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1. Introduction

It is well-known that there is a deep connection between the leading term of some
analytic functions and the arithmetics, such as the class number formula, Birch and
Swinnerton—Dyer conjecture, Block—Kato conjecture and the Siegel-Weil formula. Little
is known or understood about the possible connection between the second term of these
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functions and arithmetic although it started to change in this century. The most famous
one is the Kronecker limit formula:

Bns) = Y S(er=1+ %(log IAMS(2)])s + O(s2).
7€l \ SL2(Z)

We refer to [22] for its proof and its beautiful application to class numbers. In 2004,
Kudla, Rapoport and Yang ([17]) discovered another second term identity of some
Eisenstein series of weight 3/2—the so-called arithmetic Siegel-Weil formula. Roughly
speaking, they defined an arithmetic function—a generating function $ xRy (7) of a fam-
ily of arithmetic divisors in a Shimura curve. They proved that its degree is the special
value of some Eisenstein series £(7,s) (weight 3/2) at s = 1 and that arithmetic in-
tersection with the (normalized) metrized Hodge bundle on the Shimura curve is the
derivative of the same Eisenstein series £(7,s) at s = 1 (second term). This case is
different from the Kronecker formula in two ways. Firstly, the leading term is already
connected with arithmetics by the Siegel-Weil formula and is non-trivial. Secondly, the
second term (derivative) is found to be deeply related to the Gillet—Soulé height paring
on a Shimura curve. Its analogue in Xy(1) was worked out later by Kudla and Yang,
and was reported in [26]. In this case, the Eisenstein series is Zagier’s famous Eisenstein
series [12] of weight 3/2. In [3], Bruinier and Funke gave a different proof of the main
result of [26] using theta lifting. Colmez conjecture [6] can also be viewed as an second
term of ‘CM’ Hecke L-functions L'(0, x) in terms of Faltings’ height. We should mention
the breakthrough formula of Zhiwei Yun and Wei Zhang which relates the n-th central
derivative of the L-function of an automorphic representation on GLy over a function
field and height pairing of some cycles in middle dimension on some Drinfeld space [27].
We also mention the beautiful second term identity in the Siegel-Weil formula (see for
example [9] and references there), although it has different flavor.

Later in the book [18, Chapter 4], Kudla proved that the arithmetic theta function
g?) xRy is modular. In this paper, we will prove both the arithmetic Siegel-Weil formula
and the modularity of a similar arithmetic theta function in the case of modular curve
Xo(N) when N is square free. The complication comes mainly from the cusps, and we
need to understand the behavior of Kudla’s Green functions at cusps carefully. We give
a complete description of its behavior at cusps—which is totally new. It is an interesting
and likely very challenging question to extend the analysis to high dimensional Shimura
varieties of orthogonal type (n,2). The metrized Hodge bundle has log singularity at
cusps presents another complication. The method in [17] in computing the arithmetic
intersection does not seem to extend to this case easily. Instead, we will use theta lifting
method following [3]. In the process, we also obtain some explicit Kronecker limit formula
for Eisenstein series of weigh 0 for I'o(IV), which should be of independent interest.
In particular, we construct an explicit modular form (denoted by Ay), which gives a
rational section of the Hodge bundle and plays an essential role in proving the arithmetic
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Siegel-Weil formula. After the arithmetic Siegel-Weil formula is proved, the modularity
theorem follows the same method of [18, Chapter 4] with a little modification.

Now we set up notations and describe the main results in a little more detail.

Let

ws —wWi

V= {w = <“’1 w2 ) € My(Q) : tr(w) _0}, (1.1)

with quadratic form Q(w) = N detw = —N(w? + waws), and let

L:{w=<’; i)eM2(Z)|a,b,cez} (1.2)

be an even integral lattice with the dual lattice Lf. Then Spin(V) = SL, acts on V
by conjugation, and the associated Hermitian symmetric domain ID is isomorphic to the
upper half plane H. Since I'g(IN) preserves L and acts on L!/L trivially, we can and
will identify Xo(N) with the compactification of the open orthogonal Shimura curve
To(N)\D (see Section 2 for detail).

For each p € L*/L, denote L, = p+ L, and

L,n|={weL,: Qw)=n}

For u € L!/L and a positive rational number n € Q(u) + Z, let Z(w) = Rw € D and
define the divisor

Z(n, p) = > Z(w) € CH'(Xo(N)) (1.3)
wEL(N)\Ly[n]

When p = p, = diag(#7 —#), this divisor is the same as the Heegner divisors Pp ;. +
Pp._, € CH'(Xo(N)) in [11], where D = —4Nn is a discriminant. For a positive real
number v > 0, let Z(n, u, v) be the Kudla Green function for Z(n, 1) in the open modular
curve Yy (V) as defined in [15] (see (5.4) for precise definition). The behavior of Z(n, u,v)
at cusps is complicated and has not been studied before. In Sections 5 and 6, we will
prove that it is smooth and of exponential decay when D = —4Nn is not a square, and
has singularity along the cusps (Section 6) when D # 0 is a square. Even worse, when
D = 0 (which forces p = 0), £(0,0,v) has log-log singularity in the sense of [5] (see
Section 4). This is the most technical part of this paper.

Let Xy(N) be the canonical integral model over Z of Xo(N) as defined in [13] (see
Section 6). In the arithmetic part of this paper, we assume N is square free so that
Xo(IV) is regular and flat over Z and is smooth over Z[+]. For a point = € Xy(N) over
a field, since {1} C Aut(x), we count z with multiplicity m for convenience. Let
Z(n, ) be the Zariski closure of Z(n, u) in Xp(INV), and we obtain a family of arithmetic
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~ —1
divisors Z(n, u,v) in CHy (X (N))—arithmetic Chow group with real coefficients in the
sense of Gillet—Soulé as follows for n # 0:

(Z(n, 1), E(n, p, v)) if n >0,
Z(n,p,v) = 4 (0,2(n, 1, v)) ifn<0,D#0,
(g(n’/’l’7v) ZP cusps P,E(n,,u,v)) ifn<0,D="0.

Here g(n, u,v) is some real number defined in Theorem 6.3, and P is the Zariski closure
of the cusp P in Ap(IN). When n = 0, the same formula (as D being a square) gives a

‘naive’ arithmetic Chow cycle Z (0,0, v)Naive

, which has log—log singularity at the cusps
and needs to be modified to make the ‘generating series’ (to be defined below) modular.
Let Wy be the metrized Hodge bundle on Xy(N) with the normalized Petersson metric. It
has log singularity at cusps in the sense of Kiihn (see Section 4). Its associated arithmetic
divisor has log—log singularity at the cusps. It turns out magically that the modified

arithmetic divisor

=3 _ Naive -~ 0 v
2(07071}) - Z(Oa O7U) - sz - %Xp - (Oa log(ﬁ)) (14)
p

belongs to aﬁ%(XO(N)) (Proposition 6.6). Here X7 (resp. X;°) is the irreducible com-
ponent of Ap(N) (mod p) containing the reduction of the cusp Py (resp. Pso). One of
the main results of this paper is the following analogue of the modularity theorem in [18,
Chapter 4].

Theorem 1.1. The arithmetic theta function (for T = u +iv, and ¢, = e(7) = €277)

$(7'): Z Z g(n,u,v)qfeu, (1.5)

pEL!/LnEQ(p)+Z

is a vector valued modular form for I of weight 3, valued in (C[LWL]@@%(XO (N)). Here
IV is the metaplectic cover of SLo(Z) which acts on C[L*/L) via the Weil representation
pr (see (2.2)) and acts on the arithmetic Chow group trivially. Finally {e, : p € L*/L}
is the standard basis of C[L*/L).

Here, the modularity of (E(T) is in the sense of [18, Page 78], i.e., we can write q/ﬁ\(T) =
D ARr(T) + s (T, z) formally as Laurent series, where ¢ or(7) is a vector valued modular
form of weight 3/2 valued in a finite dimensional subspace of C[L* /L] ®6ﬁ;§(2\,’0(]\7 )), and
dsn (T, 2) is a smooth function on H x X¢(N) and is modular as function of 7 of weight
3/2. Intuitively, it asserts that the formal Laurent series satisfies the transformation law
of a modular form of SL2(Z) of weight 3/2 and representation py. Alternatively, for every

—1 ~
linear map ¢ : CHg(Xo(N)) — C, £(¢(7)) is a (non-holomorphic) modular form of weight
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3/2 of SLo(Z) with Weil representation pr,. We refer to Theorem 8.4 and its proof for
more precise meaning of the modularity of ¢(7).
To prove the theorem, we will need the decomposition theorem of the arithmetic Chow

—1
group CHy(Xp(V)) and some arithmetic intersection formulas as in [18, Chapter 4].
These intersection formulas are important themselves, which we now describe briefly.
Let

Ep(r,s) = Z (v%euo) l5/2 7'

’Y’EF/OO\F/

be a vector valued Eisenstein series of weight 3/2, where the Petersson slash operator is
defined on functions f : H — C[L*/L] by

(f lsy2 7 ) (1) = ¢(r) 2 pp (V) F(97),
where v/ = (v, ¢) € . Let
Eu(r,s) = =T (s)C M (25) N3 E B (7,5) (1.6)
be its normalization, where

¢(M(s) =) [Ta-»).

p|N

Remark 1.2. In the work [17] and [26], the critic point of Eisenstein series is s = 3. In

our paper, for the convenience of computation, we define E (7, s) by a shift of s.

The intersection formulas referred above are given by the following theorem. The third
formula is usually called an arithmetic Siegel-Weil formula while the first one (degree
formula) is a geometric Siegel-Weil formula.

Theorem 1.3. Let the notations be as above, then

(Blr).a()ss = 5 deal(d(r)) = —zEnlr 1),
(B(1), X% s = (B(r), X s = ﬁw, 1)logp, pN
and
- ~ 1 ’ p
<¢(T),WN>GS = W <5L(T, 1) — pXJ\:’ . 151;(7', 1) 10gp> .

Here a(1) = (0,1) € CHg (A (N)).
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There are three main ingredients in the proof of Theorem 1.3. The first is to analyze
and understand the behavior of Kudla’s Green function E(n, u,v) for all pairs (n,u) €
Q x L*/L with Q(p) = n (mod 1), in particular when D = —4Nn > 0 is a square.
Here v > 0 is a constant. This occupies full Section 5 (general case) and the first part
of Section 6. The upshot is an honest definition of the arithmetic divisors Z (n, p, v)Naive
in Theorem 6.3, its modification Z(n, y,v) in (6.11), and the generating function ¢(7)
above.

To understand Wy, we actually construct an explicit rational section of wéfv, which is
isomorphic to the line bundle of modular forms of weight k for k = 12p(N) (the Euler

p-function), i.e., an explicit modular form Ay of weight k for I'o(N) as follows:

An(z) =[] At2)"® (1.7)

tN

with
alt) — t Yy edv)
=Ty

where p(n) is the Mdébius function. This is inspired by Kiihn’s early work on self-
intersection of Wy with N = 1 using the well-known Delta function A. One complication
here is that Ay has vertical components, see Lemma 6.4. This means that we will need
to deal with self-intersections of vertical components (see Section 7).

These ingredients are enough for the first two identities of Theorem 1.3. To prove the
last identity, we need to compute the infinity part of the arithmetic intersection, which
boils down essentially to self-intersection of Wy, intersection of vertical components, and
the following integral, which can be viewed as a theta lifting:

I(r,log [An]) = / log [AN[|©L(T, 2). (1.8)
Xo(N)

Here O (7, 2) is the two variable geometric theta kernel of Kudla and Millson defined
by (2.6), and the Petersson norm is renormalized as

@) = () (4me )3 = e 5 || £(2) | per (1.9)

with C' = 10g4++7_ The theta function O (7, 2) is a vector valued modular form for 7 of
weight 3/2 and modular function for the variable z valued in Q%! (Xo(N)) for To(N).

To connect this integral with & (7,1), we follow Bruinier and Funke’s idea in [3] in
two steps, given by the following two theorems, which are of independent interest.
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Theorem 1.4. (Theta lifting of Fisenstein series) Let

E(N,zs)= Y (S(2) (1.10)

7¥€la\To(NN)
be the Eisenstein series of weight 0 for To(N), and let
E(N,z,s) = N*n°T(s)¢(™)(25)E(N, z, 5) (1.11)
be its normalization. Then
I(1,E(N, z,8)) = I(1,E(N,wnz,5)) = (*(s)EL(T, 8),
where wy = (5 ') and ¢*(s) = 7= 20($)((s).

Theorem 1.5. (Kronecker Limit formula for T'o(N)) Let the notations be as above, then
one has

s—1

lim <5(N,z,s) —o(N)C*(2s — 1)) = —% log (y**™) | An(2) | ),
and

lim <5(N7 wNz,s) — p(N)(*(2s — 1)) = f% log (yG“"(N) | A% (2) |),

s—1
where A% = Ax|wy.
Combining the previous theorems, we obtain
Theorem 1.6. One has

I(T,l): gL(T,l)

2
P(N)
and

I(rlog || An |) = I(7,log [AR]]) = —12€(7, 1).

This paper is organized in two parts as follows. In Part 1, we prove Theorem 1.4 after
setting up notation and introduce the theta lifting (2.9) in Section 2. In Section 3, we
study some basic properties of Ay and prove the Kronecker limit formula Theorem 1.5
and then Theorem 1.6. We also prove some properties of Ay needed in Part 2.

In Part 2, we first review arithmetic divisors with log-log singularity, metrized line
bundles with log singularity, and arithmetic intersection in Section 4 following Kiihn [19]
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and Burgos Gil, Kramer and U. Kiihn [5]. In Section 5, we study the behaviors of Kudla’s
Green functions at cusps in a more general setting (see Theorem 5.1). In Section 6, we
focus on the modular curve Xo(N) for square free N, and prove Theorem 6.3. We also
prove the first two formulas in Theorem 1.3, and reduces the third one to a ‘horizontal
intersection’ theorem Theorem 6.9, which we will prove in Section 7. In Section 8, we
will prove the modularity theorem (Theorem 1.1).

Finally, we remark that the technical condition N being square free is only needed in
the arithmetic part, mainly to avoid the complication of special fiber of Xy(IN) at p?|N
when N is not square free.

Acknowledgments. We thank Haifeng Chu, S. Ehlen, Wanlin Li, S. Marshall, and
S. Sankaran for their help during our work in this project. The second author thanks the
MPIM-Bonn and the Morningside Center of Mathematics at Beijing (MCM) for their
support, part of the work was done when he visited these institutes during summers. The
first author thanks Yongju Choie for her help and mentoring and Postech for providing
him excellent working environment and financial support when he was a postdoc of Choie
in Postech. Part of the work was done there. He also thanks MCM for its support. Part
of the work was done when he visited the institute a few times. We thank the referee for
his/her careful reading of the paper and valuable suggestion, which makes the exposition
clearer.

Part 1. Theta lifting and Kronecker limit formula
2. Basic set-up and theta lifting

Let

w3 —wi

V= {w — (wl i ) € Ms(Q) : tr(w) = 0}, (2.1)

with the quadratic form Q(w) = N det w = —Nwsws — Nw?, which has signature (1,2).
Let L be the even integral lattice defined in the introduction with dual lattice LF. We
will identify

7J2NZ = [*/L, rHurz(% 0 )

—aN
Let G = SLy = Spin(V) act on V by conjugation, i.e., g-w = gwg~!. Notice that T'o(V)
preserves L and acts on L*/L trivially. Let D be the Hermitian domain of positive real
lines in Vg:

D={zCVg:dimz=1and (, )|.> 0}

The following lemma can be easily checked and is left to the reader.
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Lemma 2.1. For z = x + iy, define

w(z) = 1 - 2z
VNy\ -1 =z )
Then z — [w(z)] = Rw(z) gives a G(R)-invariant isomorphism between the upper half

plane H and D. It induces an isomorphism between Yo(N) = To(N)\H and To(N)\D.

Let Xo(N) be the usual compactification of Yp(N). Let Mp,p be the metaplectic

double cover of SLy(R), which can be realized as pairs (g, ¢(g, 7)), where g = (i 2 €

SLs(R), ¢(g, ) is a holomorphic function of 7 € H such that ¢(g,7)% = j(g,7) = c7 +d.
Let I'" be the preimage of I' = SLy(Z) in Mp, g, then I' is generated by

S=((0) V) T=((51):1)

We denote the standard basis of Sy, = C[L*/L] by {e, = L, : p € L*/L}. Then there is
a Weil representation py, of I on C[L*/L] given by ([1])

pr(T)e, = e(@(u))e,ﬂ (2.2)

Se 61.
pr(S)e, = /—|L 7L /%/L t

This Weil representation py, is naturally connected to the Weil representation w of Mp, 4
on S(Va), see [4] for explanation.
Following Kudla and Millson ([16], [3, Section 3]), we decompose for z = z + iy € H,

Ve =Ruw(z) dw(z)t, w=w,+w,.,
and define R(w, z) = —(w,1,w,1 ), and the majorant
(w, w): = (wz,w:) + R(w, 2).

Since Q(w(z)) = 1, it is easy to check

(w,w(2))? = (w, w), (2.3)

w1 w9
For w = € Vg, we have
w3 —W1

(w,w(z)) = —g(wgzz —wi(z4+Z) — ws). (2.4)
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Let p(z) = %,

( w, w 1 )6—271-R(w,z)'u(z)7
o(w, T, 2) = e(Q(w)7) " (Vow, 2), (2.5)

which is a Schwartz function on Vi valued in Q''1(D) constructed by Kudla and Millson
n [16]. Finally, let

@L(Ta Z) = Z 9#(7', Z)e,u (26)

be the vector valued Kudla—Millson theta function, where

,(r,2) = ) win, 1) ()" + {0 Tu#0 g

1 . _
neQ,Q(u)=n (mod 1) —ﬁu(z) if u=0,

with (q =qr = 6(7-))
w(n, u,v)(z) = Z wo(v%w,z) c Qb(Xy), (2.8)
0#weL,[n]

where 7 = u+iv. It is known that O (7, z) is a nonholomorphic modular form of weight
3/2 of (I, pr) valued in Q4! (Xr) ® C[L#/L] as a function of 7. It is To(V)-invariant as
a function of z.

The following result of Funke about behavior of §,, as z goes to the boundary (cusp)
is important to our definition of theta lifting.

Proposition 2.2. [3, Proposition 4.1] Fiz € L*/L and 7 € H. Let | = o;(c0) be a cusp
of Xo(N). As a function of z = x + iy € H =D, the theta function (recall z = x + iy)

0,.(1,002) = O(eiCyQ), as y —» 0o
holds uniformly in x for some constant C > 0.

For a (non-holomorphic) modular function f(z) for T'o(N) (viewed as a subgroup of
the Spin group) with moderate growth, the theta lifting

1) = [ f@eun= Y Lirie, (2.9)
Lo (N)\D HeLH/L

is absolutely convergent by Proposition 2.2 and is a (non-holomorphic) weight 3/2 mod-
ular form of TV with values in C[Lf/L].
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Proof of Theorem 1.4. First, we compute the theta series:

eur(TvZ): Z gp(w,r,z)

weLy,

= 3 <NLy2(N(w3zz—wl(z+z)) —n)? - %)

w1 €2+ 55 0, w3 €T

_ _ w _ _ 2
xe(—Nwa)e(—ng,n)e(W (N(w3zZ — wi(z + %)) — n) ),u(z)
Let
vX? 1 ivX?
X) = — TwsX)e(——=
f( ) (NyQ 27r)6( TW3 )e(zNy2)’
then its Fourier transformation is
® 3 3 2
Y N2y 2 — 2
flm) = fX)e(—mX)dX = — . (Tws + m) ( (Tws + m) )

Write t = N(w32Z — w1 (2 + Z)). Applying the Poisson summation formula, we obtain

O, (7,2) = > e(—NTw})e(~Twst) f(m)e(—mt)u(z)

w1 €Z+ 55 ,;m, w3 EL

N3
= _ Qy Z (Tws + m)ze( — N7(wy — ng)z)
v €2+ 55 ,m, w3 €L

e(2N(w1 — w3m/2)ml‘) 6.23])( o

| m+wst 2 )u(2).
As in [1, Section 4], we define for a, 8 € Q

Or(r,a,B8) = Z Z e(—7 (w1 + B)He(—a(2w; + B))epu, - (2.10)

rE€Z/2N w1 € 35 +7

b
For +' = ((Z d> ,\/c7-+d> € IV, it is easy to check

O (1, ndx, —ncz) = (¢t +d) "2 p; ' (v)OL (Y7, nz,0). (2.11)

‘We continue the calculation:



T. Du, T. Yang / Advances in Mathematics 345 (2019) 702-755 713

@L(Tv Z)
N oy
== 23]/ Z (?w3+m)26(_ E ‘m+w37|2)@L(7,mx,—wga:),u(z)
v2 m,w3€Z
Niy® & w02
=- 2§y an Z (CFer)Qe(* o lCT+dl2)®L(T,ndz,fncz)u(z)
V2

n=1 ¢,d€Z,(c,d)=1
3 oo

E 3 77rN'2n2 oF 2 _

Z S ()TN (00 (37, 0)u(2).

=1 e, \I'

Unfolding the integral, we have for #(s) > 1

I(t,E(N,z,8)) = / Or(r, 2)y’

T\ H
00 oo

_ _U_gNg an Z c7’+d 3/2/6 _wNy n? |c7+d|?) S'de
n=1  ~/el’ \I' 0

1
szl(v’)/GL(w, nx,0)dx.
0

It is easy to check that

1
/@L(’}/T, nz,0)dz = e, .
0

So

00 s+2 _
1 _s_ s v2 (CT—|—d)3/2F(S—|—1)
=——v 2N2 E n? E 32 12 Zl(’)/ )€po
2 =1  yer I " |er +d|**2 N> nst?

s—1
1-s s v (F+d)3?
o
SES VRN A

S NE IO Y (0T ew)

,Y/el"/oo\l"/

In summary, we have proved

I(r,E(N,z,5) = -N"2 %g*(s)EL(ﬂs),
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or equivalently,
I(1,E(N, z,8)) = " (s)EL(T, 5). (2.12)
It is easy to check by definition that
Or(,2) =0 (1,wn(2)).
This implies that
I(1,E(N,wn(z),s)) = I(1,E(N, z,s)).
This proves the theorem.

Taking residue of both sides of the equation (2.12) at s = 1, we have the following
result.

Corollary 2.3.

2

I(7,1) = m

go(r,1). (2.13)

3. Kronecker limit formula for the group I'o(INV)

We need some preparation before proving Theorem 1.5—the Kronecker Limit for-
mula for Tg(N). These auxiliary results will also be used in Section 6 and should be of
independent interest.

Let

N
Oy = Y o5 (3.1)

be the Ramanujan sum. It has the following properties according to Kluver ([14, p. 411]).

Lemma 3.1. (Kluver) Let t = (N,n) be the greatest common divisor of N and n. Then
one has

Cntn = 2 ex ) =Y wr

r|t

~—

Here @ is the classical Euler ¢-function, and u(t) is the well-known Mébius function. In
particular, one has Cn(1) = p(N).
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Lemma 3.2. For a positive integer N and a divisor t of N, let

be as in the introduction. Then the following are true.

(1) If Q|IN, i.e., QIN and (Q, N/Q) = 1, write t = t1t5. Then an(t) = aq(t1)an/q(te)-
(2) One has

> an(t) =

N
> tan(t) = Ne(N) [[a+p),
tIN p|N

Zt 1 =0 when N > 1.

N

Proof. (1) is clear. For (2), we check the second identity and leave the others to the
reader. We drop the subscript IV from now on as N will be fixed. One has

t N
S talt) = S0y ut; ‘—3

{IN N e
= (N Z Z rtu(t)  ( replacing t by rt)
r|N t‘ N

= Ng(N) Z :’}(72) Z tu(t) ( replacing N/r by r)
r|N tlr

r square free

1 _
=Ne(N) Y ;=N90(N)H(1+p b o
T\Nf pIN

T square Iree

Proposition 3.3. Let An(z) be defined as in (1.7). Then (¢, = e(z))

No(N) T, n (14+p71) n n
AN(Z):qup | N P H(l*qz)zleN( ).

Proof. Let
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Suppose that there are numbers b(¢) with

which implies by Lemma 3.1

H H (1—q" ;‘Eﬁvj\/’,)u(N/t) H H a" b(t

tIN (n,)=1 t|IN n

_HH H gt ™)
N | X (n, X)=1

STIID I e
-TI (1 = g7 S b0

So for every r|N, one has

0 (muwm. (3.2)

tlr

By Mobius inverse formula, one has

Z u EJIX; =af(t).

Tt P
So we have proved that

An(z) = [T Awt2)"".

Combining this with Lemma 3.2 (2), we obtain the lemma. O

Recall ([21]) that cusps of Xy(N) are given by Pag = a , where Q|N and a €
(Z/(Q,N/Q)Z)*. In particular, when Q||N, i.e., QN and (Q N/Q) = 1, there is a
unique cusp PQ associated to it. Q = 1 is assomated to Py = P1 1, and Q = N is
associated to PO = Py;. Assume Q||N, and let

Wo=(\yas) (89 (S as) € To(N/@

be an Atkin-Lehner involution matrix with wg(Ps) = P% . Notice that when N is
a square free, P% , QIN, give all the cusps of X(N). The following proposition gives
Fourier expansion of Ay at cusps associated to Q|| N.
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Proposition 3.4. Assume Q|| N. For t|N, write tg = (t,Q) for their greatest common
divisor. Then

BxlWa(e) = Co [T AG- 22

where

—120(Na
CQ _ QGQP(N) H tO 120(q) Q(to).
to]Q

In particular, ord, Cqg = 0 forp 1 Q. Moreover, An(z) does not vanish at cusps associated

to QN (with Q #1).

Proof. Write k = 12p(N), t = tot1, and Q = tp@Q1. Then

| o

_ Q> ato(t1Q12) + 1B 4y ()
~ (yNz +Qd)* EA(’Y%(UQLZ) + Qld)

where (recall Lemma 3.2)

Ao =@ [t = Co.
1Q

On the other hand, the leading g-power exponent of An|Wq is given by the above
calculation (recall again Lemma 3.2)

ZtlQlaN(t) = Z tQaQ(to) Z tw%(h)

1Q tolQ 0%
B {o ifQ > 1,
No(N) T n1+ph) ifQ=1.

This proves the result. O

Proof of Theorem 1.5. Recall the Whittaker function ([25, Chapter 2]) for y > 0 and
a, B eC:
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[
W(y.0.8) =T [ (40" te 2 an, (3.3)
0
Define
tn(y, a, B)
iﬁfa(QTr)aﬁ»ﬁnaJrﬁflefZﬂnyF(a)7lw(4ﬂ-ny’ Q, 6)7 if n > O,
= QP2 | [ () W (4 | ]y, 5,0, i < 0,
#7=0(2m) T (a) ' T(8) " Ta + f — 1)(dmy) =P, ifn=0.

One has by calculation (z = = + iy € H)

Yy’ 1
E(N,zs)= — 24 S
(N, 2,3) 2¢(V)(25) Z |mNz + n|?s

(m,n)622
(N,n)=1

e 2 5 St il

m=1 1<a<N j€Z

(a,N)=1
s y® > n(mNz + a)
=¥ + e o tn(my, s, s) (———F—)
N2 2 2 2 T

Write

E(N,z,s) = N1 (s)¢N)(25) E(N, 2, 5) Zak z,s)e(kx).
keZ

Then we have

27m) 3T (2s — 1) (4my)=25¢ (25 — 1).

ao(z,5) = N2~ ()¢ 28)y" + p(N)y'n—

I'(s)
Simple calculation gives
(2,8) = (V) [ 5—e — 108U _JOBAT =0 T v T (14 p7Y) ) +0(s — 1), (3.4)
e G I 2 6Y i P S
On the other hand,
C*(2s—1) = ! —1(1 4 =) +O(s — 1) (3.5)
s “3GoD) 2 ogdm — . .

So
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i (a2, 5) — p(N)C" (25 — 1)) = o(N)(—2¥ 1 TyN T[(1+571)).
pIN

For k£ > 0, one has

mn=k a=1,(a,N)=1
_ W(4rky, s, s) _
__ .8 s 2s » 9 2s—1
=y’n T (s)(2m) T (s)c2ks n=*""Cn(n)
mn=k
As
Wy, 1,1) = —
ﬂ-ya ) - 4kﬂ_y7
one has
6727rky

ag(z,1) =

ZnC’N(n).
nlk

It is easy to see from definition that a_(z,1) = ar(z,1). Therefore,

E(N,z,s) = Z ak(z, s)e(kx)
k=—oc0

= ao(z )+ 32 3 SOt + 32 2 S nCn )k +0(s — 1)
k>0 nlk E>0" nlk

= aolz5) + 3 On(n) D (g + ")+ O(s — ).

Combining this with (3.6) and Proposition 3.3, we obtain

lim (g(N, 2, 8) — p(N)C* (25 — 1))

s—

-1 [eS)
R NoN) [T v +p" )y e
=-"5 logy + 6 n;logll q|

1
=~ log (™) | An(2) |),

719

(3.6)

as claimed. The second one follows from this identity immediately by applying wy on

both sides.
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Proof of Theorem 1.6. The first identity is just restatement of Corollary 2.3. For the
second identity, we have by Theorems 1.5, 1.4 and Corollary 2.3

1
5 1(rlog | An(z)y* ™) |)

s—1

— iy (17,0, 2,8) = 17 6 (V)6" 25 - 1))
= lim (C*(s)EL(T, s)—2¢"(2s — 1)Er(m, 1))

Now the second identity for log||An(z)|| follows from elementary calculation of the
Laurent expansion (just first two terms) of the functions in the above expression. We
leave the detail to the reader.

Proposition 3.5. (1) The generalized Delta function An(z) of level N vanishes at the
cusp oo with vanishing order No(N) [T, 5 (1 +p~ 1), and does not vanish at other cusps.

(2)

A% (2) = An(2)lwy = Cn [ At2)) € My(N) (3.8)
tIN

has vanishing order ¢(N)N leN(l +p~1) at the cusp Py and does not vanish at other
cusps. Here C is the constant given in Proposition 35.J.

Proof. This proposition is clear at cusp Pg/n with Q|| N by Proposition 3.4. In particular,
it is true when N is square free, which is all we need in Part 2. The general case follows
from the Kronecker limit formula at the cusp P. Write

N2 77T (s)¢ ™) (25) = A+ B(s — 1) + O((s — 1)?),

and o = 2 According to [10, (21)], for a cusp P, there is o = op € SLy(R) such that

lim (E(N, 0z,8) = g(sa_l))

« m o m
= fp — 5 logy +ydpp,. + n;(%,qu + dp.mq™),

for some constant Sp. Here 6p p_ is the Kronecker d-symbol. So simple calculation gives
for P # Py
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iny (£V.02.5) = (M) (251
N -
=P — % logy + A > (¢pmdl + ¢p.md?),

m>1

for some constant yp. One has thus by Theorem 1.5

log (y*¢™) | An(0(2)) | ) = =12vp + 6p(N)logy — 124 > " (¢pmd" + p.md?)-

m>1

Equivalently,

log |[An(0(2)] = =12yp — 124> (pp.ma?" + op.md),

m>1

which goes to —12yp when y — oo. So Apn(z) does not vanish at the cusp P =
0(Px). O

Recall that the Eisenstein series E (NN, z, s) has the Fourier expansion

E(N,z,s) chy,

nez
where the constant term has the form
co(y,s) =y° +@(s)y'
with

@(N)w%g‘(% — I (s—
N2SC(N)(28)

)

N

B(s) = (3.9)

Simple calculation gives the following lemma, which will be used in the proof of Theo-
rem 6.9.

Lemma 3.6. Write

C_y
P — —1).
(s) p— (s—1)
Then
3
C_]_ = R685:1¢(8) - )
r
6
Co=— W<10g47r1+12§ N 2 logp),

p\N

where r = [SLy(Z) : To(N)] = NI, n (1 +p~1).



722 T. Du, T. Yang / Advances in Mathematics 345 (2019) 702-755

We remark that Cj is the so-called scattering constant Cp_ p._ in [20].
Part 2. Arithmetic intersection and derivative of Eisenstein series

In this part, we will focus on the arithmetic intersection on the modular curve Xo(N)
and prove Theorems 1.3 and 1.1. We will assume from now on that N is square free.

4. Metrized line bundles with log singularity and arithmetic divisors with log-log
singularities

The Gillet—Soulé height pairing (see [24]) has been extended to arithmetic divisors
with log-log singularities or equivalently metrized bundles with log singularities ([5],
[20], [19]). Tt is also extended to arithmetic divisors with L?-Green functions ([2]). In
this paper, we will use Kithn’s set-up in [20], which is most convenient in our situation.
Actually, for simplicity, we use a stronger condition which is easier to state and enough
for our purpose.

Let X be a regular, proper and flat stack over Z of dimension 2 (called arithmetic
surface), and denote X = X'(C). For a finite subset S = {S1,---,S,} of X,let Y = X -5
be its complement. For € > 0, let B.(S;) be the open disc of radius € centered at S;,

and X = X — (J; Be(S)). Let t; be a local parameter at Sj. A metrized line bundle

~

L= (L,|]]) with log singularity (with respect to S) is a line bundle £ over X together
with a metric || || on Lo, = £(C) satisfying the following conditions:

(1) ||| is a smooth Hermitian metric on Lo, when restricting to Y.
(2) For each Sj € S and a (non-trivial) section s of L, there is a real number a; and a
positive smooth function ¢ on B¢(S;) such that

Is(t)Il = (= log It1%) |£]°745 ) (1)
hold for all t; € B.(S;) — {0} (here ¢t; = 0 corresponds to S;).

Notice that £ with log singularity is a regular metrized line bundle if and only if all
a; = 0. We will denote Igi\cR(X,S) for the group of metrized line bundles with log
singularity (with respect to S) with R-coefficients (i.e. allowing formally L° with ¢ € R).

A pair Z = (Z,9) is called an arithmetic divisor with log—log-singularity (along .S)
if Z is a divisor of X, and g is a smooth function away from Z U S (Z = Z(C)), and
satisfying the following conditions:

dd®g + b7 = [w],

1
g(tj) = =20 log log(W) — 2B log |t;| —2¢;(t;) near Sj,
J
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for some smooth function 1; and some (1, 1)-form w which is smooth away from S. Let L
be the metrized line bundle associated to Z with canonical section s with —log||s]|? = g,
then Z is of log—log-singularity if and only if £ has log-growth and

aj(g) = aj(s), Bjlg) = ords;(s), ;(t;) = logp(t;). (4.1)

——1
We define CHg(X,S) be the quotient of the R-linear combination of the arithmetic
divisors of X with log—log growth along S by R-linear combinations of the principal

—~ /\1
arithmetic divisors with log-log growth along S. One has Picg(X, S) = CHi(X, S). The
following is a [20, Proposition 1.4].

Proposition 4.1. There is an extension of the Gillet-Soulé height paring to
—1 —1
CHy(X,S) x CHg(X,S) = R
such that if Z, and Z5 are divisors intersect properly, then
1
((21,91), (22,92)) = (21.22) i + 591 % 92

where the star product is defined to be

g1 *x go = gl(Zg — Zordsf (ZQ)Sj) + 2 Zordgj Zo (Ozghj — ij(O))
J J

B 11—13(1) 22(0“15.1 Zz)ag, jlog(—2loge) — /920-)1
j L.

Here Z; = Z;(C), Ei is the associated metrized line bundle with the canonical section
si. ag, ; and ¥; ; are associated to g; and cusp S;. Finally, w; is the (1,1)-form associate
to g; via the following equation

dd®[g;] + 0z, = [wi].

We remark that the pairing is also symmetric. In particular, one has for any a(f) =
1
(07 f) € CHR(Xv S)a

(2.90a()) = [ o (1.2

We define the degree map

deg : @%(X, S) =R, deg(Z2,9) = /w ={(Z,9),(0,2)). (4.3)
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It is just deg Z when g is a Green function of Z = Z(C) without log—log singularity.

i 1
We will denote CHy (X) = CHy (X, empty) for the usual arithmetic Gillet—Soulé Chow
group with real coefficients.

5. Kudla’s Green function

Let V = {w € M2(Q) : tr(w) = 0} be the quadratic space with quadratic form
Q(w) = Ndetw, and let D be the associated Hermitian symmetric domain of positive
lines in Vg as in Section 2. Recall that SLy = Spin(V') acts on D by conjugation, and D
can be identified with H (Lemma 2.1) via

w(z)zﬁy(ff), z=x+1y € H. (5.1)

Let L be an even integral lattice with dual lattice L? (arbitrary in this section). Let
I' C SLy(Z) be a subgroup of finite index which fixes L and acts on L#/L trivially. We
denote T' = T'/(T' N {£1}). For each pair (n,u) € Q x L¥/L with n > 0, Q(u) = n
(mod 1), let Z(n, ) be the associated Heegner divisor given by

Z(n,pu) =T\{Rw: w e L,[n]}.

Kudla defined a nice Green function for Z(n, ) in his seminal work [15], which we now
briefly review. The purpose of this section is to understand its behavior at the cusps.
For » > 0 and s € R, let

Bs(r) = [ e "t 5dt (5.2)
/

and

&(w, z) = f1(27R(w, 2)), (5.3)

be Kudla’s ¢-function. For p € L¥/L, n € Q(u) + Z and v € Rs, define

E(n, p,v)(z) = Z §(U%w,z). (5.4)

0£wE L, [n]

Then Kudla has proved on Yy(N) ([15]) that Z(n, g, v) is a Green function for Z(n, u)
and satisfies the following Green current equation:

ddC[E(n7 Hy ’U)] + 5Z(n,u) = [OJ(’I‘L, M, U)]

when n > 0. When n < 0, E(n, i, v) is still well-defined and actually smooth on Yy(N)
while Z(n,u) = 0. So E(n, p,v) is a Green function for Z(n,u) for all n. The purpose
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of this section is to understand its behavior at cusps, which is quite complicated and
subtle.
Let Iso(V') be the set of isotropic non-zero vectors of V', i.e., 0 # £ € V with Q(¢) = 0.

Given £ = (Z Z) € Iso(V), let P, = ¢ be the associated cusp, which depends only on
the isotropic line Q¢. Two isotropic lines give the same cusp in I'\H if and only if there
is v € ' such that Qv - #; = Q/s.

Let {oo = (8 (1)) € Iso(V) and let Poy = oo be its associated cusp. In general, for an
isotropic element ¢, there exists oy € SLy(Z) such that Qoy - £, = Q. Then

JZ_ngO'g = {:l: ( mm) ,m € Z},

1

0 1
where I'y is the stabilizer of £ and xy > 0 is the classical width of the associated cusp P,
and gy is a local parameter at the cusp P;. On the other hand, there is another positive
number Fy > 0, depending on L and the cusp Py, such that (O Be ) is a primitive element

00

in Qs o, L. L. We denote gy = % and call it Funke constant at cusp P, although

Funke called it width at P, in [8, Section 3]. We will simply denote £ = Koo
The main purpose of this section is to prove the following technical theorem.

Theorem 5.1. Let the notation be as above. Let 0 # £ € Iso(V') be an isotropic vector and
Py be the associated cusp.

(1) When D = —4nN is not a square, Z(n, p,v) is smooth and of exponential decay at
the cusp Py.

(2) When D = —4nN > 0 is a square. Then =(n, u,v) has log singularity at the cusp
Pg with

E(TL, My U) = _g(n7 M, U, Pf)(log |ql‘2) - wa(’nﬂ M, U5 QZ)
Here qyp is a local parameter at the cusp Py,

af‘(nauapf) = Z 5w7

weLy[n] mod I’

where 0 < 0., < 2 is the number of isotropic lines Qt,, € Iso(V') which is perpendic-
ular to w and belongs to the same cusp as £, and

1
g(n, p,v, Pp) = mﬁgﬂ(—Mnm)ap(n, w, Pr).

Finally, ve(n, p,v;qe) is a smooth function of qp (as two real variables qo and qz)
and

Jim, Ye(n, p,v; qe) = 0.
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(3) When D =0, one has

2(0, p1,v) = —g(0, 1, v, Pr)(log ge|*) — 21og(— log |g¢[*)
_211)[(07”7’0;(][)7
where qp is the local parameter at P, with respect to the classical width kg,

9(0, ,v, Pp) = %\/7 Here ¢4 is the Funke constant of £. Finally, 1¢(0, u,v; qe)
is a smooth function of qe (as two real variables qo and ¢) and

10g4ﬂ. vigf() ZfMGL,

lim )y (0, JUROR Qg) = cos(2EnL )
q¢e—0 log 4ng + W1(0) 220:1 nffe if ¢ L.

Here f(0) =~ — log(4n) is defined in Lemma 5.2,

fe%s) 1
d V-1
’yl(O):/e*y—er/e dy
1 Y 0 Y

and
-1 L,NQl= {(gw-s-gn,@z) :m € Z}.
The proof is long and technical and will occupy the next few subsections.
5.1. Two lemmas
Lemma 5.2. Let a > 0 and z = x + iy € C. Then

(1) When z ¢ R, one has

o0
1 2
S Bz ) = o 3 ena) [
a
1

nez nez

(2) When z=x € R—1Z, one has

nez nez

1
Zﬁl ra? 3:—|—n —22 nx/ —mn?t? gy
0

Moreover, one has near a =0

> brlma (e +n)?) = 2 + fla,),

nez
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for some smooth function f(a,x) near a =0 with

2mnx)

F0.2) = Jiy flasw) =23 CT

n

(3) One has

Z ﬁl(ﬂ'aQnQ) = 2j
0

0#n€EZ nez R

Moreover, one has near a =0

Z Bi(ma*n?) = % +2loga+ f(a),

0#n€Z

for some smooth function f(a) with
f(0) = lim f(a) =~ — log(4),
a—0
where v is the Fuler constant.
Proof. Let
f(n) = Bi(ma?|z + n|?) = Bi(ra*y? + ma®(x +n)?).

Then its Fourier transformation is

fin) = [ f(@)e(~an)da
R
= e(nx) /e_ﬂazyzt_%t_% dt
a
1

Ze"’"%z —/e‘”Qtha: dt.

727

Now applying the Poisson summation formula, one obtains the formula in (1). When
y = 0, simple substitution gives part of (2) with = ¢ Z. To see the behavior of the sum

near a = 0, notice that the right-hand side is equal to % + f(a,x) with

fla,z) =2 Z(e(nx) + e(—nm))/e‘”"2t2dt.
n=1 0

It is clearly smooth near a = 0 if we define
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oo

f(0,2) =2 Z(e(nw) + e(—naz))/e‘”"thdt =9 Z M_

n
0
To prove (3), take z =ie in (1), and let € goes to zero, we obtain

Z B1(man?) _hH(l) Z/ —ma?ett- T tfgdt—ﬂl(ﬂazﬁz)
e—

By the Fourier inversion formula, one has

SHN

oo
—ﬂazezt—ﬂ;ifl -2 _ 2 2
e a t~2dxdt = By (ra’e”).
1R

So

0#n€eZ
2
R —ma“et 77;" _
—alg% Ze a2t / wZedx | tT2dt
1 nez R
= / Ze_ﬂ?g?—/ wrdr| tT2dt
nez R
1
= 2/(2 e~ /e_mztzdm)dt
0 nez R

1 1
a

) a1 w | =
2,2 2 2,2
=Z_4 T dxdt + 4 -’ gy // e ™ dadt
2] ferta S
0 0 n=1179

_ % —4go(a) + 4 gn(a)

with obvious meaning of g, (a). Here we have used the fact that the integrand in the last

2

integral is negative. The term % comes from the term n = 0 in the sum. We remark that

the formula looks formally like (z = 0)

S fn) = / fla

n#0 nEZ

What we did is to regularize the right hand side to make it meaningful.
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First,

1
a

11 1
go(a) = //e_”2t2dxdt+//e‘”wthd:Edt
00 10
11 ¢ oo T oo
= //e‘”ztzdxdt—l— /e‘”2t2dxdt—//e‘”ztzdxdt
00 10 11

11 o0
1 - —nr2t?
= filoga+ e dxdt — e ™Y dxdt.
00 1

1

We will prove the following identity in Lemma 5.3 below.

/

o _

oo o0 1

e dudt — / / e ™ dudt = 7 (v +logdm).
1 1

Then we have

. 1 1
lim(go(a) + 5 loga) = - (v + log 4m).
Next, we have

1

00 ) i n+1
lim / e qt / / e~ drdt
a—0
n=1 1% 0 n
o o] n+1 oo
= Z /e‘”"Qtzdt — / /e_”Qtzdtdx
n=1 | n 0
1 ox,1 n+1. 1
= -— —_— 71 —
2 ;(n © ) =3

In summary, we have
2,2 2
Z Bi(ma*n®) = — +2loga + f(a),
0#n€Z a

for some smooth function f(a) near a = 0 with

£(0) = lim f(a) = —(y + log(4m)) + 2y = v — log(4).

a—0

This proves the proposition. O

729
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Lemma 5.3.

1 1 oo o0

1
/\/efﬂ'IQth;pdtf//677TI2t2dl'dt: 1(nyrlogéhr). (5.6)
00 11

Proof. Recall the error function

erf(z \/_/ = ds (5.7)

which behaves like %x when © — 0. Write the left hand side of (5.6) as I; — I5 in an
obvious way. A simple substitution and an integration by parts give

1

/ / e drdt = / erf(\rm)

0
1

1
f logz ]’
— {M} — /e’”2 log xdx = —/6771@2 log xdzx,
0
0

2
0
and
12//6”2t2dxdt/de
2z
11 1
o0
2
:/6_” log xdzx.
1
So
T, 1 1 1
I — Iy = — T =——— |T"(=) -1 I'(=
1— 1 /e og xdx I (2) ogm (2)

0

by simple substitution y = m22. Now the result follows from the formulas

I‘(%) = /7 and I"(%) = —Vm(y+log4). O

Lemma 5.4. Assume that D = —4Nn = (2Nm)? > 0 is a square. For any w = w(m,r) =
m (1 2T) € L, [n] with (w,l) =0, define
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Then for any v > 0

v N n 7 _(tDv+n2 N yz)ﬂ_dt
Zoo(Vow, z) = —(log |qx 72 e(—(x+r /e N tDv 12 ,
(\f ) ( g|q ‘)271_@ = (/Q( )) / t%

where q, = e(z/k) is a local parameter of Xr at the cusp Ps,. Moreover, one has near

the cusp P, (qx =0)

= (Vi 2) = ~(logail?)- \/\/_—ﬁ LRV

where f(y/ow,z) is a smooth function of x and y near Py, and

lim f(yvow,z)=0.

Y—>00

Proof. One has T, = {( ! “Z)} and

R(vvw, (1"“) z) = g(w,w(z—knﬂ))z—v(w,w)

Dv 9
= 5N | z+nk+r|°.

So one has by Lemma 5.2,

Eoo(VVW, 2) = Zﬂ1N2|Z—&—r—|—7m\)

nez

= y\/_ :c—i—r

_ %—i—nz P dt

e
t

Sf=

Z e

&
l\DICAJ|

»—\\8

S >4\ZT5 L) + .

with
\/N n by 7(tDu+n2 N y2)ﬂ_dt
F(Vow, 2) = ~(log |g.%) 3 e<—<x+r>>/e Reotn s ) Bt
47/ Dv osmez © J 3
Since

tDv s N o2 S 2|nly

e )

— +n
N tDv k2 = K

one sees for all n # 0
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)

o0
va w2\, dt In
err / +n? ?)W—B < e 2RI
2
1

and

|f(Vow, 2)| < _4\/_3’2 2

which is of exponential decay as y — oo. This proves the lemma. O
5.2. Proof of Theorem 5.1

Proof. Now we are ready to start proof of Theorem 5.1. By linear fractional transforma-
tion, we may assume that ¢ = ¢, is associated to the cusp P,. Then gy = ¢, where k
is the width of the cusp P, defined at the beginning of Section 5. We divide the proof
into three steps: general set-up and the case D = —4Nn is not a square, D > 0 being a
square, and finally the case D = 0.

Step 1: Set-up and the case that D is not a square. We write

E(”aﬂa”) = Z E(\/Ewaz)v E(\/_w Z Z 5 \/_’LU 'YZ) (58)

weL,[n] mod T vETL\T
For w = (Z; _wufl) € Ly[n], let w = (_ujjl :Zj;) =51 with § = ((1) Bl). Then @ is
symmetric. Simple calculation gives for v = (Z Z) el
N
R(w,vz) = o [ha(y,2)]* —n, (5.9)

2y

where
ha(v,2) = (az + b, cz + d)w(az + b, cz + d)t = Qul(a,c)y® + Qulax + b, cx + d)

is the Hermitian form on (Rz + R)?2, and Q is the quadratic form on R? associated to
. Notice that {(az +b,cz +d) : v € T'} is a subset of a lattice of (Rz + R)?, so for any
positive number M

#{'Y B <a Z) c FOO\F |hu")<77z)| § M and 0< |Qu-,(CL,C)‘ S M}

are finite and of polynomial growth as functions of M. Moreover there is a positive
number My such that if Qg(a,c) # 0 for some v € T, then |Q4(a,c)| > Mp. In such a
case, we have
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N
Rw,2) ~ 7 Qula,c)y?
as y — oo. Recall that

Bi(t) = O(e™" /1)

as t — oo. Therefore the terms with Q4 (a,c) # 0 in the sum Z(y/vw, z) goes to zero in
an exponential decay fashion. So we have proved the following lemma.

a b
c d

Qw(a,c) =0, then Z(y/vw, z) is smooth at the cusp Py and is of exponential decay as

Lemma 5.5. Let the notation be as above. If there is no v = € I' such that

Yy — 0.

When D is not a square, the quadratic form Qg does not represent 0. So Z(n, p, v) is
of exponential decay in this case when y — oco. This proves (1).
Step 2: Next, we assume D = —4Nn > 0 is a square. In this case, I, = 1

0 = Qu(a,c) = wza® — 2wiac — wac?

has exactly two integral solutions (a;,c;) € Z? such that ged(a;,c;) = 1, a; > 0 or
a; = 0,¢; = 1. So wt NIso(V) consists exactly two cusps Qfq,; c; where ;. = (ch :ZZ)

For a fixed solution (a, c), if there is 7 = (“ ") € T, then the cusp Pe (corresponding
to Qlq,c) is T-equivalent to Pu: 7y Po = Pa and ally=(27) el with Qa(a,c) =0is
of the form gy, with 1 € I'so. Therefore the sum related to this solution (a, ¢) is

> tWowyz) = Y Wt wmz)
»y:(“*)er v1€l o0
Quw(a,c)=0

=Ex (\/_'Yo %)
—(log |qx| )4\/\/——5 (D )+f(\/_'70 w, z)

by Lemma 5.4. Recall lim, f(\/ﬂfy(;l -w,z) = 0 by Lemma 5.4. So we have by

Lemma 5.5,

EWowz) =Y S+ Y W)

Qu(a,c)=0 _(9*\f a b\ -
gcd(mc):l v ( c *x )E y= d er
a>0 or a=0,c=1 c
Qu(a,c)#0

_ fm/\/iﬁ (V) log gel2) + b, 2)
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with ¢ (w, z) smooth at the cusp P, and

lim ¥(w, z) = 0.
y—00
Combining this with Lemma 5.5, we proved (3) of Theorem 5.1.

Step 3: Finally we assume n = 0. Each vector 0 # w € L,[0] corresponds to an
isotropic line and thus a cusp. We regroup the sum in Z(0, y,v) in terms of I'-equivalent

cusp classes [P,], where r € Q or co. Let £, = (’1“ __’“ ) be an associated isotropic vector

for a rational number r and recall /o, = (8 é)

200, p,v) =Y > 2(Vow, 2). (5.10)

[Pr] 0#£we L, [0]NQL,
First consider the sum [Py] part. Let
Lu[0] N Qloe = {wy, = (D FtP=) £0: m e Z},

where o = Pe.. is the constant defined at the beginning of this section and po € Q.
Notice that two different w,,s are not I'-equivalent, and I',,, = I'sc. Simple calculation
gives

_ 7Nv|cz + d|* (MmPos + oo )?

:(\/Q_me,z): Z ﬂl( | | (2 1% ) )
— Yy

YET o\

FNv(mﬁo; +uoo)2)+ >y ﬁl(ﬁNUICZ+dI4(mﬁoo+uoo)2)_

= 51( y yz

~YET oo \T,e>0

When poo € BooZ (i-e., u ¢ L), one has by Lemma 5.2

Z E(Vovw, 2)

0#weL,[0]NQls

> gy (Nl

)2 +e(u, 2)

0#£mEZ

WNWOO) 2y +f(ﬂoo\/N_v fioo

= Al y? Boo/Nv Yy B

) +e(p: 2).

Here

TINV|CZ 4m 2

L 32
0#MEZ T o, \T',e>0

Recall that near t =0
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Bi(t) = —logt + 71 (t)

with
o] d 1 Y
e V-1
7 (t) = /e_y—y + / dy.
Y )
1 t
So we have for p ¢ L (recall y = —3=log|qs|)
5
Z E(Vow, z) = —log |q.|* —== — 2log(—log |qx|*) + ¥ (1, 2),  (5.11)
0#we L, [0]NQfoo TV Nv
where
o T N[> BooVNV 1
— _1 ) _ [e) o0 oo .
w(u7z) Og 4N’U7T3 ’71( yQ )+f( y 7/800)—’_6(/'672)
It is easy to see that 31(t) = O(e™*) as t — oo, and
e ﬂNv‘cz+d‘4£5'Lﬁ°°+“°°>2 < e—wNv(c“yQ-&-‘r(w;d%)(mﬁoc-i-uoo)z (5.12)

which is uniformly of exponential decay (with respect to ¢,d,m € Z,c > 0,m # 0) as y
goes to infinity. So e(u, z) is of exponential decay as y goes to infinity. This implies

2 27rnpoo )

) €%, cos
Jim (. 2) = —log ;2 )+ 22 (5.13)
For € L (i.e., p = 0in L¥/L), one has
2y V N'Uﬂoo \% N’UBOO

Z E(\/Q_)wvz) =

+2log + f( ) +¢e(0,2)
0#£wEL[0]NQfos BocV NV Yy Yy

€
= — > _lo 2 _2log(—1o 2y + (0, 2),
/e g lqe.. | g(—loglge..[7) + (0, 2)
with

¥(0, z) = 2log drv/N + f(@ﬁm) + (0, 2).

o0

So one has
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47 N
lim (0, 2) = 2log il v
y—oo €oo

+ f(0), (5.14)

as e(0, z) is of exponential decay as y goes to the infinity.
Now look at the sum of [P,] part, where P. is not I'-equivalent to P.,. This implies that

“ Z) € I" such that v(co) = ¢ =r. Forw =m (’” _f:) € L,[0]NnQ¢,

C c 1

there is no vy = (

sothatw:S*I«w:m(_lT;;).For’y: <g Z) €T, one has

5,  Nm?|(a—rc)z+ (b—rd)|* Nm2N

1
Rw,2) = 5 (w,w(y)? = = - > 2

(a —re)ty

asy > oo asa—rc#0forallyeTl. So

E(\/EU),Z) = Z ﬂ1(27TR(w7’YZ))

vET L\

is smooth and of exponential decay at the cusp P,. Putting everything together, we
obtain the result for Z(0, u,v) at the cusp Py,. This finally proves Theorem 5.1. 0O

Corollary 5.6. Let the notation and assumption be as in Theorem 5.1 and let D = —4nN.

)Naive

Then Z(n, p,v) is a Green function for Z(n,u,v in the usual Gillet-Soulé sense

for m # 0 and with (at most) log-log singularity when n =0, and
dd[Z(n, pt,v)] + 0 z(n,p,vyNaive = [W(N, 11, V)]

Here w(n, p,v) is the differential defined in (2.8)

Z(n, p,) if D <0,
Z(n, i, v)Nove = ZPZ cusps g(n,u,v, P))Py if D > 0 is a square,
0 if otherwise.

Proof. Away from the singularity divisor Z(n, p.v)N*V¢, one has by [15, Proposition 11.1]
dd°E(n, p,v) = wn, p,v).

Near the cusps, it is given by Theorem 5.1, and we leave the detail to the reader following
the idea in [15, Proposition 11.1]. O

6. Modular curve X (V) and the main theorem

From now on, we focus on the specific lattice L given in Section 2 and T' = T'y(IV) with
N square free. So our modular curve is Xo(INV) = Yo(N)US the cuspset S = {P. : M|N}
with Py is the cusp associated to ﬁ (as N is square free). Let
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be an associated isotropic element.
6.1. Some numerical results on Kudla Green functions

Lemma 6.1. The Funke constant for Pﬁ 18 €1 = N, independent of the choices of the
cusps.

Proof. Take oy = (1\1/1(1)) Then oy - Ao zﬁﬁ, and

ont Qe = (47).

So we have 1= ﬁ Next, we know that

— T 1+Mzx T
JMl (é 1 ) oM = (7J;\/[2:r lfM:r) € FO(N) (61)
if and only if z € %Z. This implies K = % So €L = N. O

Lemma 6.2. When D = —4nN > 0 is a square and L,[n] # ¢, one has for every cusp P,

VD, if2u¢ L,
aFo(N)(n>M7Pé) = { o0/D if2u € L.

Proof. We will drop the subscript I'g(/V) in the proof. We first assume Py = Py,. Recall

a(n, 1, Po) = > S,

weL,[n] mod I'g(N)

where §,, is the number of the isotropic lines Q¢ which is perpendicular to w and whose
associated cusp is I'g(IV)-equivalent to Ps,. Replacing w by its I'g(N)-equivalent element
if necessary we may and will assume (w, fo) = 0 (for d,, # 0). This implies

w = w(a,b) = (% _W>

a®>=D, a=r mod (2N). (6.2)

=l

with

So

w(a,b): NIso(V) = Qloe UQL(a,b), (a,b) = ( ab, b ) . (6.3)

—a? —ab
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On the other hand, it is straightforward to check that w(a,b1) is T'o(IN)-equivalent to
w(a, by) if and only if b = b (mod a). Therefore, we only need to consider these w(a, b)
with a satisfying (6.2) and b (mod a). There are at most 2|a| of them.
Now divide the proof into two cases: N {r (i.e., 2u, ¢ L) and N|r (i.e. 2u, € L).
Assume first that N t 7. Then (6.2) has a unique solution a, and for this a, the cusp
P_% = Py(ap) is not T'o(NV)-equivalent to Ps. So d,, = 1 for each w(a,b). Therefore we
have

a(n, u, Px) = la| = VD

in this case.

Next we assume N|r. In this case (6.2) has two solutions @ = v/D and —v/D. One
has also N|a. It is not hard to verify via calculation that w(a,b) and w(—a,b’) are
To(N)-equivalent if and only if ay = ged(a,b) = ged(a,b’) has the following properties:
a = Nagz and b = asw with ged(Nz,w) = 1, and ¥’ = aqx for some x with zw— Nyz =1
for some integer y. Moreover, in such a case, b’ (mod a) is uniquely determined by b
(mod a).

Write a = Nay and (a,b) = as with b = aqw.

Subcase 1: We first assume ag|a;. In this case, we can write a; = agz and thus a =
az Nz with (w, Nz) = 1. S0 6,y(4q,5) = 2. On the other hand, w(ea, b) is I'g(IV)-equivalent
to w(—ea, bx) with zw— Nyz = 1 for some x, y € Z. So the four pairs (+a,b) and (+a, bx)
contribute 4 to the sum of d,,.

Subcase 2: Next we assume ag { a;. This means ged(ag, N) > 1. So the cusp Pﬁ =
P% is not I'g(IV)-equivalent to the cusp Pu. This implies 6,(+q,) = 1. On the other
hand, for such a pair (ea, b), w(ea,b) is not I'o(N)-equivalent to any other w(=+a,d’).

Combining the two subcases, we see that

a(n, p, Ps) = 2|al

in this case. This proves the lemma for the cusp P.
Next, we show that a(n, p, Pﬁ) does not depend on the cusp Pﬁ in the following

sense.
a(n, p, P1) = a(n, WQ,uWél7 Py), (6.4)

where @) = %, and Wy is the associated Atkin-Lehner involution defined as follows.

Since (M, Q) = 1, there exist «, § € Z with a@Q — M =1, so (]\14 Qﬁa) € To(M). Let

Wq = (1\1/1 Qfa) (g(l)) = <JC\27QBa)

be the associated Atkin—Lehner operator. Then one has
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WoTo(N)Wq' =To(N).
It is easy to verify
WoLulnlWa' = Ly [n], WolsWg' = (% jﬂfﬁ) — /.

Notice that Py = Pﬁ. So there is a bijective map
L L
L,[n] ﬂé’ — LWQ“W; [n] mfoo,
w<— Wy LwWg.
This proves (6.4), and thus the lemma. O
Now we can refine Theorem 5.1 and Corollary 5.6 as

Theorem 6.3. Let the notation and assumption be as above and let D = —4nN. Then
Z(n, p,v) is a Green function for Z(n, u,v)NVe with (at most) log-log singularity, and

dd[E(n, 1, 0)] + 07 (n, 0y Naive = [w(7, 1, V)]

Here w(n, p,v) is the differential defined in (2.8)

Z(n, p) if D <0,
Z(nvﬁ"a ,U)Naive = g(n,u,v) ZM\N 'Pﬁ ZfD Z 01isa square,
0 if otherwise,
and
—4ﬂ53/2(—4nm) ifn#0,u¢ iL/L,
VN

_ ) ERBsa(—dnom) ifn#0,p€ 3L/L,
g(n,u,v) - \/N
Z'fn = O7M — O7
ifn=0,u+#0.

Moreover, for every M|N,

(1) when D is not a square, the Green function E(n, u,v) is of exponential decay near
cusp Pﬁ-
(2) When D = —4Nn > 0 is a square, one has

E(na Hy ’U) = 79(7’1,, 12 ’U)(lOg |QM‘2) - 2¢M(”7 H, U3 qM)a

where qpr s a local parameter at Pﬁ: and Y (n, w, v;qar) @8 of exponential decay
near Pyy. Here Pﬁ = Py, and YN = Vo
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(3) When D =0, (0, p,v) =0 when p ¢ L, and

=(0,0,v) = —g(0,0,v)(log |qM|2) — 2log(—log |qM\2)

_2¢M(0> M, U CJM)>

and

VN
li 0,0, v; =1
|q1;r\ri)0 ’l/}M( y U, U3 qJVI) 0og 477\/5

1
~ 5 J(0).
Here f(0) = v — log(4m) is defined in Lemma 5.2.
6.2. Integral model

Following [13], let Yo(N) (Xo(NN)) be the moduli stack over Z of cyclic isogenies of
degree N of elliptic curves (generalized elliptic curves) 7 : E — E’ such that ker m meets
every irreducible component of each geometric fiber. The stack Xy(V) is regular, proper,
and flat over Z and smooth over Z[+:] such that X,(N)(C) = Xo(N) as N is square
free. It is a DM-stack. For convenience, we count each point x with multiplicity m
instead of m. When p|N, the special fiber Xy(N) (mod p) has two irreducible
components A;° and XI?. Both of them are isomorphic to Xy(N/p) mod p, and they
intersect at supersingular points. We require X>° to contain the cusp Poo (mod p) and
Xz? to contain the cusp Py (mod p). Here for each divisor Q|N, let P Q be the boundary
arithmetic curve associated to the cusp Pq , which is the Zariski closure of Pq in Xy(N)
and has a nice moduli interpretation too. We refer to [7] for detail. It is known that P 9
mod p lies in X3° (resp. A7) if and only if p{ Q (resp. p|Q).

For r € Z/2N, , = diag(r/2N, —r/2N) € L¥/L and a positive rational number n €
Q(ur) +Z,let D = —4Nn =r? mod 4N, kp = Q(v/D) and the order Op = Z[%ﬁ]
of discriminant D. When D < 0, let Z(n, u,) be the flat closure of Z(n, p,) in Xo(V).

6.3. The metrized Hodge bundle

Let wy be the Hodge bundle on Xp(N) (see [13]). Then there is a canonical isomor-
phism w% = Q Xo(n)/z(—5S), which is also canonically isomorphic to the line bundle of
modular forms of weight 2 for T'g(NN). Here S is the set of cusps. For a positive integer
N, let My (N) be the line bundle of weight & with the normalized Petersson metric

E
2

IF () = 1f (=) (4me™y) |

as defined in (1.9). This gives a metrized line bundle M\k(N ) and also induces a metric
on wy so that the associated metrized line bundle Gy satisfies @W§ = My (N). From now
on, we denote
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E=120(N), 7= N[00 +p™) = 8La(2) : To(N)] = 2 vol(Xo(N), (=) (6.5)
p|N

Recall that Ay (z) and A% (2) are both rational sections of My (N).

Lemma 6.4.
rk P 0
DivAy = 7P —kzﬁxp (6.6)
p|N
and
Div AS, —T Zp+ XOO——ZXO (6.7)
p\N p|N

Here r and k are given by (6.5).

Proof. Since

)

Ay | (0 —1)(2) = N*6¢(N)A?V(%) = N712<p(N)H‘ 12a( t)A(N) (N
we have

DivAy = %Pm +) (—120(N) +12 )Y a(M))Xy

pIN M|

One has by (3.2)

SO

. rk N
Div Ay = 15 Pes + > (—12¢(N) - 12(,0(?)).)(1?.
p|N

Notice go(%) = p—ilga(N), one has

. rk 0
DIVAN = EPOO - kZEXp
p|N

as claimed. The second identity follows the same way and is left to the reader. O

The following lemma is clear.
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Lemma 6.5. Let q, = e(z) be a local parameter of Xo(N) at the cusp Puo.

(1) The metrized lme bundle &k = /\/lk(N) has log singularity along cusps with all
a-index ap = 5 at every cusp P. At the cusp Py, one has

k L
IAN ()|l = (= logla=|*) 2 la= 12" p(q2),

with
_se T n
pla:) =e = [ 10— g™,
n=1
(2) Both Div(Ay) = (Div(Ay),—log|An(2)|[?) and Div(AY) = (Div(A%),

—log [|A% (2)1?) are arithmetic divisors (on Xo(N)) associated to &¥, with log-log
singularity at cusps.

We also consider the arithmetic divisor on Xy(N):

~ rk
An = (75 Poor ~log[|AN(2)[)- (6.9)
One has
Div(Ay) = Ay — kz ). (6.10)
p\N
Define
= Naive v : _ —
g(n’u’v) _ {(n,,um) ' _QWN Zp|N D (0 log(ﬁ)) lfn_oa;u'_oa (611)
Z(n, p, v)Naive otherwise.

The arithmetic generating function (¢ = e(7)) in the introduction is defined to be

dn= 3 Zmpv)ge, € CHy(%(N), ) @ CILH/L)llg,q ] (6.12)
e

Qu=n (mod 1)

1
At this moment, we simply view it as a Laurent series with coefficients in CHy (Xy(N),
S)® C[L*/L).

Proposition 6.6. One has

3(7) € (CHg(Xo(N)) ® C[L*/L])[[g, g ])-
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Proof. By Theorem 6.3, it suffices to check the case for Z(0,0,v). Notice that A(7) is a
section of wl?. So we have by Theorem 6.3

2(0,0,v) = (2,9)

with

VN 1. 0
—m Pﬁ_EDIVA_ZX

M|N pIN
1
= 2(0,0,v) + ¢ log | A]]* ~ log %

For each M|N, choose oy € SLa(Z) such that opr(00) = 5. Then Theorem 6.3(3)
asserts

_ VN
2(0,0,v)(0a (2)) = — = (10g lqar|?) — 2log(~ log |qa|2) + smooth

2m/v

N
- _%ﬁ(log la*) = 2log(—logg|*) + smooth,

where gy = q%, as the width of the cusp P% is % On the other hand,
log [|A (o (2))12 = log [|A(=)|2 = log(Jal?) + 12Tog(~ log|g|?) + smooth.

So we know

\/»
277\/_

glom(2)) = (=

)log(\q| ) 4+ smooth
has just log singularity. 0O
We first record the following proposition, which is clear by (4.2) and Corollary 2.3.

Proposition 6.7. Let the notation be as above, then

derir) = 3 dostZlon Ve = (3(r).a(2) = —En(r 1)

In general, for a(f) = (0, f) € @%(XO(N), S), we have

@rrai=; [ 120 =510 0)

Xo(N)

is a vector valued modular form valued in Sy, for TV of weight 3/2 and representation py,.
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Proposition 6.8. For every prime p|N, one has

(B(r), ) = (3(r), A>) = ﬁsm 1) log p.

Proof. Since
R(w,wyz) = Rlwy' - w, 2),
and wy - L, = L_,, one has by definition

wyE(n, g, v) = E(n, —p, v) = Z(n, 1, v).
This implies
w}kVZ(n7M7U)Naive _ ZA(n’/%,U)Naive

Naive

on the generic fiber. Since the divisors Z(n, u,v) are all horizontal (flat closure of

Z(n, w,v)Nalve) we have
w2 (n, o)V = Z(n, p, 0) NV,
One has also wl*vﬁ N = 39\, and w}‘\,XZ? = X°. Direct calculation using Lemma 6.4 shows
w Z(0,0,v) = Z(0,0,v),

and so
wi($(r)) = 6(7).
Since wy is an isomorphism, we have
(6(7), X9) = ($(7), X,°)
((7), (0,log p*))

-~

<¢(T)7 Xp> =

N =

1
2

1~ 1
5 deg () logp = ( Er(r,1)logp.

¢(N)

Here we have used the fact that the principal arithmetic divisor ]51\v(p) = (X,, —log p?).
This proves the proposition. O

Proof of Theorem 1.3. Now Theorem 1.3 follows from Propositions 6.7 and 6.8, equa-
tion (6.10), and the following theorem, which will be proved in next section.
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Theorem 6.9. Let the notation be above. Then

(6(7), An)as = 1281 (7, 1).
7. The proof of Theorem 6.9
7.1. Some preparation

Lemma 7.1. Two different cusps of Xo(N) reduce to two different cusps modulo p for
every prime number p. So <Pﬁ,Pﬁ) =0 1if My # My (mod N).
1 2

Proof. We only need to consider primes p|N. If p divides exactly one of the M; and M,
the two cusps landed in two different branches of A}, and thus do not coincide. When
p divides both of them, their reductions P 1 both landed in XZ? . On the other hand,

J
Xg is isomorphic to the reduction of Xy(N/p), under which cusps correspond to cusps.

Counting the number of cusps, we see that different cusps which landed in X19 are still
different in the reduction. This proves the lemma. O

Lemma 7.2. One has for each p|N,

(X0, 2)) = —(X), ) = —(X°, 4.°) =

Proof. Recall that X° and X are both isomorphic to the special fiber Xo(%)p = Xo(%)
(mod p) and that they intersect properly exactly at the supersingular points. So

2
X oo XO _
TP SN ¥ ]
QCGXU(%)Z)(FP)
supersingular

N
= [SLa(Z) : To(— —_
z€Xo (1) (Fp)
supersingular

T 2
Cop+1 Z |Aut ()|

z€Xo (1), (Fp)
supersingular

It is well-known (see for example [13, corollary 12.4.6]) that

p—1 1
T 2 Tamy =

jGFp ,Ejsupersingular

where j is the j-invariant. So
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e’} _ T(pf]')
(2, X)) = oL

On the other hand
(X0, %) 4+ (X°, X)) = (X:°,(0,1og p*)) = 0.
So
(X2, X0y = —(X°, X)), O

Lemma 7.3. One has

(1)

¢(=1)
2

TC,

+O1)+ o

(@n,Wn) =1(

where C' = % is the normalization constant in (1.9)

(2)

Ao Ay g2 6D k*rC | K*r P
(AN, An) = k°r( 5 +¢(=1)) + o T b 7
p

log p.

Proof. Let &)\J]i’,Pet be the Hodge bundle with the Petersson metric (via its isomorphism

to My (IV))
£ (2)llpet = [£(2)(dmy) 2| = | £ ()]l
According to [19, Theorem 6.1], we have
(Wpet, Wpet) = r(@ +¢'(—1)). (7.2)

2

So

(On, ON) = (Wpet, Wpet) + 2(@pet, (0,C))

I

T+ ¢'(~1) + deg(@per)C

"¢

)+ 4

as claimed.
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Next, one has

(An,An) = (An,DiV(AN)) + kD

p|N

= (Div(An), Div(An)) +kZ X ,Div(Ay))
p\N

——{AN, X))

= K (@, Bn) — K2 Y ()20, &)

pIN

9 ¢(-1) " rC  k%r P2
=k r(—2 +¢'(-1)+ 13 +—12 %pQ_llogp,
P

p—1

by Lemma 7.2 O

Remark 7.4. We remark that Lemma 7.3 can be proved directly using our explicit de-
scription of sections of w¥; without using [19, Theorem 6.1]. Indeed, one has

(@, @) = (Div(Aw), Div(A%)).
Now direct calculation gives the lemma. We leave the detail to the reader.
7.2. Proof of Theorem 6.9
In this section, we prove Theorem 6.9, which amounts to check term by term on their

Fourier coefficients.
By Theorem 1.6 and (2.6), it suffices to prove

(7.3)

. X Foiory 108 185 (2] [w(n, o, v) it n 0,
Z ) ) 7A 0
e S0 = { Ty 8 1A (2) (0,0, ) — 4284 it = 0, = 0.

The case n = 0, u # 0 is trivial as both sides are zero.

We divide the proof into three cases: D is not a square, D > 0 is a square, and D = 0.

Case 1: We first assume that D is not a square. In this case, Z(n, y,v) and Py has
no intersection at all. By Proposition 4.1 and Theorem 6.3, one has

~

(Z(n, 1, 0), Ay) = — / log | A lw(n, 1, ).
Xo(N)

This proves the case that D is not a square.

Case 2: Now we assume that D is a square. This case is complicated due to self-
intersection at Ps.. We work out the case D = 0 and leave the similar (and slightly
easier) case D > 0 to the reader. Let
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~ ~ , 12¢(0,0,v) ~
21(070,’0) = Z(Ovoav)Nawe - %AN = (Zl(0,0,U),El(0,0,U)).
Then
~ o~ ~ ~ 12¢(0,0,v) ~ -~
(20,00 Ry) = (£:(0,0,0), By) + 20O R, Ry
We have
(21(0,0,v), Ay)
= Z ﬁ(n V) (P, P >+ﬁ(a —11,00(0,0,v,0))
- 129 2 270 o0 12 Z1,Ps 1,00\Y, Y, U,
0<M|N,M<N
. rk 1
—lim | Saz, p, log(~loge?) - 5 / —log | Ax|%wr |,
Xo(N)e
where
12¢(0,0,v) dxdy
wp = UJ(0,0,U) - 747(_27,2
and

6
oz, p.=1-— ;g(0,0,v).

So the limit is equal to

rk . 9 12 5 dxdy
Sozr. lim [ log(-loget) + = [ logan P
XO(N)e
. dxdy
i [ log|Anle(0,0.0) - 550)
Xo(N)e
rk ) 9 12 5 dzdy
= Tgoze. lin (loa(—loge) + = [ log | AnPTS
XO(N)s
dxdy
[ ToglAnlw(0.0.0) - 55,

Xo(N)

Recall ([20, Lemma 2.8]) that
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12 dxd
lir% log(—log €?) + T / log ||AN||24iyg = %Co + 2log(4m) — C. (7.4)

€E—

XO(N)E

Here C is the scattering constant given in Lemma 3.6, and C' is the normalization
constant in Petersson norm. Combining this with Corollary 3.6, we obtain

(21(0,0,v), A)

rk 6
=1~ ;9(0,0,v>)<12<( 1) +24¢ (1) + C+2> P 5 logp)
p\N
rk dxdy
- (0,000 = [ Tog|Ax](0,0,0) = 70,
Xo(N)
Here we recall ((—1) = —%. On the other hand, Theorem 5.1 implies

. 12
¢1,oo(07 Oa v, O) = hm (77[)00(05 07 v, QZ) - _9(07 0’ U) 1Og ¢(QZ))
Yy—00 rk

=~ log() (1 - 29(0,0,0))C.

Therefore, one has by Lemma 7.3

<2(05 07 ’U)Naivea £N>

. - 129(0,0,v) ~ =~
= <Zl(0707v)7AN> + %<AN?AN>
» , dxdy
— ﬂlog(]v) §<AN,AN> - / log [An||(w(0,0,v) — 27Ty2)’
Xo(N)
and
(2(0,0,v), An) = (2(0,0,v)*, An) = - (An, An)
1 7)), A
- Zp An) — ((0,10g(57)), Aw)
plN
dxdy
_ / log [[An|[(w(0,0,v) — 27ry2)'
Xo(N)

This proves the case D = 0.
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8. Modularity of the arithmetic theta function

In this section, we will prove the modularity of 8(7) To simplify the notation, we
denote in this section X = Xo(N) and X = Xp(N), and let S be the set of cusps of
X. Let ggs be a Gillet—Soulé Green function for the divisor Div Ay (without log-log

~ —1
Singularity), and let Ags = (Div Ay, ggs) € CHg(X), and fny = gas + log ||AN||2 Then
—1
a(fN) = (0, fN) S CHR(X,S) and

Ags = Div(Ay) + alfx).
Theorem 6.9 and Proposition 6.7 imply the following proposition immediately.

Proposition 8.1. The Gillet-Soulé height pairing <$, AGS> is a vector valued modular
form of T valued in C[L*/L] of weight 3/2 and representation pr .

Now we are ready to prove Theorem 1.1 following the idea in [18, Chapter 4] with &
replaced by Ags. Let pugs = ¢1(Ags), A(X) be the space of smooth functions f on X
which are conjugation invariant (Frobs-invariant), and let A°(X) be the subspace of

functions f € A(X) with
/f/tcs =0.
b's

For each p|N, let Y, = X5° — pX?, then (V,, Ags) = 0. Let V) = yy Ve Finally
let MW be the orthogonal complement of RAgs + 2 opIN RY) + Ra(1) + a(AO( )) in
1

CHg(X). Then one has

Proposition 8.2. ([18, Propositions 4.1.2, 4.1.4])

CHp(X) = MW & (RAgs + 3 RYY + Ra(1)) & a(A°(X)).
p|N

More precisely, every Z= (Z,9z) decomposes into

o~ dee 7 ~ ~
Z = Zuw + LAGS 3 2.9 VY +26(2)a(1) + alf)
deg Ags pIN

for some f5 € AY(X), where

=~ ~ 5 deg Z
k(Z)deg Aas = (Z,Aas) — i<AGS,AGS>

deg Ags
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Proposition 8.3. (/18, Remark 4.1.8]) Let MW = Jo(N)®zR. Then Z = (Z,94) — Z €
MW induces an isomorphism

MW = MW,

where Z is the generic fiber of Z. The inverse map is given as follows. Given a rational
divisor Z € Jo(N), let gz be the unique harmonic Green function for Z such that

d.dgz — 6z = ——<—pics,

Let Z be a divisor of X with rational coefficients such that its generic fiber is Z, and
it is orthogonal to every irreducible components of the closed fiber X, for each prime p.
Finally let

Z=Z-2((Acs, 2)), Z=1(Z,92)

Then the map Z — Z s the inverse isomorphism.

Finally, let A, be the Laplacian operator with respect to pas. Then the space A°(X)
has an orthonormal basis {f;} with

Azfj+>\jfj:0, <fi7fj>:5ija and 0 < A < A <01,

where the inner product is given by

In particular, every f € A°(X) has the decomposition
1) =D (f i) (8.1)
Recall also ([18, (4.1.36)]) that
. 1
dodif = SA:(f)uas. (82)

With the above preparation, we are now ready to restate Theorem 1.1 in a slightly
more precise form as follows.
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Theorem 8.4. Let the notation be as above. Then

O(7) = dnw (1) + das(7)Acs + 6p(N)Y) + d1(r)al(l) + alésm)

p|N

where ¢p, ¢1, and Pgs are real analytic modular forms of I of weight 3/2 and rep-
resentation py, valued in C[L!/L], oaw(7) is a modular form of T of weight 3/2 and
representation py, valued in finite dimensional vector space W@C[LWL]. Finally, there
is a smooth C[L*/L]-valued function ®(,z) on H x Xo(N) which is a modular form of
I’ of weight 3/2 and representation pr, on the variable T such that its q-expansion (with

respect to T) is dpsnr.

Proof. In this proof, the intersection, degree and differential for generation functions are
computed by coefficients.

Under the isomorphism in Proposition 8.3, (Z mw becomes (here we use Manin’s well-
known result that the divisor of degree 0 supported on cusps is torsion and is thus zero
in CHg (X))

de
980 A= 3 (Zlmp) - de Zin, wP)aler.
deg AGS n>0,u

o(1)g —

which is modular by either the main result of Gross—Kohnen—Zagier [11] (note that Jacobi
forms there are the same as vector valued modular forms we used here), or Borcherds’
modularity result for ¢(7)g (see [18, Theorem 4.5.1]) and Proposition 6.7. Next,

o~

das(T)(Aas, a(1)) = (6, a(1))

implies that ¢gg(7) is modular by Proposition 6.7. For a given p|N, ¢,(7) = <$7 Y, is
modular by Proposition 6.8. The identity

(6, Acs) = das(Aas, Aas) + ¢1(7){a(1), Ags)

implies that ¢;(7) is modular by Proposition 8.1.
Finally, we have by Proposition 8.2,

¢sm (T, 2) = ZE0(T,2) — guw — das(T)gas — o1(7T Zd’SM n, 1,05 2)q" ey, (8.3)

with all Fourier coefficients ¢gas(n, i, v; z) being smooth functions. Here

Er(r,2) = (20,0, ) + klogHANII2 log— cot+ > En,p0)q e,
n#0,u

Recall that
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dzdga(nv 12 ’U) + 6Z(n,,u) = w(n7 My 'U)NG'S (84)
and
. deg &
d.dS(guw + des(T)ges) + Y 6z(nnd"en = &ucs. (8.5)
n,u deg AGS
So we have
- deg Z N, by U
dzd§¢SM(na H, U) = (w(n, Hy U) — 0o,y — M)MG,&

deg Ags

Here we write

w(n, My U) = (IJ(’I’L, M,y U)/’LGSa @L(Ta Z) = @L(Ta Z)/”‘GS)

and

)0 if u#0,
“on = L if p=0.

or HGsS

—

Since its Fourier coefficients have spectral decomposition as smooth functions of z, we
have the spectral decomposition

¢SM(na , U3 Z) = Z<¢SM(”& ‘LL,’U), f)\>f)\(z)a

A>0

as (¢sar(n, p,v), 1) = 0. Then

<¢SM(”aﬂvv),fA>:*% / bsnr(n, 1, )AL (fr)pcs

Xo(N)
2 cr
=2 [ osutnp vy
Xo(N)
2 c £
=3 d.dSdsar(n, p,v) fa
Xo(N)
2 _ de 5-7’\ n,w,v r
=5 / (@(n, p,v) — a0, — %)J&“Gs
€
Xo(N) .
9 ) _
= / (@(n, p,v) — aou) frpas
Xo(N)

2
-~ -

(nv 122 U) — Qo,u, f/\(Z)>
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Define
72Azo>\ (O1(r,2), [A(2)) (2)
= 2Az_1>(éL(T> 2) = OL(7)). (8.6)
Here

OL(r,2) = OL(r) + 3 (Or(r,2), Al a(2)

A>0

is the spectral decomposition of the smooth two variable theta function © (7, 2), and

- / Or(r, 2)ucs
O, (r) = Xo(N)
fXg(N) lpas

is the constant term of the theta kernel function O (7, z). Recall (2.6) and (2.7), we
see that the (n, u)-th Fourier coefficients of ®(7, z) and ¢gas(7, z) coincide. This proves
the theorem except the claim that ®(7,z) is a smooth function on two variables (7, z),
which we now sketch a proof. Indeed, as O (7, z) is a fixed smooth function of 7 and
z, integration by parts in the z variable gives (recall that fy is an eigenfunction with
eigenvalue \)

9%(0(1,2), fr(2)) <nyax AN

for any integer & > 0, N > 0, and all 7 € K7, where K; is any compact subset of H.
On the other hand, for any integer S > 0, Standard Sobolev estimates for f) and its
derivatives give (see for example [23, Chapter 3])

P fa(z) < ()

for all z and some number a(f) (actually we can take a(8) = 3/2 + 1). This shows that
DR d(7, 2) Z 80‘ (OL(T, 2), fr(2))02 fr(2)
o

converges locally uniformly for any o and 8. So ®(7, 2) is smooth in both 7 and z variable.
The modularity of ®(r, z) follows from that of 0©(r, z). Taking ¢sa (T, 2) = O(7, 2), we
prove the theorem. 0O
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