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1. Introduction

It is well-known that there is a deep connection between the leading term of some 

analytic functions and the arithmetics, such as the class number formula, Birch and 

Swinnerton–Dyer conjecture, Block–Kato conjecture and the Siegel–Weil formula. Little 

is known or understood about the possible connection between the second term of these 
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functions and arithmetic although it started to change in this century. The most famous 

one is the Kronecker limit formula:

E(τ, s) =
∑

γ∈Γ∞\ SL2(Z)

�(γz)s = 1 +
1

6
(log |Δ(τ)�(z)6|)s + O(s2).

We refer to [22] for its proof and its beautiful application to class numbers. In 2004, 

Kudla, Rapoport and Yang ([17]) discovered another second term identity of some 

Eisenstein series of weight 3/2—the so-called arithmetic Siegel–Weil formula. Roughly 

speaking, they defined an arithmetic function—a generating function φ̂KRY (τ) of a fam-

ily of arithmetic divisors in a Shimura curve. They proved that its degree is the special 

value of some Eisenstein series E(τ, s) (weight 3/2) at s = 1 and that arithmetic in-

tersection with the (normalized) metrized Hodge bundle on the Shimura curve is the 

derivative of the same Eisenstein series E(τ, s) at s = 1 (second term). This case is 

different from the Kronecker formula in two ways. Firstly, the leading term is already 

connected with arithmetics by the Siegel–Weil formula and is non-trivial. Secondly, the 

second term (derivative) is found to be deeply related to the Gillet–Soulé height paring 

on a Shimura curve. Its analogue in X0(1) was worked out later by Kudla and Yang, 

and was reported in [26]. In this case, the Eisenstein series is Zagier’s famous Eisenstein 

series [12] of weight 3/2. In [3], Bruinier and Funke gave a different proof of the main 

result of [26] using theta lifting. Colmez conjecture [6] can also be viewed as an second 

term of ‘CM’ Hecke L-functions L′(0, χ) in terms of Faltings’ height. We should mention 

the breakthrough formula of Zhiwei Yun and Wei Zhang which relates the n-th central 

derivative of the L-function of an automorphic representation on GL2 over a function 

field and height pairing of some cycles in middle dimension on some Drinfeld space [27]. 

We also mention the beautiful second term identity in the Siegel–Weil formula (see for 

example [9] and references there), although it has different flavor.

Later in the book [18, Chapter 4], Kudla proved that the arithmetic theta function 

φ̂KRY is modular. In this paper, we will prove both the arithmetic Siegel–Weil formula 

and the modularity of a similar arithmetic theta function in the case of modular curve 

X0(N) when N is square free. The complication comes mainly from the cusps, and we 

need to understand the behavior of Kudla’s Green functions at cusps carefully. We give 

a complete description of its behavior at cusps—which is totally new. It is an interesting 

and likely very challenging question to extend the analysis to high dimensional Shimura 

varieties of orthogonal type (n, 2). The metrized Hodge bundle has log singularity at 

cusps presents another complication. The method in [17] in computing the arithmetic 

intersection does not seem to extend to this case easily. Instead, we will use theta lifting 

method following [3]. In the process, we also obtain some explicit Kronecker limit formula 

for Eisenstein series of weigh 0 for Γ0(N), which should be of independent interest. 

In particular, we construct an explicit modular form (denoted by ΔN), which gives a 

rational section of the Hodge bundle and plays an essential role in proving the arithmetic 
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Siegel–Weil formula. After the arithmetic Siegel–Weil formula is proved, the modularity 

theorem follows the same method of [18, Chapter 4] with a little modification.

Now we set up notations and describe the main results in a little more detail.

Let

V =

{
w =

(
w1 w2

w3 −w1

)
∈ M2(Q) : tr(w) = 0

}
, (1.1)

with quadratic form Q(w) = N det w = −N(w2
1 + w2w3), and let

L =

{
w =

(
b −a

N

c −b

)
∈ M2(Z) | a, b, c ∈ Z

}
(1.2)

be an even integral lattice with the dual lattice L�. Then Spin(V ) ∼= SL2 acts on V

by conjugation, and the associated Hermitian symmetric domain D is isomorphic to the 

upper half plane H. Since Γ0(N) preserves L and acts on L�/L trivially, we can and 

will identify X0(N) with the compactification of the open orthogonal Shimura curve 

Γ0(N)\D (see Section 2 for detail).

For each μ ∈ L�/L, denote Lμ = μ + L, and

Lμ[n] = {w ∈ Lμ : Q(w) = n}.

For μ ∈ L�/L and a positive rational number n ∈ Q(μ) + Z, let Z(w) = Rw ∈ D and 

define the divisor

Z(n, μ) :=
∑

w∈Γ0(N)\Lμ[n]

Z(w) ∈ CH1(X0(N)) (1.3)

When μ = μr = diag( r
2N , − r

2N ), this divisor is the same as the Heegner divisors PD,r +

PD,−r ∈ CH1(X0(N)) in [11], where D = −4Nn is a discriminant. For a positive real 

number v > 0, let Ξ(n, μ, v) be the Kudla Green function for Z(n, μ) in the open modular 

curve Y0(N) as defined in [15] (see (5.4) for precise definition). The behavior of Ξ(n, μ, v)

at cusps is complicated and has not been studied before. In Sections 5 and 6, we will 

prove that it is smooth and of exponential decay when D = −4Nn is not a square, and 

has singularity along the cusps (Section 6) when D �= 0 is a square. Even worse, when 

D = 0 (which forces μ = 0), Ξ(0, 0, v) has log–log singularity in the sense of [5] (see 

Section 4). This is the most technical part of this paper.

Let X0(N) be the canonical integral model over Z of X0(N) as defined in [13] (see 

Section 6). In the arithmetic part of this paper, we assume N is square free so that 

X0(N) is regular and flat over Z and is smooth over Z[ 1
N ]. For a point x ∈ X0(N) over 

a field, since {±1} ⊆ Aut(x), we count x with multiplicity 2
| Aut(x)| for convenience. Let 

Z(n, μ) be the Zariski closure of Z(n, μ) in X0(N), and we obtain a family of arithmetic 
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divisors Ẑ(n, μ, v) in ĈH
1

R(X0(N))—arithmetic Chow group with real coefficients in the 

sense of Gillet–Soulé as follows for n �= 0:

Ẑ(n, μ, v) =

⎧
⎪⎪⎨
⎪⎪⎩

(Z(n, μ), Ξ(n, μ, v)) if n > 0,

(0, Ξ(n, μ, v)) if n < 0, D �= �,

(g(n, μ, v)
∑

P cusps P, Ξ(n, μ, v)) if n < 0, D = �.

Here g(n, μ, v) is some real number defined in Theorem 6.3, and P is the Zariski closure 

of the cusp P in X0(N). When n = 0, the same formula (as D being a square) gives a 

‘naive’ arithmetic Chow cycle Ẑ(0, 0, v)Naive, which has log–log singularity at the cusps 

and needs to be modified to make the ‘generating series’ (to be defined below) modular. 

Let ω̂N be the metrized Hodge bundle on X0(N) with the normalized Petersson metric. It 

has log singularity at cusps in the sense of Kühn (see Section 4). Its associated arithmetic 

divisor has log–log singularity at the cusps. It turns out magically that the modified 

arithmetic divisor

Ẑ(0, 0, v) = Ẑ(0, 0, v)Naive − 2ω̂N −
∑

p|N
X 0

p − (0, log(
v

N
)) (1.4)

belongs to ĈH
1

R(X0(N)) (Proposition 6.6). Here X 0
p (resp. X ∞

p ) is the irreducible com-

ponent of X0(N) (mod p) containing the reduction of the cusp P0 (resp. P∞). One of 

the main results of this paper is the following analogue of the modularity theorem in [18, 

Chapter 4].

Theorem 1.1. The arithmetic theta function (for τ = u + iv, and qτ = e(τ) = e2πiτ )

φ̂(τ) =
∑

μ∈L�/L

∑

n∈Q(μ)+Z

Ẑ(n, μ, v)qn
τ eμ, (1.5)

is a vector valued modular form for Γ′ of weight 3
2 , valued in C[L�/L] ⊗ĈH

1

R(X0(N)). Here 

Γ′ is the metaplectic cover of SL2(Z) which acts on C[L�/L] via the Weil representation 

ρL (see (2.2)) and acts on the arithmetic Chow group trivially. Finally {eμ : μ ∈ L�/L}
is the standard basis of C[L�/L].

Here, the modularity of φ̂(τ) is in the sense of [18, Page 78], i.e., we can write φ̂(τ) =

φAR(τ) +φSM (τ, z) formally as Laurent series, where φAR(τ) is a vector valued modular 

form of weight 3/2 valued in a finite dimensional subspace of C[L�/L] ⊗ĈH
1

R(X0(N)), and 

φSM (τ, z) is a smooth function on H × X0(N) and is modular as function of τ of weight 

3/2. Intuitively, it asserts that the formal Laurent series satisfies the transformation law 

of a modular form of SL2(Z) of weight 3/2 and representation ρL. Alternatively, for every 

linear map � : ĈH
1

R(X0(N)) → C, �(φ̂(τ)) is a (non-holomorphic) modular form of weight 
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3/2 of SL2(Z) with Weil representation ρL. We refer to Theorem 8.4 and its proof for 

more precise meaning of the modularity of φ̂(τ).

To prove the theorem, we will need the decomposition theorem of the arithmetic Chow 

group ĈH
1

R(X0(N)) and some arithmetic intersection formulas as in [18, Chapter 4]. 

These intersection formulas are important themselves, which we now describe briefly.

Let

EL(τ, s) =
∑

γ′∈Γ′
∞�Γ′

(
v

s−1
2 eμ0

)
|3/2 γ′

be a vector valued Eisenstein series of weight 3/2, where the Petersson slash operator is 

defined on functions f : H → C[L�/L] by

(
f |3/2 γ′)(τ) = φ(τ)−3ρ−1

L (γ′)f(γτ),

where γ′ = (γ, φ) ∈ Γ′. Let

EL(τ, s) = −s

4
π−s−1Γ(s)ζ(N)(2s)N

1
2 + 3

2 sEL(τ, s) (1.6)

be its normalization, where

ζ(N)(s) = ζ(s)
∏

p|N
(1 − p−s).

Remark 1.2. In the work [17] and [26], the critic point of Eisenstein series is s = 1
2 . In 

our paper, for the convenience of computation, we define EL(τ, s) by a shift of s.

The intersection formulas referred above are given by the following theorem. The third 

formula is usually called an arithmetic Siegel–Weil formula while the first one (degree 

formula) is a geometric Siegel–Weil formula.

Theorem 1.3. Let the notations be as above, then

〈φ̂(τ), a(1)〉GS =
1

2
deg(φ̂(τ)) =

1

ϕ(N)
EL(τ, 1),

〈φ̂(τ), X 0
p 〉GS = 〈φ̂(τ), X ∞

p 〉GS =
1

ϕ(N)
EL(τ, 1) log p, p|N

and

〈φ̂(τ), ω̂N 〉GS =
1

ϕ(N)

(
E ′

L(τ, 1) −
∑

p|N

p

p − 1
EL(τ, 1) log p

)
.

Here a(1) = (0, 1) ∈ ĈH
1

R(X0(N)).
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There are three main ingredients in the proof of Theorem 1.3. The first is to analyze 

and understand the behavior of Kudla’s Green function Ξ(n, μ, v) for all pairs (n, μ) ∈
Q × L�/L with Q(μ) ≡ n (mod 1), in particular when D = −4Nn ≥ 0 is a square. 

Here v > 0 is a constant. This occupies full Section 5 (general case) and the first part 

of Section 6. The upshot is an honest definition of the arithmetic divisors Ẑ(n, μ, v)Naive

in Theorem 6.3, its modification Ẑ(n, μ, v) in (6.11), and the generating function φ̂(τ)

above.

To understand ω̂N , we actually construct an explicit rational section of ωk
N , which is 

isomorphic to the line bundle of modular forms of weight k for k = 12ϕ(N) (the Euler 

ϕ-function), i.e., an explicit modular form ΔN of weight k for Γ0(N) as follows:

ΔN (z) =
∏

t|N
Δ(tz)a(t) (1.7)

with

a(t) =
∑

r|t
μ(

t

r
)μ(

N

r
)
ϕ(N)

ϕ( N
r )

,

where μ(n) is the Möbius function. This is inspired by Kühn’s early work on self-

intersection of ω̂N with N = 1 using the well-known Delta function Δ. One complication 

here is that ΔN has vertical components, see Lemma 6.4. This means that we will need 

to deal with self-intersections of vertical components (see Section 7).

These ingredients are enough for the first two identities of Theorem 1.3. To prove the 

last identity, we need to compute the infinity part of the arithmetic intersection, which 

boils down essentially to self-intersection of ω̂N , intersection of vertical components, and 

the following integral, which can be viewed as a theta lifting:

I(τ, log ‖ΔN ‖) =

∫

X0(N)

log ‖ΔN ‖ΘL(τ, z). (1.8)

Here ΘL(τ, z) is the two variable geometric theta kernel of Kudla and Millson defined 

by (2.6), and the Petersson norm is renormalized as

‖f(z)‖ = |f(z)(4πe−Cy)
k
2 | = e− kC

2 ‖ f(z) ‖P et, (1.9)

with C = log 4π+γ
2 . The theta function ΘL(τ, z) is a vector valued modular form for τ of 

weight 3/2 and modular function for the variable z valued in Ω1,1(X0(N)) for Γ0(N).

To connect this integral with E ′
L(τ, 1), we follow Bruinier and Funke’s idea in [3] in 

two steps, given by the following two theorems, which are of independent interest.
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Theorem 1.4. (Theta lifting of Eisenstein series) Let

E(N, z, s) =
∑

γ∈Γ∞�Γ0(N)

(�(γz))s, (1.10)

be the Eisenstein series of weight 0 for Γ0(N), and let

E(N, z, s) := N2sπ−sΓ(s)ζ(N)(2s)E(N, z, s) (1.11)

be its normalization. Then

I(τ, E(N, z, s)) = I(τ, E(N, wN z, s)) = ζ∗(s)EL(τ, s),

where wN =
(

0 −1
N 0

)
and ζ∗(s) = π− s

2 Γ( s
2 )ζ(s).

Theorem 1.5. (Kronecker Limit formula for Γ0(N)) Let the notations be as above, then 

one has

lim
s→1

(
E(N, z, s) − ϕ(N)ζ∗(2s − 1)

)
= − 1

12
log

(
y6ϕ(N) | ΔN (z) |

)
,

and

lim
s→1

(
E(N, wN z, s) − ϕ(N)ζ∗(2s − 1)

)
= − 1

12
log

(
y6ϕ(N) | Δ0

N (z) |
)
,

where Δ0
N = ΔN |wN .

Combining the previous theorems, we obtain

Theorem 1.6. One has

I(τ, 1) =
2

ϕ(N)
EL(τ, 1)

and

I(τ, log ‖ ΔN ‖) = I(τ, log ‖Δ0
N ‖) = −12E ′

L(τ, 1).

This paper is organized in two parts as follows. In Part 1, we prove Theorem 1.4 after 

setting up notation and introduce the theta lifting (2.9) in Section 2. In Section 3, we 

study some basic properties of ΔN and prove the Kronecker limit formula Theorem 1.5

and then Theorem 1.6. We also prove some properties of ΔN needed in Part 2.

In Part 2, we first review arithmetic divisors with log–log singularity, metrized line 

bundles with log singularity, and arithmetic intersection in Section 4 following Kühn [19]
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and Burgos Gil, Kramer and U. Kühn [5]. In Section 5, we study the behaviors of Kudla’s 

Green functions at cusps in a more general setting (see Theorem 5.1). In Section 6, we 

focus on the modular curve X0(N) for square free N , and prove Theorem 6.3. We also 

prove the first two formulas in Theorem 1.3, and reduces the third one to a ‘horizontal 

intersection’ theorem Theorem 6.9, which we will prove in Section 7. In Section 8, we 

will prove the modularity theorem (Theorem 1.1).

Finally, we remark that the technical condition N being square free is only needed in 

the arithmetic part, mainly to avoid the complication of special fiber of X0(N) at p2|N
when N is not square free.

Acknowledgments. We thank Haifeng Chu, S. Ehlen, Wanlin Li, S. Marshall, and 

S. Sankaran for their help during our work in this project. The second author thanks the 

MPIM-Bonn and the Morningside Center of Mathematics at Beijing (MCM) for their 
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in Postech. Part of the work was done there. He also thanks MCM for its support. Part 

of the work was done when he visited the institute a few times. We thank the referee for 
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Part 1. Theta lifting and Kronecker limit formula

2. Basic set-up and theta lifting

Let

V =

{
w =

(
w1 w2

w3 −w1

)
∈ M2(Q) : tr(w) = 0

}
, (2.1)

with the quadratic form Q(w) = N det w = −Nw2w3 − Nw2
1, which has signature (1, 2). 

Let L be the even integral lattice defined in the introduction with dual lattice L�. We 

will identify

Z/2NZ ∼= L�/L, r �→ μr =
( r

2N 0

0 − r
2N

)
.

Let G = SL2
∼= Spin(V ) act on V by conjugation, i.e., g · w = gwg−1. Notice that Γ0(N)

preserves L and acts on L�/L trivially. Let D be the Hermitian domain of positive real 

lines in VR:

D = {z ⊂ VR : dim z = 1 and ( , ) |z> 0}.

The following lemma can be easily checked and is left to the reader.
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Lemma 2.1. For z = x + iy, define

w(z) =
1√
Ny

(
−x zz

−1 x

)
.

Then z �→ [w(z)] = Rw(z) gives a G(R)-invariant isomorphism between the upper half 

plane H and D. It induces an isomorphism between Y0(N) = Γ0(N)\H and Γ0(N)\D.

Let X0(N) be the usual compactification of Y0(N). Let Mp2,R be the metaplectic 

double cover of SL2(R), which can be realized as pairs (g, φ(g, τ)), where g =

(
a b
c d

)
∈

SL2(R), φ(g, τ) is a holomorphic function of τ ∈ H such that φ(g, τ)2 = j(g, τ) = cτ + d. 

Let Γ′ be the preimage of Γ = SL2(Z) in Mp2,R, then Γ′ is generated by

S =
((

0 −1
1 0

)
,
√

τ
)

T =
((

1 1
0 1

)
, 1
)

.

We denote the standard basis of SL = C[L�/L] by {eμ = Lμ : μ ∈ L�/L}. Then there is 

a Weil representation ρL of Γ′ on C[L�/L] given by ([1])

ρL(T )eμ = e(Q(μ))eμ, (2.2)

ρL(S)eμ =
e( 1

8)√
|L�/L|

∑

μ′∈L�/L

e(−(μ, μ′))eμ′ .

This Weil representation ρL is naturally connected to the Weil representation ω of Mp2,A

on S(VA), see [4] for explanation.

Following Kudla and Millson ([16], [3, Section 3]), we decompose for z = x + iy ∈ H,

VR = Rw(z) ⊕ w(z)⊥, w = wz + wz⊥ ,

and define R(w, z) = −(wz⊥ , wz⊥), and the majorant

(w, w)z = (wz, wz) + R(w, z).

Since Q(w(z)) = 1, it is easy to check

R(w, z) =
1

2
(w, w(z))2 − (w, w), (2.3)

(w, w)z = (w, w(z))2 − (w, w).

For w =

(
w1 w2

w3 −w1

)
∈ VR, we have

(w, w(z)) = −
√

N

y
(w3zz − w1(z + z) − w2). (2.4)
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Let μ(z) = dx dy
y2 ,

ϕ0(w, z) =

(
(w, w(z))2 − 1

2π

)
e−2πR(w,z)μ(z),

ϕ(w, τ, z) = e(Q(w)τ)ϕ0(
√

vw, z), (2.5)

which is a Schwartz function on VR valued in Ω1,1(D) constructed by Kudla and Millson 

in [16]. Finally, let

ΘL(τ, z) =
∑

μ∈L�/L

θμ(τ, z)eμ (2.6)

be the vector valued Kudla–Millson theta function, where

θμ(τ, z) =
∑

n∈Q,Q(μ)≡n (mod 1)

ω(n, μ, v)(z)qn +

{
0 if μ �= 0,

− 1
2π μ(z) if μ = 0,

(2.7)

with (q = qτ = e(τ))

ω(n, μ, v)(z) =
∑

0	=w∈Lμ[n]

ϕ0(v
1
2 w, z) ∈ Ω1,1(XΓ), (2.8)

where τ = u + iv. It is known that ΘL(τ, z) is a nonholomorphic modular form of weight 

3/2 of (Γ′, ρL) valued in Ω1,1(XΓ) ⊗ C[L�/L] as a function of τ . It is Γ0(N)-invariant as 

a function of z.

The following result of Funke about behavior of θμ as z goes to the boundary (cusp) 

is important to our definition of theta lifting.

Proposition 2.2. [3, Proposition 4.1] Fix μ ∈ L�/L and τ ∈ H. Let l = σl(∞) be a cusp 

of X0(N). As a function of z = x + iy ∈ H = D, the theta function (recall z = x + iy)

θμ(τ, σlz) = O(e−Cy2

), as y −→ ∞

holds uniformly in x for some constant C > 0.

For a (non-holomorphic) modular function f(z) for Γ0(N) (viewed as a subgroup of 

the Spin group) with moderate growth, the theta lifting

I(τ, f) =

∫

Γ0(N)\D

f(z)ΘL(τ, z) =
∑

μ∈L�/L

Iμ(τ, f)eμ (2.9)

is absolutely convergent by Proposition 2.2 and is a (non-holomorphic) weight 3/2 mod-

ular form of Γ′ with values in C[L�/L].
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Proof of Theorem 1.4. First, we compute the theta series:

θμr
(τ, z) =

∑

w∈Lμr

ϕ(w, τ, z)

=
∑

w1∈Z+ r
2N ,n,w3∈Z

(
v

Ny2

(
N(w3zz − w1(z + z)) − n

)2 − 1

2π

)

×e(−Nτw2
1)e(−τw3n)e

(
iv

2Ny2

(
N(w3zz − w1(z + z)) − n

)2
)

μ(z).

Let

f(X) =
(vX2

Ny2
− 1

2π

)
e(−τw3X)e

( ivX2

2Ny2

)
,

then its Fourier transformation is

f̂(m) =

∞∫

−∞

f(X)e(−mX)dX = −N
3
2 y3

v
3
2

(τw3 + m)2e
( iNy2

2v
(τw3 + m)2

)
.

Write t = N(w3zz − w1(z + z)). Applying the Poisson summation formula, we obtain

θμr
(τ, z) =

∑

w1∈Z+ r
2N ,m,w3∈Z

e(−Nτw2
1)e(−τw3t)f̂(m)e(−mt)μ(z)

= −N
3
2 y3

v
3
2

∑

w1∈Z+ r
2N ,m,w3∈Z

(τw3 + m)2e
(

− Nτ(w1 − w3x)2
)

× e
(
2N(w1 − w3m/2)mx

)
exp

(
− πNy2

v
| m + w3τ |2

)
μ(z).

As in [1, Section 4], we define for α, β ∈ Q

ΘL(τ, α, β) =
∑

r∈Z/2N

∑

w1∈ r
2N +Z

e(−τ(w1 + β)2)e(−α(2w1 + β))eμr
. (2.10)

For γ′ =

((
a b

c d

)
,
√

cτ + d

)
∈ Γ′, it is easy to check

ΘL(τ, ndx, −ncx) = (cτ + d)− 1
2 ρ−1

L (γ′)ΘL(γ′τ, nx, 0). (2.11)

We continue the calculation:
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ΘL(τ, z)

= −N
3
2 y3

v
3
2

∑

m,w3∈Z

(τw3 + m)2e
(
− πNy2

v |m+w3τ |2
)
ΘL(τ, mx, −w3x)μ(z)

= −N
3
2 y3

v
3
2

∞∑

n=1

n2
∑

c,d∈Z,(c,d)=1

(cτ + d)2e
(
− πNy2n2

v |cτ+d|2
)
ΘL(τ, ndx, −ncx)μ(z)

= −N
3
2 y3

v
3
2

∞∑

n=1

n2
∑

γ′∈Γ′
∞�Γ′

(cτ + d)
3
2 e

(
− πNy2n2

v |cτ+d|2
)
ρ−1

L (γ′)ΘL(γ′τ, nx, 0)μ(z).

Unfolding the integral, we have for �(s) > 1

I(τ, E(N, z, s)) =

∫

Γ∞�H

ΘL(τ, z)ys

= −v− 3
2 N

3
2

∞∑

n=1

n2
∑

γ′∈Γ′
∞�Γ′

(cτ + d)3/2

∞∫

0

e
(
− πNy2n2

v |cτ+d|2
)
ys+1dy

×ρ−1
L (γ′)

1∫

0

ΘL(γ′τ, nx, 0)dx.

It is easy to check that

1∫

0

ΘL(γ′τ, nx, 0)dx = eμ0
.

So
∫

Γ∞�H

ΘL(τ, z)ys

= −1

2
v− 3

2 N
3
2

∞∑

n=1

n2
∑

γ′∈Γ′
∞�Γ′

v
s+2

2 (cτ + d)3/2Γ
(

s
2 + 1

)

π
s+2

2 | cτ + d |s+2 N
s+2

2 ns+2
ρ−1

L (γ′)eμ0

= −1

2
N

1−s
2 ζ(s)Γ

(s

2
+ 1

) ∑

γ′∈Γ′
∞�Γ′

v
s−1

2 (cτ + d)3/2

π
s
2 +1 | cτ + d |s+2

ρ−1
L (γ′)eμ0

= −N
1−s

2
s

4π
ζ∗(s)

∑

γ′∈Γ′
∞�Γ′

(
v

s−1
2 eμ0

)
|3/2,L γ′.

In summary, we have proved

I(τ, E(N, z, s)) = −N
1−s

2
s

4π
ζ∗(s)EL(τ, s),



714 T. Du, T. Yang / Advances in Mathematics 345 (2019) 702–755

or equivalently,

I(τ, E(N, z, s)) = ζ∗(s)EL(τ, s). (2.12)

It is easy to check by definition that

θL(τ, z) = θL(τ, wN (z)).

This implies that

I(τ, E(N, wN (z), s)) = I(τ, E(N, z, s)).

This proves the theorem.

Taking residue of both sides of the equation (2.12) at s = 1, we have the following 

result.

Corollary 2.3.

I(τ, 1) =
2

ϕ(N)
EL(τ, 1). (2.13)

3. Kronecker limit formula for the group Γ0(N)

We need some preparation before proving Theorem 1.5—the Kronecker Limit for-

mula for Γ0(N). These auxiliary results will also be used in Section 6 and should be of 

independent interest.

Let

CN (n) =

N∑

a=1,(a,N)=1

e(
an

N
) (3.1)

be the Ramanujan sum. It has the following properties according to Kluver ([14, p. 411]).

Lemma 3.1. (Kluver) Let t = (N, n) be the greatest common divisor of N and n. Then 

one has

CN (n) =
ϕ(N)

ϕ( N
t )

C N
t

(1) =
∑

r|t
μ(

N

r
)r.

Here ϕ is the classical Euler ϕ-function, and μ(t) is the well-known Möbius function. In 

particular, one has CN (1) = μ(N).
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Lemma 3.2. For a positive integer N and a divisor t of N , let

aN (t) =
∑

r|t
μ(

t

r
)μ(

N

r
)
ϕ(N)

ϕ( N
r )

be as in the introduction. Then the following are true.

(1) If Q‖N , i.e., Q|N and (Q, N/Q) = 1, write t = t1t2. Then aN (t) = aQ(t1)aN/Q(t2).

(2) One has

∑

t|N
aN (t) = ϕ(N),

∑

t|N
taN (t) = Nϕ(N)

∏

p|N
(1 + p−1),

∑

t|N
t−1aN (t) = 0 when N > 1.

Proof. (1) is clear. For (2), we check the second identity and leave the others to the 

reader. We drop the subscript N from now on as N will be fixed. One has

∑

t|N
ta(t) =

∑

t|N
t
∑

r|t
μ(

t

r
)μ(

N

r
)
ϕ(N)

ϕ( N
r )

= ϕ(N)
∑

r|N

μ(N
r )

ϕ( N
r )

∑

t| N
r

rtμ(t) ( replacing t by rt)

= Nϕ(N)
∑

r|N
r square free

μ(r)

rϕ(r)

∑

t|r
tμ(t) ( replacing N/r by r)

= Nϕ(N)
∑

r|N
r square free

1

r
= Nϕ(N)

∏

p|N
(1 + p−1). �

Proposition 3.3. Let ΔN (z) be defined as in (1.7). Then (qz = e(z))

ΔN (z) = q
Nϕ(N)

∏
p|N (1+p−1)

z

∏

n≥1

(1 − qn
z )24CN (n).

Proof. Let

Δ̃N (z) =
∏

n

(1 − qn
z )CN (n), and Δ̃(z) =

∞∏

n=1

(1 − qn
z ).
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Suppose that there are numbers b(t) with

Δ̃N (z) =
∏

t|N
Δ̃(tz)b(t),

which implies by Lemma 3.1

∏

t|N

∏

(n, N
t )=1

(1 − qtn
z )

ϕ(N)
ϕ(N/t) μ(N/t) =

∏

t|N

∏

n

(1 − qtn
z )b(t)

=
∏

t|N

∏

t′| N
t

∏

(n, N
tt′ )=1

(1 − qtt′n
z )b(t)

=
∏

r|N

∏

t|r

∏

(n, N
r )=1

(1 − qrn
z )b(t)

=
∏

r|N

∏

(n, N
r )=1

(1 − qrn
z )

∑
t|r b(t).

So for every r|N , one has

∑

t|r
b(t) =

ϕ(N)

ϕ(N/r)
μ(N/r). (3.2)

By Möbius inverse formula, one has

b(t) =
∑

r|t
μ(

t

r
)μ(

N

r
)
ϕ(N)

ϕ( N
r )

= a(t).

So we have proved that

Δ̃N (z) =
∏

t|N
Δ̃(tz)a(t).

Combining this with Lemma 3.2 (2), we obtain the lemma. �

Recall ([21]) that cusps of X0(N) are given by P aQ
N

= aQ
N , where Q|N and a ∈

(Z/(Q, N/Q)Z)×. In particular, when Q‖N , i.e., Q|N and (Q, N/Q) = 1, there is a 

unique cusp P Q
N

associated to it. Q = 1 is associated to P∞ = P 1
N

, and Q = N is 

associated to P0 = P1. Assume Q‖N , and let

WQ =
(

α β

γ N
Q Qδ

) (
Q 0
0 1

)
,

(
α β

γ N
Q Qδ

)
∈ Γ0(N/Q)

be an Atkin–Lehner involution matrix with wQ(P∞) = P Q
N

. Notice that when N is 

a square free, P Q
N

, Q|N , give all the cusps of X0(N). The following proposition gives 

Fourier expansion of ΔN at cusps associated to Q‖N .
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Proposition 3.4. Assume Q‖N . For t|N , write t0 = (t, Q) for their greatest common 

divisor. Then

ΔN |WQ(z) = CQ

∏

t|N
Δ(

t

t0

Q

t0
z)aN (t)

where

CQ = Q6ϕ(N)
∏

t0|Q
t
−12ϕ( N

Q )aQ(t0)

0 .

In particular, ordp CQ = 0 for p � Q. Moreover, ΔN (z) does not vanish at cusps associated 

to Q‖N (with Q �= 1).

Proof. Write k = 12ϕ(N), t = t0t1, and Q = t0Q1. Then

ΔN |WQ(z) =
Q

k
2

(γNz + Qδ)k

∏

t|N
Δ(

αQtz + tβ

γNz + Qδ
)aN (t)

=
Q

k
2

(γNz + Qδ)k

∏

t|N
Δ(

αt0(t1Q1z) + t1β

γ N
t1Q (t1Q1z) + Q1δ

)aN (t)

= AQ

∏

t|N
Δ(t1Q1z)aN (t),

where (recall Lemma 3.2)

AQ = Q
k
2

∏

t|Q
t
−12aN (t)
0 = CQ.

On the other hand, the leading q-power exponent of ΔN |WQ is given by the above 

calculation (recall again Lemma 3.2)

∑

t|Q
t1Q1aN (t) =

∑

t0|Q

Q

t0
aQ(t0)

∑

t1| N
Q

t1a N
Q

(t1)

=

{
0 if Q > 1,

Nϕ(N)
∏

p|N (1 + p−1) if Q = 1.

This proves the result. �

Proof of Theorem 1.5. Recall the Whittaker function ([25, Chapter 2]) for y > 0 and 

α, β ∈ C:
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W (y, α, β) = Γ(β)−1

∞∫

0

(1 + h)α−1hβ−1e−yhdh. (3.3)

Define

tn(y, α, β)

=

⎧
⎪⎪⎨
⎪⎪⎩

iβ−α(2π)α+βnα+β−1e−2πnyΓ(α)−1W (4πny, α, β), if n > 0,

iβ−α(2π)α+β | n |α+β−1 e−2π|n|yΓ(β)−1W (4π | n | y, β, α), if n < 0,

iβ−α(2π)α+βΓ(α)−1Γ(β)−1Γ(α + β − 1)(4πy)1−α−β , if n = 0.

One has by calculation (z = x + iy ∈ H)

E(N, z, s) =
ys

2ζ(N)(2s)

∑

(m,n)∈Z2

(N,n)=1

1

|mNz + n|2s

= ys +
ys

N2sζ(N)(2s)

∞∑

m=1

∑

1≤a<N
(a,N)=1

∑

j∈Z

|mz +
a

N
+ j|−2s

= ys +
ys

N2sζ(N)(2s)

∑

n∈Z

∞∑

m=1

tn(my, s, s)
∑

a∈(Z/N)×

e(
n(mNx + a)

N
).

Write

E(N, z, s) = N2sπ−sΓ(s)ζ(N)(2s)E(N, z, s) =
∑

k∈Z

ak(z, s)e(kx).

Then we have

a0(z, s) = N2sπ−sΓ(s)ζ(N)(2s)ys + ϕ(N)ysπ−s (2π)2sΓ(2s − 1)(4πy)1−2sζ(2s − 1)

Γ(s)
.

Simple calculation gives

a0(z, s) = ϕ(N)

(
1

2(s − 1)
− log y

2
− log 4π − γ

2
+

π

6
yN

∏

p|N
(1 + p−1)

)
+ O(s − 1). (3.4)

On the other hand,

ζ∗(2s − 1) =
1

2(s − 1)
− 1

2

(
log 4π − γ

)
+ O(s − 1). (3.5)

So
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lim
s→1

(a0(z, s) − ϕ(N)ζ∗(2s − 1)) = ϕ(N)(− log y

2
+

π

6
yN

∏

p|N
(1 + p−1)). (3.6)

For k > 0, one has

ak(z, s) = ysπ−sΓ(s)
∑

mn=k

tn(my, s, s)
N∑

a=1,(a,N)=1

e(nmx + anN−1)

= ysπ−sΓ(s)(2π)2s W (4πky, s, s)

Γ(s)e2πky

∑

mn=k

n2s−1CN (n).

As

W (4kπy, 1, 1) =
1

4kπy
,

one has

ak(z, 1) =
e−2πky

k

∑

n|k
nCN (n). (3.7)

It is easy to see from definition that a−k(z, 1) = ak(z, 1). Therefore,

E(N, z, s) =

∞∑

k=−∞
ak(z, s)e(kx)

= a0(z, s) +
∑

k>0

1

k

∑

n|k
nCN (n)qk

z +
∑

k>0

1

k

∑

n|k
nCN (n)qk

z + O(s − 1)

= a0(z, s) +
∞∑

n=1

CN (n)
∞∑

m=1

1

m
(qmn

z + q̄z
mn) + O(s − 1).

Combining this with (3.6) and Proposition 3.3, we obtain

lim
s→1

(
E(N, z, s) − ϕ(N)ζ∗(2s − 1)

)

= −ϕ(N)

2
log y +

Nϕ(N)
∏

p|N (1 + p−1)πy

6
−

∞∑

n=1

log |1 − qn
z |2

= − 1

12
log

(
y6ϕ(N) | ΔN (z) |

)
,

as claimed. The second one follows from this identity immediately by applying wN on 

both sides.
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Proof of Theorem 1.6. The first identity is just restatement of Corollary 2.3. For the 

second identity, we have by Theorems 1.5, 1.4 and Corollary 2.3

− 1

12
I(τ, log | ΔN (z)y6ϕ(N) |)

= lim
s→1

(
I(τ, E(N, z, s)) − I(τ, ϕ(N)ζ∗(2s − 1))

)

= lim
s→1

(
ζ∗(s)EL(τ, s) − 2ζ∗(2s − 1)EL(τ, 1)

)
.

Now the second identity for log ‖ΔN (z)‖ follows from elementary calculation of the 

Laurent expansion (just first two terms) of the functions in the above expression. We 

leave the detail to the reader.

Proposition 3.5. (1) The generalized Delta function ΔN (z) of level N vanishes at the 

cusp ∞ with vanishing order Nϕ(N) 
∏

p|N (1 + p−1), and does not vanish at other cusps.

(2)

Δ0
N (z) = ΔN (z)|wN = CN

∏

t|N
Δ(tz)a( N

t ) ∈ Mk(N) (3.8)

has vanishing order ϕ(N)N
∏

p|N (1 + p−1) at the cusp P0 and does not vanish at other 

cusps. Here CN is the constant given in Proposition 3.4.

Proof. This proposition is clear at cusp PQ/N with Q‖N by Proposition 3.4. In particular, 

it is true when N is square free, which is all we need in Part 2. The general case follows 

from the Kronecker limit formula at the cusp P . Write

N2sπ−sΓ(s)ζ(N)(2s) = A + B(s − 1) + O((s − 1)2),

and α = ϕ(N)
A . According to [10, (21)], for a cusp P , there is σ = σP ∈ SL2(R) such that 

σ(P∞) = P , and

lim
s→1

(
E(N, σz, s) − α

2(s − 1)

)

= βP − α

2
log y + yδP,P∞ +

∑

m>1

(φP,mqm
z + φP,mqm

z ),

for some constant βP . Here δP,P∞ is the Kronecker δ-symbol. So simple calculation gives 

for P �= P∞
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lim
s→1

(
E(N, σz, s) − ϕ(N)ζ∗(2s − 1)

)

= γP − ϕ(N)

2
log y + A

∑

m>1

(φP,mqm
z + φP,mqm

z ),

for some constant γP . One has thus by Theorem 1.5

log
(
y6ϕ(N) | ΔN (σ(z)) |

)
= −12γP + 6ϕ(N) log y − 12A

∑

m>1

(φP,mqm
z + φP,mqm

z ).

Equivalently,

log |ΔN (σ(z))| = −12γP − 12A
∑

m>1

(φP,mqm
z + φP,mqm

z ),

which goes to −12γP when y → ∞. So ΔN (z) does not vanish at the cusp P =

σ(P∞). �

Recall that the Eisenstein series E(N, z, s) has the Fourier expansion

E(N, z, s) =
∑

n∈Z

cn(y, s)e(nx),

where the constant term has the form

c0(y, s) = ys + Φ(s)y1−s,

with

Φ(s) =
ϕ(N)π

1
2 ζ(2s − 1)Γ(s − 1

2)

N2sζ(N)(2s)
. (3.9)

Simple calculation gives the following lemma, which will be used in the proof of Theo-

rem 6.9.

Lemma 3.6. Write

Φ(s) =
C−1

s − 1
+ C0 + O(s − 1).

Then

C−1 = Ress=1Φ(s) =
3

πr
,

C0 = − 6

πr

(
log 4π − 1 + 12ζ ′(−1) +

∑

p|N

p2

p2 − 1
log p

)
,

where r = [SL2(Z) : Γ0(N)] = NΠp|N (1 + p−1).
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We remark that C0 is the so-called scattering constant CP∞,P∞ in [20].

Part 2. Arithmetic intersection and derivative of Eisenstein series

In this part, we will focus on the arithmetic intersection on the modular curve X0(N)

and prove Theorems 1.3 and 1.1. We will assume from now on that N is square free.

4. Metrized line bundles with log singularity and arithmetic divisors with log–log 

singularities

The Gillet–Soulé height pairing (see [24]) has been extended to arithmetic divisors 

with log–log singularities or equivalently metrized bundles with log singularities ([5], 

[20], [19]). It is also extended to arithmetic divisors with L2
1-Green functions ([2]). In 

this paper, we will use Kühn’s set-up in [20], which is most convenient in our situation. 

Actually, for simplicity, we use a stronger condition which is easier to state and enough 

for our purpose.

Let X be a regular, proper and flat stack over Z of dimension 2 (called arithmetic 

surface), and denote X = X (C). For a finite subset S = {S1, · · · , Sr} of X, let Y = X−S

be its complement. For ε > 0, let Bε(Sj) be the open disc of radius ε centered at Sj , 

and Xε = X −
⋃

j Bε(Sj). Let tj be a local parameter at Sj. A metrized line bundle 

L̂ = (L, ‖ ‖) with log singularity (with respect to S) is a line bundle L over X together 

with a metric ‖ ‖ on L∞ = L(C) satisfying the following conditions:

(1) ‖ ‖ is a smooth Hermitian metric on L∞ when restricting to Y .

(2) For each Sj ∈ S and a (non-trivial) section s of L, there is a real number αj and a 

positive smooth function ϕ on Bε(Sj) such that

‖s(tj)‖ = (− log |tj |2)αj |tj |ordSj
(s)ϕ(tj)

hold for all tj ∈ Bε(Sj) − {0} (here tj = 0 corresponds to Sj).

Notice that L̂ with log singularity is a regular metrized line bundle if and only if all 

αj = 0. We will denote P̂icR(X , S) for the group of metrized line bundles with log 

singularity (with respect to S) with R-coefficients (i.e. allowing formally L̂c with c ∈ R).

A pair Ẑ = (Z, g) is called an arithmetic divisor with log–log-singularity (along S) 

if Z is a divisor of X , and g is a smooth function away from Z ∪ S (Z = Z(C)), and 

satisfying the following conditions:

ddcg + δZ = [ω],

g(tj) = −2αj log log(
1

|tj |2 ) − 2βj log |tj | − 2ψj(tj) near Sj ,
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for some smooth function ψj and some (1, 1)-form ω which is smooth away from S. Let L̂
be the metrized line bundle associated to Ẑ with canonical section s with − log ‖s‖2 = g, 

then Ẑ is of log–log-singularity if and only if L̂ has log-growth and

αj(g) = αj(s), βj(g) = ordSj
(s), ψj(tj) = log ϕ(tj). (4.1)

We define ĈH
1

R(X , S) be the quotient of the R-linear combination of the arithmetic 

divisors of X with log–log growth along S by R-linear combinations of the principal 

arithmetic divisors with log–log growth along S. One has P̂icR(X , S) ∼= ĈH
1

R(X , S). The 

following is a [20, Proposition 1.4].

Proposition 4.1. There is an extension of the Gillet–Soulé height paring to

ĈH
1

R(X , S) × ĈH
1

R(X , S) → R

such that if Z1 and Z2 are divisors intersect properly, then

〈(Z1, g1), (Z2, g2)〉 = (Z1.Z2)fin +
1

2
g1 ∗ g2

where the star product is defined to be

g1 ∗ g2 = g1(Z2 −
∑

j

ordSj
(Z2)Sj) + 2

∑

j

ordSj
Z2 (αL1,j − ψ1,j(0))

− lim
ε→0

⎛
⎝2

∑

j

(ordSj
Z2)αL1,j log(−2 log ε) −

∫

Xε

g2ω1

⎞
⎠ .

Here Zi = Zi(C), L̂i is the associated metrized line bundle with the canonical section 

si. αLi,j and ψi,j are associated to gi and cusp Sj. Finally, ωi is the (1, 1)-form associate 

to gi via the following equation

ddc[gi] + δZi
= [ωi].

We remark that the pairing is also symmetric. In particular, one has for any a(f) =

(0, f) ∈ ĈH
1

R(X , S),

〈(Z, g), a(f)〉 =
1

2

∫

X

fω. (4.2)

We define the degree map

deg : ĈH
1

R(X , S) → R, deg(Z, g) =

∫

X

ω = 〈(Z, g), (0, 2)〉. (4.3)
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It is just deg Z when g is a Green function of Z = Z(C) without log–log singularity.

We will denote ĈH
1

R(X ) = ĈH
1

R(X , empty) for the usual arithmetic Gillet–Soulé Chow 

group with real coefficients.

5. Kudla’s Green function

Let V = {w ∈ M2(Q) : tr(w) = 0} be the quadratic space with quadratic form 

Q(w) = N det w, and let D be the associated Hermitian symmetric domain of positive 

lines in VR as in Section 2. Recall that SL2 = Spin(V ) acts on D by conjugation, and D
can be identified with H (Lemma 2.1) via

w(z) =
1√
Ny

(
−x zz̄
−1 x

)
, z = x + iy ∈ H. (5.1)

Let L be an even integral lattice with dual lattice L� (arbitrary in this section). Let 

Γ ⊆ SL2(Z) be a subgroup of finite index which fixes L and acts on L�/L trivially. We 

denote Γ̄ = Γ/(Γ ∩ {±1}). For each pair (n, μ) ∈ Q × L�/L with n > 0, Q(μ) ≡ n

(mod 1), let Z(n, μ) be the associated Heegner divisor given by

Z(n, μ) = Γ\{Rw : w ∈ Lμ[n]}.

Kudla defined a nice Green function for Z(n, μ) in his seminal work [15], which we now 

briefly review. The purpose of this section is to understand its behavior at the cusps.

For r > 0 and s ∈ R, let

βs(r) =

∞∫

1

e−rtt−sdt (5.2)

and

ξ(w, z) = β1(2πR(w, z)), (5.3)

be Kudla’s ξ-function. For μ ∈ L�/L, n ∈ Q(μ) + Z and v ∈ R>0, define

Ξ(n, μ, v)(z) =
∑

0	=w∈Lμ[n]

ξ(v
1
2 w, z). (5.4)

Then Kudla has proved on Y0(N) ([15]) that Ξ(n, μ, v) is a Green function for Z(n, μ)

and satisfies the following Green current equation:

ddc[Ξ(n, μ, v)] + δZ(n,μ) = [ω(n, μ, v)]

when n > 0. When n ≤ 0, Ξ(n, μ, v) is still well-defined and actually smooth on Y0(N)

while Z(n, μ) = 0. So Ξ(n, μ, v) is a Green function for Z(n, μ) for all n. The purpose 
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of this section is to understand its behavior at cusps, which is quite complicated and 

subtle.

Let Iso(V ) be the set of isotropic non-zero vectors of V , i.e., 0 �= � ∈ V with Q(�) = 0. 

Given � =

(
a b
c d

)
∈ Iso(V ), let P� = a

c be the associated cusp, which depends only on 

the isotropic line Q�. Two isotropic lines give the same cusp in Γ\H if and only if there 

is γ ∈ Γ such that Qγ · �1 = Q�2.

Let �∞ =
(

0 1
0 0

)
∈ Iso(V ) and let P∞ = ∞ be its associated cusp. In general, for an 

isotropic element �, there exists σ� ∈ SL2(Z) such that Qσ� · �∞ = Q�. Then

σ−1
� Γ�σ� = {±

(
1 mκ�

0 1

)
, m ∈ Z},

where Γ� is the stabilizer of � and κ� > 0 is the classical width of the associated cusp P�, 

and q� is a local parameter at the cusp P�. On the other hand, there is another positive 

number β� > 0, depending on L and the cusp P�, such that 
(

0 β�

0 0

)
is a primitive element 

in Q�∞
⋂

σ−1
� · L. We denote ε� = κ�

β�
and call it Funke constant at cusp P� although 

Funke called it width at P� in [8, Section 3]. We will simply denote κ = κ∞.

The main purpose of this section is to prove the following technical theorem.

Theorem 5.1. Let the notation be as above. Let 0 �= � ∈ Iso(V ) be an isotropic vector and 

P� be the associated cusp.

(1) When D = −4nN is not a square, Ξ(n, μ, v) is smooth and of exponential decay at 

the cusp P�.

(2) When D = −4nN > 0 is a square. Then Ξ(n, μ, v) has log singularity at the cusp 

P� with

Ξ(n, μ, v) = −g(n, μ, v, P�)(log |q�|2) − 2ψ�(n, μ, v; q�).

Here q� is a local parameter at the cusp P�,

αΓ(n, μ, P�) =
∑

w∈Lμ[n] mod Γ

δw,

where 0 ≤ δw ≤ 2 is the number of isotropic lines Q�w ∈ Iso(V ) which is perpendic-

ular to w and belongs to the same cusp as �, and

g(n, μ, v, P�) =
1

8π
√

−nv
β3/2(−4nvπ)αΓ(n, μ, P�).

Finally, ψ�(n, μ, v; q�) is a smooth function of q� (as two real variables q� and q̄�) 

and

lim
q�→0

ψ�(n, μ, v; q�) = 0.
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(3) When D = 0, one has

Ξ(0, μ, v) = −g(0, μ, v, P�)(log |q�|2) − 2 log(− log |q�|2)

−2ψ�(0, μ, v; q�),

where q� is the local parameter at P� with respect to the classical width κ�, 

g(0, μ, v, P�) = ε�

2π
√

vN
. Here ε� is the Funke constant of �. Finally, ψ�(0, μ, v; q�)

is a smooth function of q� (as two real variables q� and q̄�) and

lim
q�→0

ψ�(0, μ, v; q�) =

⎧
⎨
⎩

log ε�

4π
√

Nv
− 1

2f(0) if μ ∈ L,

1
2 log

ε2
�

4Nvπ3 + γ1(0)
2 −∑∞

n=1

cos(
2πnμ�

β�
)

n if μ /∈ L.

Here f(0) = γ − log(4π) is defined in Lemma 5.2,

γ1(0) =

∞∫

1

e−y dy

y
+

1∫

0

e−y − 1

y
dy

and

σ−1
� · Lμ ∩ Q� = {

(
0 μ�+mβ�

0 0

)
: m ∈ Z}.

The proof is long and technical and will occupy the next few subsections.

5.1. Two lemmas

Lemma 5.2. Let a > 0 and z = x + iy ∈ C. Then

(1) When z /∈ R, one has

∑

n∈Z

β1(πa2|z + n|2) =
1

a

∑

n∈Z

e(nx)

∞∫

1

e−πa2y2t− πn2

a2t t− 3
2 dt.

(2) When z = x ∈ R − Z, one has

∑

n∈Z

β1(πa2(x + n)2) = 2
∑

n∈Z

e(nx)

1
a∫

0

e−πn2t2

dt.

Moreover, one has near a = 0

∑

n∈Z

β1(πa2(x + n)2) =
2

a
+ f(a, x),
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for some smooth function f(a, x) near a = 0 with

f(0, x) = lim
a→0

f(a, x) = 2

∞∑

n=1

cos(2πnx)

n
.

(3) One has

∑

0	=n∈Z

β1(πa2n2) = 2

1
a∫

0

⎛
⎝∑

n∈Z

e−πn2t2 −
∫

R

e−πx2t2

dx

⎞
⎠ dt.

Moreover, one has near a = 0

∑

0	=n∈Z

β1(πa2n2) =
2

a
+ 2 log a + f(a),

for some smooth function f(a) with

f(0) = lim
a→0

f(a) = γ − log(4π),

where γ is the Euler constant.

Proof. Let

f(n) = β1(πa2|z + n|2) = β1(πa2y2 + πa2(x + n)2).

Then its Fourier transformation is

f̂(n) =

∫

R

f(α)e(−αn)dα

=
e(nx)

a

∞∫

1

e−πa2y2t− πn2

a2t t− 3
2 dt.

Now applying the Poisson summation formula, one obtains the formula in (1). When 

y = 0, simple substitution gives part of (2) with x /∈ Z. To see the behavior of the sum 

near a = 0, notice that the right-hand side is equal to 2
a + f(a, x) with

f(a, x) = 2
∞∑

n=1

(e(nx) + e(−nx))

1
a∫

0

e−πn2t2

dt.

It is clearly smooth near a = 0 if we define
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f(0, x) = 2
∞∑

n=1

(e(nx) + e(−nx))

∞∫

0

e−πn2t2

dt = 2
∞∑

n=1

cos(2πnx)

n
.

To prove (3), take z = iε in (1), and let ε goes to zero, we obtain

∑

0	=n∈Z

β1(πa2n2) = lim
ε→0

⎡
⎣1

a

∑

n∈Z

∞∫

1

e−πa2ε2t− πn2

a2 t−1

t− 3
2 dt − β1(πa2ε2)

⎤
⎦ .

By the Fourier inversion formula, one has

1

a

∞∫

1

∫

R

e−πa2ε2t− πx2

a2 t−1

t− 3
2 dxdt = β1(πa2ε2).

So

∑

0	=n∈Z

β1(πa2n2)

=
1

a
lim
ε→0

∞∫

1

e−πa2ε2t

⎡
⎣∑

n∈Z

e− πn2

a2t −
∫

R

e− πn2

a2t dx

⎤
⎦ t− 3

2 dt

=
2

a

∞∫

1

⎡
⎣∑

n∈Z

e− πn2

a2t −
∫

R

e− πn2

a2t dx

⎤
⎦ t− 3

2 dt

= 2

1
a∫

0

(
∑

n∈Z

e−πn2t2 −
∫

R

e−πx2t2

dx)dt

=
2

a
− 4

1
a∫

0

1∫

0

e−πx2t2

dxdt + 4
∞∑

n=1

⎡
⎢⎣

1
a∫

0

e−πn2t2

dt −

1
a∫

0

n+1∫

n

e−πx2t2

dxdt

⎤
⎥⎦

=
2

a
− 4g0(a) + 4

∞∑

n=1

gn(a),

with obvious meaning of gn(a). Here we have used the fact that the integrand in the last 

integral is negative. The term 2
a comes from the term n = 0 in the sum. We remark that 

the formula looks formally like (z = 0)

∑

n 	=0

f(n) =
∑

n∈Z

f̂(n) −
∫

R

f̂(x)dx.

What we did is to regularize the right hand side to make it meaningful.
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First,

g0(a) =

1∫

0

1∫

0

e−πx2t2

dxdt +

1
a∫

1

1∫

0

e−πx2t2

dxdt

=

1∫

0

1∫

0

e−πx2t2

dxdt +

1
a∫

1

∞∫

0

e−πx2t2

dxdt −

1
a∫

1

∞∫

1

e−πx2t2

dxdt

= −1

2
log a +

1∫

0

1∫

0

e−πx2t2

dxdt −

1
a∫

1

∞∫

1

e−πx2t2

dxdt.

We will prove the following identity in Lemma 5.3 below.

1∫

0

1∫

0

e−πx2t2

dxdt −
∞∫

1

∞∫

1

e−πx2t2

dxdt =
1

4
(γ + log 4π). (5.5)

Then we have

lim
a→0

(g0(a) +
1

2
log a) =

1

4
(γ + log 4π).

Next, we have

lim
a→0

∞∑

n=1

⎡
⎢⎣

1
a∫

0

e−πn2t2

dt −

1
a∫

0

n+1∫

n

e−πx2t2

dxdt

⎤
⎥⎦

=
∞∑

n=1

⎡
⎣

∞∫

0

e−πn2t2

dt −
n+1∫

n

∞∫

0

e−πx2t2

dtdx

⎤
⎦

=
1

2

∞∑

n=1

(
1

n
− log

n + 1

n
) =

1

2
γ.

In summary, we have

∑

0	=n∈Z

β1(πa2n2) =
2

a
+ 2 log a + f(a),

for some smooth function f(a) near a = 0 with

f(0) = lim
a→0

f(a) = −(γ + log(4π)) + 2γ = γ − log(4π).

This proves the proposition. �
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Lemma 5.3.

1∫

0

1∫

0

e−πx2t2

dxdt −
∞∫

1

∞∫

1

e−πx2t2

dxdt =
1

4
(γ + log 4π). (5.6)

Proof. Recall the error function

erf(x) =
2√
π

x∫

0

e−s2

ds (5.7)

which behaves like 2√
π

x when x → 0. Write the left hand side of (5.6) as I1 − I2 in an 

obvious way. A simple substitution and an integration by parts give

I1 =

1∫

0

1∫

0

e−πx2t2

dxdt =

1∫

0

erf(
√

πx)

2x
dx

=

[
erf(

√
πx) log x

2

]1

0

−
1∫

0

e−πx2

log xdx = −
1∫

0

e−πx2

log xdx,

and

I2 =

∞∫

1

∞∫

1

e−πx2t2

dxdt =

∞∫

1

1 − erf(
√

πx)

2x
dx

=

∞∫

1

e−πx2

log xdx.

So

I1 − I2 = −
∞∫

0

e−πx2

log xdx = − 1

4
√

π

[
Γ′(

1

2
) − log πΓ(

1

2
)

]

by simple substitution y = πx2. Now the result follows from the formulas

Γ(
1

2
) =

√
π and Γ′(

1

2
) = −

√
π(γ + log 4). �

Lemma 5.4. Assume that D = −4Nn = (2Nm)2 > 0 is a square. For any w = w(m, r) =

m 
(

1 2r
0 −1

)
∈ Lμ[n] with (w, �∞) = 0, define

Ξ∞(w, z) =
∑

γ∈Γ̄∞

ξ(w, γz).
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Then for any v > 0

Ξ∞(
√

vw, z) = −(log |qκ|)
√

N

2π
√

Dv

∑

n∈Z

e(
n

κ
(x + r))

∞∫

1

e
−
(

tDv
N +n2 N

tDv
y2

κ2

)
π dt

t
3
2

,

where qκ = e(z/κ) is a local parameter of XΓ at the cusp P∞. Moreover, one has near 

the cusp P∞ (qκ = 0)

Ξ∞(
√

vw, z) = −(log |qκ|2)

√
N

4π
√

Dv
β 3

2
(
Dvπ

N
) + f(

√
vw, z),

where f(
√

vw, z) is a smooth function of x and y near P∞ and

lim
y→∞

f(
√

vw, z) = 0.

Proof. One has Γ̄∞ = {
(

1 κZ
0 1

)
} and

R(
√

vw,
(

1 nκ
0 1

)
z) =

v

2
(w, w(z + nκ))2 − v(w, w)

=
Dv

2Ny2
| z + nκ + r |2 .

So one has by Lemma 5.2,

Ξ∞(
√

vw, z) =
∑

n∈Z

β1(
πDv

Ny2
|z + r + nκ|2)

=
y
√

N

κ
√

Dv

∑

n∈Z

e(
n

κ
(x + r))

∞∫

1

e
−
(

tD
N +n2 N

tD
y2

κ2

)
π dt

t
3
2

= −(log |qκ|2)

√
N

4π
√

Dv
β 3

2
(
πD

N
) + f(

√
vw, z)

with

f(
√

vw, z) = −(log |qκ|2)

√
N

4π
√

Dv

∑

0	=n∈Z

e(
n

κ
(x + r))

∞∫

1

e
−
(

tDv
N +n2 N

tDv
y2

κ2

)
π dt

t
3
2

.

Since

tDv

N
+ n2 N

tDv

y2

κ2
≥ 2|n|y

κ
,

one sees for all n �= 0
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∣∣∣∣∣∣
e(

n

κ
(x + r))

∞∫

1

e
−
(

tDv
N +n2 N

tDv
y2

κ2

)
π dt

t
3
2

∣∣∣∣∣∣
≤ 2e−2 |n|y

κ π,

and

|f(
√

vw, z)| ≤ 4
√

Ny

κ
√

Dv

∞∑

n=1

e−2 nπy
κ

which is of exponential decay as y �→ ∞. This proves the lemma. �

5.2. Proof of Theorem 5.1

Proof. Now we are ready to start proof of Theorem 5.1. By linear fractional transforma-

tion, we may assume that � = �∞ is associated to the cusp P∞. Then q� = qκ where κ

is the width of the cusp P∞ defined at the beginning of Section 5. We divide the proof 

into three steps: general set-up and the case D = −4Nn is not a square, D > 0 being a 

square, and finally the case D = 0.

Step 1: Set-up and the case that D is not a square. We write

Ξ(n, μ, v) =
∑

w∈Lμ[n] mod Γ

Ξ(
√

vw, z), Ξ(
√

vw, z) =
∑

γ∈Γ̄w\Γ̄

ξ(
√

vw, γz). (5.8)

For w =
(w1 w2

w3 −w1

)
∈ Lμ[n], let w̃ =

(
w3 −w1

−w1 −w2

)
= S−1 · w with S =

(
0 −1
1 0

)
. Then w̃ is 

symmetric. Simple calculation gives for γ =

(
a b
c d

)
∈ Γ

R(w, γz) =
N

2y2
[hw̃(γ, z)]

2 − n, (5.9)

where

hw̃(γ, z) = (az + b, cz + d)w̃(az + b, cz + d)
t

= Qw̃(a, c)y2 + Qw̃(ax + b, cx + d)

is the Hermitian form on (Rz + R)2, and Qw̃ is the quadratic form on R2 associated to 

w̃. Notice that {(az + b, cz + d) : γ ∈ Γ} is a subset of a lattice of (Rz + R)2, so for any 

positive number M

#{γ =

(
a b
c d

)
∈ Γ∞\Γ : |hw̃(γ, z)| ≤ M and 0 < |Qw̃(a, c)| ≤ M}

are finite and of polynomial growth as functions of M . Moreover there is a positive 

number M0 such that if Qw̃(a, c) �= 0 for some γ ∈ Γ, then |Qw̃(a, c)| ≥ M0. In such a 

case, we have



T. Du, T. Yang / Advances in Mathematics 345 (2019) 702–755 733

R(w, γz) ∼
N

2
Qw̃(a, c)2y2

as y → ∞. Recall that

β1(t) = O(e−t/t)

as t → ∞. Therefore the terms with Qw̃(a, c) �= 0 in the sum Ξ(
√

vw, z) goes to zero in 

an exponential decay fashion. So we have proved the following lemma.

Lemma 5.5. Let the notation be as above. If there is no γ =

(
a b
c d

)
∈ Γ such that 

Qw̃(a, c) = 0, then Ξ(
√

vw, z) is smooth at the cusp P∞ and is of exponential decay as 

y → ∞.

When D is not a square, the quadratic form Qw̃ does not represent 0. So Ξ(n, μ, v) is 

of exponential decay in this case when y → ∞. This proves (1).

Step 2: Next, we assume D = −4Nn > 0 is a square. In this case, Γ̄w = 1

0 = Qw̃(a, c) = w3a2 − 2w1ac − w2c2

has exactly two integral solutions (ai, ci) ∈ Z2 such that gcd(ai, ci) = 1, ai > 0 or 

ai = 0, ci = 1. So w⊥ ∩ Iso(V ) consists exactly two cusps Q�ai,ci
where �a,c =

(
ac −a2

c2 −ac

)
.

For a fixed solution (a, c), if there is γ0 =
(

a b
c d

)
∈ Γ, then the cusp P a

c
(corresponding 

to Q�a,c) is Γ-equivalent to P∞: γ0P∞ = P a
c
, and all γ =

( a ∗
c ∗
)

∈ Γ with Qw̃(a, c) = 0 is 

of the form γ0γ1 with γ1 ∈ Γ∞. Therefore the sum related to this solution (a, c) is

∑

γ=
( a ∗

c ∗
)

∈Γ̄

Qw̃(a,c)=0

ξ(
√

vw, γz) =
∑

γ1∈Γ̄∞

ξ(
√

vγ−1
0 · w, γ1z)

= Ξ∞(
√

vγ−1
0 · w, z)

= −(log |qκ|2)

√
N

4π
√

Dv
β 3

2
(
Dvπ

N
) + f(

√
vγ−1

0 · w, z)

by Lemma 5.4. Recall limy→∞ f(
√

vγ−1
0 · w, z) = 0 by Lemma 5.4. So we have by 

Lemma 5.5,

Ξ(
√

vw, z) =
∑

Qw̃(a,c)=0
gcd(a,c)=1

a>0 or a=0,c=1

∑

γ=
( a ∗

c ∗
)

∈Γ̄

ξ(
√

vw, z) +
∑

γ=

(
a b
c d

)
∈Γ̄

Qw̃(a,c) 	=0

ξ(
√

vw, z)

= − δw

√
N

4π
√

Dv
β 3

2
(
Dvπ

N
)(log |qκ|2) + ψ(w, z)
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with ψ(w, z) smooth at the cusp P∞ and

lim
y→∞

ψ(w, z) = 0.

Combining this with Lemma 5.5, we proved (3) of Theorem 5.1.

Step 3: Finally we assume n = 0. Each vector 0 �= w ∈ Lμ[0] corresponds to an 

isotropic line and thus a cusp. We regroup the sum in Ξ(0, μ, v) in terms of Γ-equivalent 

cusp classes [Pr], where r ∈ Q or ∞. Let �r =
(

r −r2

1 −r

)
be an associated isotropic vector 

for a rational number r and recall �∞ =
(

0 1
0 0

)
.

Ξ(0, μ, v) =
∑

[Pr]

∑

0	=w∈Lμ[0]∩Q�r

Ξ(
√

vw, z). (5.10)

First consider the sum [P∞] part. Let

Lμ[0] ∩ Q�∞ = {wm =
(

0 μ∞+mβ∞

0 0

)
�= 0 : m ∈ Z},

where β∞ = β�∞ is the constant defined at the beginning of this section and μ∞ ∈ Q. 

Notice that two different wms are not Γ-equivalent, and Γwm
= Γ∞. Simple calculation 

gives

Ξ(
√

vwm, z) =
∑

γ∈Γ̄∞\Γ̄

β1(
πNv|cz + d|4(mβ∞ + μ∞)2

y2
)

= β1(
πNv(mβ∞ + μ∞)2

y2
) +

∑

γ∈Γ̄∞\Γ̄,c>0

β1(
πNv|cz + d|4(mβ∞ + μ∞)2

y2
).

When μ∞ /∈ β∞Z (i.e., μ /∈ L), one has by Lemma 5.2

∑

0	=w∈Lμ[0]∩Q�∞

Ξ(
√

vw, z)

=
∑

0	=m∈Z

β1(
πNv(mβ∞ + μ∞)2

y2
) + e(μ, z)

= −β1(
πNvμ2

∞
y2

) +
2y

β∞
√

Nv
+ f(

β∞
√

Nv

y
,

μ∞
β∞

) + e(μ, z).

Here

e(μ, z) =
∑

0	=m∈Z

∑

γ∈Γ̄∞\Γ̄,c>0

β1(
πNv|cz + d|4(mβ∞ + μ∞)2

y2
).

Recall that near t = 0
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β1(t) = − log t + γ1(t)

with

γ1(t) =

∞∫

1

e−y dy

y
+

1∫

t

e−y − 1

y
dy.

So we have for μ /∈ L (recall y = − κ
2π log |qκ|)

∑

0	=w∈Lμ[0]∩Q�∞

Ξ(
√

vw, z) = − log |qκ|2 ε∞

π
√

Nv
− 2 log(− log |qκ|2) + ψ(μ, z), (5.11)

where

ψ(μ, z) = − log
ε2

∞
4Nvπ3

− γ1(
πNvβ2

∞
y2

) + f(
β∞

√
Nv

y
,

μ∞
β∞

) + e(μ, z).

It is easy to see that β1(t) = O(e−t) as t → ∞, and

e
− πNv|cz+d|4(mβ∞+μ∞)2

y2 ≤ e
−πNv(c4y2+ (cx+d)4

y2 )(mβ∞+μ∞)2

, (5.12)

which is uniformly of exponential decay (with respect to c, d, m ∈ Z, c > 0, m �= 0) as y

goes to infinity. So e(μ, z) is of exponential decay as y goes to infinity. This implies

lim
y→∞

ψ(μ, z) = − log
ε2

∞
4Nvπ3

− γ1(0) + 2

∞∑

n=1

cos( 2πnμ∞

β∞
)

n
. (5.13)

For μ ∈ L (i.e., μ = 0 in L�/L), one has

∑

0	=w∈L[0]∩Q�∞

Ξ(
√

vw, z) =
2y

β∞
√

Nv
+ 2 log

√
Nvβ∞

y
+ f(

√
Nvβ∞

y
) + e(0, z)

= − ε∞

2π
√

Nv
log |q�∞ |2 − 2 log(− log |q�∞ |2) + ψ(0, z),

with

ψ(0, z) = 2 log
4π

√
Nv

ε∞
+ f(

√
Nvβ∞

y
) + e(0, z).

So one has
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lim
y→∞

ψ(0, z) = 2 log
4π

√
Nv

ε∞
+ f(0), (5.14)

as e(0, z) is of exponential decay as y goes to the infinity.

Now look at the sum of [Pr] part, where Pr is not Γ-equivalent to P∞. This implies that 

there is no γ =

(
a b
c d

)
∈ Γ such that γ(∞) = a

c = r. For w = m 
(

r −r2

1 −r

)
∈ Lμ[0] ∩Q�r

so that w̃ = S−1 · w = m 
(

1 −r

−r r2

)
. For γ =

(
a b
c d

)
∈ Γ, one has

R(w, γz) =
1

2
(w, w(γz))2 =

Nm2

2

|(a − rc)z + (b − rd)|4
y2

∼ m2N

2
(a − rc)4y2

as y → ∞ as a − rc �= 0 for all γ ∈ Γ. So

Ξ(
√

vw, z) =
∑

γ∈Γ̄w\Γ̄

β1(2πR(w, γz))

is smooth and of exponential decay at the cusp P∞. Putting everything together, we 

obtain the result for Ξ(0, μ, v) at the cusp P∞. This finally proves Theorem 5.1. �

Corollary 5.6. Let the notation and assumption be as in Theorem 5.1 and let D = −4nN . 

Then Ξ(n, μ, v) is a Green function for Z(n, μ, v)Naive in the usual Gillet–Soulé sense 

for n �= 0 and with (at most) log–log singularity when n = 0, and

ddc[Ξ(n, μ, v)] + δZ(n,μ,v)Naive = [ω(n, μ, v)].

Here ω(n, μ, v) is the differential defined in (2.8)

Z(n, μ, v)Naive =

⎧
⎪⎪⎨
⎪⎪⎩

Z(n, μ) if D < 0,
∑

P� cusps g(n, μ, v, P�)P� if D ≥ 0 is a square,

0 if otherwise.

Proof. Away from the singularity divisor Z(n, μ.v)Naive, one has by [15, Proposition 11.1]

ddcΞ(n, μ, v) = ω(n, μ, v).

Near the cusps, it is given by Theorem 5.1, and we leave the detail to the reader following 

the idea in [15, Proposition 11.1]. �

6. Modular curve X0(N) and the main theorem

From now on, we focus on the specific lattice L given in Section 2 and Γ = Γ0(N) with 

N square free. So our modular curve is X0(N) = Y0(N) ∪S the cusp set S = {P 1
M

: M |N}
with P 1

M
is the cusp associated to 1

M (as N is square free). Let
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� 1
M

=
(

−M 1

−M2 M

)

be an associated isotropic element.

6.1. Some numerical results on Kudla Green functions

Lemma 6.1. The Funke constant for P 1
M

is ε 1
M

= N , independent of the choices of the 

cusps.

Proof. Take σM =
(

1 0
M 1

)
. Then σM · �∞ = � 1

M
, and

σ−1
M · L

⋂
Q�∞ =

(
0 1

M Z

0 0

)
.

So we have β 1
M

= 1
M . Next, we know that

σ−1
M

(
1 x
0 1

)
σM =

(
1+Mx x

−M2x 1−Mx

)
∈ Γ0(N) (6.1)

if and only if x ∈ N
M Z. This implies κ 1

M
= N

M . So ε 1
M

= N . �

Lemma 6.2. When D = −4nN > 0 is a square and Lμ[n] �= φ, one has for every cusp P�

αΓ0(N)(n, μ, P�) =

{√
D, if 2μ /∈ L,

2
√

D, if 2μ ∈ L.

Proof. We will drop the subscript Γ0(N) in the proof. We first assume P� = P∞. Recall

α(n, μ, P∞) =
∑

w∈Lμ[n] mod Γ0(N)

δw,

where δw is the number of the isotropic lines Q� which is perpendicular to w and whose 

associated cusp is Γ0(N)-equivalent to P∞. Replacing w by its Γ0(N)-equivalent element 

if necessary we may and will assume (w, �∞) = 0 (for δw �= 0). This implies

w = w(a, b) =

(
a

2N
b
N

0 − a
2N

)

with

a2 = D, a ≡ r mod (2N). (6.2)

So

w(a, b)⊥ ∩ Iso(V ) = Q�∞ ∪ Q�(a, b), �(a, b) =
(

ab b2

−a2 −ab

)
. (6.3)
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On the other hand, it is straightforward to check that w(a, b1) is Γ0(N)-equivalent to 

w(a, b2) if and only if b1 ≡ b2 (mod a). Therefore, we only need to consider these w(a, b)

with a satisfying (6.2) and b (mod a). There are at most 2|a| of them.

Now divide the proof into two cases: N � r (i.e., 2μr /∈ L) and N |r (i.e. 2μr ∈ L).

Assume first that N � r. Then (6.2) has a unique solution a, and for this a, the cusp 

P− b
a

= P�(a,b) is not Γ0(N)-equivalent to P∞. So δw = 1 for each w(a, b). Therefore we 

have

α(n, μ, P∞) = |a| =
√

D

in this case.

Next we assume N |r. In this case (6.2) has two solutions a =
√

D and −
√

D. One 

has also N |a. It is not hard to verify via calculation that w(a, b) and w(−a, b′) are 

Γ0(N)-equivalent if and only if a2 = gcd(a, b) = gcd(a, b′) has the following properties: 

a = Na2z and b = a2w with gcd(Nz, w) = 1, and b′ = a2x for some x with xw−Nyz = 1

for some integer y. Moreover, in such a case, b′ (mod a) is uniquely determined by b

(mod a).

Write a = Na1 and (a, b) = a2 with b = a2w.

Subcase 1: We first assume a2|a1. In this case, we can write a1 = a2z and thus a =

a2Nz with (w, Nz) = 1. So δw(±a,b) = 2. On the other hand, w(εa, b) is Γ0(N)-equivalent 

to w(−εa, bx) with xw−Nyz = 1 for some x, y ∈ Z. So the four pairs (±a, b) and (±a, bx)

contribute 4 to the sum of δw.

Subcase 2: Next we assume a2 � a1. This means gcd(a2, N) > 1. So the cusp P b
±a

=

P a2z
±Na1

is not Γ0(N)-equivalent to the cusp P∞. This implies δw(±a,b) = 1. On the other 

hand, for such a pair (εa, b), w(εa, b) is not Γ0(N)-equivalent to any other w(±a, b′).

Combining the two subcases, we see that

α(n, μ, P∞) = 2|a|

in this case. This proves the lemma for the cusp P∞.

Next, we show that α(n, μ, P 1
M

) does not depend on the cusp P 1
M

in the following 

sense.

α(n, μ, P 1
M

) = α(n, WQμW −1
Q , P∞), (6.4)

where Q = M
N , and WQ is the associated Atkin–Lehner involution defined as follows. 

Since (M, Q) = 1, there exist α, β ∈ Z with αQ − Mβ = 1, so 
(

1 β
M Qα

)
∈ Γ0(M). Let

WQ =
(

1 β
M Qα

) (
Q 0
0 1

)
=
(

Q β
N Qα

)

be the associated Atkin–Lehner operator. Then one has
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WQΓ0(N)W −1
Q = Γ0(N).

It is easy to verify

WQLμ[n]W −1
Q = LWQμW −1

Q
[n], WQ�∞W −1

Q =
(

Qα −β
Mα −Mβ

)
= �′.

Notice that P�′ = P 1
M

. So there is a bijective map

Lμ[n]
⋂

�′,⊥ ←→ LWQμW −1
Q

[n]
⋂

�⊥
∞,

w ←→ W −1
Q wWQ.

This proves (6.4), and thus the lemma. �

Now we can refine Theorem 5.1 and Corollary 5.6 as

Theorem 6.3. Let the notation and assumption be as above and let D = −4nN . Then 

Ξ(n, μ, v) is a Green function for Z(n, μ, v)Naive with (at most) log–log singularity, and

ddc[Ξ(n, μ, v)] + δZ(n,μ,v)Naive = [ω(n, μ, v)].

Here ω(n, μ, v) is the differential defined in (2.8)

Z(n, μ, v)Naive =

⎧
⎪⎪⎨
⎪⎪⎩

Z(n, μ) if D < 0,

g(n, μ, v)
∑

M |N P 1
M

if D ≥ 0 is a square,

0 if otherwise,

and

g(n, μ, v) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
N

4π
√

v
β3/2(−4nvπ) if n �= 0, μ /∈ 1

2L/L,
√

N
2π

√
v
β3/2(−4nvπ) if n �= 0, μ ∈ 1

2L/L,
√

N
2π

√
v

if n = 0, μ = 0,

0 if n = 0, μ �= 0.

Moreover, for every M |N ,

(1) when D is not a square, the Green function Ξ(n, μ, v) is of exponential decay near 

cusp P 1
M

.

(2) When D = −4Nn > 0 is a square, one has

Ξ(n, μ, v) = −g(n, μ, v)(log |qM |2) − 2ψM (n, μ, v; qM ),

where qM is a local parameter at P 1
M

, and ψM (n, μ, v; qM ) is of exponential decay 

near PM . Here P 1
N

= P∞, and ψN = ψ∞.
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(3) When D = 0, Ξ(0, μ, v) = 0 when μ /∈ L, and

Ξ(0, 0, v) = −g(0, 0, v)(log |qM |2) − 2 log(− log |qM |2)

−2ψM (0, μ, v; qM ),

and

lim
|qM |→0

ψM (0, 0, v; qM ) = log

√
N

4π
√

v
− 1

2
f(0).

Here f(0) = γ − log(4π) is defined in Lemma 5.2.

6.2. Integral model

Following [13], let Y0(N) (X0(N)) be the moduli stack over Z of cyclic isogenies of 

degree N of elliptic curves (generalized elliptic curves) π : E → E′ such that ker π meets 

every irreducible component of each geometric fiber. The stack X0(N) is regular, proper, 

and flat over Z and smooth over Z[ 1
N ] such that X0(N)(C) = X0(N) as N is square 

free. It is a DM-stack. For convenience, we count each point x with multiplicity 2
| Aut(x)|

instead of 1
| Aut(x)| . When p|N , the special fiber X0(N) (mod p) has two irreducible 

components X ∞
p and X 0

p . Both of them are isomorphic to X0(N/p) mod p, and they 

intersect at supersingular points. We require X ∞
p to contain the cusp P∞ (mod p) and 

X 0
p to contain the cusp P0 (mod p). Here for each divisor Q|N , let P Q

N
be the boundary 

arithmetic curve associated to the cusp P Q
N

, which is the Zariski closure of P Q
N

in X0(N)

and has a nice moduli interpretation too. We refer to [7] for detail. It is known that P Q
N

mod p lies in X ∞
p (resp. X 0

p ) if and only if p � Q (resp. p|Q).

For r ∈ Z/2N , μr = diag(r/2N, −r/2N) ∈ L�/L and a positive rational number n ∈
Q(μr) + Z, let D = −4Nn ≡ r2 mod 4N , kD = Q(

√
D) and the order OD = Z[ D+

√
D

2 ]

of discriminant D. When D < 0, let Z(n, μr) be the flat closure of Z(n, μr) in X0(N).

6.3. The metrized Hodge bundle

Let ωN be the Hodge bundle on X0(N) (see [13]). Then there is a canonical isomor-

phism ω2
N

∼= ΩX0(N)/Z(−S), which is also canonically isomorphic to the line bundle of 

modular forms of weight 2 for Γ0(N). Here S is the set of cusps. For a positive integer 

N , let Mk(N) be the line bundle of weight k with the normalized Petersson metric

‖f(z)‖ = |f(z)(4πe−Cy)
k
2 |

as defined in (1.9). This gives a metrized line bundle M̂k(N) and also induces a metric 

on ωN so that the associated metrized line bundle ω̂N satisfies ω̂k
N

∼= M̂k(N). From now 

on, we denote
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k = 12ϕ(N), r = N
∏

p|N
(1 + p−1) = [SL2(Z) : Γ0(N)] =

3

π
vol(X0(N), μ(z)). (6.5)

Recall that ΔN (z) and Δ0
N (z) are both rational sections of Mk(N).

Lemma 6.4.

Div ΔN =
rk

12
P∞ − k

∑

p|N

p

p − 1
X 0

p (6.6)

and

Div Δ0
N =

rk

12
P0 − k

2

∑

p|N

p + 1

p − 1
X ∞

p − k

2

∑

p|N
X 0

p . (6.7)

Here r and k are given by (6.5).

Proof. Since

ΔN |
(

0 −1
1 0

)
(z) = N−6ϕ(N)Δ0

N (
z

N
) = N−12ϕ(N)Πt|N t12a( N

t )Δ(
tz

N
)a( N

t ),

we have

DivΔN =
rk

12
P∞ +

∑

p|N
(−12ϕ(N) + 12

∑

M | N
p

a(M))X 0
p .

One has by (3.2)

∑

M | N
p

a(M) = −ϕ(
N

p
), (6.8)

so

Div ΔN =
rk

12
P∞ +

∑

p|N
(−12ϕ(N) − 12ϕ(

N

p
))X 0

p .

Notice ϕ( N
p ) = 1

p−1 ϕ(N), one has

Div ΔN =
rk

12
P∞ − k

∑

p|N

p

p − 1
X 0

p

as claimed. The second identity follows the same way and is left to the reader. �

The following lemma is clear.
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Lemma 6.5. Let qz = e(z) be a local parameter of X0(N) at the cusp P∞.

(1) The metrized line bundle ω̂k
N = M̂k(N) has log singularity along cusps with all 

α-index αP = k
2 at every cusp P . At the cusp P∞, one has

‖ΔN (z)‖ = (− log |qz|2)
k
2 |qz| r

12 kϕ(qz),

with

ϕ(qz) = e− kC
2

∞∏

n=1

|(1 − qz)24CN (n)|.

(2) Both D̂iv(ΔN ) = (Div(ΔN ), − log ‖ΔN (z)‖2) and D̂iv(Δ0
N ) = (Div(Δ0

N ),

− log ‖Δ0
N (z)‖2) are arithmetic divisors (on X0(N)) associated to ω̂k

N with log–log 

singularity at cusps.

We also consider the arithmetic divisor on X0(N):

Δ̂N = (
rk

12
P∞, − log ‖ΔN (z)‖2). (6.9)

One has

D̂iv(ΔN ) = Δ̂N − k
∑

p|N

p

p − 1
X 0

p . (6.10)

Define

Ẑ(n, μ, v) =

{
Ẑ(n, μ, v)Naive − 2ω̂N −

∑
p|N X 0

p − (0, log( v
N )) if n = 0, μ = 0,

Ẑ(n, μ, v)Naive otherwise.
(6.11)

The arithmetic generating function (q = e(τ)) in the introduction is defined to be

φ̂(τ) =
∑

n∈ 1
2N Z

μ∈L�/L
Q(μ)≡n (mod 1)

Ẑ(n, μ, v)qneμ ∈ ĈH
1

R(X0(N), S) ⊗ C[L�/L][[q, q−1]]. (6.12)

At this moment, we simply view it as a Laurent series with coefficients in ĈH
1

R(X0(N),

S) ⊗ C[L�/L].

Proposition 6.6. One has

φ̂(τ) ∈ (ĈH
1

R(X0(N)) ⊗ C[L�/L])[[q, q−1]].
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Proof. By Theorem 6.3, it suffices to check the case for Ẑ(0, 0, v). Notice that Δ(τ) is a 

section of ω12
N . So we have by Theorem 6.3

Ẑ(0, 0, v) = (Z, g)

with

Z = −
√

N

2π
√

v

∑

M |N
P 1

M
− 1

6
Div Δ −

∑

p|N
X 0

p ,

g = Ξ(0, 0, v) +
1

6
log ‖Δ‖2 − log

v

N
.

For each M |N , choose σM ∈ SL2(Z) such that σM (∞) = 1
M . Then Theorem 6.3(3) 

asserts

Ξ(0, 0, v)(σM (z)) = −
√

N

2π
√

v
(log |qM |2) − 2 log(− log |qM |2) + smooth

= −
√

N

2π
√

v
(log |q|2) − 2 log(− log |q|2) + smooth,

where qM = q
M
N , as the width of the cusp P N

M
is N

M . On the other hand,

log ‖Δ(σM (z))‖2 = log ‖Δ(z)‖2 = log(|q|2) + 12 log(− log |q|2) + smooth.

So we know

g(σM (z)) = (−
√

N

2π
√

v
+

1

6
) log(|q|2) + smooth

has just log singularity. �

We first record the following proposition, which is clear by (4.2) and Corollary 2.3.

Proposition 6.7. Let the notation be as above, then

deg φ̂(τ) =
∑

n,μ

deg(Ẑ(n, μ, v))qneμ = 〈φ̂(τ), a(2)〉 =
2

ϕ(N)
EL(τ, 1).

In general, for a(f) = (0, f) ∈ ĈH
1

R(X0(N), S), we have

〈φ̂(τ), a(f)〉 =
1

2

∫

X0(N)

f(z)ΘL(τ, z) =
1

2
I(τ, f)

is a vector valued modular form valued in SL for Γ′ of weight 3/2 and representation ρL.
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Proposition 6.8. For every prime p|N , one has

〈φ̂(τ), X 0
p 〉 = 〈φ̂(τ), X ∞

p 〉 =
1

ϕ(N)
EL(τ, 1) log p.

Proof. Since

R(w, wN z) = R(w−1
N · w, z),

and wN · Lμ = L−μ, one has by definition

w∗
N Ξ(n, μ, v) = Ξ(n, −μ, v) = Ξ(n, μ, v).

This implies

w∗
N Ẑ(n, μ, v)Naive = Ẑ(n, μ, v)Naive

on the generic fiber. Since the divisors Z(n, μ, v)Naive are all horizontal (flat closure of 

Z(n, μ, v)Naive), we have

w∗
N Ẑ(n, μ, v)Naive = Ẑ(n, μ, v)Naive.

One has also w∗
N Δ̂N = Δ̂0

N and w∗
N X 0

p = X ∞
p . Direct calculation using Lemma 6.4 shows

w∗
N Ẑ(0, 0, v) = Ẑ(0, 0, v),

and so

w∗
N (φ̂(τ)) = φ̂(τ).

Since wN is an isomorphism, we have

〈φ̂(τ), X 0
p 〉 = 〈φ̂(τ), X ∞

p 〉

=
1

2
〈φ̂(τ), Xp〉 =

1

2
〈φ̂(τ), (0, log p2)〉

=
1

2
deg φ̂(τ) log p =

1

ϕ(N)
EL(τ, 1) log p.

Here we have used the fact that the principal arithmetic divisor D̂iv(p) = (Xp, − log p2). 

This proves the proposition. �

Proof of Theorem 1.3. Now Theorem 1.3 follows from Propositions 6.7 and 6.8, equa-

tion (6.10), and the following theorem, which will be proved in next section.
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Theorem 6.9. Let the notation be above. Then

〈φ̂(τ), Δ̂N 〉GS = 12E ′
L(τ, 1).

7. The proof of Theorem 6.9

7.1. Some preparation

Lemma 7.1. Two different cusps of X0(N) reduce to two different cusps modulo p for 

every prime number p. So 〈P 1
M1

, P 1
M2

〉 = 0 if M1 �≡ M2 (mod N).

Proof. We only need to consider primes p|N . If p divides exactly one of the M1 and M2, 

the two cusps landed in two different branches of Xp and thus do not coincide. When 

p divides both of them, their reductions P̄ 1
Mj

both landed in X 0
p . On the other hand, 

X 0
p is isomorphic to the reduction of X0(N/p), under which cusps correspond to cusps. 

Counting the number of cusps, we see that different cusps which landed in X 0
p are still 

different in the reduction. This proves the lemma. �

Lemma 7.2. One has for each p|N ,

〈X ∞
p , X 0

p 〉 = −〈X 0
p , X 0

p 〉 = −〈X ∞
p , X ∞

p 〉 =
r(p − 1)

12(p + 1)
log p.

Proof. Recall that X ∞
p and X 0

p are both isomorphic to the special fiber X0(N
p )p = X0(N

p )

(mod p) and that they intersect properly exactly at the supersingular points. So

〈X ∞
p , X 0

p 〉 =
∑

x∈X0( N
p )p(F̄p)

supersingular

2

|Aut(x)|

= [SL2(Z) : Γ0(
N

p
)]

∑

x∈X0(1)p(F̄p)
supersingular

2

|Aut(x)|

=
r

p + 1

∑

x∈X0(1)p(F̄p)
supersingular

2

|Aut(x)| .

It is well-known (see for example [13, corollary 12.4.6]) that

p − 1

24
=

∑

j∈F p,Ejsupersingular

1

|Aut(Ej)| , (7.1)

where j is the j-invariant. So
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〈X ∞
p , X 0

p 〉 =
r(p − 1)

12(p + 1)
.

On the other hand

〈X ∞
p , X ∞

p 〉 + 〈X ∞
p , X 0

p 〉 = 〈X ∞
p , (0, log p2)〉 = 0.

So

〈X ∞
p , X ∞

p 〉 = −〈X ∞
p , X 0

p 〉. �

Lemma 7.3. One has

(1)

〈ω̂N , ω̂N 〉 = r(
ζ(−1)

2
+ ζ ′(−1)) +

r

12
C,

where C = log(4π)+γ
2 is the normalization constant in (1.9)

(2)

〈Δ̂N , Δ̂N 〉 = k2r(
ζ(−1)

2
+ ζ ′(−1)) +

k2rC

12
+

k2r

12

∑

p|N

p2

p2 − 1
log p.

Proof. Let ω̂k
N,Pet be the Hodge bundle with the Petersson metric (via its isomorphism 

to Mk(N))

‖f(z)‖Pet = |f(z)(4πy)
k
2 | = ‖f(z)‖e

kC
2 .

According to [19, Theorem 6.1], we have

〈ω̂Pet, ω̂Pet〉 = r(
ζ(−1)

2
+ ζ ′(−1)). (7.2)

So

〈ω̂N , ω̂N 〉 = 〈ω̂Pet, ω̂Pet〉 + 2〈ω̂Pet, (0, C)〉

= r(
ζ(−1)

2
+ ζ ′(−1)) + deg(ω̂Pet)C

= r(
ζ(−1)

2
+ ζ ′(−1)) +

r

12
C

as claimed.
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Next, one has

〈Δ̂N , Δ̂N 〉 = 〈Δ̂N , D̂iv(ΔN )〉 + k
∑

p|N

p

p − 1
〈Δ̂N , X 0

p 〉

= 〈D̂iv(ΔN ), D̂iv(ΔN )〉 + k
∑

p|N

p

p − 1
〈X 0

p , D̂iv(ΔN )〉

= k2〈ω̂N , ω̂N 〉 − k2
∑

p|N
(

p

p − 1
)2〈X 0

p , X 0
p 〉

= k2r(
ζ(−1)

2
+ ζ ′(−1)) +

k2rC

12
+

k2r

12

∑

p|N

p2

p2 − 1
log p,

by Lemma 7.2 �

Remark 7.4. We remark that Lemma 7.3 can be proved directly using our explicit de-

scription of sections of ωk
N without using [19, Theorem 6.1]. Indeed, one has

〈ω̂k
N , ω̂k

N 〉 = 〈D̂iv(ΔN ), D̂iv(Δ0
N )〉.

Now direct calculation gives the lemma. We leave the detail to the reader.

7.2. Proof of Theorem 6.9

In this section, we prove Theorem 6.9, which amounts to check term by term on their 

Fourier coefficients.

By Theorem 1.6 and (2.6), it suffices to prove

〈Ẑ(n, μ, v), Δ̂N 〉 =

{
−
∫

X0(N)
log ‖ΔN (z)‖ω(n, μ, v) if n �= 0,

−
∫

X0(N)
log ‖ΔN (z)‖(ω(0, 0, v) − dxdy

2πy2 ) if n = 0, μ = 0.
(7.3)

The case n = 0, μ �= 0 is trivial as both sides are zero.

We divide the proof into three cases: D is not a square, D > 0 is a square, and D = 0.

Case 1: We first assume that D is not a square. In this case, Z(n, μ, v) and P∞ has 

no intersection at all. By Proposition 4.1 and Theorem 6.3, one has

〈Ẑ(n, μ, v), Δ̂N 〉 = −
∫

X0(N)

log ‖ΔN ‖ω(n, μ, v).

This proves the case that D is not a square.

Case 2: Now we assume that D is a square. This case is complicated due to self-

intersection at P∞. We work out the case D = 0 and leave the similar (and slightly 

easier) case D > 0 to the reader. Let
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Ẑ1(0, 0, v) = Ẑ(0, 0, v)Naive − 12g(0, 0, v)

rk
Δ̂N = (Z1(0, 0, v), Ξ1(0, 0, v)).

Then

〈Ẑ(0, 0, v)Naive, Δ̂N 〉 = 〈Ẑ1(0, 0, v), Δ̂N 〉 +
12g(0, 0, v)

rk
〈Δ̂N , Δ̂N 〉.

We have

〈Ẑ1(0, 0, v), Δ̂N 〉

=
∑

0<M |N,M<N

rk

12
g(n, μ, v)〈P 1

M
, P∞〉 +

rk

12
(αZ1,P∞ − ψ1,∞(0, 0, v, 0))

− lim
ε→0

⎛
⎜⎝rk

12
αZ1,P∞ log(− log ε2) − 1

2

∫

X0(N)ε

− log ‖ΔN ‖2ω1

⎞
⎟⎠ ,

where

ω1 = ω(0, 0, v) − 12g(0, 0, v)

r

dxdy

4πy2

and

αZ1,P∞ = 1 − 6

r
g(0, 0, v).

So the limit is equal to

rk

12
αZ1,P∞ lim

ε→0

⎛
⎜⎝log(− log ε2) +

12

rk

∫

X0(N)ε

log ‖ΔN ‖2 dxdy

4πy2

⎞
⎟⎠

+ lim
ε→0

∫

X0(N)ε

log ‖ΔN ‖(ω(0, 0, v) − dxdy

2πy2
)

=
rk

12
αZ1,P∞ lim

ε→0

⎛
⎜⎝log(− log ε2) +

12

rk

∫

X0(N)ε

log ‖ΔN ‖2 dxdy

4πy2

⎞
⎟⎠

+

∫

X0(N)

log ‖ΔN ‖(ω(0, 0, v) − dxdy

2πy2
).

Recall ([20, Lemma 2.8]) that
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lim
ε→0

⎛
⎜⎝log(− log ε2) +

12

rk

∫

X0(N)ε

log ‖ΔN ‖2 dxdy

4πy2

⎞
⎟⎠ =

rπ

3
C0 + 2 log(4π) − C. (7.4)

Here C0 is the scattering constant given in Lemma 3.6, and C is the normalization 

constant in Petersson norm. Combining this with Corollary 3.6, we obtain

〈Ẑ1(0, 0, v), Δ̂N 〉

=
rk

12
(1 − 6

r
g(0, 0, v))

(
12ζ(−1) + 24ζ ′(−1) + C + 2

∑

p|N

p2

p2 − 1
log p

)

− rk

12
ψ1,∞(0, 0, v, 0) −

∫

X0(N)

log ‖ΔN ‖(ω(0, 0, v) − dxdy

2πy2
).

Here we recall ζ(−1) = − 1
12 . On the other hand, Theorem 5.1 implies

ψ1,∞(0, 0, v, 0) = lim
y→∞

(ψ∞(0, 0, v, qz) − 12

rk
g(0, 0, v) log φ(qz))

= −1

2
log(

v

N
) − (1 − 6

r
g(0, 0, v))C.

Therefore, one has by Lemma 7.3

〈Ẑ(0, 0, v)Naive, Δ̂N 〉

= 〈Ẑ1(0, 0, v), Δ̂N 〉 +
12g(0, 0, v)

rk
〈Δ̂N , Δ̂N 〉

=
rk

24
log(

v

N
) +

2

k
〈Δ̂N , Δ̂N 〉 −

∫

X0(N)

log ‖ΔN ‖(ω(0, 0, v) − dxdy

2πy2
),

and

〈Ẑ(0, 0, v), Δ̂N 〉 = 〈Ẑ(0, 0, v)Naive, Δ̂N 〉 − 2

k
〈Δ̂N , Δ̂N 〉

−
∑

p|N

p + 1

p − 1
〈X 0

p , Δ̂N 〉 − 〈(0, log(
v

N
)), Δ̂N 〉

= −
∫

X0(N)

log ‖ΔN ‖(ω(0, 0, v) − dxdy

2πy2
).

This proves the case D = 0.
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8. Modularity of the arithmetic theta function

In this section, we will prove the modularity of φ̂(τ). To simplify the notation, we 

denote in this section X = X0(N) and X = X0(N), and let S be the set of cusps of 

X. Let gGS be a Gillet–Soulé Green function for the divisor Div ΔN (without log–log 

singularity), and let Δ̂GS = (Div ΔN , gGS) ∈ ĈH
1

R(X ), and fN = gGS + log ‖ΔN ‖2. Then 

a(fN ) = (0, fN ) ∈ ĈH
1

R(X , S) and

Δ̂GS = D̂iv(ΔN ) + a(fN ).

Theorem 6.9 and Proposition 6.7 imply the following proposition immediately.

Proposition 8.1. The Gillet–Soulé height pairing 〈φ̂, Δ̂GS〉 is a vector valued modular 

form of Γ′ valued in C[L�/L] of weight 3/2 and representation ρL.

Now we are ready to prove Theorem 1.1 following the idea in [18, Chapter 4] with ω̂

replaced by Δ̂GS. Let μGS = c1(Δ̂GS), A(X) be the space of smooth functions f on X

which are conjugation invariant (Frob∞-invariant), and let A0(X) be the subspace of 

functions f ∈ A(X) with

∫

X

fμGS = 0.

For each p|N , let Yp = X ∞
p − pX 0

p , then 〈Yp, Δ̂GS〉 = 0. Let Y∨
p = 1

〈Yp,Yp〉 Yp. Finally 

let M̃W be the orthogonal complement of RΔ̂GS +
∑

p|N RY∨
p + Ra(1) + a(A0(X)) in 

ĈH
1

R(X ). Then one has

Proposition 8.2. ([18, Propositions 4.1.2, 4.1.4])

ĈH
1

R(X ) = M̃W ⊕ (RΔ̂GS +
∑

p|N
RY∨

p + Ra(1)) ⊕ a(A0(X)).

More precisely, every Ẑ = (Z, gZ) decomposes into

Ẑ = Z̃MW +
deg Ẑ

deg Δ̂GS

Δ̂GS +
∑

p|N
〈Ẑ, Yp〉Y∨

p + 2κ(Ẑ)a(1) + a(fẐ)

for some fẐ ∈ A0(X), where

κ(Ẑ) deg Δ̂GS = 〈Ẑ, Δ̂GS〉 − deg Ẑ

deg Δ̂GS

〈Δ̂GS, Δ̂GS〉.
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Proposition 8.3. ([18, Remark 4.1.3]) Let MW = J0(N) ⊗ZR. Then Ẑ = (Z, gZ) �→ Z ∈
MW induces an isomorphism

M̃W ∼= MW,

where Z is the generic fiber of Z. The inverse map is given as follows. Given a rational 

divisor Z ∈ J0(N), let gZ be the unique harmonic Green function for Z such that

dzdc
zgZ − δZ =

deg(Z)

deg Δ̂GS

μGS ,

∫

X

gZμGS = 0.

Let Z be a divisor of X with rational coefficients such that its generic fiber is Z, and 

it is orthogonal to every irreducible components of the closed fiber Xp for each prime p. 

Finally let

Z̃ = Ẑ − 2a(〈Δ̂GS, Ẑ〉), Ẑ = (Z, gZ).

Then the map Z �→ Z̃ is the inverse isomorphism.

Finally, let Δz be the Laplacian operator with respect to μGS. Then the space A0(X)

has an orthonormal basis {fj} with

Δzfj + λjfj = 0, 〈fi, fj〉 = δij , and 0 < λ1 < λ2 < · · · ,

where the inner product is given by

〈f, g〉 =

∫

X0(N)

fḡμGS.

In particular, every f ∈ A0(X) has the decomposition

f(z) =
∑

〈f, fj〉fj . (8.1)

Recall also ([18, (4.1.36)]) that

dzdc
zf =

1

2
Δz(f)μGS. (8.2)

With the above preparation, we are now ready to restate Theorem 1.1 in a slightly 

more precise form as follows.
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Theorem 8.4. Let the notation be as above. Then

φ̂(τ) = φ̃MW(τ) + φGS(τ)Δ̂GS +
∑

p|N
φp(τ)Y∨

p + φ1(τ)a(1) + a(φSM )

where φp, φ1, and φGS are real analytic modular forms of Γ′ of weight 3/2 and rep-

resentation ρL valued in C[L�/L], φ̃MW(τ) is a modular form of Γ′ of weight 3/2 and 

representation ρL valued in finite dimensional vector space M̃W ⊗C[L�/L]. Finally, there 

is a smooth C[L�/L]-valued function Φ(τ, z) on H × X0(N) which is a modular form of 

Γ′ of weight 3/2 and representation ρL on the variable τ such that its q-expansion (with 

respect to τ) is φSM .

Proof. In this proof, the intersection, degree and differential for generation functions are 

computed by coefficients.

Under the isomorphism in Proposition 8.3, φ̃MW becomes (here we use Manin’s well-

known result that the divisor of degree 0 supported on cusps is torsion and is thus zero 

in CH1
R(X))

φ(τ)Q − deg φ̂

deg Δ̂GS

Div(ΔN )Q =
∑

n>0,μ

(Z(n, μ) − deg Z(n, μ)P∞)qn
τ eμ,

which is modular by either the main result of Gross–Kohnen–Zagier [11] (note that Jacobi 

forms there are the same as vector valued modular forms we used here), or Borcherds’ 

modularity result for φ(τ)Q (see [18, Theorem 4.5.1]) and Proposition 6.7. Next,

φGS(τ)〈Δ̂GS, a(1)〉 = 〈φ̂, a(1)〉

implies that φGS(τ) is modular by Proposition 6.7. For a given p|N , φp(τ) = 〈φ̂, Yp〉 is 

modular by Proposition 6.8. The identity

〈φ̂, Δ̂GS〉 = φGS〈Δ̂GS, Δ̂GS〉 + φ1(τ)〈a(1), Δ̂GS〉

implies that φ1(τ) is modular by Proposition 8.1.

Finally, we have by Proposition 8.2,

φSM (τ, z) = ΞL(τ, z) − gMW − φGS(τ)gGS − φ1(τ) =
∑

φSM (n, μ, v; z)qneμ, (8.3)

with all Fourier coefficients φSM (n, μ, v; z) being smooth functions. Here

ΞL(τ, z) = (Ξ(0, 0, μ) +
2

k
log ‖ΔN ‖2 − log

v

N
)e0 +

∑

n 	=0,μ

Ξ(n, μ, v)qneμ.

Recall that
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dzdc
zΞ(n, μ, v) + δZ(n,μ) = ω(n, μ, v)μGS (8.4)

and

dzdc
z(gMW + φGS(τ)gGS) +

∑

n,μ

δZ(n,μ)q
neμ =

deg φ̂

deg Δ̂GS

μGS . (8.5)

So we have

dzdc
zφSM (n, μ, v) = (ω̃(n, μ, v) − α0,μ − deg Ẑ(n, μ, v)

deg Δ̂GS

)μGS .

Here we write

ω(n, μ, v) = ω̃(n, μ, v)μGS , ΘL(τ, z) = Θ̃L(τ, z)μGS ,

and

α0,μ =

{
0 if μ �= 0,
1

2π
μ(z)
μGS

if μ = 0.

Since its Fourier coefficients have spectral decomposition as smooth functions of z, we 

have the spectral decomposition

φSM (n, μ, v; z) =
∑

λ>0

〈φSM (n, μ, v), fλ〉fλ(z),

as 〈φSM (n, μ, v), 1〉 = 0. Then

〈φSM (n, μ, v), fλ〉 = − 1

λ

∫

X0(N)

φSM (n, μ, v)Δz(f̄λ)μGS

= − 2

λ

∫

X0(N)

φSM (n, μ, v)dzdc
z f̄λ

= − 2

λ

∫

X0(N)

dzdc
zφSM (n, μ, v)f̄λ

= − 2

λ

∫

X0(N)

(ω̃(n, μ, v) − α0,μ − deg Ẑ(n, μ, v)

deg Δ̂GS

)f̄λμGS

= − 2

λ

∫

X0(N)

(ω̃(n, μ, v) − α0,μ)f̄λμGS

= − 2

λ
〈(ω̃(n, μ, v) − α0,μ, fλ(z)〉.
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Define

Φ(τ, z) = −2
∑

λ>0

λ−1〈Θ̃L(τ, z), fλ(z)〉fλ(z)

= 2Δ−1
z (Θ̃L(τ, z) − Θ̃L(τ)). (8.6)

Here

Θ̃L(τ, z) = Θ̃L(τ) +
∑

λ>0

〈Θ̃L(τ, z), fλ(z)〉fλ(z)

is the spectral decomposition of the smooth two variable theta function Θ̃L(τ, z), and

Θ̃L(τ) =

∫
X0(N)

Θ̃L(τ, z)μGS∫
X0(N)

1μGS

is the constant term of the theta kernel function Θ̃L(τ, z). Recall (2.6) and (2.7), we 

see that the (n, μ)-th Fourier coefficients of Φ(τ, z) and φSM (τ, z) coincide. This proves 

the theorem except the claim that Φ(τ, z) is a smooth function on two variables (τ, z), 

which we now sketch a proof. Indeed, as Θ̃L(τ, z) is a fixed smooth function of τ and 

z, integration by parts in the z variable gives (recall that fλ is an eigenfunction with 

eigenvalue λ)

∂α
τ 〈Θ̃(τ, z), fλ(z)〉 �N,α,K λ−N

for any integer α ≥ 0, N > 0, and all τ ∈ K1, where K1 is any compact subset of H. 

On the other hand, for any integer β ≥ 0, Standard Sobolev estimates for fλ and its 

derivatives give (see for example [23, Chapter 3])

∂β
z fλ(z) � λa(β)

for all z and some number a(β) (actually we can take a(β) = β/2 + 1). This shows that

∂α
τ ∂β

z Φ(τ, z) =
∑

λ>0

1

λ
∂α

τ 〈Θ̃L(τ, z), fλ(z)〉∂β
z fλ(z)

converges locally uniformly for any α and β. So Φ(τ, z) is smooth in both τ and z variable. 

The modularity of Φ(τ, z) follows from that of θΘ(τ, z). Taking φSM (τ, z) = Φ(τ, z), we 

prove the theorem. �
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