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DIFFERENCE OF MODULAR FUNCTIONS
AND THEIR CM VALUE FACTORIZATION

TONGHAI YANG AND HONGBO YIN

ABSTRACT. In this paper, we use Borcherds lifting and the big CM value
formula of Bruinier, Kudla, and Yang to give an explicit factorization formula
for the norm of \I/(d1+2‘/a) — \I!(d2+2‘/%)7 where VU is the j-invariant or the
Weber invariant ws. The j-invariant case gives another proof of the well-
known Gross-Zagier factorization formula of singular moduli, while the Weber
invariant case gives a proof of the Yui-Zagier conjecture for wg. The method
used here could be extended to deal with other modular functions on a genus
zero modular curve.
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In the 1980s, Gross and Zagier discovered a beautiful factorization formula for
the singular moduli [GZ85] in preparation of their well-known Gross-Zagier formula.
It was extended slightly by Dorman [Dor88|, which can be stated as follows (see

Remark 4.1).

Theorem 1.1 (Gross-Zagier, Dorman). Let E; = Q(v/d;) be two imaginary qua-
dratic fields of fundamental discriminants d; with (dy,dz) = 1, let F = Q(v/D) with
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3452 TONGHAI YANG AND HONGBO YIN

D = didsy, and let E = Q(\/d1,V/d2). Let j(7) be the well-known j-invariant. Then
. , _s
> loglii(ta,) — §(7a,)| 717

[Cli] GCI(Ei)

- ¥ v LR lOR) e g (p)).

= m+2\/5€OF p inert in E/F 2
|m|<vD
Here w; is the number of roots of unity in E;, and for an integral ideal a of F,
p(a) = [{A C Op : Ng/p(2A) = a}|.
Finally, for an integral ideal a; of E; with

bi +d;
& = Zay + 22V = N(w),
its associated CM point is T,, = I”;'T Vd

This gives a beautiful factorization formula for N(j( +2\/E) —J (d"‘+2‘/£)) (up

to sign). In particular, the biggest prime factor of this norm is less than or equal
to D/4, extremely small compared to the norm. The first few examples of this
phenomenon were discovered by Berwick in the 1920s [Ber28]. For example, one
has

14163, . 14++/=3

J( 5 ) —3( 5

1+ /=163
2

) = —2'8335%23%29° = —262537412640768000,

j( ) — (i) = —29357211%19%127%163 = —262537412640769728.

In 1997, Yui and Zagier [YZ97] defined a mysterious CM value f (%) via the
three Weber functions of level 48 (when d = 1 (mod 8) and 3 1 d) and proved that
it is defined over the Hilbert class field of Q(v/d). They claimed that its Galois
conjugates are the CM values at other CM points of the same discriminant d with
some modifications, which was later proved by Alice Gee using Shimura’s reciprocity
law. In addition, Yui and Zagier gave a conjectural factorization formula for the
norm of f (dl%‘/ﬁ)“ —f (‘122—‘/@)‘1 similar to the Gross-Zagier factorization formula
for any positive integer a|24. For example, when a = 24, the conjecture can be
restated as follows.

Conjecture 1.2. Let the notation be as in Theorem 1.1, and assume further that
dy=ds =1 (mod 8). Let

w2(7_) _ 212q H(l + qn)24 _ 212 .
n>0

be the Weber modular function for T'o(2). Then
S logls(ra,) — walres)

[a;|€CUE;)

1+ ord, (tO 1
-y S Ll ) g (e))
t— m+2\/5 p inert in E/F

|m|<v/'D,odd
m?=D (mod 16)

A(27)
A(T)
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MODULAR FUNCTIONS AND THEIR CM VALUE FACTORIZATION 3453

Here p; is the unique prime ideal of F' above 2 such that ord,, (tOp) > 1, and
for each ideal class [a;] € CL(E;), we choose a representative a; integral with norm
prime to 2, i.e.,

bi +Vd;

a;, =Za; +7 %,

b; + vd; .
ZT\/—Z, with 24 a;, a; >0, Ta;, =

They provided some numerical evidence in their paper. Notice that the biggest
prime factor of this norm is less than or equal to D/16. In this paper, we will prove
this conjecture.

Theorem 1.3. Conjecture 1.2 is true.

In his 2006 thesis [Sch09], Schofer used regularized theta lifting to generalize the
Gross-Zagier factorization formula to small CM values of the so-called Borcherds
products on the orthogonal Shimura varieties of type (n,2). Bruinier and Yang
generalized it to big CM values of Hilbert modular forms (which are Borcherds
products) over a real quadratic field [BY06]. More recently, Bruinier, Kudla, and
Yang ([BKY12]) generalized it to big CM values of Borcherds products on Shimura
varieties of orthogonal type (n,2), following Schofer and [BY09]. On a different
track, Lauter, Goren, and Viray have used geometric methods to generalize the
Gross-Zagier formula to Igusa’s j-invariants for genus two curves, which have im-
portant applications to the genus two curve cryptosystem ([GLO7], [GL12], [LV15]).
Yang also proved Lauter’s conjecture on Igusa’s j-invariants by combining the re-
sult in [BY06] with his work on arithmetic intersection [Yan13]. The big CM value
formula in [BY06], [BKY12] has also been used to prove certain cases of the Colmez
conjecture ([YanlOa], [YanlOb], [Yanl3]|, [BHK]) and the average Colmez conjec-
ture ([AGHMP15]). Dongxi Ye is extending the result to other modular curves of
genus zero [Yel7].

This paper is the first part of our effort to prove Yui and Zagier’s conjectural
formula using the big CM value formula.

The general idea is as follows. Let I' be a congruence subgroup such that the
compactification of X = I'\H has genus zero, and let ¥ be a generator of the
function field of X1, which is a modular function for I'. Then the difference function
U(z1) — ¥(z2) is a two-variable modular function on Xr x Xp with divisor being
the diagonal divisor. We view X x Xr as an orthogonal Shimura variety of type
(2,2) associated to (V = M2(Q),Q = N det) for some positive integer N. One
can show that the diagonal divisor is a special divisor on the product Xr x Xr
so that U(z1) — U(z3) has a chance to be a Borcherds lifting (product) of some
weakly holomorphic modular forms ([Bor98], [Bru02]). The first task is to find a
weakly holomorphic modular form, if any, whose Borcherds lifting is the difference
U(z1) — U(z2) ([Bor98], [Bru02]; see Section 2). There are two complications even
with Bruinier’s converse results ([Bru02|, [Brul4]). First, when N > 1, Bruinier’s
converse theorem does not apply. Second, there are two variable modular functions
whose divisors are only supported on the boundary, so it is not enough to compare
the divisors of the Borcherds product with our function only in the open Shimura
variety. We also need to understand their boundary behavior. The Borcherds
product expansion is important in this aspect. In this paper, we are only successful
in this step for the Weber functions w; (Section 5) but not for the more interesting
Weber functions f; of level 48.
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3454 TONGHAI YANG AND HONGBO YIN

The second task is to identify a pair of Heegner points (74, , 74,) with a big CM
point on Xr x Xr associated to the CM number field E = Q(v/dy,/d2) in the
sense of Bruinier, Kudla, and Yang in [BKY12]. This is done in Section 3. The
third task is to apply the big CM value formula in [BKY12] (assuming that ¥ is
a Borcherds lifting) to provide the expected formula. One serious problem (for
the Yui-Zagier conjecture) is that the big CM cycle in [BKY12] is likely bigger in
size than the ideal class groups used in Yui-Zagier’s conjectural formula in general.
One might need to use Shimura’s reciprocity law to analyze the Galois action on
the values as in [Gee99] to solve the problem. In the case of wq, the condition
d; =1 (mod 8) allows us to choose an embedding from E; to GL2(Q) so that the
ideal class group maps into X(2) nicely. Another minor complication (interesting
feature) is the explicit computation of the Fourier coefficient of the derivatives of
some incoherent Fisenstein series since Schwartz functions are not factorizable in
the wy case (Section 5).

Here is the organization of this paper. In Section 2, we review Borcherds lifting,
Borcherds product expansion ([Bor98], [Bru02]), and the big CM value formula
(BKY12]). In Section 3, we identify the product Xt x Xr of two copies of a
modular curve with a Shimura variety of orthogonal type (2,2) and identify its big
CM points with pairs of the CM points on the modular curve Xp. In Section 4,
we re-prove Theorem 1.1 using the big CM value formula. In Section 5, we first
identify wa(2z1)—wa(2z2) with a Borcherds lifting of some explicit weakly holomorphic
modular forms and then use the big CM value formula to prove Theorem 1.3.

2. BORCHERDS LIFTING AND THE BIG CM VALUE FORMULA

2.1. Borcherds lifting and Borcherds product expansion. In this subsec-
tion, we review the beautiful work of Borcherds in detail using slightly different
conventions and notation for our purpose. Let (V@) be a quadratic space over Q
of signature (n,2), and let L be an even integral lattice; i.e., Q(z) = %(x,x) S/
for z € L. Let

L'={yeV: (v,y)€Z, forz e L} DL
be its dual. We assume in this paper that n is even for simplicity. Let H =
GSpin(V), and let D be the oriented negative 2-planes in Vg. Then for a compact

open subgroup K of H(Ay), there is a Shimura variety Xy defined over Q such
that

Xi(C) = HQ\(D x H(As)/K).

We will identify X with X (C) in this section. We assume that K fixes L and
acts on L'/L trivially. The Hermitian symmetric domain D has two other useful
forms. Let

(2.1) L={weV: (w,w)=0, (w,w)<O0}.
Then one has an isomorphism
L/C* =D, w=1u+iv — Ru+ R(—v).

This isomorphism gives a complex structure on D, and we can view £ as a line
bundle over D—the tautological line bundle. It descends to a line bundle Lx
over X x—the line bundle of modular forms of weight 1 on Xg. Finally, given an
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MODULAR FUNCTIONS AND THEIR CM VALUE FACTORIZATION 3455

isotropic element ¢ € V| choose another element ¢/ € V such that (£,¢') = 1, and
let Vo = (Qf + Q¢')*. Then we have a tube domain (associated to (£, ¢")):

H=Hpp={2z=z+iy € Voc: Qy) <0}.
The map
w=wppy:H—L, w(z) =2+ —(Q(2) + Q)¢

gives an isomorphism Hy = £/C* and actually a nowhere vanishing section of
the line bundle £. We emphasize that w depends on the choice of the primitive
isotropic vector £ and the subspace Qf + Q¢ but not ¢. Furthermore, this map
w induces an action of ' = K N H(Q)" on H and an automorphy factor j(v, 2)
characterized by the following identity:

(2.2) yw(z) = v(7)i (v, 2)w(vz).

Here H(R)" is the identity component of H(R), H(Q)* = H(Q) N HR)*, and
v(7y) is the spinor norm of 7. This action preserves the two connected components
of H=HT UH~. A (meromorphic) function ¥ on H7 is called a (meromorphic)
modular form for I' of weight & if

(2.3) U(yz) = j(7,2)"U(2).

Alternatively, it is a section of the line bundle £% over Xx.
For a vector € V with Q(z) > 0 and h € H(Ay), let

H,={ge€ H: g(z) =z},
D,={2z€D: (z,2) =0},
and K, = H,(Af)NhKh™ '

Then the map
Hy(Q)\(Dg x Hy(Ay)/ Ky ) = Xk (C), [2,h1] — [z, hih]

gives a divisor Z(x,h) in Xk. It is actually defined over Q. For a rational number
m > 0 and ¢ € S(Vy), if there is an ¢ € V with Q(z) = m, we define, following
Kudla [Kud97al, the weighted special divisor

Z(m, ¢) = > ¢(h~ ) Z(x, h).

heH,(Ay)\H(Ay)/K

When there is no z € V with Q(z) = m, we simply set Z(m, ¢) = 0.

Associated to the quadratic space V' is a reductive dual pair (SLy, O(V)) and
a Weil representation w = wy,y of SLa(A) on S(Vy) = S(Vy) ® S(Va), where
Vi =VaghAsand Voo = V ®g Qo = V ®g R. Embed SLy(Z) into SLy(Z)
diagonally, and let S, C S(Ay) be the subspace of Schwartz functions ¢ which is
supported on L' = L' ®z Z and is L-translation invariant; i.e., ¢(x) depends only
on z mod L. Then

SL = @ (C(b;m ¢/J« = Char(u + IA’)

neL’/L
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3456 TONGHAI YANG AND HONGBO YIN

It is easy to check that Sy, is SLo(Z)-invariant under the Weil representation w; we
denote this representation wy. One has by definition

(2.4 wn (D)0 = (DR bET,
wr(@)bn = (DL L)Y el
veL' /L
Here

1 b 0 -1
”(b)<o 1)’ w(l o)’
and we have used the fact that
Vp(z) = Yoo(—2) = e(—2)
when z € Q. We also write
a 0
m(a) = (0 a_1> .

If we identify S; = C[L'/L] = @,/ Ceu via ¢, — €, and let py_ be the
Weil representation in [Bor98] (also [Bru02]) associated to the quadratic lattice L_,
where L_ = L but with quadratic form Q_(z) = —Q(z), then one sees immediately
that

(25) W = pPrL_.

Recall that a meromorphic function f : H — S, is called a weakly holomorphic
modular form of weight k with respect to SLa(Z) and wy, if it satisfies the following
conditions.

(i) One has f |gw, v = f forall v = (‘CI Z) e I', where

F ko 7(7) = (e + d) " Fwr ()71 (7).
(ii) There is an Sg-valued Fourier polynomial
Pr(r)= Y > clnu)d" b,
peL’ /L n<0

such that f(7) — Ps(1) = O(e™") as v — oo for some € > 0.

The Fourier polynomial Py is called the principal part of f. We denote the vector
space of these weakly holomorphic modular forms by M ,!w%. The Fourier expansion

of any f € M,!WJL is of the form
(2.6) fo) =Y Y enp)d" dp
peEL’' /L nEQ
n>>—oo
With this notation, we define

(27) Z(f) = Z C(—?’L,/L)Z(’IL/],).

n>0,u€L’ /L

Here Z(m,pu) = Z(m,¢,). Let S} be the dual space of Sy, the space of linear
functionals on Sz, and let {¢,/} be the dual basis in S} of the basis {¢,} of Sf.
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MODULAR FUNCTIONS AND THEIR CM VALUE FACTORIZATION 3457

Recall that the Siegel theta function (for (z,h) € XK)
(1,2, h) Za 7,2, h, ) 6

is an SY-valued holomorphic modular form of weight 0 for SLy(Z) and w) defined
as follows (see [BY09, Section 2] or [Kud03] for details). For z € D, consider the
orthogonal decomposition

Ve=2@2Y, ax=x,+x,1.
Then for ¢ € S(Vy) and (z,h) € Xk, one defines
(2.8) 0(t,z,h,9) =v Z d(ht)e(TQ(z,1) + 7Q(x.)).
eV

Here v = Im(7) is the imaginary part of 7. Notice that 6(7, 2,1, ¢,) = 0(r, z, 1) in
comparison with Borcherds’ Siegel theta functions.
We consider the regularized theta integral

(2.9)
wahf)= [ @0 / S (1)6(r, 2, by ,)diu()

peL’ /L
for z € D and h € H(Ay). Here F is the standard domain for SLo(Z)\H, and we

write
Z fu(T)o
neL’/L
The integral is regularized as in [Bor98|; that is, ®(z,h, f) is defined as the
constant term in the Laurent expansion at s = 0 of the function

(2.10) lim (f(7),0L(7,2,h)) v °du(T).

T—o0 Fr

Here Fr = {7 € H; |u| <1/2, |7| > 1, and v < T'} denotes the truncated funda-
mental domain, and the integrand

(2.11) SO0z m) = S (10T 2, R, 6,)
neLl’/L
is the pairing of f with the Siegel theta function, viewed as a linear functional on
the space S;. We remark that our regularized theta integral ®(z,h, f) is exactly
the same as the one in [Bor98] and [Bru02] when h = 1.
The following is the first part of [Bor98, Theorem 13.3] (see also [Bru02, Theorem
3.22]) in our setting.

Theorem 2.1. Let f(1) = > c(m, u)q" ¢, € M| _n ., be a weakly holomorphic

modular form of weight 1 — % for SLo(Z) and wr, and assume that c(m,p) € Z
for m < 0. Then there is a meromorphic modular form V(z, h, f)) of weight k =
¢(0,0)/2 on X (with some characters) such that:

(1) One has
div(¥(z,h, £)) =Z(f)= Y c(-m,pw)Z(m,p).
m>0,u€Ll’ /L

Here we count Z(m, p) with multiplicity 2 or 1 depending on whether 2pu € L
or not.
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3458 TONGHAI YANG AND HONGBO YIN

(2) One has
—log ||\I](27 h, f)H4Pet = (I)(z7 h, f)

Here || ||pet is a suitably normalized Petterson norm.

To describe the Borcherds product expansion formula for ¥(z,h, f), we need
some preparation. First, it works in each connected component. By the strong
approximation theorem, one has

=[TH@" h;K

Xg =[] Xr, =[] T;\D,

where I'; = H(Q)" n thh;1 and D7 is one of the two connected components of
D. In this decomposition, one has

m d)u ZZL m u“j

SO

where Lj = hjL = hjfz NV, and Hi € L;/LJ with i — h],U S f/j, and
Zr,(m,puj) ={z € D" : (z,x) = 0 for some z € p; + L;,Q(x) = m}.

In the following, we will stick with the irreducible component Xr = I'\D* and the
lattice L. The other components are the same.

Assume that V has an isotropic line Q¢ (a cusp). We assume that ¢ € L is
primitive, i.e., LN Q¢ = Z{. Choose ¢’ € L’ with (¢,¢') = 1. Assume further that
(¢,L) = N,Z and choose ¢ € L with (¢,£) = Ny. Let M = (Q¢+ Q¢)~ N L, and let

Ly={zel': (l,z)=0 mod (Ny)} D L.

Then there is a projection
(z,0)
N, Emr,

where zj; and {js are the orthogonal projections of z,£ € V to Mg = M ®z Q.
The projection p has the nice property p(L) C M although it is not an orthogonal
projection anymore (see [Bru02, pp. 40-41]). So it induces a projection from L{/L
to M'/M.

Next, we define the Weyl chamber for

f = qu(ybu = ZC( ) ¢M € Ml——,wl,

(2.12) p:Lo— M, plx)=zpm+

Define
(2.13) i)=Y H@éanm =D ear(m, N o u,

XeM'/M

where ¢y pr = Char(A + M),
(2.14) A=Y fuln)

nELY/L
p(p)=X

Then fs is an Sps-valued modular form by Borcherds [Bor98, Theorem 5.3] with
WEeil representation wyy.
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MODULAR FUNCTIONS AND THEIR CM VALUE FACTORIZATION 3459

Let Gr(M) be the set of negative lines in My (the Grassmannian), which is a
real manifold of dimension n — 1 (as M has signature (n —1,1)). For A € M'/M
and m € Q with m = Q(\) (mod 1), let

Zy(m,A) ={z¢€ Gr(M): (z,2) =0 for some z € A+ M, Q(z) = m},

which is either empty or a real divisor of Gr(M). The Weyl chamber associated
to a weakly holomorphic form f € M{_% is the connected components of (see

[Bru02, p. 88])

sWL

an- U U Zulmpw).

WELY/L  meQ(n)+Z
m>0,c(—m,p)#0

Given a Weyl chamber W associated to f, we define its Weyl vector p(W, ) =
p(W, far) € M’ following Borcherds as in ([Bor98, Section 10.4]; see also [Bru02,
p. 88]). Let W be the closure of W. If M N W is anisotropic, it was defined in
[Bor98, Section 9] with correction and extension given recently in [BS17, Section
5]. We don’t need it in this paper and refer to [BS17] for details. When M N W is
isotropic, choose an isotropic £y € M NW and ¢y, € M’ with (€57, ¢),) = 1. Let
P =M N (Qly + QF,)*, which is positive definite of rank n — 2. Similar to the
projection p from Lj/L to M'/M, one has also a projection p from M{/M to P'/P
defined in the same way. For the same reason, we have the weakly holomorphic
modular form fp (coming from fas). Define

(2.15) pr,, = constant term of Op(7)fp(T)E2(T)/24,
1
(2.16) P = =P, Q) =5 D w0, N)Ba((N )
X € My/M
PO =0+ P
1
yEP X e M{/M
(vwW)>0 p\)=v+P
1
(2.17) pp==5 D au(=QM:M
yeEP AM
(v, W) >0

(2.18)  p(W.f) = pp + per s + pe,, Uy
Here

By=1-24) o1(n)q"
n>0

is the weight 2 Eisenstein series, and By () = {2}? — {z} + { is the second Bernouli
polynomial of {z}, where 0 < {z} = = — [z] < 1 is the fractional part of z.

Now we can state the beautiful product expansion formula of Borcherds as follows
in the signature (n, 2) case ([Bor98, Theorem 13.3]; see also [Bru02, Theorem 3.22]).

Theorem 2.2 (Borcherds). Let the notation be as above. Let W be a Weyl cham-
ber of f whose closure contains £p;. Then the memomorphic automorphic form
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3460 TONGHAI YANG AND HONGBO YIN

U(z, f) =¥(z,1, f) has an infinite product expansion near the cusp Q¢ (more pre-
cisely, when Im(z) € W with —Q(Im(2)) sufficiently large):

Uiz, f)=Ce((z.pW, 1)) [T TI 11— el 2) + (u o)),
ANeM’'  peLy/L
AW)>0 p(pyer+M

Here C' is a constant with absolute value

1) “(0’%13[)
(2.19) 11 (I—e(x )7 |-
5EZ/N¢,640

Sketch of proof. We derive the formula from [Bor98, Theorem 13.3]. Let L_ = L
with quadratic form Q_(z) = —Q(z) so that L_ has signature (2,n), for which we
can apply Borcherds’ theorem. We use subscript — to indicate the corresponding
notation in Borcherds. First notice that the symmetric domain D_ = D and the
tautological bundle £_ = L. Since (¢,¢') = 1, one has (—¢,¢')_ = 1. So the tube
domains Hy e and H_g ¢ _ are the same too. Furthermore, for 2z € Hy oo = H_g o/, —,
one has

W () = 24— (Q_() + Q(E))(~) = w(2).
Notice that f| (" % ) = f implies that

(2.20) e(myp) =c(m,—p) and cp(m, ) =car(m, —N).

Since (¢pr,0%;) = 1, one has (€pr, —04,)— = 1. Using [Bor98, Theorem 10.4] (a
minor mistake there missing the % summation part), one checks that pey,— = Pe,,
(as Op_ = 0p), and

Z CM(O>>‘)B2(()‘> _63\4)*)
XEM /M,
p(A)=0

1

5 2 > em(@-(1) )Ba((A —y)-)
YEP'  XeMy/M,

(77W)—>0p()\):0+P

1

=0, Q)+ Y a0, M)Ba((N L)
NEM{ /M,
p(N)=7+P

1
yeP'  XeM}/M,
(v;W)>0p(N)=~+P

= —Ply-

Pene,— = _pf'M,*Qf( 3\4) +

I

In the last identity, we substitute v by —y and A by — and apply (2.20). Similarly,
one checks that pp_ = —pp. So Borcherds’ Weyl vector

pW, f)— = pp— + per,—Car + pey, (L) = —p(W, f).
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So [Bor98, Theorem 13.3] gives for z € He v,
U(z, f) = Ce((z,pW, £)-)-) ][] [T - elOn2)- + (o)) @

AeM’ peLy/L
(AW) = >0p(pu)y=A+M

c(—Q(N),
=Ce((zpW. ) [T TI  [—e(2)+ (e
XeM’'  peLy/L
(AW)>0 p(pu)=24+M
as claimed. Here we again replace A and p by —X and —p and apply (2.20).
O

Remark 2.3. Tt is worthwhile to make a few remarks to clear up some (potentially
confusing) differences in different versions.

(1) The sign difference in the formula above and the formula in [Bor98, Theo-
rem 13.3] (and [Bru02, Theorem 3.22]) is due to the fact that they use L_
(signature (2,7n)) while we use L.

(2) The condition p(p) € A+ M here is a more explicit reinterpretation of
Borcherds’ condition p|M = A given by Bruinier ([Bru02, Theorem 3.22]).

(3) The constant C' can be taken as the product in (2.19) at a given cusp.
However, once it is fixed, the constants at other cusps are determined by
this constant (they are in the same connected component).

(4) The conditions that n > 3 and that M is isotropic in [Bru02] were for
convenience and not necessary.

(5) The neighborhood near the cusp Q¢ where the product formula is valid can
be made precise. We refer to [Bru02, Theorem 3.22] for details.

(6) At different cusps, the product formulae look different. This is similar to
the different Fourier expansions of a modular form at different cusps.

2.2. Big CM cycles, incoherent Eisenstein series, and the big CM value
formula. Let £ be a CM number field of degree n + 2 with the maximal totally
real subfield F. Let 0,1 <4 < 5§ + 1, be distinct real embeddings of F'. Choose an
element o € F' with on () <0 and oi(a) >0 forall 1 <i < 3, andlet W = F
with the F-quadratic form Qp(z) = azz. Let Wy = E with the Q-quadratic form

Qo(z) = trp)g Qr(z) = trp)g(azz).
Notice that (Wg, Qq) is a Q-quadratic space of signature (n,2). Now we assume

that (Wg, Qg) = (V,Q), where (V,Q) is a given Q-quadratic space of signature
(n,2). Write ng = § + 1. Then we have

b w..
1<i<ng
where W,, = W ®p,, R has signature (2,0) or (0,2) according to 1 < i < ng or
¢ = ng. The negative two plane W, ~gives rise to two ‘big’ CM points zé‘no, which
turn out to be defined over a finite extension of o,,,(F). Define an algebraic torus
T over Q by the following diagram:

(2.21) 1 Gm T Resp/ SO(W) ——1
1 Gm H SO(V) 1.
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Then T is a maximal torus in H = GSpin(V') (thus the names big CM points and
big CM cycles). It is known ([BKY12, Section 2]) that

Z(W,2% ) = =, } x (TQ\T(Ap)/Kr).,  Kr=KNT(Ay)

Ong

is a zero cycle in X defined over F', called a big CM cycle of X . Let Z(W) be the
formal sum of all its Galois conjugates (counting multiplicity), which is a big CM
cycle of Xg over Q. We refer to [BKY12, Section 2] for a more precise definition
and basic properties of this cycle.

Associated to this quadratic space and the additive adelic character ¢p =
Y o trp)g is a Weil representation w = wy, of SLy(Ar) (and thus T'(Ag)) on
S(W(AFr)) = S(V(Ag)). Let x = xg/r be the quadratic Hecke character of F'
associated to E/F. Then y = xw is also the quadratic Hecke character of F
associated to W, and there is an SLo(Ap)-equivariant map

(2.22) A=T] X : SW(AR) = 1(0,x),  A&)(g) = w(g)(0).

Here I(s,x) = Indsl';;i(AF ) x| |® is the principal series, whose sections (elements) are
smooth functions ® on SLy(A ) satisfying the condition

®(n(b)ym(a)g,s) = x(a)|al* @ (g, s), beAp and acAj.
Here B = NM is the standard Borel subgroup of SLy. Such a section is called fac-
torizable if ® = @®, with ®,, € I(s, xv). It is called standard if ®[g; 5,50, ®)m0

is independent of s. For a standard section ® € I(s,x), its associated Eisenstein
series is defined as

E(g,5,®)= > ®(vg,9)
yEBF\ SLa(F)

for R(s) > 0.

For ¢ € S(Vy) = S(Wy), let & be the standard section associated to Af(¢) €
I(0, x¢). For each real embedding o; : ' — R, let @5, € I(s, xc/r) = 1(s, X5, /F,,)
be the unique ‘weight one’ eigenvector of SLy(R) given by

., (n(b)m(a)ke) = xc/r(a)lal* e,
for b € R, a € R*, and kg = (%% m9) € SOo(R). We define for 7 =
(T1, -+, Tng) € H™,
B(7,5,6) = N(@) *E(gr.5, 2,0 ( Q) .),
ISZ—STLO

where ¥ = Im(7), N(¥) = [[, v, and gz = (n(u;)m(y/0i))1<i<n,- It is a (non-
holomorphic) Hilbert modular form of scalar weight 1 for some congruence subgroup
of SLy(OF). Following [BKY12], we further normalize

E*(7,s,0) = A(s+ 1,x)E(7, s, ¢),
where O is the different of F', dg,p is the relative discriminant of E/F, and

(2.23) A(s,x) = Ag(w_szll“(#

))"L(s,x),  A=Npg0rde/r).

The Eisenstein series is incoherent in the sense that ® = @ ®,, is in the image
of A on S(C), where C is an incoherent system of quadratic spaces over F,,, given
by C, = W, for all places v except the one v = o,,. This incoherence forces
E*(7,0,¢) = 0 automatically.
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Proposition 2.4 ([BKY12, Proposition 4.6]). Let ¢ € S(Vy) = S(Wy). For a to-
tally positive elementt € F, let a(t, $) be the t-th Fourier coefficient of E*'(T,0, ¢)
and write the constant term of E*'(7,0,¢) as

$(0)A(0, x) log N(0) + ao ().
Let
E(r,0) =ao(@)+ Y an(d)q"

n€Qx>o

where (for n > 0)

aw@) = Y alt9).

teF [ trp g t=n

Here F[ consists of all totally positive elements in F'. Then, writing ™ =(r,...,7)
for the diagonal image of T € H in H™,

n

E*’/(TAa Oa ¢) - 5(7—3 ¢) - ¢(0) (5 + 1) A(Ov X) IOg’U
is of exponential decay as v goes to infinity. Moreover, for n > 0,

an(¢) = anp(¢)logp

with a, »(P) € Q(¢), the subfield of C generated by the values ¢(z), x € V(Ay).

Remark 2.5. There is a minor mistake in [BKY12, Proposition 4.6]) about the
constant. The corrected form is

Eg"(7,0,0) = (0)A(0, x) log N(¥) + ao(¢)

(i.e., ap(¢) might not be a multiple of ¢(0)). Direct calculation gives

s

Eg(7,5,6) = ¢(0)A(s + 1, x)(N(@)) 2 — (N(7)) " A (s, X)Wo,r (s, 9)

where (when ¢ is factorizable)

|Aly 2 Ly(s +1,x)
Y(Wy) Ly (s, x)

Wo.z(s,¢) = H Wop (s, ¢p) = H

ptoo pfoo

WO,p (57 ¢p)

is the product of renormalized local Whittaker functions (see (2.25)). With this
notation, one has

(2.24) ag(¢) = —A(0, X)W 7(0,¢) — 2¢(0)A’(0, X).

Notice that a(t, ¢,,) = 0 automatically unless 1+ L represents ¢, i.e., t — Qr(u) €
8;10F. The following is a special case of the main CM value formula of Bruinier,
Kudla, and Yang ([BKY12, Theorem 5.2]).

Theorem 2.6. Let
FO) = > fuDu=Y clmw)q"éu € Mi_y.,

neL’/L
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3464 TONGHAI YANG AND HONGBO YIN

with ¢(0,0) =0, and let U(z, f) be its Borcherds lifting. Then

—log|¥(Z(W), f)I* = C(W, K) > c(=m, p)am(op)

peL'/L,
m>0
m=Q(n) (mod 1)

Here
deg(Z(W, z3,))

Piade )
A(0,x)
To compute the t-th Fourier coefficient a(t, ¢) of E*/(7,0, $), one may assume
that ¢ = @) ¢, is factorizable by linearity. Write for ¢ # 0

HWt*p HWtU (75,8, Po; ),

ptoo Jj=1

C(W, K) =

where e
Wip(s,0) = [Aly * Ly(s + 1, xp) Wip(s, )
for finite prime p with

Q25 Wiplsd) = [ wtun(®)(6)0)la(wn(b) (<15 db

p
and for infinite prime o

_ s 2
Wi, (7705 80,) = 0 25 FIC2) [ @0, (wnge )0(-00)db,
R
Here A is defined in (2.23) and |a(g)|, = |aly if g = n(b)m(a)k with k € SLa(Oy).
The following proposition is well-known and is recorded here for reference. Recall
that W = FE with Qp(z) = azz, a € F*.
Proposition 2.7. For a totally positive number t € F'T, let
Diff(W,t) = {p : W, does not represent ¢}
be the so-called ‘Diff’ set of Kudla. Then |Diff(W,t)| is finite and odd. Moreover:
(1) If |Diff(W, )| > 1, then a(t, ¢) = 0.
(2) IF DIff(W, 1) = {p}, then W, (0, )
(

CL(L(]S) ( QZ nDWt*;J/ Oa¢ H Wt ,q
qtpoo
(3) When p { aA is unramified in E/F and ¢, = Char(Og,), Wi, (s,¢) = 0
unless t € 8;1. In this case, one has
Wi, (0, ¢) 1 +ord,(tv/D) if p is split in E,
TR P
Here ~(W,) is the local Weil mde:c (an 8-th root of unity) associated to the
Weil representation. Moreover, in this case, Wy, (0,¢) = 0 if and only if
ord, (tv/D) is odd and p is inert in E. In such a case, one has
Wtfia/(O, ¢) 1+ ordy(tvD)
Y(Wp) 2

=0, and

if p is inert in FE.

log N(p).
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(4) One has for 1 < j < mny,
Wis (1,0,85;) = —2ie(tr), t>0,

and

S 1
311“(8"; Yot

ol

Wi, (7,8, @0,) = —im™

Sketch of proof. The Diff set was first defined by Kudla in [Kud97b]. In our case,
the incoherent collection of F,-quadratic spaces is {C, } where C,, = W, for v # oy,
and C,, positive definite. The archimedian places are not in the Diff set as ¢
is totally positive. Let ¢/(z) = wp(%) and W’ = W with F-quadratic form

Q(z) = VDQp(x) = 2Z. Then one has as Weil representations on S(W;) =
S(W3):
WW,pp = WW’ 3
and thus the Whittaker functions have the relation
Y _ ERa
WL; (57 (b) - |\/5‘§Wt\/5,p(s’ (b)

for each prime p of F. Recall that W, (0,¢) = 0 if p € Diff(W,t). So (1) is
obvious. Claim (3) follows from [Yan05, Proposition 2.1]. Claim (4) is a special
case of [KRY99, Proposition 2.6]. Claim (2) follows from

ng
Et*(?a S, ¢) = H Wtfp(sa ¢) H Wtfaj (ij S, (I)aj)

pfoo J=1

and (4). O

3. PRODUCT OF MODULAR CURVES AND ITS DIAGONAL DIVISOR

3.1. Product of modular curves as a Shimura variety of orthogonal type
(2,2). Let N be a positive integer, and let V' = M5(Q) with the quadratic form
Q(X) = Ndet X. Let H be the algebraic group over Q

H ={(g1,92) € GLy x GLg : det g; = det go}.
Then H = GSpin(V') and acts on V via
(91,92)X = 1 X g5 .
One has the exact sequence
1—-G, - H—SOV)—1.

Recall the Hermitian symmetric domain D and the tautological line bundle £ in
Section 2. For a tube domain, take an isotropic matrix ¢ = (8 Bl) € L and

U= (% 8) € V with (¢,¢') = 1. Then the associated tube domain is

Heor = {(zo1 —OZQ) : y1y2 > 0}, yi = Im(z;),
together with
w e HZ,E/ N [’7 w((21 0 )) — (211 *NZ1Z2) )

0 —Zz2 ~ —Z2

Now the following proposition is clear.
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Proposition 3.1. Define
wy : H2U (H*)2 =L, wyn(z1,22) = % (211 75252) = w((zf1 70%2 )),
and
pr:L—=D, z+4iy—z=Rax+R(—y).
Then pr gives an isomorphism between L/C* and D, and the composition pr o w
gives an isomorphism between H? U (H™)? and D. Moreover, wy is H-equivariant,

where H C GLa(R) x GL2(R) acts on H? U (H™)? wvia the usual linear fraction
transformations

(91, 92) (21, 22) = (91(21), g2(22)),
and acts on L and D naturally via its action on V. Moreover, one has

(c121 +dy)(caz2 + da)
v(g1, g2)
where v(g1, g2) = det g1 = det go is the spin character of H = GSpin(V). So

(3.1) (91, g2)wn (21, 22) = wn (g1(21), g2(22)),

J(g1, 92,21, 22) = (c121 + di)(c222 + da).

For a congruence subgroup I' of SLy(Z), let X1 be the associated open modular
curve over Q such that Xp(C) = I'\H. Assume I' D I'(M) for some integer M > 1.
Let

v:A* < GLy(A), v(d) = diag(1,d).
Let K (T') be the product of v(Z*) and the preimage of T'/T'(M) in GLy(Z) (under
the map GLy(Z) — GLy(Z/M)). Let K = (K(T') x K(T')) N H(Ay). Then one has
by the strong approximation theorem

XKgXFXXF.

In this way, we have identified the product of two copies of a modular curve X
with a Shimura variety X . We will fix this K for a given congruence subgroup I'
in this paper. The tautological line bundle £ descends to a line bundle L = K\L
of modular forms of 2 variables of weight (1,1) by (3.1).

Let L be an even integral lattice of V', and let L’ be its dual with respect to the
quadratic form . We assume that T' x I acts on L’/L trivially. Then for u € L'/L
and a rational number m > 0 (and m = Q(u) (mod 1)), the associated special
divisor Z(m, u) = Zg(m, p) is given in this special case by
(3.2)

Z(m,p) = (T xT)\{(21,22) € H* : wn(z1,22) L x for some = € u+ L, Q(x) = m}.

Alternatively, Z(m, ) is the sum of Z(x), where x € p+ L with Q(z) = m modulo
the action of I' x I'. Here Z(z) is the subvariety of Xx given by x (of signature

(1,2)):
Z(x) = (TNa Te)\H= (T xT),\{(zz,2): z€ H}, [z] ~ [22,2].

The linear combinations of these divisors Z(m, u) are called the special divisors of
XK.

Lemma 3.2. Let I' = T'(N) and L = M3(Z) with Q(X) = Ndet X. For each
v € SLa(Z), let

Zn(v) =A{(yz,2) € Xrov) x Xr(wvy © 2 € Xravy} € Xpavy X Xrow)-
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Then Zn(v) = Z(4, %7 + L) is a special divisor of Xk .

We denote by X (N) the compactification of Xty (to be compatible with the
usual definition of X (N)).

Proof. If x € %7 + L with Q(z) = Ndetz = 1/N, then Nz € v+ NL and
det(Nz) = 1. So Nz € SLy(Z), and Nzy~! =y € I'(N), and @ = y1(%y). This

implies that
1 1

Z(N’ N7t L) = Zn(v).

O

Corollary 3.3. Let XFA be the diagonal embedding of Xr into Xr x Xr. The XFA
is a special divisor of Xr x Xr in the following sense. Assuming T' D T'(N), we
take L = Mo(Z) with Q(X) = N det. Then the preimage of X in Xpvy X Xpw

is equal to
Z Zn(7)
€T /T(N)
in the notation of Lemma 3.2.

3.2. Products of CM cycles as big CM cycles. For j =1,2, let E; = Q(\/Ej)

with ring of integers O; = Z[dj%\/d_j} of discriminant d; < 0 with (di,d2) = 1. In
this subsection, we describe how to view a pair of CM points (11,72) € Xp X Xr
associated to E; and Es as a big CM point in Xk in the sense of [BKY12]. For this
purpose, let E = E; ®g E2 = Q(v/d1,/dz) with ring of integers Op = 01 @z Os.
Then E is a biquadratic CM number field with real quadratic subfield F = Q(v/D)
and D = dldg.

We define W = E with the F-quadratic form Qp(z) = ]\\;%f. Let W = W with
the Q-quadratic form Qg(v) = trp;g Qr(v). Let 01 = 1 and 03 = o be two real
embeddings of F with ¢;(v/D) = (=1)?~'v/D. Then W has signature (0,2) at o>
and (2,0) at o7 respectively, and so Wy has signature (2,2). Choose a Z-basis of
OFf as follows:

=11, 62:—d1+\/a:—d1+\/d_1®1

2 2 ’
dy + Vdy da + Vdy
engzl(@T, eq = eges.
We will drop ® when there is no confusion. Then it is easy to check that
(33)  (WeQo) =(V.Q) = (Ma(Q), Ndet), S e (3232).

We will identify (Wg, Qg) with the quadratic space (V, Q) = (M2(Q), N det). Un-
der this identification, the lattice L = M5(Z) becomes Op. Then one can check that
the maximal torus 7" in (2.21) can be identified with ([HY12], [BKY12, Section 6])

T(R) = {(ﬁl,tg) S (E1 (290 R)X X (E2 Q@ R)X : tlfl = tgfg},

for any Q-algebra R, and the map from T to SO(W) is given by (t1,t2) — t1/ta.
The map from T to H is explicitly given as follows. Define the embedding

(3‘4) by - Ej - MZ(Q)7 lj (T)(€j+1, el)t = (rejJrl?rel)t'
Then ¢ = (11, t2) gives the embedding from T to H.
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Extend the two real embeddings of F into a CM type ¥ = {01,02} of F via

(V&) = Vi € H, oo(\/&) = Vi, 02(\/da) = —\/da.

Since W,, = W ®p,,, R C Vi has signature (0,2), it gives two points zZ in D. In
this case, the big CM cycles in Section 2.2 become

(3.5) Z(W, z3,) = {z5,} x TQ\T(Ay)/Kr € Z*(Xk)
and
ZW) = Z(W,z,) + o(Z(W, 23,))-

For simplicity, we will denote z,, for zJ, .

Lemma 3.4. On H2, one has z,, = (11,72) € H? and z,, = (71,72) € (H")?,
where

_ dj + \/dj

= ?.

Proof. In the decomposition
V=V &R =W, & W,,, W, =E®ps REC, r o;(r),
the R-basis {e;,i = 1,2,3,4} becomes
er = (1,1), es = (=71, —T1), es = (12,72), and e4 = (—T172, —T1T2)-
The negative two plane W, representing zi has an R-orthogonal basis

u=(0,4/]dz2]) and v =(0,1/d2) € Wy, C Vg.

One checks that
D-VD ds ho,o 2
3 4
2\/|d1 \/\d1 \/|d1| Vldi|
1

— < Vld1l 2\/\41\ >
2 dg

Vidyl Vldy|
and
Vda (Vdy + V/dy) Vida
1+ €z — €3
2 Vdy
1 \/E<\/d2_1+\/5>
=\ Vs
N
So
2N
u—iv = TR = wy (11, T2)
/‘dl‘(l 2 ) /‘d1|
and
2N
U+ v = wn (71, T2)
|d1 |
as claimed. O
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Lemma 3.5. Let K; = L;l(K(F)) and let CI(K;) = E;\E};/K; be the associated
class group of E;. Then there is an injection
P T(Q\T(Ay)/Kr — CL(K:) x Cl(K>)
with image
IM(p/) (Cl, Cg) € Cl(Kl) X C].(KQ) : tj € E;ff with Cj = [tj],tlt_l = tgl?g}

(C1,C5) € Cl(K4) x Cl(K>) : 3 fractional ideals a; with C; = [a;],
N(a1) = N(az)}.

Proof. Clearly p’ is a group homomorphism. We first check that p’ is injective.

Assume [t1,to] € kerp, and write t; = g;k; with g; € E;° and k; € K;. Then

tlfl = t2£2 implies that

-
-

GG koko s
— = — €& n Z == 1 5
9292 kiky Q-0 )
50 (g1,92) € T(Q), and koks = k1k;. This implies that
(kl,kg) e Ky = {(t17t2) S T(Af) : (Ll(tl), Lg(tg)) € Kr = K(F) X K(F)}
So (t1,t2) € T(Q)Ky. The first formula for IM(p) is the definition. To show the
second formula, assume N(a;) = N(ag). Let ¢; € E; ; such that its associated ideal

is aj. Then t1t1 = tolou for some u € Z*. When p { d;j, up, = wyw, for some
wp € (’)Ej.p. So we can decompose u = uj ‘ug such that u; = w;w; € Ng, /0 @EJ
Replacing t; by t;w;, we find t; € E;f such that t1t, = toto and [t;] = [a;]. O
Let H; be the class field of E; associated to K; and let H = H;H, be the
composition of H; and Hs. By the complex multiplication theory, the point [z,,] €
Xk is defined over H. Moreover, one has a natural map induced by ¢; in (3.4):
(3.6)
tj: CU(K;) = Xr = GL2(Q)\H* xGLa(Af)/K (L), 4([t71]) = [r5,45(t7 )] = 7.
Here 0, € Gal(H,/Ej) is associated to [t] by class field theory. The last identity is
Shimura’s reciprocity law (see for example [Yan16]). We will also write 77" = 77¢
in ideal language where [a;] € CI(K) corresponds to the idele class of t. Now the

following two propositions are clear.

Proposition 3.6. Let (t1,t2) € T(Ay), and let 0y, € Gal(H;/Ej;) be the associated
Galois element (to t;) via the Artin map. Then

[252, (tflatgl)] = [TftlvT;tz]'

Proposition 3.7. Assume (di,d2) =1. Then
Z(W 20'2) = Z [Tlo-a177—20-02]7
([a1],[a2]) €IM(p’)
Z(W, 2,,) = > [(=71)7, (—72)7"2],
([a1],[a2]) €IM(p")
ZWy= Y ([l [(R) T (<)
([a1],[a2]) €IM(p")
+H[(=71)7r, (—72)72]) .

The following lemma will be used later.
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3470 TONGHAI YANG AND HONGBO YIN

Lemma 3.8. Assume again that (di,ds) = 1. Let CI(E};) be the ideal class group
of E;. Let C; € CI(Ej) be an ideal class for each j = 1,2. Then there is an ideal

a; € C; such that N(a1) = N(az). In particular, when K; = @Ej in Lemma 3.5,
then the map p' is an isomorphism.

Proof. We first show that H; N Hy = Q. Let p be a rational prime; then p { d; or
p{da. When p{d;, pis unramified in H; and thus in H; N Hy. So every prime p
is unramified in H; N Hy, and thus H; N Hy = Q. This implies that

Gal(H/Q) & Gal(Hy /Q) x Gal(Hy/Q).

So there is o € Gal(H/Q) such that o|H; = o0¢;. In particular, o € Gal(H/E),
which is abelian. By the class field theory, there is an ideal a of F such that 04 = 0.
Let a; = Ng/p, a. Then o|H; = 04, and N(a1) = N(az) = N(a). Moreover, one
has Cj = [Clj]. O

4. GROSS AND ZAGIER’S SINGULAR MODULI FACTORIZATION FORMULA

We will give a different proof of Gross and Zagier’s factorization formula (The-
orem 1.1) in this section. For this, we take L = M3(Z) with Q(X) = det X, and

W = E with Qr(z) = \“/”—%, where F = Q(/d,v/ds) and F = Q(v/D) are as in
Section 3. In this case, the lattice L = O is unimodular.

Proof of Theorem 1.1. Recall the identification at the beginning of Section 3 of the
product Xo(1) x Xg(1) of modular curves with the orthogonal Shimura surface
of signature (2,2) and the isotropic vectors £ = (§ ') and ¢ = (99) used for
the identification. We also use them as in Theorem 2.2 for Borcherds product
expansion. Write

J(r) — 744 = Z c(m)q™.

m>—1
Then Borcherds proved in [Bor95] that
Jj(21) = j(z2) = W (j(7) — T44),
which can be checked easily by Theorem 2.2. Notice that CI(K;) = CI(E;) is the
ideal class group of E; and j(—7;) = j(7;). So the map p’ in Lemma 3.5 is an
isomorphism, and

Yo loglilz) —i(z)l =4 Yo logli(r™) = j(rs?)]

(22,22) €2(W) fraleCm)
=4 Z log|j(Ta1)—j(Taz)‘-
[a;]€CI(E;)

Here
bi +Vd;

2a;

= if a; = [CL ]

Ta;

b+ Vdi
19 2
So one has by Theorem 2.6,

—4 ) logli(ra,) = j(ra,)[* = C(W, K)ar (),
[ui]ECl(Ei)

with ¢ = Char(Og), and

o k) = 2, o)l _ 2h(Ey)h(Ey) _ wiwy
’ A(OuXE/F) A(07XE1/Q)A(07XE2/Q) 2’
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where h(E;) is the class number of F;. By Proposition 2.7, one has

a1(¢) = > alt, ¢).

teB;l, totally positive
trr/Q t=1

When |Diff(W,t)| > 1, a(t,¢) = 0. When Diff(W,t) = {p}, p is inert in E/F,
and ord, (tv/Dy) is even, Proposition 2.7 implies that

a(t,¢) = %’M (tVDp~t) TT 7(Wo) log(N(w)),

q<oo

since

[T 2@ 1T puev/D) = [LaleV Do) = otV D).
q

a#p 7(Wa) a#p

Here we used the fact that p,(tv/Dp~') = 1 when p € Diff (W, t). Next, v(W,,) =
—i = —y(W,,) implies that

I[[wo= JI ~»w)=1

q<oo all primes v
So
a(t, ¢) = =2(1 + ord, (tVD)) p(tvV'Dp~") log(N(p)).

Notice that the right hand side in the above identity is automatically zero if we
replace p by other inert primes in E/F since p(tv/Dq~') = 0 . So we always have

a(t.)=-2 3 (1+ordy(tVD))p(tp~ 0r) log(N(p).

p inert in E/F

Putting everything together and replacing tv/D by ¢, we obtain the theorem.

Remark 4.1. Tt is easy to check that our formula coincides with [GZ85, (7.1)] and
thus their main formula. Indeed,

41 Y xgr@logN@=— Y LEIBEOR) 00N p))

2
altOp p inert in E/F

for t = %‘/ﬁ € Or with |m| < v/D. To see it, for any fixed integral ideal b of F,
define

Z xe/r(a)logN(a).

alb
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3472 TONGHAI YANG AND HONGBO YIN

Write b = []"", p* with e; > 0. Assuming p; is inert in E/F and e; is odd, write
by = bp; “*. Then (recall that xg/r(p1) = —1)

HOESY Z )’ Xg/r(01) (j1og N(p1) + log N(a1))

ai|b; j=0
el €1
= D (=1)7510gNpy) | | D xeyr(an) | + [ D (=17 | f(by)
=0 ay]b; j=0
1 —l— e
= - log N(p1) Z Xe/r(a)
a|by
1 +
= “a log N(p1) H ZXE/F
=2 j=0
1+e
= —Tp(bl) log N(p1)
1 + €1

= == p(owr ) g N(p1).

In particular, if there is another p; (i > 1) inert in E/F with e; odd, then p(bp; ') =
0 and f(b) = 0. In our case,
tOF = pr’
i=1

Then p; € Diff(W,t/+/D) if and only if p; is inert in E/F and e; is odd. When
| Diff (W, ¢t/VD)| > 1,

the above argument shows that f(tOp) = 0 and (4.1) holds as the right hand side
of (4.1) is also zero. When Diff(W,t/v/D) = {p}, say, p = p1, one has

1+e
f(t0r) = === p(6:1) N(p1).
The right hand side of (4.1) equals this value too. So (4.1) holds.

5. THE YUI-ZAGIER CONJECTURE FOR w;
5.1. Borcherds product for ws(z1) — wa(22). In this section, let
L=(2%%) with Q(X) = det X
and I' = T'y(2) in this section. It acts on L'/L trivially, where

1

L'/L = {Ho =0,pu1 = e, o = 56127u3 = 1 +,L62}~

Here e;; is the 2 x 2 matrix with the (¢, j) entry 1 and all other entries 0. It is easy
to check Z(1, o) = XFAO(Q) in the open variety Xx = X (2) X Xry(2)-

Take the primitive isotropic vector £ = —ej5 € L and the vector £/ = ey € L'
with (¢,¢') = 1. Since (¢,L) = 2Z, we choose £ = 2¢' € L with (¢,£) = 2. In this
case,

Lh={zel: (z,)=0 (mod 2)}—{(@ b/2) cabe,deZ), LL/L={0,u).
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One also has
M=Ln(Q¢+Q)" ={m(a,b) = (29): a,be Z},

which is self-dual. So the projection p from L{/L to M'/M is zero. We further
choose ¢j; = e11 and £}, = eqo with (€pr,¢,,) =1, so P = 0. Finally for a weakly
holomorphic modular form f € MOW-’L with

f(T) = Z C(maﬂ)qmd)u = Z fud)uv

one has
fM = f,u.o +f,u2'

Now Theorem 2.2 gives the following proposition in this special case.

Proposition 5.1. Let
F(r) = elm, g™ ¢, € My, -

m,p
Then there is a meromorphic modular form of two variables V(z1, za, f) for T'o(2) x
T'o(2) of parallel weight C(OO with the following product expansion near the cusp
Q¢, with respect to a Weyl chamber W whose closure contains €y (z = (21, 22)):

U(z, f) = Ce((p(W, ), 2)) 1T (1= args") O (1 + g gy ) ).
(m,n)€Z?

(7" n) w0

Here g = e(zj), and |C| = 9=

Proposition 5.2. (1) Let M('):wL be the subspace of Mém consisting of constant

vector f =" a;¢,,. Then it is of dimension 2 with a basis {¢u, + Oy, Puo + Pus }-
(2)  One has

U(z, buo + Gpy) = n(21)n(22),
(2, due + bpuy) = V20(221)1(222),

U(z, buy — Gp) = \}if (z1)f2(22).

Here £5(2) = wy(2) 21 = \/5717((2;)) is also a famous Weber function.

Proof. Recalling that SLy(Z) is generated by n(1) = (1) and w = (9 '),
n(1)(f) = aoeo + arer + azez —ages = f

if and only if az = 0. Next, assuming az = 0, then

wf):ZaiwL(w)(ei):% (Q_a) 60+Z“0+a2 > aie| =

J#i

if and only if ag = a1 + az. This proves (1). In such a case, f = ai(eg + 1) +
an (60 + 62).
To prove (2), notice that

Gr(M)={R(§°):a>0} =Ry,
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3474 TONGHAI YANG AND HONGBO YIN

Since f = aj(eg + €1) + az(ep + e2) has no negative term, one sees that Gr(M) has
only one Weyl chamber, i.e., itself with respect to f. A vector A = (_8" 2) satisfies
(A, W) > 0 if and only if m,n > 0 but not both equal to 0. One also has

2&24—0,1
p(W, f) = o

Now the proposition is clear from Theorem 2.2 if we just take C' = 2¢(0:#2)/2 [

(=Llar + Coy).

Proposition 5.3. Let
F=12m = 0u)+ Y (2%w ! +12)lwi() by € Mo, -
v€T0(2)\ SL2(Z)

Then
(5.1) (0, po) = (0, 1) = (0, u3) = 0, (0, pa) = 24,

and
(2, f) = wa(z1) — wa(z2).
Proof. Direct calculation gives

f= (g~ " —98028¢ — 10749952¢* — 432133182¢° + - - - ).,
+(—98296¢ — 10747904¢> — 432144384¢> + - - - )¢,
+(24 — 98296 — 10747904¢> — 432144384¢° + - - - )¢y,
+(4096¢7 + 1228800¢2 + 742440962 + - - )b,
In particular, (5.1) holds, and Z(f) = Z(1, o) = Xléo(2) in Xg. This implies that

\I/(Zl, 22, f)
WQ(Zl) — UJQ(ZQ)
has no zeros or poles in the open Shimura variety X; i.e., its divisor is supported
on the boundaries { P} x X4(2) and X(2) x {P}, where P runs through the cusps
0 and oo of X((2). We now use Borcherds product expansion to show that g(z1, z2)
has no zeros or poles on the boundaries and thus has to be a constant.

The weakly holomorphic form f gives rise to two Weyl chambers

GI"(M) - ZM(LNO) = Wia

g(21,22) =

where
WE={R(82%):a*' >1}.
We choose the Weyl chamber W whose closure contains £j;. Then for A =
(oY) eM, (A, W) >0 if and only if
m+n >0, n >0, and m? +n? > 0.
Direct calculation using (2.15)—(2.18) gives the Weyl vector

p(WH, ) = = L (el0. ) + (0. pa)) s + (—e(~1,pug) + “EOL EeOut)y

= —€11.

We can take the constant

O = —2¢(0:p2)/2 _ 912

Licensed to Univ of Wisconsin, Madison. Prepared on Sun Apr 7 18:35:56 EDT 2019 for download from IP 128.104.46.206.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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One has by Proposition 5.1 that
V(e f) =200 -asi") [T 0-ae) 00 greg) )

m,n>0,m+n>0

_ 212((]1 _ q2) H (1 _ qn m)c(mn O)(l _’_q;zqu)c(mn,ug)'
m,n>0

This product formula shows that ¥(z, f) has no zeros or poles along the boundary
{oo} x Xpy(2) and Xp 2y x {oo}. Since wa(z1) — wa(22) has the same property,
g(z1, z2) has no zeros or poles in these boundaries. Fixing a z» € H, the function
g(z1,22) of z; has then only zeros or poles at the cusp {0} in X((2) and is thus
independent of z1: g(z1, 22) = g(22). This implies that g(z2) has only zeros or poles
at the cups 0 and is thus a constant g(z2) = A. Therefore,

U(z1, 22, f) = Awa(21) — wa(z2)).

Comparing the leading coefficients on both sides, one sees that A = 1. |
5.2. Proof of Theorem 1.3. Now we start to prove Theorem 1.3. Under the
isomorphism

(Ma(©@),det) = (B.treyq 7). (331) > Y wien
one has

D+vVD - d d d
L2747 +2\/_+Z d1+\/_1+z2+\/—2,

2 2
which is of index 2 in Og, but is not an Op-lattice unfortunately. By Proposition
5.3, we have

wa(21) —wa(z2) = ¥(z, f).
Lemma 5.4. Assume dj =1 (mod 8). Then
TUK(To(2) = O
Proof. We work the case j = 2. Then case j = 1 is the same. For r = bfzt—&—yd”‘/E €
E27f7 one has

LQ(T) — (xzdy yd;f ) .
So 15(r) € K(T(2)) if and only if y € 2Z. This implies that
15 (K (To(2) = (Z+208,)"
Since d2 =1 (mod 8), 2 is split in Fy and
Op,0="25 x L = (1+20g,3).
So

O

This lemma and Lemma 3.8 imply that the class projection p’ in Lemma 3.5 is
an isomorphism. By Proposition 3.6, one has

a; bj ++/d; bj"’\/dj] 2t a;

2 ’ 7

T = Ta; = T if a; = [aj,
J
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On the other hand,
wa(=7;) = wa(7j — dj) = wa(7y)-
So one has again by Proposition 3.7
> loglwa(z1) —wa(z)| =4 Y loglwa(ra,) — wa(7ay)|-
(21,22)€Z(W) [a;]€CI(E;)
So we have by Theorem 2.6,
—4 Y loglwa(Ta,)—wa(Ta,)|* = C(W, K)[a1(6)+24a0(6)] = 2[as(¢)+24a0(9)],
[aj]GCl(Ej)
with ¢ = Char(L) and ¢ = Char(us + L). Here

deg Z(W Z(jf ) w1wW2
K = 2 =
O K) =00 5

= 2.

Now Theorem 1.3 follows from the following lemma, which we will prove in the
next subsection.

Lemma 5.5. Let the notation be as above. Then

(1)

w@=—-1 Y S Lo lOn) 1) 1og(N(p)).

2
t—m+vD p inert in E/F

2
|m|<vD,odd
m?=D (mod 16)

5.3. Whittaker functions and proof of Lemma 5.5.

Lemma 5.6. Let W = Q3 with the quadratic form Q(z) = o~ 'z122 with o € Z5 .
Fora=0,1, let

M, = {(z1,20) €Z3: 1+ 22 =a (mod 2)}
and
11
o = Char(M,), Pa = Char((a, 5) + M,).

Let 1 be an unramified additive character of Qs.

(1) When a = 0, the local Whittaker function Wia(s,0.) = 0 unless t € Zs,
and

Wta(sa ‘PO) _ {

ift € Z3,

(W) —2 s 4 (1—2715) 200 9nsif g € 27,

where o(t) = ords t. In particular,

Wta(07 4100) — % if O(t) = Oa
,Y(W) o(t)—1 1

N N[
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(2) When a = 1, the local Whittaker function Wia(s,q) = 0 unless t € Za,
and

Wia(s, 1) s(1—27%) ift e Zy,
y(W) 1(1+27%) ift € 2Zs.

In particular,

~(W) 1 ifo(t) >
(3) One has
Wta(57 Qba) =0
unless t — 122‘1 € Zo, in which case it is the constant %”y(W) In particular,
WO(Sv @a) =0.
Sketch of proof. By the definition and unfolding, one has
Wta(87 Qoa) /
— = Ja (D) (—tb)|a(wn(b))|® db
) 2 (b)) (—tb)|a(wn(b))]
- / JB)(—th) db+ 3 20 / T (27 B)(—2-"10) a(wn(2-"B))|* db,
Zy w1 U7
where

Ja(b) = /M ’l/)(bl’ll'g)dxldl'g.

Then one checks that

1 1
(5.2) Ji(b) = 5 Char(EZQ)(b),
% if b € Zo,
(5.3) Jo(b) =140 if be 3725,
b| 7t ifb ¢ 1Zs,
and

la(wn(b))| = min(1, [b] 7).

Now a direct calculation proves (1) and (2). For (3), one has similarly

Wea(s, £a) = ] —tb)|a(wn s
e = [ T -matun(e))

where
Ja(b) = / Y(bryxo) deydry = JO(b) + JM(b).
L4+ M,

Here (after a simple substitution)

- . L
4J(§J)(b) = / ;z;(b(5 + 5+ 2y1)(§ —J+a+2y2))dys dys
ZQ Zz

= (5 + )5~ + a)h) Char(Z) ).
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So
4Wm 8 saa Z = (% —j +a)b)y(—tb) db
¢((1 +2a — 1)b) db

_ 2Char (+T2 +Zo)(0).

O
To compute aq(¢) and ao(g?)), we keep the notation in the proof of Theorem 1.3.

Recall that
D+ D —dy +Vdy dy + /dy
2 2

L=7Z+7% 5 +Z +Z

is not an Op-lattice as M_d%m ¢ L. So ¢ and gz~5 are not factorizable over
primes of F'. Instead one has only

¢=02[[dp and &= ]] e,
pf2 pt2
where ¢, = Char((’)Em) for a prime (ideal) p of F not dividing 2, ¢ = Char(Ls),
and ¢y = Char( + L3). So we need to take special care at the local calculation at

= 2. We focus on ¢ and a;(¢) first.
Our assumption implies also that 2 splits in E' completely. Write

20F = p1po, piOp = P:P;.

Let VD € Zy and v/d; € Zs be some prefixed square roots of D and d; respectively
with v/div/dy = —v/D. We identify F,,, Ey,, and Eg, with Q, as follows:

Fp, 2Q, VD~ (-1)"'VD,
By, =Qa, VD (-1)7'VD,\/d; = \/d;,
Eg, 2Qs, VD (-1)7'WD,\d; = —/d;.
With this identification, we can check that Lo = L ®y Zs is given by
Ly = {x = (z1,22,23,74) € Ep, X By X B, X By, = Q): a; € Zg,Zmi € 2Zs},

with quadratic form
ZL1T2 T34

Q(J?) = \/5 _\/5

The embedding from L to Lo is given by

z > (01(2), 01(T), 02(x), 02(T)),
where o1 (v/d;) = /d; and o2(\/d;) = (—=1)'/d;. So

Lo = (My x My) U (My x My),
where M, is given as in Lemma 5.6. This implies that

Ps = Cha.I'(LQ) = ¢p1,0¢P2,0 + ¢P1,1¢P2,17

where ¢y, 4 is ¢, in Lemma 5.6. Correspondingly, we have

¢ = ¢o + ¢1, a(t, ) = a(t, o) + a(t, ¢1),

= Qp, (w1, 72) + Qp, (23, 24).
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where ¢; = ¢y, iPp,.i pr ¢p. Now Proposition 2.7 and the proof of Theorem 1.1
give

(5.4)

a(t, (ﬁz)

71/1
_ 1+ ord, (tv' D) (2) . 2 t\Fp ¢pj,i)
—oi 3w Doyt [T - )

p inert in B/F
Here /' (z) = tp(z/v/D) and
p?(a H pp(a
P12
as in the proof of Theorem 1.1.

Lemma 5.7. Assume again that di =dy=1 (mod 8). Let t €' with trpg(t)=1.
Then there is a unique prime ideal p; with t/D € p,. Moreover,

Wt\/_p( ¢P11) t\/_p(a¢p271):0,

and

Wy

(0,85, 0) W75, (0 6p2.0)
t\/_p t\/_p o o .
A Wo)y (W) = ordy, (tv/D) = 1 = py, (tVDp; *)

Proof. Write t = mf/‘i_ € 8 . Recall the two natural embeddings o; : F' — F,,
1 =1,2. Since

o1(tV D)oy (tVD) = m24— D =0 (mod2), o,(tVD)—oa(tV’D)=1 (mod 2),

one sees that exactly one of ordy, (o; (tv/D)) is positive while the other one is zero.
For simplicity, let p; = p; with ordy, (tv/D) > 1 and let ordy,(tv/D) = 0. Then
Lemma 5.6 implies that

Wt\/_p( ¢p2 1)

The same lemma also implies (recall L(1,xp,) = 2) that

Wt\/_p( ¢P17) t\/_p ( 7¢P270)

(ord,, (tVD) — 1)
VDp;?).

1
(Wm) (sz) 5
(t

l\J|H

Now, one has by Lemma 5.7 and (5.4)
(l(t, ¢1) = 07

ato)=—4 Y LrordtvD)

5 p(tpdrp; %) 1og(N(p)).

p inert in E/F
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Here p, is the only prime ideal of F' above 2 with tv/D € p;. Replacing ¢ by t/\/ﬁ,
one obtains for ¢ = %ﬁ € Op with |m| < V/D:

at/VD.o) =4 Y EOBUIOR) e g ().

p inert in E/F
The condition p(tpp;z) # 0 implies that t € p? and so

m2—D

N(t) = — = 0 (mod 4), ie, m>=D (mod 16).
This proves the second identity in Lemma 5.5:
1+ ord, (tOF 1
m@= Y S O ) g (e))
= m+2\/§ p inert in E/F
|m|<vD,odd

m2=D (mod 16)

Now we prove ag(¢) = 0. The same argument as above gives
é = é2 H Pp
pf2
and
P2 = &pl,O(Jgpz,O + &p1,195p2,1
with ggpha being ¢, in Lemma 5.6. So

1 1
W0,2(57 ¢2) = Z H WO,}M (57 ¢pi7a) =0
a=01=0

by Lemma 5.6. This implies that

WO,f(S7 q;) = 0>
and thus ao(¢) = 0 by Remark 2.5 (and $(0) = 0). This proves Lemma 5.5 and
thus Theorem 1.3.

Remark 5.8. When d; =1 (mod 8) are not satisfied, the big CM value formula will
still give a factorization formula for the CM values of wy(z1) — wa(22) although the
summation will be over the ring class group of E; with conductor 2 when d; = 5
(mod 8) (see Lemma 5.4). We leave the details to the reader.

Remark 5.9. The Weber function wy has two companions, wi(7) = w(wy) and
wo(7) = wi(7+1). So the results on wy can easily be transferred to its companions
wo and wi.
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