) =
−i = −γ(Wσ2

) implies that

∏

q<∞
γ(Wq) =

∏

all primes v

γ(Wv) = 1.

So

a(t, φ) = −2(1 + ordp(t
√
D))ρ(t

√
Dp−1) log(N(p)).

Notice that the right hand side in the above identity is automatically zero if we
replace p by other inert primes in E/F since ρ(t

√
Dq−1) = 0 . So we always have

a(t, φ) = −2
∑

p inert in E/F

(1 + ordp(t
√
D))ρ(tp−1∂F ) log(N(p)).

Putting everything together and replacing t
√
D by t, we obtain the theorem.

Remark 4.1. It is easy to check that our formula coincides with [GZ85, (7.1)] and
thus their main formula. Indeed,

(4.1)
∑

a|tOF

χE/F (a) logN(a) = −
∑

p inert in E/F

(1 + ordp(tOF ))

2
ρ(tp−1) log(N(p))

for t = m+
√
D

2 ∈ OF with |m| <
√
D. To see it, for any fixed integral ideal b of F ,

define

f(b) =
∑

a|b
χE/F (a) logN(a).
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Write b =
∏n

i=1 p
ei
i with ei > 0. Assuming p1 is inert in E/F and e1 is odd, write

b1 = bp−e1
1 . Then (recall that χE/F (p1) = −1)

f(b) =
∑

a1|b1

e1
∑

j=0

(−1)jχE/F (a1) (j log N(p1) + logN(a1))

=

⎛

⎝

e1
∑

j=0

(−1)jj log N(p1)

⎞

⎠

⎛

⎝

∑

a1|b1

χE/F (a1)

⎞

⎠+

⎛

⎝

e1
∑

j=0

(−1)j

⎞

⎠ f(b1)

= −1 + e1
2

logN(p1)
∑

a1|b1

χE/F (a1)

= −1 + e1
2

logN(p1)
n
∏

i=2

(

ei
∑

j=0

χE/F (pi)
j)

= −1 + e1
2

ρ(b1) logN(p1)

= −1 + e1
2

ρ(bp−1
1 ) logN(p1).

In particular, if there is another pi (i > 1) inert in E/F with ei odd, then ρ(bp−1
1 ) =

0 and f(b) = 0. In our case,

tOF =

n
∏

i=1

peii .

Then pi ∈ Diff(W, t/
√
D) if and only if pi is inert in E/F and ei is odd. When

|Diff(W, t/
√
D)| > 1,

the above argument shows that f(tOF ) = 0 and (4.1) holds as the right hand side

of (4.1) is also zero. When Diff(W, t/
√
D) = {p}, say, p = p1, one has

f(tOF ) = −1 + e1
2

ρ(b1) N(p1).

The right hand side of (4.1) equals this value too. So (4.1) holds.

5. The Yui-Zagier conjecture for ωi

5.1. Borcherds product for ω2(z1)− ω2(z2). In this section, let

L =
(

Z Z
2Z Z

)

with Q(X) = detX

and Γ = Γ0(2) in this section. It acts on L′/L trivially, where

L′/L =

{

μ0 = 0, μ1 = e21, μ2 =
1

2
e12, μ3 = μ1 + μ2

}

.

Here eij is the 2× 2 matrix with the (i, j) entry 1 and all other entries 0. It is easy
to check Z(1, μ0) = X∆

Γ0(2)
in the open variety XK = XΓ0(2) ×XΓ0(2).

Take the primitive isotropic vector � = −e12 ∈ L and the vector �′ = e21 ∈ L′

with (�, �′) = 1. Since (�, L) = 2Z, we choose ξ = 2�′ ∈ L with (�, ξ) = 2. In this
case,

L′
0 = {x ∈ L′ : (x, �) ≡ 0 (mod 2)} = {

(

a b/2
2c d

)

: a, b, c, d ∈ Z}, L′
0/L = {0, μ2}.
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One also has

M = L ∩ (Q�+Q�′)⊥ = {m(a, b) = ( a 0
0 b ) : a, b ∈ Z},

which is self-dual. So the projection p from L′
0/L to M ′/M is zero. We further

choose �M = e11 and �′M = e22 with (�M , �′M ) = 1, so P = 0. Finally for a weakly
holomorphic modular form f ∈ M !

0,ωL
with

f(τ ) =
∑

m,μ

c(m,μ)qmφμ =
∑

μ

fμφμ,

one has

fM = fμ0
+ fμ2

.

Now Theorem 2.2 gives the following proposition in this special case.

Proposition 5.1. Let

f(τ ) =
∑

m,μ

c(m,μ)qmφμ ∈ M !
0,ωL

.

Then there is a meromorphic modular form of two variables Ψ(z1, z2, f) for Γ0(2)×
Γ0(2) of parallel weight

c(0,0)
2 with the following product expansion near the cusp

Q�, with respect to a Weyl chamber W whose closure contains �M (z = (z1, z2)):

Ψ(z, f) = Ce((ρ(W, f), z))
∏

(m,n)∈Z2

(
(−m 0

0 n

)

,W )>0

(1− qn1 q
m
2 )c(mn,0)(1 + qn1 q

m
2 )c(mn,μ2).

Here qj = e(zj), and |C| = 2
c(0,μ2)

2 .

Proposition 5.2. (1) Let M !,0
0,ωL

be the subspace of M !
0,ωL

consisting of constant

vector f =
∑

aiφμi
. Then it is of dimension 2 with a basis {φμ0

+φμ1
, φμ0

+φμ2
}.

(2) One has

Ψ(z, φμ0
+ φμ1

) = η(z1)η(z2),

Ψ(z, φμ0
+ φμ2

) =
√
2η(2z1)η(2z2),

Ψ(z, φμ2
− φμ1

) =
1√
2
f2(z1)f2(z2).

Here f2(z) = ω2(z)
1
24 =

√
2η(2z)

η(z) is also a famous Weber function.

Proof. Recalling that SL2(Z) is generated by n(1) = ( 1 1
0 1 ) and w =

(

0 −1
1 0

)

,

n(1)(f) = a0e0 + a1e1 + a2e2 − a3e3 = f

if and only if a3 = 0. Next, assuming a3 = 0, then

w(f) =
∑

aiωL(w)(ei) =
1

2

⎡

⎣(
∑

ai)e0 +

3
∑

i=1

(a0 + ai −
∑

j �=i

aj)ei

⎤

⎦ = f

if and only if a0 = a1 + a2. This proves (1). In such a case, f = a1(e0 + e1) +
a2(e0 + e2).

To prove (2), notice that

Gr(M) = {R
(

a 0
0 −1

)

: a > 0} ∼= R>0.
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Since f = a1(e0 + e1) + a2(e0 + e2) has no negative term, one sees that Gr(M) has
only one Weyl chamber, i.e., itself with respect to f . A vector λ =

(−m 0
0 n

)

satisfies
(λ,W ) > 0 if and only if m,n ≥ 0 but not both equal to 0. One also has

ρ(W, f) =
2a2 + a1

24
(−�M + �′M ).

Now the proposition is clear from Theorem 2.2 if we just take C = 2c(0,μ2)/2. �

Proposition 5.3. Let

f = 12(φμ2
− φμ1

) +
∑

γ∈Γ0(2)\ SL2(Z)

(212ω−1
2 + 12)|γωL(γ)

−1φμ0
∈ M !

0,ωL
.

Then

(5.1) c(0, μ0) = c(0, μ1) = c(0, μ3) = 0, c(0, μ2) = 24,

and

Ψ(z, f) = ω2(z1)− ω2(z2).

Proof. Direct calculation gives

f = (q−1 − 98028q − 10749952q2 − 432133182q3 + · · · )φμ0

+(−98296q − 10747904q2 − 432144384q3 + · · · )φμ1

+(24− 98296q − 10747904q2 − 432144384q3 + · · · )φμ2

+(4096q
1
2 + 1228800q

3
2 + 74244096

5
2 + · · · )φμ3

.

In particular, (5.1) holds, and Z(f) = Z(1, μ0) = X∆
Γ0(2)

in XK . This implies that

g(z1, z2) =
Ψ(z1, z2, f)

ω2(z1)− ω2(z2)

has no zeros or poles in the open Shimura variety XK ; i.e., its divisor is supported
on the boundaries {P}×X0(2) and X0(2)× {P}, where P runs through the cusps
0 and ∞ of X0(2). We now use Borcherds product expansion to show that g(z1, z2)
has no zeros or poles on the boundaries and thus has to be a constant.

The weakly holomorphic form f gives rise to two Weyl chambers

Gr(M)− ZM (1, μ0) = W±,

where

W± = {R
(

a 0
0 −1

)

: a±1 > 1}.
We choose the Weyl chamber W+ whose closure contains �M . Then for λ =
(−m 0

0 n

)

∈ M ′, (λ,W+) > 0 if and only if

m+ n ≥ 0, n ≥ 0, and m2 + n2 > 0.

Direct calculation using (2.15)–(2.18) gives the Weyl vector

ρ(W+, f) = − 1

24
(c(0, μ0) + c(0, μ2))�M + (−c(−1, μ0) +

c(0, μ0) + c(0, μ2)

24
)�′M

= −e11.

We can take the constant

C = −2c(0,μ2)/2 = −212.
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One has by Proposition 5.1 that

Ψ(z, f) = −212q2(1− q1q
−1
2 )

∏

m,n≥0,m+n>0

(1− qn1 q
m
2 )c(mn,0)(1 + qn1 q

m
2 )c(mn,μ2)

= 212(q1 − q2)
∏

m,n>0

(1− qn1 q
m
2 )c(mn,0)(1 + qn1 q

m
2 )c(mn,μ2).

This product formula shows that Ψ(z, f) has no zeros or poles along the boundary
{∞} × XΓ0(2) and XΓ0(2) × {∞}. Since ω2(z1) − ω2(z2) has the same property,
g(z1, z2) has no zeros or poles in these boundaries. Fixing a z2 ∈ H, the function
g(z1, z2) of z1 has then only zeros or poles at the cusp {0} in X0(2) and is thus
independent of z1: g(z1, z2) = g(z2). This implies that g(z2) has only zeros or poles
at the cups 0 and is thus a constant g(z2) = A. Therefore,

Ψ(z1, z2, f) = A(ω2(z1)− ω2(z2)).

Comparing the leading coefficients on both sides, one sees that A = 1. �

5.2. Proof of Theorem 1.3. Now we start to prove Theorem 1.3. Under the
isomorphism

(M2(Q), det) ∼= (E, trF/Q
xx̄√
D
), ( x3 x1

x4 x2
) 	→

∑

xiei,

one has

L ∼= Z+ Z
D +

√
D

2
+ Z

−d1 +
√
d1

2
+ Z

d2 +
√
d2

2
,

which is of index 2 in OE , but is not an OF -lattice unfortunately. By Proposition
5.3, we have

ω2(z1)− ω2(z2) = Ψ(z, f).

Lemma 5.4. Assume dj ≡ 1 (mod 8). Then

ι−1
j (K(Γ0(2)) = Ô×

Ej
.

Proof. We work the case j = 2. Then case j = 1 is the same. For r = x+y d2+
√
d2

2 ∈
E×

2,f , one has

ι2(r) =
(

x+dy y d−d2

4
y x

)

.

So ι2(r) ∈ K(Γ0(2)) if and only if y ∈ 2Ẑ. This implies that

ι−1
2 (K(Γ0(2))) = (Ẑ+ 2ÔE2

)×.

Since d2 ≡ 1 (mod 8), 2 is split in E2 and

O×
E2,2

= Z×
2 × Z×

2 = (1 + 2OE2,2).

So

(Ẑ+ 2ÔE2
)× = Ô×

E2
.

�

This lemma and Lemma 3.8 imply that the class projection p′ in Lemma 3.5 is
an isomorphism. By Proposition 3.6, one has

τ
σaj

j = τaj
=

bj +
√

dj

2aj
if aj = [aj ,

bj +
√

dj

2
], 2 � aj .
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On the other hand,

ω2(−τ̄j) = ω2(τj − dj) = ω2(τj).

So one has again by Proposition 3.7
∑

(z1,z2)∈Z(W )

log |ω2(z1)− ω2(z2)| = 4
∑

[aj ]∈Cl(Ej)

log |ω2(τa1
)− ω2(τa2

)|.

So we have by Theorem 2.6,

−4
∑

[aj ]∈Cl(Ej)

log |ω2(τa1
)−ω2(τa2

)|4= C(W,K)[a1(φ)+24a0(φ̃)]= 2[a1(φ)+24a0(φ̃)],

with φ = Char(L̂) and φ̃ = Char(μ2 + L̂). Here

C(W,K) =
degZ(W, z±σ2

)

Λ(0, χ)
=

w1w2

2
= 2.

Now Theorem 1.3 follows from the following lemma, which we will prove in the
next subsection.

Lemma 5.5. Let the notation be as above. Then

(1)

a0(φ̃) = 0,

(2)

a1(φ) = −4
∑

t=m+
√

D
2

|m|<
√
D,odd

m2≡D (mod 16)

∑

p inert in E/F

1 + ordp(tOF )

2
ρ(tp−1p−2

t ) log(N(p)).

5.3. Whittaker functions and proof of Lemma 5.5.

Lemma 5.6. Let W = Q2
2 with the quadratic form Q(x) = α−1x1x2 with α ∈ Z×

2 .

For a = 0, 1, let

Ma = {(x1, x2) ∈ Z2
2 : x1 + x2 ≡ a (mod 2)}

and

ϕa = Char(Ma), ϕ̃a = Char((
1

2
,
1

2
) +Ma).

Let ψ be an unramified additive character of Q2.

(1) When a = 0, the local Whittaker function Wtα(s, ϕa) = 0 unless t ∈ Z2,

and

Wtα(s, ϕ0)

γ(W )
=

{

1
2 if t ∈ Z×

2 ,
1
2 − 2−s + (1− 2−1−s)

∑o(t)
n=1 2

−ns if t ∈ 2Z2,

where o(t) = ord2 t. In particular,

Wtα(0, ϕ0)

γ(W )
=

{

1
2 if o(t) = 0,
o(t)−1

2 if o(t) ≥ 1.
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(2) When a = 1, the local Whittaker function Wtα(s, ϕa) = 0 unless t ∈ Z2,

and

Wtα(s, ϕ1)

γ(W )
=

{

1
2 (1− 2−s) if t ∈ Z×

2 ,
1
2 (1 + 2−s) if t ∈ 2Z2.

In particular,

Wtα(0, ϕ1)

γ(W )
=

{

0 if o(t) = 0,

1 if o(t) ≥ 1.

(3) One has

Wtα(s, ϕ̃a) = 0

unless t− 1+2a
4 ∈ Z2, in which case it is the constant 1

2γ(W ). In particular,

W0(s, ϕ̃a) = 0.

Sketch of proof. By the definition and unfolding, one has

Wtα(s, ϕa)

γ(W )
=

∫

Q2

Ja(b)ψ(−tb)|a(wn(b))|s db

=

∫

Z2

Ja(b)ψ(−tb) db+
∑

n≥1

2n
∫

Z×
2

Ja(2
−nb)ψ(−2−ntb)|a(wn(2−nb))|s db,

where

Ja(b) =

∫

Ma

ψ(bx1x2) dx1dx2.

Then one checks that

J1(b) =
1

2
Char(

1

2
Z2)(b),(5.2)

J0(b) =

⎧

⎪

⎨

⎪

⎩

1
2 if b ∈ Z2,

0 if b ∈ 1
2Z

×
2 ,

|b|−1 if b /∈ 1
2Z2,

(5.3)

and

|a(wn(b))| = min(1, |b|−1).

Now a direct calculation proves (1) and (2). For (3), one has similarly

Wtα(s, ϕ̃a)

γ(W )
=

∫

Q2

J̃a(b)ψ(−tb)|a(wn(b))|s db,

where

J̃a(b) =

∫

( 1
2 ,

1
2 )+Ma

ψ(bx1x2) dx1dx2 = J̃ (0)
a (b) + J̃ (1)

a (b).

Here (after a simple substitution)

4J̃ (j)
a (b) =

∫

Z2

∫

Z2

ψ(b(
1

2
+ j + 2y1)(

1

2
− j + a+ 2y2))dy1 dy2

= ψ((
1

2
+ j)(

1

2
− j + a)b) Char(Z2)(b).
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So

4Wtα(s, ϕ̃a)

γ(W )
=

1
∑

j=0

∫

Z2

ψ((
1

2
+ j)(

1

2
− j + a)b)ψ(−tb) db

= 2

∫

Z2

ψ((
1 + 2a

4
− t)b) db

= 2Char(
1 + 2a

4
+ Z2)(t).

�

To compute a1(φ) and a0(φ̃), we keep the notation in the proof of Theorem 1.3.
Recall that

L = Z+ Z
D +

√
D

2
+ Z

−d1 +
√
d1

2
+ Z

d2 +
√
d2

2

is not an OF -lattice as D+
√
D

2
−d1+

√
d1

2 /∈ L. So φ and φ̃ are not factorizable over
primes of F . Instead one has only

φ = φ2

∏

p�2

φp and φ̃ = φ̃2

∏

p�2

φp,

where φp = Char(OE,p) for a prime (ideal) p of F not dividing 2, φ2 = Char(L2),

and φ̃2 = Char( 12 + L2). So we need to take special care at the local calculation at
p = 2. We focus on φ and a1(φ) first.

Our assumption implies also that 2 splits in E completely. Write

2OF = p1p2, piOE = PiP̄i.

Let
√
D ∈ Z2 and

√
di ∈ Z2 be some prefixed square roots of D and di respectively

with
√
d1
√
d2 = −

√
D. We identify Fpi

, EPi
, and EP̄i

with Q2 as follows:

Fpi
∼= Q2,

√
D 	→ (−1)i−1

√
D,

EPi
∼= Q2,

√
D 	→ (−1)i−1

√
D,
√

di 	→
√

di,

EP̄i
∼= Q2,

√
D 	→ (−1)i−1

√
D,
√

di 	→ −
√

di.

With this identification, we can check that L2 = L⊗Z Z2 is given by

L2 = {x = (x1, x2, x3, x4) ∈ EP1
×EP̄1

×EP2
×EP̄2

∼= Q4
2 : xi ∈ Z2,

∑

xi ∈ 2Z2},
with quadratic form

Q(x) =
x1x2√

D
+

x3x4

−
√
D

= Qp1
(x1, x2) +Qp2

(x3, x4).

The embedding from L to L2 is given by

x 	→ (σ1(x), σ1(x̄), σ2(x), σ2(x̄)),

where σ1(
√
di) =

√
di and σ2(

√
di) = (−1)i

√
di. So

L2 = (M0 ×M0) ∪ (M1 ×M1),

where Ma is given as in Lemma 5.6. This implies that

φ2 = Char(L2) = φp1,0φp2,0 + φp1,1φp2,1,

where φpi,a is ϕa in Lemma 5.6. Correspondingly, we have

φ = φ0 + φ1, a(t, φ) = a(t, φ0) + a(t, φ1),
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where φi = φp1,iφp2,i

∏

p�2 φp. Now Proposition 2.7 and the proof of Theorem 1.1
give

a(t, φi)

(5.4)

= −4
∑

p inert in E/F

1 + ordp(t
√
D)

2
ρ(2)(tp−1∂F )

2
∏

j=1

W ∗,ψ′

t
√
D,pj

(0, φpj ,i)

γ(Wpj
)

log(N(p)).

Here ψ′(x) = ψF (x/
√
D) and

ρ(2)(a) =
∏

p�2

ρp(a)

as in the proof of Theorem 1.1.

Lemma 5.7. Assume again that d1≡d2≡1 (mod 8). Let t∈∂−1
F with trF/Q(t)=1.

Then there is a unique prime ideal pt with t
√
D ∈ pt. Moreover,

W ∗,ψ′

t
√
D,p1

(0, φp1,1)W
∗,ψ′

t
√
D,p2

(0, φp2,1) = 0,

and

W ∗,ψ′

t
√
D,p1

(0, φp1,0)W
∗,ψ′

t
√
D,p2

(0, φp2,0)

γ(Wp1
)γ(Wp2

)
= ordpt

(t
√
D)− 1 = ρpt

(t
√
Dp−2

t ).

Proof. Write t = m+
√
D

2
√
D

∈ ∂−1
F . Recall the two natural embeddings σi : F ↪→ Fpi

,

i = 1, 2. Since

σ1(t
√
D)σ2(t

√
D) =

m2 −D

4
≡ 0 (mod 2), σ1(t

√
D)− σ2(t

√
D) ≡ 1 (mod 2),

one sees that exactly one of ordpi
(σi(t

√
D)) is positive while the other one is zero.

For simplicity, let pt = p1 with ordp1
(t
√
D) ≥ 1 and let ordp2

(t
√
D) = 0. Then

Lemma 5.6 implies that

W ∗,ψ′

t
√
D,p2

(0, φp2,1) = 0.

The same lemma also implies (recall L(1, χpi
) = 2) that

W ∗,ψ′

t
√
D,p1

(0, φp1,0)W
∗,ψ′

t
√
D,p2

(0, φp2,0)

γ(Wp1
)γ(Wp2

)
= 4 · 1

2
· 1
2
(ordp1

(t
√
D)− 1)

= ρpt
(t
√
Dp−2

t ).

�

Now, one has by Lemma 5.7 and (5.4)

a(t, φ1) = 0,

a(t, φ0) = −4
∑

p inert in E/F

1 + ordp(t
√
D)

2
ρ(tp∂F p

−2
t ) log(N(p)).
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Here pt is the only prime ideal of F above 2 with t
√
D ∈ pt. Replacing t by t/

√
D,

one obtains for t = m+
√
D

2 ∈ OF with |m| <
√
D:

a(t/
√
D,φ) = −4

∑

p inert in E/F

1 + ordp(tOF )

2
ρ(tpp−2

t ) log(N(p)).

The condition ρ(tpp−2
t ) �= 0 implies that t ∈ p2t and so

N(t) =
m2 −D

4
≡ 0 (mod 4), i.e., m2 ≡ D (mod 16).

This proves the second identity in Lemma 5.5:

a1(φ) =
∑

t=m+
√

D
2

|m|<
√
D,odd

m2≡D (mod 16)

∑

p inert in E/F

1 + ordp(tOF )

2
ρ(tp−1p−2

t ) log(N(p)).

Now we prove a0(φ̃) = 0. The same argument as above gives

φ̃ = φ̃2

∏

p�2

φp

and

φ̃2 = φ̃p1,0φ̃p2,0 + φ̃p1,1φ̃p2,1

with φ̃pi,a being ϕ̃a in Lemma 5.6. So

W0,2(s, φ̃2) =

1
∑

a=0

1
∏

i=0

W0,pi
(s, φ̃pi,a) = 0

by Lemma 5.6. This implies that

W0,f (s, φ̃) = 0,

and thus a0(φ̃) = 0 by Remark 2.5 (and φ̃(0) = 0). This proves Lemma 5.5 and
thus Theorem 1.3.

Remark 5.8. When di ≡ 1 (mod 8) are not satisfied, the big CM value formula will
still give a factorization formula for the CM values of ω2(z1)− ω2(z2) although the
summation will be over the ring class group of Ei with conductor 2 when di ≡ 5
(mod 8) (see Lemma 5.4). We leave the details to the reader.

Remark 5.9. The Weber function ω2 has two companions, ω1(τ ) = w(ω2) and
ω0(τ ) = ω1(τ +1). So the results on ω2 can easily be transferred to its companions
ω0 and ω1.
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