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1 Introduction
In 1998, Borcherds developed a new method to produce meromorphic modular forms
on an orthogonal Shimura variety from weakly holomorphic classical modular forms via
regularized theta liftings.Thesemeromorphicmodular formshave twodistinct properties.
The first one is the so-called Borcherds product expansion at a cusp of the Shimura
variety—his original motivation to prove the Moonshine conjecture. The second is that
the divisor of thesemodular forms are known to be a linear combination of special divisors
dictated by the principal part of the input weakly holomorphic forms. The second feature
has been extended to produce so-called automorphic green functions for special divisors
using harmonic Maass forms via regularized theta lifting by Bruinier [1] and Bruinier-
Funke [2], which turned out to be very useful to generalization of the well-known Gross–
Zagier formula [3] and thebeautifulGross–Zagier factorization formulaof singularmoduli
[4] to Shimura varieties of orthogonal type (n, 2) andunitary type (n, 1) (see for example [5–
11]). On the other hand, the Borcherds product expansion and in particular its integral
structure is essential to prove modularity of some generating functions of arithmetic
divisors on these Shimura varieties [12,13]. Borcherds products are also closely related to
Mock theta functions (see for example [14] and references there).
We should mention that the analogue of the Borcherds product to unitary Shimura

varieties of type (n, 1) has beenworked out byHofmann [15] (see also [12]). The Borcherds
product expansion in the unitary case is a little more complicated as it is a Fourier–Jacobi
expansion rather than Fourier expansion; the coefficients are theta functions rather than
numbers. The purpose of this note is to give some explicit examples of these Borcherds
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product expansion in concrete term. For this reason, we focus on the Picard modular
surface X�L = �L\H associated to the Hermitian lattice L = Z[i] ⊕ Z[i] ⊕ 1

2Z[i] with
Hermitian form

〈x, y〉 = x1ȳ3 + x3ȳ1 + x2ȳ2.

Here

H = {(τ , σ ) ∈ H × C| 4Im(τ ) > |σ |2},

and�L is a subgroup of U(L) defined by (3.4). Our inputs are weakly holomorphicmodular
forms for �0(4) of weight −1, character χ−4 := (−4 ) which have poles only at the cusp
∞, which we denote byM!,∞

−k (�0(4),χk−4) with k = 1. Our first result (Theorem 2.1) is to
give a canonical basis Fk,m (m ≥ 1) for the infinitely dimensional vector space for every
k ≥ 1. The even k case was given by Haddock and Jenkins in [16] in a slightly different
fashion. Similar method can be applied to yield a canonical basis for the space of weakly
holomorphic forms of �0(4) with weight −k , character χk−4, and having poles only at the
cusp 0 (resp. 12 ).
Next, we use a standard induction procedure to produce vector-valued weakly holo-

morphic modular forms for SL2(Z) using our lattice L which will be used to construct
Picard modular forms on U(2, 1) (described above). Although the resulting vector-valued
modular forms for SL2(Z) from the three different scalar valued spacesM!,P

−k (�0(4),χk−4),
P = ∞, 0, 12 are linearly independent, they don’t generate the whole space. This concludes
Part I of our note, which should be of independent interest.
In Part II, we focus on the unitary group U(2, 1) associated to the above Hermitian form

and give explicit Borcherds product expansion of the Picard modular forms constructed
from Fm = F1,m. The delicate part is to choose a proper Weyl chamber, which is a
dimensional 3 real manifold and described it explicitly and carefully. Our main formula is
Theorem 3.5. We remark that the same method also applies to high dimensional unitary
Shimura varieties of unitary type (n, 1) using forms inM!,P

1−n(�0(4),χk−4) where P is a cusp
for �0(4). We restrict to U(2, 1) for being as explicit as possible.

2 Part I: vector-valuedmodular forms
In this part, we derive a canonical basis for the space M!,∞

−k (�0(4),χk−4) for any integer
k ≥ 0, and investigate the properties of the vector-valued modular forms arising from
M!,∞

−k (�0(4),χk−4). For completeness, we will also give canonical bases forM!,0
−k (�0(4),χk−4)

andM!, 12
−k (�0(4),χk−4).

2.1 A canonical basis forM!,∞
−k (�0(4),χk

−4)

Let χ−4(·) := (−4
·
)
be the Kronecker symbol modulo 4. Recall that X0(4) has 3 cusps,

represented by ∞, 0, and 1
2 . For each cusp P, let M!,P

−k (�0(4),χk−4) denote the space of
weakly holomorphic modular forms, which are holomorphic everywhere except at the
cusp P, of weight−k on�0(4) with characterχk−4.Wewill focusmainly on the cusp∞ and
will remark on other cusps (very similar) in the end. We will also denoteM!

−k (�0(4),χk−4)
for the space of weakly holomorphic modular forms for �0(4) of weight −k and character
χk−4.
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Let τ be a complex number with positive imaginary part, and set q = e(τ ) = e2π iτ , and
qr = e2π iτ/r . The Dedekind eta function is defined by

η(τ ) = q1/24
∞∏

n=1
(1 − qn).

Throughout this paper, we write ηm for η(mτ ). The well known Jacobi theta functions are
defined by

ϑ00(τ ) =
∞∑

n=−∞
qn

2
, ϑ01(τ ) =

∞∑

n=−∞
(−q)n

2
, ϑ10(τ ) =

∞∑

n=−∞
q
(
n+ 1

2

)2

.

Now we define three functions as follows.

θ1 = θ1(τ ) := 1
16

ϑ4
10(τ ) = η84

η42
= q + O(q2), (2.1)

θ2 = θ2(τ ) := ϑ2
00(τ ) = η102

η41η
4
4

= 1 + O(q), (2.2)

ϕ∞ = ϕ∞(τ ) :=
(

η1
η4

)8
= q−1 + O(1). (2.3)

Here are some basic facts [16] about the functions θ1, θ2 and ϕ∞.

(1) θ1(τ ) is a holomorphic modular form of weight 2 on �0(4) with trivial character, has
a simple zero at the cusp ∞, and vanishes nowhere else.

(2) θ2(τ ) is a holomorphic modular form of weight 1 on �0(4) with character χ−4, has a
zero of order 1

2 at the irregular cusp 1
2 , and vanishes nowhere else.

(3) ϕ∞(τ ) is a modular form of weight 0 on �0(4) with trivial character, has exactly one
simple pole at the cusp ∞ and a simple zero at the cusp 0.

The following is a variant of [16] where the case even k has been treated by Haddock
and Jenkins. We should mention that similar results for the space of weakly holomorphic
modular forms for SL2(Z) were first obtained in [17] by Duke and Jenkins.

Theorem 2.1 (1) For k ≥ 1 odd, there is a (canonical) basis Fk,m (m ≥ 1) of
M!,∞

−k (�0(4),χ−4) whose Fourier expansion has the following form:

Fk,m = q− k+1
2 −m+1 +

∑

n≥− k−1
2

c(n)qn.

(2) For k > 1 even, there is a (canonical) basis Fk,m (m ≥ 1) of M!,∞
−k (�0(4))whose Fourier

expansion has the following form:

Fk,m = q− k
2−m+1 +

∑

n≥− k
2+1

c(n)qn,

Proof of Theorem 2.1 The proof is similar to those given in [17] and [16], and we include
it for completeness.We prove (1) first. Notice thatX0(4) has no elliptic points [18, Section
3.9]. For F ∈ M!,∞

−k (�0(4),χ−4), the valence formula for �0(4) asserts that

∑

z∈�0(4)\H
ordz(F ) + ord∞(F ) + ord0(F ) + ord1/2(F ) = −k

2
.
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This implies ord1/2F ≥ 1
2 (1/2 is the unique irregular cusp), ord∞(F ) ≤ − k+1

2 . This
implies the uniqueness of the basis {Fk,m} if it exists.We prove the existence by inductively
constructing a sequence of monic polynomials Pk,m(x) of degree m (m ≥ 0) such that

Fk,m+1 = θ2θ
− k+1

2
1 Pk,m(ϕ∞) give the basis we seek, i.e., with the following property

Fk,m+1 = θ2θ
− k+1

2
1 Pk,m(ϕ∞) = q− k+1

2 −m +
∑

n≥− k−1
2

c(n)qn. (2.4)

(1) Notice that θ2θ
− k+1

2
1 ∈ M!,∞

−k (�0(4),χ−4) with

θ2θ
− k+1

2
1 = q− k+1

2 +
∑

n≥− k−1
2

c(n)qn.

So we can and will first define Pk,0 = 1.
(2) For m ≥ 1, assume that Pk,m−1(x) ∈ C[x] is constructed with degree m − 1, leading

coefficient 1, and the property

Fk,m = θ2θ
− k+1

2
1 Pk,m−1(ϕ∞) = q− k+1

2 −m+1 +
∑

n≥− k−1
2

c(n)qn.

Then it is easy to see

Fk,mϕ∞ = q− k+1
2 −m +

∑

n>− k+1
2 −m

d(n)qn.

Let

Pk,m = xPk,m−1 −
− k+1

2∑

n=− k+1
2 −m+1

d(n)Pk,−n,

and

Fk,m+1 = θ2θ
− k+1

2
1 Pk,m(ϕ∞).

Then Fk,m+1 satisfies (2.4). By induction, we prove the existence of the basis {Fk,m},
and (1).

The proof of (2) is similar and is left to the reader. In this case, the basis {Fk,m+1},m ≥ 0,
has the form

Fk,m+1 = θ
− k

2
1 Qk,m(ϕ∞) = q− k

2−m +
∞∑

n=− k
2+1

c(n)qn (2.5)

for a unique monic polynomial Qk,m of degreem. 
�

The following corollary follows directly from the proof of Theorem 2.1(1).

Corollary 2.2 Every weakly holomorphic modular form f (τ ) ∈ M!,∞
−k (�0(4),χk−4) with k

odd, vanishes at the cusp 1/2.
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2.2 Vector-valuedmodular form arising fromM!,∞
−k (�0(4),χk

−4)

Let L be an even lattice over Z with symmetric non-degenerate bilinear form (·, ·) and
associated quadratic formQ(x) = 1

2 (x, x). Let L
′ be the dual lattice of L. Assume that L has

rank 2m+2 and signature (2m, 2). Then theWeil representation of the metaplectic group
Mp2(Z) on the group algebra C[L′/L] factors through SL2(Z). Thus we have a unitary
representation ρL of SL2(Z) on C[L′/L], defined by

ρL(T )φμ = e(−Q(μ))φμ, (2.6)

ρL(S)φμ =
√
i2m−2

√|L′/L|
∑

β∈L′/L
e((μ,β))φβ (2.7)

where T =
(
1 1
0 1

)

, S =
(
0 −1
1 0

)

, φμ for μ ∈ L′/L are the standard basis elements of

C[L′/L] and e(z) = e2π iz . We remark that theWeil representation ρL depends only on the
finite quadratic module (L′/L,Q) (called the discriminant group of L), where Q(x + L) =
Q(x) (mod 1) ∈ Q/Z.
Let k be an integer and �F be a C[L′/L] valued function on H and let ρ = ρL be a

representation of SL2(Z) on C[L′/L]. For γ ∈ SL2(Z) we define the slash operator by
(

�F
∣∣
∣
k,ρ

γ

)
(τ ) = (cτ + d)−kρ(γ )−1 �F (γ τ ),

where γ =
(
a b
c d

)

acts on H via γ τ = aτ+b
cτ+d .

Definition 2.3 Let k be an integer. A function �F : H → C[L′/L] is called a weakly
holomorphic vector-valued modular form of weight k with respect to ρ = ρL if it satisfies

(1) �F
∣∣∣
k,ρ

γ = F for all γ ∈ SL2(Z),

(2) �F is holomorphic on H,
(3) �F is meromorphic at the cusp ∞.

The space of such forms is denoted byM!
k,ρ .

The invariance of T -action implies that �F ∈ M!
k,ρ has a Fourier expansion of the form

�F =
∑

μ∈L′/L

∑

n∈Q
n�−∞

c(n,φμ)qnφμ.

Note that c(n,φμ) = 0 unless n ≡ −Q(μ) (mod 1).
From now on, we focus on the special case with the discriminant group L′/L ∼= Z/2Z×

Z/2Zwith quadratic formQ(x, y) = 1
4 (x

2 + y2) (mod 1). For our purpose (in Sect. 3), it is
convenient to identify Z/2Z × Z/2Z ∼= Z[i]/2Z[i], where Q(z) = 1

4 zz̄ ∈ Q/Z. We write
φ0, φ1, φi and φ1+i for the basis elements of C[L′/L] corresponding to (0, 0), (1, 0), (0, 1)
and (1, 1) respectively.
Let F = F (τ ) ∈ M!,∞

−k (�0(4),χ−4) with k odd and positive. Then using �0(4)-lifting, we
can construct a vector-valued modular form �F = �F (τ ) arising from F (τ ) as follows:

�F (τ ) =
∑

γ∈�0(4)\SL2(Z)
(F |−k γ )ρL(γ )−1φ0 = 1

2
∑

γ∈�1(4)\SL2(Z)
(F |−k γ )ρL(γ )−1φ0. (2.8)
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Define modular forms F0, F2 and F3 as follows. Recall that qr = e2π iτ/r . Let

F |−k

(
0 −1
1 0

)

=
∞∑

n=0
a(n)qn4 .

Then for j ∈ {0, 2, 3}, we write

Fj =
∞∑

n=0
a(4n + j)q4n+j

4 . (2.9)

We also define F1/2 to be

F1/2 = F |−k

(
1 0
2 1

)

=
∞∑

n=0
b(n)qn2 . (2.10)

In addition, taking the coset representatives {I, S, ST−1, ST, ST 2, ST 2S−1} for�0(4)\SL2(Z),
it is easy to check by (2.6)–(2.7) that

ρL(S)−1φ0 = − i
2
(φ0 + φ1 + φi + φ1+i) ,

ρL(ST−1)−1φ0 = − i
2
(φ0 − iφ1 − iφi − φ1+i) ,

ρL(ST )−1φ0 = − i
2
(φ0 + iφ1 + iφi − φ1+i) ,

ρL(ST 2)−1φ0 = − i
2
(φ0 − φ1 − φi + φ1+i) ,

ρL(ST 2S−1)−1φ0 = φ1+i.

Finally, direct calculations yield

�F (τ ) = (−2iF0 + F )φ0 − 2iF3φ1 − 2iF3φi +
(−2iF2 − F1/2

)
φ1+i. (2.11)

The following theorem gives some basic facts about F0, F2, F3 and F1/2.

Theorem 2.4 With the above definitions, we have

F0 ∈ M!
−k (�0(4),χ−4), (2.12)

F3 ∈ M!
−k (�0(4),χ1) (2.13)

where χ1(γ ) = χ−4(d)e(−ab/4) for γ =
(
a b
c d

)

∈ �0(4),

(2iF2 + F1/2) ∈ M!
−k (�0(4),χ2) (2.14)

where χ2(γ ) = χ−4(d)e(−ab/2) for γ =
(
a b
c d

)

∈ �0(4),

and

F1/2 ∈ M!
−k (δ

−1�0(4)δ,χ−4) (2.15)

where δ =
(
1 0
2 1

)

.
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Proof By (2.11), and [19, Section 3, p. 6] or [20, Proposition 4.5], we can show that for

γ =
(
a b
c d

)

∈ �0(4),

(−2iF0 + F )
∣∣−k γ = χ−4(d)(−2iF0 + F ), (2.16)

F3|−k γ = χ−4(d)e(−ab/4)F3, (2.17)

(−2iF2 − F1/2)
∣∣−k γ = χ−4(d)e(−ab/2)(−2iF2 − F1/2). (2.18)

Since F ∈ M!
−k (�0(4),χ−4), then (2.16) implies (2.12). Relations (2.13) and (2.14) follow

directly from (2.17) and (2.18), respectively. The last relation (2.15) follows from the
definition of F1/2,

F1/2 = F |−k

(
1 0
2 1

)

.


�

Theorem 2.5 Let k be odd. Let F = F (τ ) ∈ M!,∞
−k (�0(4),χ−4) with

F (τ ) =
∞∑

n=−m
c(n)qn.

Write

F |−k

(
0 −1
1 0

)

=
∞∑

n=0
a(n)qn4 and F |−k

(
1 0
2 1

)

=
∞∑

n=0
b(n)qn2 .

And let the �0(4)-lifting of F be

�F (τ ) =
∑

μ∈L′/L

∑

n∈Q
n�−∞

c(n,φμ)qnφμ.

Then we have

(i) c(n,φ0) = −2ia(4n) + c(n),

c(n,φ1) = c(n,φi) = −2ia(4n),

c(n,φ1+i) = −2ia(4n) − b(2n),

(ii) the principal part of the vector-valued modular form �F (τ ) is
(
c(−m)q−m + · · · + c(−1)q−1)φ0,

(iii) the constant term of the φ0-component of �F (τ ) is

c(0,φ0) = −(8i)k+1
m∑

n= k+1
2

c(−n)Pk,n− k+1
2
(0) + c(0),

where Pk,n(x) are the polynomials defined as in the proof of Theorem 2.1.

In particular, when k = 1, the constant term of the φ0-component of �F (τ ) is

c(0,φ0) =
m∑

n=1
c(−n)

⎛

⎝
∑

d|n
(64χ−4(n/d) + 4χ−4(d)) d2

⎞

⎠ . (2.19)
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Proof Assertion (i) follows directly from (2.11). For the assertion (ii), since F is holo-
morphic at 0 and 1

2 , then Fj for j ∈ {0, 2, 3} and F1/2 will not contribute anything to the
principal part of �F . So the principal part of �F is given by
(
c(−m)q−m + · · · + c(−1)q−1)φ0.

For the assertion (iii), we first note by (i) that

c(0,φ0) = −2ia(0) + c(0).

By Theorem 2.1(1), we have

F = c(−m)θ2θ
− k+1

2
1 Pk,m− k+1

2
(ϕ∞) + · · · + c

(
−k + 1

2

)
θ2θ

− k+1
2

1 Pk,0(ϕ∞) (2.20)

Since θ1 and θ2 do not vanish at the cusp 0, and ϕ∞ has a simple zero at 0 of width 4, then
we have

θ2θ
− k+1

2
1 ϕl∞

∣∣∣
∣−k

(
0 −1
1 0

)

= O(q
l
4 ),

and thus θ2θ
− k+1

2
1 ϕl∞

∣∣∣
∣−1

(
0 −1
1 0

)

will not contribute anything to the constant term of

F0 when l ≥ 1. Moreover, simple calculation using the transformation formula for the
Dedekind eta function shows that the constant term of the Fourier expansion at the cusp 0

of θ2θ
− k+1

2
1 is −(8i)k+1. Therefore,

a(0) =
⎛

⎜
⎝

m∑

n= k+1
2

c(−n)Pk,n− k+1
2
(0)θ2θ

− k+1
2

1

∣∣∣
∣∣∣
∣−k

(
0 −1
1 0

)⎞

⎟
⎠

0

= −(8i)k+1
m∑

n= k+1
2

c(−n)Pk,n− k+1
2
(0)

where (f )0 denotes the constant term of the q-expansion of f . Hence, we have

c(0,φ0) = −(8i)k+1
m∑

n= k+1
2

c(−n)Pk,n− k+1
2
(0) + c(0).

For (2.19), according to (iii), we need to show that

P1,m(0) =
∑

d|(m+1)
χ−4((m + 1)/d)d2 and c(0) =

m∑

n=1
c(−n)

⎛

⎝4
∑

d|n
χ−4(d)d2

⎞

⎠ .

For the first formula, we first observe that

θ2θ
−1
1 ϕ�∞ = q−�−1 +

�∑

j=1
c�(−j)q−j + O(1)

for 0 ≤ � ≤ m. Thus there are b1, . . . , bm−1 such that

h(τ ) := θ2θ
−1
1 ϕm∞ + bm−1θ2θ

−1
1 ϕm−1∞ + · · · + b1θ2θ−1

1 ϕ∞
= q−m−1 + a(−1)q−1 + O(1)
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for some constant a(−1). Let g(τ ) be defined by

g(τ ) =
∞∑

n=1

⎛

⎝
∑

d|n
χ−4(n/d)d2

⎞

⎠ qn =
∞∑

n=1
dnqn.

It is known [21] that g(τ ) is a weight 3 modular form on �0(4) with character χ−4. We
note by the basic facts about θ1, θ2 and ϕ∞ that h(τ ) vanishes at the cusps 1/2 and 0. Then
by [22, Theorem 3.1], we have

dm+1 + a(−1) = 0, i.e., dm+1 = −a(−1).

Therefore

P1,m(0) = dm+1 =
∑

d|(m+1)
χ−4((m + 1)/d)d2.

This proves the first formula. For the second one, the proof is similar by noting that

h1(τ ) := θ2θ
−1
1 P1,m(ϕ∞) = q−m−1 + C + O(q)

and

g1(τ ) = 1 + 4
∞∑

n=1

⎛

⎝
∑

d|n
χ−4(d)d2

⎞

⎠ qn

is [21] a weight 3 modular form on �0(4) with character χ−4. Then again [22, Theorem
3.1] shows that

C = 4
∑

d|(m+1)
χ−4(d)d2.

This together with (2.20) proves the second formula. 
�

Example 2.6 Let k = 1 and F (τ ) = θ2θ
−1
1 = η142

η41η
12
4

∈ M!,∞
−1 (�0(4),χ−4). Then we have

�F (τ ) = (−2iF0 + F )φ0 − 2iF3φ1 − 2iF3φi +
(−2iF2 − F1/2

)
φ1+i (2.21)

where F0, F2, F3 and F1/2 are defined as in (2.9) and (2.10). We have

F |−1

(
0 −1
1 0

)

= 32i
η(τ/2)14

η(τ/4)4η(τ )12

= 32i
(
1 + 12q1/4 + 76q2/4 + 352q3/4 + 1356q + 4600q5/4

+ 14176q6/4 + 40512q7/4 + · · · )

= 32i
(
1 + 1356q + O(q2)

)

+ 32i
(
12q1/4 + 4600q5/4 + O(q9/4)

)

+ 32i
(
76q2/4 + 14176q6/4 + O(q10/4)

)

+ 32i
(
352q3/4 + 40512q7/4 + O(q11/4)

)
,
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then

F0 = 32i
(
1 + 1356q + O(q2)

)
,

F2 = 32i
(
76q2/4 + 14176q6/4 + O(q10/4)

)

F3 = 32i
(
352q3/4 + 40512q7/4 + O(q11/4)

)
.

And

F1/2 = F |−1

(
1 0
2 1

)

= 64
(
q1/2 − 8q3/2 + 42q5/2 + O(q7/2)

)
.

From (2.21), we note that the principal part of F is e(−τ )φ0 and the constant term of the
φ0-component is c(0,φ0) = 68.

2.3 Canonical bases forM!,0
−k (�0(4),χk

−4) andM
!, 12
−k (�0(4),χk

−4)

We complete this section by giving canonical bases for the other two companions of
M!,∞

−k (�0(4),χk−4).
Let θ3(τ ), ϕ0(τ ) and ϕ1/2(τ ) be defined by

θ3 = θ3(τ ) := ϑ4
01(τ ) = η81

η42
= 1 + O(q), (2.22)

ϕ0 = ϕ0(τ ) :=
(

η4
η1

)8
= q + O(q2), (2.23)

ϕ1/2 = ϕ1/2(τ ) := η81η
16
4

η242
= q + O(q2). (2.24)

Here are some basic facts about θ3, ϕ0 and ϕ1/2:

(1) θ3(τ ) is a weight 2 modular form on �0(4) with trivial character, has a simple zero at
the cusp 0, and vanishes nowhere else;

(2) ϕ0(τ ) is a weight 0 modular form on �0(4) with trivial character, has a simple pole at
the cusp 0 and a simple zero at the cusp ∞, and vanishes nowhere else;

(3) ϕ1/2(τ ) is a weight 0 modular form on �0(4) with trivial character, has a simple pole
at the cusp 1

2 and a simple zero at the cusp ∞, and vanishes nowhere else.

Theorem 2.7 Let θ2, θ3 and ϕ0 be as defined in (2.2), (2.22) and (2.23), respectively.

(1) For k odd, the set {θ2θ− k+1
2

3 Pk,m(ϕ0)}∞m=0 where Pk,m is a monic polynomial of degree
m such that

θ2θ
− k+1

2
3 Pk,m(ϕ0)

∣
∣∣∣−k

(
0 −1
1 0

)

= q− k+1
2 −m

4 +
∞∑

n=− k−1
2

c(n)qn4 ,

is a canonical basis for M!,0
−k (�0(4),χ−4).

(2) For k even, the set {θ− k
2

3 Pk,m(ϕ0)}∞m=0 where Pk,m is a monic polynomial of degree m
such that

θ
− k

2
3 Pk,m(ϕ0)

∣∣∣
∣−k

(
0 −1
1 0

)

= q− k
2−m

4 +
∞∑

n=− k
2+1

c(n)qn4 ,

is a canonical basis for M!,0
−k (�0(4)).



Yang and Ye Res. Number Theory (2018) 4:2 Page 11 of 25 2

Theorem 2.8 Let θ2 and ϕ1/2 be as defined in (2.2) and (2.24), respectively. Then the set
{θ−k

2 Pk,m(ϕ1/2)}∞m=0 where Pk,m is a monic polynomial of degree m such that

θ−k
2 Pk,m(ϕ1/2)

∣∣
∣−k

(
1 0
2 1

)

= q− k
2−m +

∞∑

n=− k
2+1

c(n)qn,

is a canonical basis for M!, 12
−k (�0(4),χk−4).

Proofs of Theorems 2.7 and 2.8 are similar to that of Theorem 2.1, so we omit the details.

Remark 2.9 For a cusp P, denote by M!,P
−k,ρL the space of vector-valued modular forms

induced fromM!,P
−k (�0(4),χk−4) via �0(4)-lifting. We have, by (2.11),

M!,∞
−k,ρL + M!,0

−k,ρL + M!, 12
−k,ρL = M!,∞

−k,ρL ⊕ M!,0
−k,ρL ⊕ M!, 12

−k,ρL .

Clearly, M!,∞
−k,ρL + M!,0

−k,ρL + M!, 12
−k,ρL is a subspace of M

!
−k,ρL . In general, the former space

may not be equal to the latter one. We first note that every vector-valued modular form
in M!,∞

−k,ρL + M!,0
−k,ρL + M!, 12

−k,ρL must have the same component functions at φ1 and φi.
We now give an example of functions in M!−1,ρL that does not have this property. Let
F (τ ) = θ2θ

−1
1 ∈ M!,∞

−1 (�0(4),χ−4). Then as above we write the �0(4)-lifting of F (τ ) as

�F (τ ) = (−2iF0 + F )φ0 − 2iF3φ1 − 2iF3φi +
(−2iF2 − F1/2

)
φ1+i

where

Fj =
∞∑

n=0
a(4n + j)q4n+j

4 ,

F |−k

(
0 −1
1 0

)

=
∞∑

n=0
a(n)qn4

and

F1/2 = F |−1

(
1 0
2 1

)

.

By (2.13), we know that F3(τ ) ∈ M!−1(�1(4),χ ) where χ

((
a b
c d

))

= e(−b/4). Now we

do �1(4)-lifting on F3(τ ) against φ1, namely,

�F3(τ ) =
∑

γ∈�1(4)\SL2(Z)

(
F3|−1 γ

)
ρL(γ )−1φ1,

and get

�F3(τ ) = −4if0φ0 + (2F3 + 4if3)φ1 + (−4if3 − 2f1/2)φi + 4if2φ1+i

where

fj =
∑

n∈Z
n�−∞

ã(4n + j)q4n+j
4 ,
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F3|−1

(
0 −1
1 0

)

=
∑

n∈Z
n�−∞

ã(n)qn4

and

f1/2 = F3|−1

(
1 0
2 1

)

.

Now the component functions at φ1 and φi are 2F3 + 4if3 and −4if3 − 2f1/2, respectively.
We can compute and verify that they are not the same. Therefore, �F3(τ ) is not in the space
M!,∞

−k,ρL + M!,0
−k,ρL + M!, 12

−k,ρL .

3 Part II: Borcherds products on U(2, 1)
It is well-known that the vector-valued weakly modular forms construction in Part I can
be used to construct memomophic modular forms on Shimura varieties of orthogonal
type (n, 2) and unitary type (n, 1) with Borcherds product formulas and known divisors.
In this part, we focus on one special case to make it very explicitly—the Picard modular
surfaces over k = Q(i). In particular, we describe a Weyl chamber explicitly and write
down the Borcherds product expression concretely.
This part is devoted to deriving Borcherds products lifted from a vector-valuedmodular

form arising fromM!,∞
−1 (�0(4),χ−4).

3.1 Picard modular surfaces over k = Q(i)

Let (V, 〈 , 〉) be a Hermitian vector space overk of signature (2, 1) and letH = U(V ), where
U(V ) denotes the unitary group associated to V . Let VC = V ⊗k C, and

L = {w ∈ VC| 〈w,w〉 < 0}.
ThenK = L/C× is the Hermitian domain forH (R), and L is the tautological line bundle
over K. For a congruence subgroup � of H (Q), the associated Picard modular surface
X� = �\K is defined over some number field.
Given an isotropic linek� (i.e., a cusp), choose another isotropic element �′ with 〈�, �′〉 �=

0. Let V0 = (k� + k�′)⊥, and let

H = H�,�′ =
{
(τ , σ ) ∈ H × V0,C

∣
∣∣∣ Im τ >

〈σ , σ 〉
4|〈�′, �〉|2

}
.

Then the map

H → L, (τ , σ ) �→ z(τ , σ ) = 2i〈�′, �〉τ� + σ + �′ (3.1)

gives rise to an isomorphism H ∼= K. It is also a nowhere vanishing section of the line
bundle L. Using this map, we can define action of H (R) on H and automorphy factor
j(γ , τ , σ ) via the equation

γ z(τ , σ ) = j(γ , τ , σ )z(γ (τ , σ )). (3.2)

Indeed, both γ z(τ , σ ) and z(γ (τ , σ )) are in L and they become the same in K, so they are
different by a multiplication constant, namely, the automorphy factor j(τ , σ ).

Definition 3.1 Let � be a unitary modular group. A holomorphic automorphic form of
weight k andwith characterχ for� is a function g : H → C, with the following properties:
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(1) g is holomorphic onH,
(2) g(γ (τ , σ )) = j(γ ; τ , σ )kχ (γ )g(τ , σ ) for all γ ∈ �.

We remark that a holomorphic modular form g for � is automatically holomorphic at the
cusps.
Nowwemake everything concrete and explicit. First choose a basis {e1, e2, e3} ofV with

Gram matrix

J =
⎛

⎜
⎝
0 0 1
0 1 0
1 0 0

⎞

⎟
⎠

so V =⊕3
i=1 kei ∼= k3 with Hermitian form

〈x, y〉 = x1ȳ3 + x2ȳ2 + x3ȳ1 = txJ ȳ, (3.3)

and

H = H (Q) = {h ∈ GL3(k)| hJ t h̄ = J }.
We take the lattice

L = Z[i] ⊕ Z[i] ⊕ 1
2
Z[i]

(instead of the typical Z[i]3). Its Z-dual lattice is

L′ = {v ∈ V |Trk/Q
〈v, L〉 ⊂ Z} = Z[i] ⊕ 1

2
Z[i] ⊕ 1

2
Z[i]

So L′/L ∼= 1
2Z[i]/Z[i] with quadratic form Q(x) = xx̄ ∈ 1

4Z/Z, which is the same finite
quadratic module considered in Part I. Let

U(L) = {g ∈ H | gL = L}

= H ∩

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

Z[i] Z[i] 2Z[i]
Z[i] Z[i] 2Z[i]
1
2Z[i]

1
2Z[i] Z[i]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

be the stabilizer of L inH , and �L be the subgroup of U(L) which acts on the discriminant
group L′/L trivially:

�L = U(L) ∩

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝
Z[i] 2Z[i] 2Z[i]
Z[i] 1 + 2Z[i] 2Z[i]
Z[i] 2Z[i] Z[i]

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
. (3.4)

Take the cusp � = e1 and �′ = e3. Then V0 ∼= k with Hermitian form 〈x, y〉 = xȳ, and

H = {(τ , σ ) ∈ H × C| 4Im(τ ) > |σ |2}.
Moreover, one has for γ = (aij) ∈ H

γ (τ , σ ) =
(
a11τ + (2i)−1a12σ + (2i)−1a13

2ia31τ + a32σ + a33
,
2ia21τ + a22σ + a23
2ia31τ + a32σ + a33

)
.

and

j(γ , τ , σ ) = 〈γ z, �〉
〈�′, �〉 = 2iτa31 + a32σ + a33.
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Our Picard modular surface is the quotient space X�L = �L\H ofHmodulo the action of
�L.
Let P� be the stabilizer of the cusp k� in H . Then P� = N�M� with

M� = {m(a, b) = Diag(a, b, ā−1)| a ∈ k×, b ∈ k1},

N� =

⎧
⎪⎨

⎪⎩
n(b, c) =

⎛

⎜
⎝
1 −2b̄ −2bb̄ + 2ic
0 1 2b
0 0 1

⎞

⎟
⎠

∣
∣∣∣
∣∣∣
b ∈ k, c ∈ Q

⎫
⎪⎬

⎪⎭
,

where k1 = {a ∈ k|aā = 1} is the norm one group. Notice that N� is a Heisenberg group
action onH�,�′ via

n(b, c)(τ , σ ) = (τ + c + ib̄(σ + b), σ + b).

In particular

n(0, c)(τ , σ ) = (τ + c, σ ).

Let

�L,� = �L ∩ N� = {n(b, c)| b ∈ Z[i], c ∈ Z}.
Then for a holomorphic modular form f (τ , σ ) for �L, we have a Fourier–Jacobi expansion
at the cusp k�:

f (τ , σ ) =
∑

n≥0
fn(σ )qn. (3.5)

3.2 The hermitian space V as a quadratic space

As mentioned in the previous subsection, the hermitian space V can be viewed as a
quadratic space VQ of signature (4,2) associated with bilinear form induced from the
hermitian form:

(x, y) = Trk/Q
〈x, y〉.

Then the lattice L can be considered as a quadratic Z-lattice in VQ. Denote by

SO(VQ) = {g ∈ SL(VQ)| (gx, gy) = (x, y) for all x, y ∈ VQ}
the special orthogonal group of VQ and its set of real points as SO(VQ)(R) ∼= SO(4, 2). A
model for the symmetric domain of SO(VQ)(R) is the Grassmannian of two-dimensional
negative definite subspaces ofVQ, denoted by GrO. It can be realized as a tube domainHO
as follows. Denote by VQ(C) the complex quadratic space VQ ⊗Q C with (·, ·) extended to
a C-valued bilinear form.
Nowwe view L as aZ-lattice. Let e1 ∈ L be a primitive isotropic lattice vector and choose

an isotropic dual vector e2 ∈ L′ with (e1, e2) = 1. Denote byK the LorentzianZ-sublattice
K = L ∩ e⊥1 ∩ e⊥2 with respect to (·, ·). The tube domain model HO is one of the the two
connected components of the following subset of K ⊗Z C

{Z = X + iY |X, Y ∈ K ⊗Z R, Q(Y ) < 0}.
Recall that � = e1 and �′ = e3. We define

e1 = �, e2 = 1̂
2
�′, e3 = −î�, e4 = − î

2
�′
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wherewe denote by μ̂ the endomorphismofVQ(R) induced from the scalarmultiplication
with μ. Then we can check that {e1, e2, e3, e4} is a basis for (Z[i]� + Z[i]�′) ⊗Z Q and we
can see that K ⊗Z R = ((Qe3 + Qe4) ⊗Z R) ⊕ (V0 ⊗Z R). Thus we can identify Y with
y1e3 + y2e4 + σ ∈ K ⊗Z R. Now denote by C the set of Y = y1e3 + y2e4 + σ with
y1y2 + Q(σ ) < 0, y1 < 0 and y2 > 0. We can fixHO as the component for which Y ∈ C.
Therefore,HO = K ⊗Z R + iC.
In addition, the tube domain HO can be mapped biholomorphically to any one of the

two connected components of a negative cone of P1(VQ)(C) given by

{[ZL] ∈ P
1(VQ)(C)| (ZL, ZL) = 0, (ZL, Z̄L) < 0}.

We fix this component and denote it by KO. For each [ZL], we can uniquely represent it
as

ZL = e2 − q(Z)e1 + Z

with Z ∈ HO.

3.3 Embedding ofH intoHO

As in [15, Section 4], we can embedH intoHO via

(τ , σ ) → ι(τ , σ ) = −τe3 + ie4 + z(σ ) (3.6)

where

z(σ ) = 1̂
2
σ + i

(

− î
2

)

σ . (3.7)

Similarly, KU can be embedded into KO through the identifications between KU andH,
and between KO andHO. Namely,

z = �′ + 2iτ� + σ → ZL = −iτe1 + e2 − τe3 + ie4 + z(σ ). (3.8)

3.4 Weyl chambers of K ⊗Z R

In Theorem 2.1 (1), we have shown that F1,m = q−m + O(1) form ≥ 1, form a canonical
basis forM!,∞

−1 (�0(4),χ−4). Therefore, to study the Borcherds product lifted fromM!,∞
−1,ρL ,

it suffices to start with F1,m. Since we only deal with weight −1 in the rest of this paper,
we will simply write Fm = F1,m, and �Fm = �F1,m.
For general definitions of the following, we refer the reader to [1, Chapter 3.1]. For

κ ∈ K with q(κ) > 0, denote by κ⊥ the orthogonal complement of κ in K ⊗Z R. Denote
byDK the Grassmannian of negative 1-lines of K ⊗Z R, which can be realized as

DK = {Rw ⊂ KR| q(w) < 0}
∼= {w = y1e3 + e4 + (y3 + iy4)| yi ∈ R, q(w) < 0}.

Then by considering the Grassmannian of negative 1-lines of κ⊥, it corresponds to a
codimension 1 sub-manifold of the Grassmannian DK of K ⊗Z R.
In our case, a Heegner divisor of index (m, 0), HK (m, 0), is a locally finite union of

codimension 1 sub-manifolds ofDK , namely,

HK (m, 0) = {z ∈ DK | ∃κ ∈ K with q(κ) = m and (z, κ) = 0}
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Let �Fm(τ ) be the vector-valuedmodular form arising from Fm. It is known by Theorem 2.5
that the principal part of �Fm(τ ) is q−mφ0. The Weyl chambers attached to �Fm(τ ) are the
connected componentsWm of

DK − HK (m, 0).

Fix a Weyl chamber Wm of DK , we can also define the corresponding Weyl chambers of
K ⊗Z R andH by

Wm,K = {w ∈ K ⊗Z R| Rw ∈ Wm},

Wm,U =
{

(τ , σ ) ∈ H
∣
∣∣∣
∣
Im(ι(τ , σ )) = − Im τe3 + e4 − î

2
σ ∈ Wm,K

}

,

respectively. In the following lemma, we give an explicit description of theWeyl chamber
that we use to construct Borcherds product in Theorem 3.5.

Lemma 3.2 (1) Let

Wm =

⎧
⎪⎪⎨

⎪⎪⎩
y1e3 + e4 + (y3 + iy4) ∈ DK

∣∣∣∣∣∣∣∣

y1<r2+s2−m+2ry3+2sy4 ∀ r, s∈Z,
1+2ty3+2hy4>0 ∀ t, h∈Z, t2+h2=m,

ty3+hy4>0, ∀ t, h∈Z, t2+h2=m, t>0,
y4>0 if m is a square.

⎫
⎪⎪⎬

⎪⎪⎭

⊂

⎧
⎪⎪⎨

⎪⎪⎩
y1e3 + e4 + (y3 + iy4) ∈ DK

∣∣∣∣∣∣∣∣

k2y1<−k1+2k3y3+2k4y4 ∀ ki∈Z, k2>0, k1k2+k23+k24=m,

k+2ty3+2hy4>0 ∀ k, t, h∈Z, k>0, t2+h2=m,

ty3+hy4>0, ∀ t, h∈Z, t2+h2=m, t>0,
y4>0 if m is a square

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.9)

Then Wm is a Weyl chamber containing e3.
(2) Let

Km =
{

λ = λ1e3 − λ2e4 + 1
2
(λ3 + iλ4) ∈ K ′

∣∣∣
∣∣

(λ,Wm)>0,
(Q(λ)=m with λ3 ,λ4∈2Z)

or (Q(λ)≤0)

}

where (λ,Wm) > 0means that (λ, w) > 0 for all w ∈ Wm. Then

Km =
⎧
⎨

⎩
λ = λ1e3 − λ2e4 + 1

2
(λ3 + iλ4)

∣∣
∣∣∣
∣

λ1 , λ2 , λ3 , λ4∈Z,
λ2>0,

or (λ2=0 and λ1>0),
or (λ2=λ1=0 and λ3>0),

or (λ2=λ1=λ3=0 and λ4>0)

⎫
⎬

⎭
.

Proof For Assertion (1), it is clear that Wm contains e3 since the set of (y3, y4 , y1) deter-
mined by the inequalities inWm contains y1 = −∞. We only need to showWm is actually
a Weyl chamber.
Write κ = k1e3 + k2e4 + k3 + ik4 ∈ K with ki ∈ Z. Since (−κ)⊥ = κ⊥, we can assume

k2 ≥ 0. By the definition of Weyl chamberWm, we can see that a Weyl chamberWm can
be viewed as a connected component of R3 cut out by the planes

k2y1 + k1 + 2k3y3 + 2k4y4 = 0

for all k1, . . . , k4 ∈ Z with k2 ≥ 0 and k1k2 + k23 + k24 = m.
When k2 = 0 andm is representable as a sum of two squares, then we have planes

k1 + 2k3y3 + 2k4y4 = 0
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perpendicularly passing through the (y3, y4)-plane. In this case, the connected components
are determined by the connected components of the y3 − y4 plane cut out by the lines

k1 + 2k3y3 + 2k4y4 = 0,

and it is easy to find that one of the connected components C1 can be identified as
⎧
⎨

⎩
(y3, y4) ∈ R

2

∣∣
∣∣∣
∣

1+2ty3+2hy4>0 ∀ t, h∈Z, t2+h2=m,

ty3+hy4>0, ∀ t, h∈Z, t2+h2=m, t>0,
y4>0 ifm is a square

⎫
⎬

⎭

which is a subset of
⎧
⎨

⎩
(y3, y4) ∈ R

2

∣∣∣
∣∣∣

k+2ty3+2hy4>0 ∀ k, t, h∈Z, k>0, t2+h2=m,

ty3+hy4>0, ∀ t, h∈Z, t2+h2=m, t>0,
y4>0 ifm is a square

⎫
⎬

⎭
.

When k2 > 0, with the aid of MAPLE, we can check that there is a connected component
C2 of R3 covered by

y1 = r2 + s2 − m + 2ry3 + 2sy4

for r, s ∈ Z. Such a connected component contains y1 < −m, and all the other planes

k2y1 = −k1 + 2k3y3 + 2k4y4

for k1, . . . , k4 ∈ Z with k2 > 0 and k1k2 + k23 + k24 = m. In conclusion,Wm = C1 ∩ C2 is a
connected component of R3 cut out by the planes

k2y1 + k1 + 2k3y3 + 2k4y4 = 0

for all k1, . . . , k4 ∈ Zwith k2 ≥ 0 and k1k2+k23 +k24 = m, and thusWm is aWeyl chamber.
For the casem = 1, we can visualize it by a 3D-plot. See Fig. 1.
Now let us prove Assertion (2).

(i) Suppose that Q(λ) = m and λ3, λ4 ∈ 2Z which imply that λ ∈ K . By (3.9), we note
that y1e3 + e4 + (y3 + iy4) ∈ Wm implies that

k2y1 < −k1 + 2k3y3 + 2k4y4

for all ki ∈ Z with k2 > 0 and k1k2 + k23 + k24 = m, which is equivalent to

k2y1 + k1 + 2k3y3 + 2k4y4 > 0

for all ki ∈ Z with k2 < 0 and k1k2 + k23 + k24 = m. Therefore, when λ2 �= 0 and
Q(λ) = m, that is, λ1(−λ2) + 1

4 (λ
2
3 + λ24) = m, (λ,Wm) > 0 if and only if −λ2 < 0,

that is, λ2 > 0. Similarly, by the other conditions given in (3.9), we can conclude
that when Q(λ) = m, (λ,Wm) > 0 if and only if λ2 < 0, or (λ2 = 0 and λ1 > 0), or
(λ2 = λ1 = 0 and λ3 > 0), or (λ2 = λ1 = λ3 = 0 and λ4 > 0).

(ii) Now suppose that Q(λ) ≤ 0, that is, λ1λ2 + 1
4 (λ

2
3 + λ24) ≤ 0. By (3.9), we know that

y1 < r2 + s2 − m + 2ry3 + 2sy4

for all r, s ∈ Z. By [1, Lemma 3.2], it is known that if (λ, w0) > 0 for a w0 ∈ Wm, then
(λ,Wm) > 0. Thus (λ,Wm) > 0 if and only if λ2 > 0. When λ2 = 0, since Q(λ) ≤ 0,
then λ3 = λ4 = 0, and thus (λ, w) = λ1 for w ∈ Wm. This implies that (λ,Wm) > 0
if and only if λ1 > 0 when λ2 = 0. 
�
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Fig. 1 A 3D-plot for the Weyl chamberW1

3.5 TheWeyl vector for �Fm
In this subsection, we aim to compute the Weyl vector ρ(Wm, �Fm). We first recall a nice
summary of the explicit computations of Weyl vector given in [11, Subsection 2.1] (also
see [23, Thm. 10.4] for original definitions).
Let L be a Z-lattice with quadratic form Q(·) of a quadratic space V of type (n, 2) and

L′ be its dual lattice. Take �L ∈ L and �′
L ∈ L′ to be such that Q(�L) = Q(�′

L) = 0 and
(�L, �′

L) = 1. Assume that (�L, L) = NLZ for some unique positive integer and choose
ξ ∈ L with (�L, ξ ) = NL. Let K = L ∩ (Q�L + Q�′

L)⊥ and let

L′
0 = {x ∈ L′| (�L, x) ≡ 0 (mod NL)} ⊂ L′.

Then there is a projection

p : L′
0 → K ′, p(x) = xK + (x, �L)

NL
ξK ,

where xK and ξK are the orthogonal projections of x, ξ ∈ V toKQ = K ⊗ZQ. So it induces
a projection from L′

0/L to K ′/K . Next, for
�f =
∑

fμφμ =
∑

c(m,φμ)qmφμ ∈ M!
1− n

2 ,ρL
,

define
�fK =

∑

λ∈K ′/K
fλφλ,K =

∑
cK (m, λ)qmφλ,K ,

where φλ,K is the basis element associated to λ of C[K ′/K ], and

fλ =
∑

μ∈L′
0/L

p(μ)=λ

fμ.

For a Weyl chamber W , take �K ∈ K ∩ W , where W denotes the closure of the Weyl
chamber W , and �′

K ∈ K ′ with Q(�K ) = Q(�′
K ) = 0 and (�K , �′

K ) = 1, and let P =



Yang and Ye Res. Number Theory (2018) 4:2 Page 19 of 25 2

K ∩ (Q�K + Q�′
K )

⊥, which is positive definite of rank n − 2. Similar to the projection p
fromL′

0/L toK ′/K , one also has a projection, also denoted byp, fromK ′
0/K toP′/P defined

in the same way. Similarly, we have a weakly holomorphic modular form �fP induced by
�fK . Then we can compute and express the Weyl vector ρ(W, �f ) associated toW and �f as

ρ(W, �f ) = ρ�K �K + ρ�′
K
�′
K + ρP,

where

ρ�K = −1
4
∑

λ∈K ′
0/K

p(λ)=0+P

cK (0, λ)B2((λ, �′
K ))

− 1
2
∑

γ∈P′
(γ ,W )>0

∑

λ∈K ′
0/K

p(λ)=γ+P

cK (−Q(γ ), λ)B2((λ, �′
K )), (3.10)

B2(x) := {x}2 − {x} + 1
6 is the second Bernoulli polynomial, {x} is the fractional part of x,

ρ�′
K

= constant term of 〈�θP, �fP〉E2/24,
�θP :=

∑

γ∈P′/P

∑

λ∈γ+P
e(Q(λ)τ )φγ , (3.11)

E2 := 1 − 24
∑∞

n=1 σ1(n)qn is the holomorphic Eisenstein series of weight 2,

ρP = −1
2
∑

γ∈P′∩K ′
(γ ,W )>0

cK (−Q(γ ), γ )γ . (3.12)

Now for our case, we set L = Z[i] ⊕ Z[i] ⊕ 1
2Z[i], �L = e1, �′

L = e2, �f = �Fm,W = Wm,
�K = e3 and �′

K = e4, where e1, e2, e3 and e4 are defined as in Subsection 3.2. It is easy to
check that K = Ze3 ⊕ Ze4 ⊕ P and P = Z[i]e2 where e2 is defined as in Subsection 3.1.
Direct calculations show that L′

0 = L′, K ′
0 = K ′ and L′/L ∼= K ′/K ∼= P′/P. Write

�Fm =
∑

μ∈L′/L
Fm,μφμ =

∑

μ∈L′/L

∑

n∈Q
c(n,μ)qnφμ.

Then under L′/L ∼= K ′/K ∼= P′/P, direct calculations show that

�Fm,K = �Fm,P = �Fm.
Note that by Theorem 2.5, for n > 0, cK (−n, λ) �= 0 if and only if cK (−n, λ) = cK (−m, 0),
which equals 1. Also, we can compute and express �θP as

�θP =
⎛

⎝
∑

r,s∈Z
e
((
r2 + s2

)
τ
)
⎞

⎠φ0 +
⎛

⎝
∑

r,s∈Z
e
((

1
4

+ r + r2 + s2
)

τ

)⎞

⎠φ1

+
⎛

⎝
∑

r,s∈Z
e
((

r2 + s2 + s + 1
4

)
τ

)⎞

⎠φi +
⎛

⎝
∑

r,s∈Z
e
((

1
2

+ r + s + r2 + s2
)

τ

)⎞

⎠φ1+i.

(3.13)

Now let us first compute ρe3 . Since K ′
0/K = K ′/K ∼= P′/P, then λ ∈ K ′

0/K such that
p(λ) = 0 + P if and only if λ = 0 + K . In addition, as we point out above that for
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n > 0, cK (−n, λ) �= 0 if and only if cK (−n, λ) = cK (−m, 0) = 1, then we can see that
cK (−Q(γ ), λ) = 1 if and only if γ ∈ P withQ(γ ) = m, i.e., γ = (r + si)e2 with r, s ∈ Z and
r2 + s2 = m. In addition, by Lemma 3.9, to have (γ ,Wm) > 0, we must have (r > 0) or
(r = 0 and s > 0). Now by the definition of ρe3 and the above analysis, we have

ρe3 = − 1
24

cK (0, 0) − 1
2

∑

r2+s2=m
r>0

or (r=0 and s>0)

1
6

= −1
6
∑

d|m
(16χ−4(m/d) + χ−4(d)) d2 − 1

6
σχ−4 (m),

where σχ−4 (m) = ∑d|m χ−4(d) follows from the well known fact (see, e.g., [24, Thm.
3.2.1]) that the number of integral solutions of r2 + s2 = m is given by 4σχ−4 (m).
For the e4-component ρe4 , we first note that the non-φ0-component functions of θP

have no constant terms, and the non-φ0-component functions of �FP have no negative
power terms. In addition, the φ0-component function of θP is

∑

r,s∈Z
e
(
(r2 + s2)τ

) = 1 + 4
∞∑

n=1
σχ−4 (n)qn,

and the φ0-component function of �FP is q−m + c(0, 0) + O(q). Therefore, the constant
term of 〈�θP, �fP〉E2 is the constant term of
(

1 + 4
∞∑

n=1
σχ−4 (n)qn

)
(
q−m + c(0, 0) + O(q)

)
(

1 − 24
∞∑

n=1
σ1(n)qn

)

,

which is

4σχ−4 (m) − 24σ1(m) − 96

⎛

⎜⎜
⎝
∑

k+l=m
k,l≥1

σχ−4 (k)σ1(l)

⎞

⎟⎟
⎠+ c(0, 0).

Thus by Theorem 2.5, we have

ρe4 = 1
6

[

σχ−4 (m) − 6σ1(m) − 24

⎛

⎜⎜
⎝
∑

k+l=m
k,l≥1

σχ−4 (k)σ1(l)

⎞

⎟⎟
⎠

+
∑

d|m
(16χ−4(m/d) + χ−4(d)) d2

]

.

For ρ, notice that for n > 0, cK (−n, λ) �= 0 if and only if γ ∈ P with Q(γ ) = m, i.e.,
γ = (r + si)e2 with r, s ∈ Z and r2 + s2 = m. Notice also that (γ ,Wm) > 0 implies (r > 0)
or (r = 0 and s > 0). So by similar calculations, we have

ρP = −1
2

∑

r2+s2=m
r>0

or (r=0 and s>0)

(r + si)e2.

Summing up, we conclude with the following proposition.
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Proposition 3.3 Let �Fm be defined as in Subsection 3.4, and let Wm be the Weyl chamber
given by (3.9). Then the Weyl vector associated to the Weyl chamber Wm and the weakly
holomorphic modular form �Fm is

ρ(Wm, �Fm) = ρe3e3 + ρe4e4 + ρP,

where

ρe3 = −1
6
∑

d|m
(16χ−4(m/d) + χ−4(d)) d2 − 1

24
σχ−4 (m),

ρe4 = 1
6

[

σχ−4 (m) − 6σ1(m) − 24

⎛

⎜⎜
⎝
∑

k+l=m
k,l≥1

σχ−4 (k)σ1(l)

⎞

⎟⎟
⎠

+
∑

d|m
(16χ−4(m/d) + χ−4(d)) d2

]

,

ρP = −1
2

∑

r2+s2=m
r>0

or (r=0 and s>0)

(r + si)e2,

and σχ−4 (m) =∑d|m χ−4(d).

3.6 Heegner divisors for �L

Let λ ∈ L′ be a lattice vector with positive norm, i.e., 〈λ, λ〉 > 0. The orthogonal com-
plement of λ in KU is a closed analytic subset of comdimension 1, which we denote as
follows

H(λ) = {[z] ∈ KU | 〈z, λ〉 = 0}.
By identification between KU and H, H(λ) can also be considered as a closed analytic
subset of H, and we call such set a prime Heegner divisor on H. Given β ∈ L′/L and
m ∈ Z>0, a Heegner divisor of index (m,β) inH is defined as the locally finite sum

H(m,β) =
∑

λ∈β+L
Q(λ)=m

H(λ).

The associated Heegner divisor in X�L = �L\H is Z(m,β) = �L\H(m,β).

3.7 Borcherds products

In this section, we give a family of new Borcherds products explicitly by using the results
of Hofmann [15, Thms . 4, 5 andCor. 1].We first summarizeHofmann’s results as follows.

Theorem 3.4 (Hofmann) Let F be an imaginary quadratic field. Let L be an even her-
mitian lattice of signature (m, 1) with m ≥ 1, and � ∈ L a primitive isotropic vector. Let
�′ ∈ L′ an isotropic vector with 〈�, �′〉 �= 0. Further assume that L is the direct sum of a
hyperbolic plane H ∼= OF ⊕ ∂−1

F
and a definite part D with 〈D,H〉 = 0.

Given a weakly holomorphic modular form f ∈ M!
1−m,ρL with Fourier coefficients c(n,β)

satisfying c(n,β) ∈ Z for n < 0, there is a meromorphic function �(τ , σ ; f ) on H with the
following properties:
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(1) �(τ , σ ; f ) is an automorphic form of weight c(0,φ0)/2 for �L with some multiplier
system χ of finite order.

(2) The zeros and poles of �(τ , σ ; f ) lie on Heegner divisors. The divisor of �(τ , σ ; f ) on
X�L = �L\H is given by

div (�(τ , σ ; f )) = 1
2
∑

β∈L′/L

∑

n∈Z−Q(β)
n>0

c(−n,φβ )H(n,β).

The multiplicities of H(n,β) are 2 if 2β = 0 in L′/L, and 1 otherwise.
(3) For aWeyl chamberW whose closure contains the cuspQe3,�(τ , σ ; f ) has an infinite

product expansion of the form

�(τ , σ ; f ) = Ce
( 〈z, ρ(W, f )〉

〈�, �′〉
) ∏

λ∈K ′
(λ,W )>0

[
1 − e

( 〈z, λ〉
〈�, �′〉

)]c(−Q(λ),λ)
,

where z = z(τ , σ ) = �′ + δ〈�, �′〉τ� + σ , δ is the square root of the discriminant of
F, the constant C has absolute value 1 and ρ(W, f ) is the Weyl vector attached to W
and f .

(4) The lifting is multiplicative: �(τ , σ ; f + g) = �(τ , σ ; f )�(τ , σ ; g).
(5) Let W be a Weyl chamber such that the cusp corresponding to � is contained in the

closure of W . If this cusp is neither a pole nor a zero of �(τ , σ ; f ), then we have

lim
τ→∞ �(τ , σ ; f ) = Ce

(
ρ(W, f )�

) ∏

λ∈K ′
λ= 1

2 κδ�

κ∈Q>0

(
1 − e

(
−1
2
κδ̄

))c(0,λ)

where ρ(W, f )� denotes the complex conjugate of the �-component of the Weyl vector
ρ(W, f ).

By specializing Theorem 3.4 in our case, we obtain the main result of this note.

Theorem 3.5 Let L = Z[i] ⊕ Z[i] ⊕ 1
2Z[i] with respect to the standard basis over Z[i]

with hermitian form defined in (3.3). We set � = (1, 0, 0) and �′ = (0, 0, 1). Let �Fm
be the vector-valued modular form arising from Fm = θ2θ

−1
1 P1,m−1(ϕ∞) and denote by

c(n,φμ) the Fourier coefficient of index (n,φμ) of �Fm. Then there is a meromorphic function
�(τ , σ ; Fm) = �(τ , σ ; �Fm) onH with the following properties:

(1) �(τ , σ ; �Fm) is an automorphic form of weight

32
∑

d|m
χ−4(n/d)d2 + 2

∑

d|m
χ−4(d)d2

for �L, with some multiplier system χ of finite order.
(2) The zeros and poles of �(τ , σ ; �Fm) lie on Heegner divisors. The divisor of �(τ , σ ; �Fm)

on X�L = �L\H is given by

div(�(τ , σ ; �Fm)) = Z(m, 0) = �L\H(m, 0),
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where

H(m, 0) =
∑

(r1 ,s1 ,r2 ,s2 ,r3 ,s3)∈Z6

r1r3+s1s3+r22+s22=m

{
(τ , σ ) ∈ H

∣∣∣
∣
r1+2r2Re σ+2s2 Im σ+s3Re τ−r3 Im τ=0,

s1+2r2 Im σ−2s2Re σ+s3 Im τ+r3Re τ=0

}
.

(3) For the Weyl chamber Wm described in (3.9), �(τ , σ ; �Fm) has an infinite product
expansion near the cusp Qe3 (precisely, when (τ , σ ) ∈ Wm,U with Im τ sufficiently
large):

�(τ , σ ; Fm) = A1(τ , σ )A2(σ )A3(σ )A4(σ )A5(τ , σ ), (3.14)

where

(i) A1(τ , σ ) = e(iρe3 − ρe4τ + ρ̄σ )

where ρe3 , ρe4 and ρ are defined as in Proposition 3.3,
(ii)

A2(σ ) =
⎧
⎨

⎩

[
1 − e

(−iσ
√
m
)]

if m is a square,

1 otherwise,

(iii) A3(σ ) =
∏

(k3 ,k4)∈Z2
>0

k23+k24=m

[
1 − e (σ (k3 + ik4))

][
1 − e (σ (k3 − ik4))

]
,

(iv)
A4(σ ) =

∏

n3 ,n4∈Z
n23+n24=m

∏

n2∈Z>0

[
1 − e(in2)e (σ (n3 − in4))

]

×
∏

n2∈Z>0

(1 − e(in2))c(0,0)

with

c(0, 0) = c(0,φ0) =
∑

d|m
(64χ−4(m/d) + 4χ−4(d)) d2,

(v) A5(τ , σ ) =
∏

(n1 ,n2 ,n3 ,n4)∈Z4
n1>0

[
1 − e

(
n1τ + σ

(n3
2

− i
n4
2

)
+ in2

)]c(n1n2− 1
4 (n

2
3+n24),φ�n)

with �n = n2e3 − n1e4 + 1
2 (n3 + in4).

(4) If the cusp corresponding to � is neither a pole nor a zero of �(τ , σ ; �Fm), then we have

lim
τ→i∞ �(τ , σ ; �Fm) = e(iρe3 )

∞∏

k=1
(1 − e(ki))c(0,φ0)

where

ρe3 = −1
6
∑

d|m
(16χ−4(m/d) + χ−4(d)) d2 − 1

24
σχ4 (m)
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is defined as in Proposition 3.3, and

c(0,φ0) =
∑

d|m
(64χ−4(m/d) + 4χ−4(d)) d2

is defined as in Theorem 2.5.

Proof Assertion (1) follows from Theorem 2.5 and Theorem 3.4 (1). Assertion (2) follows
directly from Theorem 3.4 (2).
Then by Theorem 3.4 (3) together with Lemma 3.2 and Proposition 3.3, we have that

�(τ , σ ; �Fm) has the following infinite product expansion near the cusp Qe3

ψ(τ , σ ; �Fm)
= e(iρe3 − ρe4τ + ρ̄σ )

×
∏

(λ1 ,λ2 ,λ3 ,λ4)∈Z4
λ2>0,

or λ2=0 and λ1>0,
or λ2=λ1=0 and λ3>0,

or λ2=λ1=λ3=0 and λ4>0.

[
1 − e

(
λ2τ + σ

(
λ3
2

− i
λ4
2

)
+ iλ1

)]c
(
λ1λ2− 1

4 (λ
2
3+λ24),φλ

)

where λ = λ1e3 − λ2e4 + 1
2 (λ3 + iλ4), and ρe3 , ρe4 and ρ are given as in Proposition 3.3.

We first set A1(τ , σ ) = e(iρe3 − ρe4τ + ρ̄σ ). Then by decomposing the infinite product
according to the four cases in its product index set, we can easily rewrite it as (3.14).
Finally, for Assertion (4), we first note that in our case, K ′ = Zi ⊕ Z[i] ⊕ 1

2Zi and
δ = 2i, then λ ∈ K ′ and λ = 1

2κδ� = κi� with κ ∈ Q>0 imply that κ ∈ Z>0 and
c(0, λ) = c(0,φ0). Together with the Weyl vector attached to Wm and �Fm shown in
Subsection 3.5, Theorem 3.4 (5) proves Assertion (4). 
�
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