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1 Introduction

In 1998, Borcherds developed a new method to produce meromorphic modular forms
on an orthogonal Shimura variety from weakly holomorphic classical modular forms via
regularized thetaliftings. These meromorphic modular forms have two distinct properties.
The first one is the so-called Borcherds product expansion at a cusp of the Shimura
variety—his original motivation to prove the Moonshine conjecture. The second is that
the divisor of these modular forms are known to be a linear combination of special divisors
dictated by the principal part of the input weakly holomorphic forms. The second feature
has been extended to produce so-called automorphic green functions for special divisors
using harmonic Maass forms via regularized theta lifting by Bruinier [1] and Bruinier-
Funke [2], which turned out to be very useful to generalization of the well-known Gross—
Zagier formula [3] and the beautiful Gross—Zagier factorization formula of singular moduli
[4] to Shimura varieties of orthogonal type (#, 2) and unitary type (#, 1) (see for example [5—
11]). On the other hand, the Borcherds product expansion and in particular its integral
structure is essential to prove modularity of some generating functions of arithmetic
divisors on these Shimura varieties [12,13]. Borcherds products are also closely related to
Mock theta functions (see for example [14] and references there).

We should mention that the analogue of the Borcherds product to unitary Shimura
varieties of type (n, 1) has been worked out by Hofmann [15] (see also [12]). The Borcherds
product expansion in the unitary case is a little more complicated as it is a Fourier—Jacobi
expansion rather than Fourier expansion; the coefficients are theta functions rather than
numbers. The purpose of this note is to give some explicit examples of these Borcherds
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product expansion in concrete term. For this reason, we focus on the Picard modular
surface Xr, = I';\'H associated to the Hermitian lattice L = Z[i] ® Z[i] & %Z[i] with

Hermitian form
(% y) = x193 + %391 + X%2)2.
Here
H ={(z,0) € H x C|4Im(7) > |o]?},

and I'; is a subgroup of U(L) defined by (3.4). Our inputs are weakly holomorphic modular
forms for I'g(4) of weight —1, character x_4 := (i) which have poles only at the cusp
00, which we denote by M!f]f([‘o(él), xk 4) with k = 1. Our first result (Theorem 2.1) is to
give a canonical basis Fy,, (m > 1) for the infinitely dimensional vector space for every
k > 1. The even k case was given by Haddock and Jenkins in [16] in a slightly different
fashion. Similar method can be applied to yield a canonical basis for the space of weakly
holomorphic forms of ['g(4) with weight —k, character x* 4» and having poles only at the
cusp O (resp. %).

Next, we use a standard induction procedure to produce vector-valued weakly holo-
morphic modular forms for SLy(Z) using our lattice L which will be used to construct
Picard modular forms on U(2, 1) (described above). Although the resulting vector-valued
modular forms for SLy(Z) from the three different scalar valued spaces M !’_1;((1*0 (4), x* o)
P = 00,0, % are linearly independent, they don’t generate the whole space. This concludes
Part I of our note, which should be of independent interest.

In Part II, we focus on the unitary group U(2, 1) associated to the above Hermitian form
and give explicit Borcherds product expansion of the Picard modular forms constructed
from F,;,, = F1,u. The delicate part is to choose a proper Weyl chamber, which is a
dimensional 3 real manifold and described it explicitly and carefully. Our main formula is
Theorem 3.5. We remark that the same method also applies to high dimensional unitary
Shimura varieties of unitary type (n, 1) using forms in M '111 A(Co(4), x , 4) where P is a cusp
for I'g(4). We restrict to U(2, 1) for being as explicit as possible.

2 Part l: vector-valued modular forms

In this part, we derive a canonical basis for the space M!f,f(l"o(él), xk 4) for any integer
k > 0, and investigate the properties of the vector-valued modular forms arising from
M I’_Olf(Fo(éL), xk 4)- For completeness, we will also give canonical bases for M I’_Ok(Fo(él-), xk )

L1
and M3 (To(4), x¥,).

2.1 A canonical basis for M!’_°,f(l'o(4), x‘i4)

Let x_4(-) = (_—4) be the Kronecker symbol modulo 4. Recall that X((4) has 3 cusps,
represented by oo, 0, and % For each cusp P, let M!;i(Fo(ZL), xk 4) denote the space of
weakly holomorphic modular forms, which are holomorphic everywhere except at the
cusp P, of weight —k on I'g(4) with character x* 4 Wewill focus mainly on the cusp oo and
will remark on other cusps (very similar) in the end. We will also denote M* «(To(4), x k 2)

for the space of weakly holomorphic modular forms for I'g(4) of weight —k and character

Xf4-
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Let T be a complex number with positive imaginary part, and set ¢ = e(tr) = €277, and

qr = e?™%/7_ The Dedekind eta function is defined by
o0
n(r) =q"*]1—-q"
n=1

Throughout this paper, we write 1, for n(mt). The well known Jacobi theta functions are

defined by
o0 ) o0 ) o) (n+l)2
Yoo = Y 4%, Ya@®= Y (-9, S =Y q" .
n=-—00 n=—00 n=—00
Now we define three functions as follows.
L ’72 2
01 = 01(v) = —0(r) = 4 = q+ 0(q"), (2.1)
16 15
plo
62 = 62(1) := Vgp(v) = 5 = 1+ 0(q), (2.2)
un
m 8
Poo = Poo(T) 1= (a) =q ' +0(1). (2.3)

Here are some basic facts [16] about the functions 61, 8 and @oo.

(1) 61(r) is a holomorphic modular form of weight 2 on I'g(4) with trivial character, has
a simple zero at the cusp 0o, and vanishes nowhere else.

(2) 6(7) is a holomorphic modular form of weight 1 on I'g(4) with character x_4, has a
zero of order % at the irregular cusp %, and vanishes nowhere else.

(3) @oo(7) is @ modular form of weight 0 on I'y(4) with trivial character, has exactly one
simple pole at the cusp co and a simple zero at the cusp 0.

The following is a variant of [16] where the case even k has been treated by Haddock
and Jenkins. We should mention that similar results for the space of weakly holomorphic
modular forms for SLy(Z) were first obtained in [17] by Duke and Jenkins.

Theorem 2.1 (1) For k > 1 odd, there is a (canonical) basis Fy,, (m > 1) of
M’;OIS(FO(KL), X—a) whose Fourier expansion has the following form:

k+1
Frm = q_%""“ + Z c(n)q".

(2) Fork > 1even, there is a (canonical) basis Fy.,, (m > 1) ofM!fko(Fo(4)) whose Fourier
expansion has the following form:

Fon=a 2"+ Y g,

n=—%+1

Proof of Theorem 2.1 The proof is similar to those given in [17] and [16], and we include
it for completeness. We prove (1) first. Notice that X((4) has no elliptic points [18, Section
39].ForF € M!’_OIS(FO(AL), X—4), the valence formula for I'g(4) asserts that

A
" ordu(F) + ordso(F) + ordo(F) + ordi o(F) = —3.
zeTo(@\H
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This implies ord;2F > % (1/2 is the unique irregular cusp), ordeo(F) < —k%l. This
implies the uniqueness of the basis {Fy ,, } if it exists. We prove the existence by inductively

constructing a sequence of monic polynomials Py, (x) of degree m (m > 0) such that
k1

Frmi1 = 020, > Prm(¢oo) give the basis we seek, i.e., with the following property

kt1 ]

-l kil
Fimi1 =020] 2 Peml(poc) =q~ 2 "+ > clmq". (2.4)

k+1

(1) Notice that 6,0, * € M"%(T'o(4), x—a) with

_ k£l k+1
6260, * =q7%+ Z c(n)q".

So we can and will first define Py = 1.
(2) For m > 1, assume that Py ,,_;(x) € C[x] is constructed with degree m — 1, leading
coefficient 1, and the property

k+1

—kg1 k1
Fim=020; * Prm1(po) =q~ 2 "4 Y~ cln)g”.

Then it is easy to see

_ktl
Fympoo =q~ 2 "+ Y dng".

n>—%—m
Let
_k+1
2
Pk,m = ka,m_l — Z d(l’l)Pk)_n,
n= k%l—m+1
and

k+1

Frmi1 = 020] % Pry(@o0).

Then Fy 41 satisfies (2.4). By induction, we prove the existence of the basis {Fj,},
and (1).

The proof of (2) is similar and is left to the reader. In this case, the basis {Fy 11}, m > 0,
has the form

_k _k_ ad
Fimy1 = 91 > Qk,m((/)oo) =q "+ Z c(m)q" (2.5)
n:—%—o—l
for a unique monic polynomial Q,, of degree m. ]

The following corollary follows directly from the proof of Theorem 2.1(1).

Corollary 2.2 Every weakly holomorphic modular form f(t) € M!’_Olf(l"o(ll), xk 4) With k
odd, vanishes at the cusp 1/2.
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2.2 Vector-valued modular form arising from M!f:(ro(4)/ x’i4)

Let L be an even lattice over Z with symmetric non-degenerate bilinear form (-, -) and
associated quadratic form Q(x) = %(x, x). Let L’ be the dual lattice of L. Assume that L has
rank 2m + 2 and signature (2m, 2). Then the Weil representation of the metaplectic group
Mp,(Z) on the group algebra C[L'/L] factors through SLy(Z). Thus we have a unitary

representation p; of SLy(Z) on C[L'/L], defined by

pL(T)u = e(—Q(u) Py, (2.6)
\/;2m72
pL(S)Pu = NI ﬂ;Le((u, B)és 27)

1 1 0o -1
where T = (0 1), S = <1 0 ), ¢, for u € L' /L are the standard basis elements of

C[L'/L) and e(z) = e?™%. We remark that the Weil representation p; depends only on the
finite quadratic module (L' /L, Q) (called the discriminant group of L), where Q(x + L) =
Q) (mod 1) € Q/Z.

Let k be an integer and F be a C[L'/L] valued function on H and let p = p; be a
representation of SLy(Z) on C[L'/L]. For y € SLy(Z) we define the slash operator by

(1?

) 0= (et d) a) Fr)

a b . at+b
where y = (c d) acts on Hvia yt = 277

Definition 2.3 Let k be an integer. A function F:H - C[L'/L] is called a weakly
holomorphic vector-valued modular form of weight k with respect to p = py if it satisfies

(1) ?‘kp y = Fforall y € SLy(Z),

2) Eis holomorphic on H,
(3) Lis meromorphic at the cusp oco.

The space of such forms is denoted by M,’(p.

The invariance of T-action implies that Fe M,!(p has a Fourier expansion of the form

F= Z Z C(”}¢u)qn¢u-

nel’ /L neQ
n>—0o0

Note that ¢(n, ¢,,) = O unless » = —Q(r) (mod 1).

From now on, we focus on the special case with the discriminant group L' /L = Z/27 x
Z./2Z with quadratic form Q(x, y) = %(x2 +52) (mod 1). For our purpose (in Sect. 3), it is
convenient to identify Z/27 x Z/27 = 7Z[i]/2Z]i], where Q(z) = %zé € Q/Z. We write
®0, ¢1, ¢i and ¢14; for the basis elements of C[L'/L] corresponding to (0, 0), (1, 0), (0, 1)
and (1, 1) respectively.

Let F = F(7) € M!flf(l"o(él), x—4) with k odd and positive. Then using I'g(4)-lifting, we
can construct a vector-valued modular form F = F(t) arising from F(t) as follows:

HOEEEDY (F|_ky>pL(y>*1¢o:§ > (Flaven) g (28)

y€lo(4)\SL2(Z) y€l1(4)\SL2(Z)



2 Page6of25 Yang and Ye Res. Number Theory (2018) 4:2

Define modular forms Fo, F» and Fj as follows. Recall that ¢, = e*77/". Let

0 -1 = ;
F|_y = alnqj.
1 0
n=0
Then for j € {0, 2, 3}, we write

o0
E=Y aln+)q"". (2.9)
n=0

We also define Fy /5 to be

1 0 >
Fip = Fl_ (2 1) = Zb(n)qg’. (2.10)
n=0

In addition, taking the coset representatives {1, S, ST, ST, ST?, ST?S~!} for I'g(4)\SL2(Z),
it is easy to check by (2.6)—(2.7) that

pL(S) " po = —é (¢o + ¢1 + ¢i + P144),
pL(ST™H) o = —% (b0 — i1 — ihi — P144),
pL(ST) "o = —% (¢o + i1 + idi — P144),
pL(ST*) o = —é (b0 — d1 — ¢i + P144),
pL(ST*S™M) g0 = P14
Finally, direct calculations yield
E(x) = (=2iF) + F) ¢ — 2iF3¢1 — 2iF3¢; + (—2iFs — F1)2) $14se (2.11)
The following theorem gives some basic facts about Fo, F>, F3 and Fy 3.

Theorem 2.4 With the above definitions, we have

Fo € M"_(To(4), x—a), (2.12)

F3 € M'_ 1 (To(4), x1) (2.13)
where x1(y) = x-4a(d)e(—ab/4) for y = <Z 2) € Io(4),

(2iF, + F12) € M' (To(4), x2) (2.14)

b
where x2(y) = x—a(d)e(—ab/2) fory = (j d) € I'o(4),

and

Fijp e M' (57 To(4)8, x—a) (2.15)

wher65=<1 O>‘
2 1
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Proof By (2.11), and [19, Section 3, p.6] or [20, Proposition 4.5], we can show that for

y = (a b) € I'o(4),
C

d
(—2iFo + F)|_ v = x-a(d)(—2iFy + F), (2.16)
F3|_x v = x—a(d)e(—ab/4)F3, (2.17)
(—2iFy — Fip2)|_ v = x-a(d)e(—ab/2)(—2iF; — Fi)3). (2.18)

Since F € M!_k(l"o(ll), X—a4), then (2.16) implies (2.12). Relations (2.13) and (2.14) follow
directly from (2.17) and (2.18), respectively. The last relation (2.15) follows from the
definition of F1/2,

1 0
Fip=F| <2 1).

Theorem 2.5 Let k be odd. Let F = F(z) € M!’_Olf(Fo(AL), X—4) With

o0
F(r) = Z c(n)q".
Write
0 -1 s 1 O >
Fl_¢ =Za(n)q2’ and F|_j =Zb(n)q§.
1 0 o 2 1 o

And let the T'o(4)-lifting of F be
Fo) = > Y cndu)q"du

nel’ /L neQ
n>>—0oo

Then we have
(i) c(n, o) = —2ia(4n) + c(n),
c(n, ¢1) = c(n, ¢;) = —2ia(4n),

c(n, ¢14) = —2ia(4n) — b(2n),

(ii) the principal part of the vector-valued modular form F (v)is

(c(=m)g™™ + -+ c(=1)g ") ¢o,
(iii) the constant term of the ¢o-component oflj"(r) is

m
¢(0, o) = BT Y c(=mPy, 151 (0) +c(0)
e
where Py, (x) are the polynomials defined as in the proof of Theorem 2.1.

In particular, when k = 1, the constant term of the ¢o-component of fa (t)is

c(0, o) = ) e(=n) (Z (64x—a(n/d) + 4x—a(d)) dz) : (2.19)

n=1 dln
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Proof Assertion (i) follows directly from (2.11). For the assertion (ii), since F is holo-
morphic at 0 and %, then F; for j € {0,2, 3} and Fy /2 will not contribute anything to the
principal part of E. So the principal part of Eis given by

(c(=m)qg™™ + -+ c(=1)g ") ¢o.

For the assertion (iii), we first note by (i) that
(0, ¢po) = —2ia(0) + c(0).

By Theorem 2.1(1), we have

ki k+1 —ka
F = c¢(—m)670, Pk,mf%(gDOO) +---4c - 620, * Pro(¢co) (2.20)

Since 01 and 6, do not vanish at the cusp 0, and ¢, has a simple zero at 0 of width 4, then

we have
—ka 0 -1 !
6,6 T ! = O(g* 3
271 Poo » (1 0 ) (q%)
_kt1 0
and thus 6,6, > ok 1 will not contribute anything to the constant term of
-1

Fo when [ > 1. Moreover, simple calculation using the transformation formula for the

Dedekind eta function shows that the constant term of the Fourier expansion at the cusp 0
k+1

kL
of 620, 2 is —(8i)*TL. Therefore,

7 _kg1 0 -1
a(0) = Z c(=mPy,,_i1(0)620, ° (1 o)
el ’
2 —k 0
m
= =@ Y c(=mPy,_11(0)
n="51

where ()¢ denotes the constant term of the g-expansion of f. Hence, we have

m

c(0, ¢o) = —(8) Tt Y~ c(=mPy,_151(0) +c(0).

_k+1
n="3

For (2.19), according to (iii), we need to show that

PLw(0) = Y x-allm+1)/d)d® and c(0) =) c(=n) |4} x-a(d)d®

d|(m+1) n=1 d\n
For the first formula, we first observe that

4
00 0l =71+ Y a(—g 7 +0Q)
j=1

for 0 < £ < m. Thus there are by, . . ., b,,_1 such that

h(r) = 020,07 + byu_102607 10 + -+ 16026 oo
=q " +a(-1)g ' +0(Q1)



Yang and Ye Res. Number Theory (2018) 4:2

for some constant a(—1). Let g(7) be defined by

g@) =YY xatwad)d® | q" =) duq"
n=1 \ d|n n=1

It is known [21] that g(7) is a weight 3 modular form on I'g(4) with character x_4. We
note by the basic facts about 01, 6, and ¢ that /1(7) vanishes at the cusps 1/2 and 0. Then
by [22, Theorem 3.1], we have

dms1 +a(=1) =0, ie, dyr1 = —a(-1).
Therefore

Piy(0) =dpir= Y x-allm+1)/d)d".
d|(m+1)

This proves the first formula. For the second one, the proof is similar by noting that
1 (t) = 6207 ' P1Ln(9oc) = ¢ + C + O(q)
and
o0
a@=1+4>_ > xa@d*|q"
n=1 \ d|n

is [21] a weight 3 modular form on I'g(4) with character x_4. Then again [22, Theorem
3.1] shows that

C=4 Y x-aldd
d|(m+1)

This together with (2.20) proves the second formula. O

14
Example 2.6 Letk = 1and F(7) = 929{1 = # € M!’_Of(FO(AL), X—4). Then we have
174

F(z) = (<2iFo + F) ¢o — 2iF3¢1 — 2iF3¢; + (=2iF> — F12) f14i (2.21)

where Fy, Fa, F3 and Fy; are defined as in (2.9) and (2.10). We have

0o -1\ ... nx/)™
Fl (1 0 ) B 32l77(f/4)477(f)12

= 32i(1 + 1244 + 764*/* + 352¢%/* + 13564 + 46004°*
+14176¢%* + 40512¢47/* + - . )

= 32i (1 + 1356 + O(q?))
+ 32i (12q1/4 + 4600q5/4 + O(q9/4))
+ 32i (76q2/4 + 141764 + O( q10/4))

+32i (352¢%/* + 40512¢7/* + O(¢"%)),

Page90of25 2
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then

Fy = 32i (1 + 1356q + 0(¢°)),
Fy = 32i (76q2/4 + 14176q6/4 + O(q10/4))
F3 = 32i (352¢°/* + 4051247/* 4 O(¢''/%)).

And

1 0
F1/2 = F|_1 (2 1) = 64 <q1/2 _8q3/2 +42q5/2 +O(q7/2)>

From (2.21), we note that the principal part of F is e(—t)¢o and the constant term of the
¢o-component is ¢(0, ¢g) = 68.

2.3 Canonical bases for M*% (To(4), x* ;) and M!j((l“o(4), xk,)
We complete this section by giving canonical bases for the other two companions of
M (To(@), x5y

Let 63(7), po(t) and ¢1/2(7) be defined by

8
n
63 = 03(1) := 95, (r) = n_‘l’ =1+ 0(g), (2.22)
2
N4 8
@0 = ¢o(t) == (E) =q-+ O(qz), (2.23)
1816
P12 = ¢1/2(1) == ;’23 =q+ O(qz). (2.24)
2

Here are some basic facts about 63, ¢o and ¢1/2:

(1) 63(t) is a weight 2 modular form on I'g(4) with trivial character, has a simple zero at
the cusp 0, and vanishes nowhere else;

(2) @o(r) is a weight 0 modular form on I'g(4) with trivial character, has a simple pole at
the cusp 0 and a simple zero at the cusp 00, and vanishes nowhere else;

(3) ¢@1/2(7) is a weight 0 modular form on I'g(4) with trivial character, has a simple pole
at the cusp % and a simple zero at the cusp 0o, and vanishes nowhere else.

Theorem 2.7 Let 0, 03 and ¢g be as defined in (2.2), (2.22) and (2.23), respectively.

_k+1
(1) For k odd, the set {9205 > Py ,,(@0)}or_, where Py, is a monic polynomial of degree

m such that
ki1 0 -1 =S ad
0203 % Pru(go) <1 0 ) =q, ° 4+ Y. cmdl
—k k-1
n=="5

is a canonical basis for Ml;ok(Fo(AL), X—d4)-

_k
(2) For k even, the set {05 > Py ,,(@0)}or_, Where Py, is a monic polynomial of degree m
such that

_k
93 Zpk,m((pO)

0 -1 K >
= + c(n)qy,
. (1 o ) a4 > ey

is a canonical basis for Ml;ok(Fo(AL)).
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Theorem 2.8 Let 0y and @12 be as defined in (2.2) and (2.24), respectively. Then the set

{Oz_kPk,m(m/g) oo _o Where Py, is a monic polynomial of degree m such that

1 0 K —
92_kPk,m(</?1/2))_k (2 1) =q 2"+ > cng”,
n:—%—‘rl

!
“

1
is a canonical basis for Mj((l"o (4), Xf4)‘
Proofs of Theorems 2.7 and 2.8 are similar to that of Theorem 2.1, so we omit the details.

Remark 2.9 For a cusp P, denote by M'_I;( oL the space of vector-valued modular forms
induced from M!LI;((FO(AL), xk o) via T'g(4)-lifting. We have, by (2.11),

1 1
1,00 10 b2 s gloo 10 L3
M—k,pL + M—/GPL + M—k;PL - M—/GPL ® M—ka ® M—k,pL'

L00 10 Ly !
Clearly, M—/GPL + M_ka + M—ka is a subspace of M—k,p,_‘ In general, the former space

may not be equal to the latter one. We first note that every vector-valued modular form
11

in Ml’j(opL + M!;Ok o T M5 ,, must have the same component functions at ¢; and ¢;.

We now give an example of functions in M’_1 oL that does not have this property. Let

F(r) = 9291_1 € M!ff(Fo(éL), X—4)- Then as above we write the I'g(4)-lifting of F(7) as

E(t) = (—2iFo + F) o — 2iF3¢1 — 2iF3¢; + (=2iF; — F1)2) ¢14i

where
F =Y a(an+j)g,"",
n=0
0 -1 >
Fl ¢ =" alnq;
1 0
n=0
and

1 0
Fipp = F|_4 <2 1)'

By (2.13), we know that F3(r) € M" (I';(4), x) where x ((“ b
C

d)) = e(—b/4). Now we

do I'; (4)-lifting on F3(t) against ¢, namely,
Bm= Y  (Bliy)ad) e

yel'1(4)\SL2(Z)
and get
F3(v) = —4ifogo + F3 + 4ifs)p1 + (—4ifs — 2fi2)¢i + 4ifodbr4

where

fi= Y an+pg",

nez
n>>—o0



2 Pagel12o0f25 Yang and Ye Res. Number Theory (2018) 4:2

0 -1 B
F3|_y = Y almq;
1 0 nez
n>—0o0

and

1 O
= F3|_ .
N2 = Fl (2 1)

Now the component functions at ¢ and ¢; are 2F3 + 4if3 and —4if3 — 2f1 2, respectively.
We can compute and verify that they are not the same. Therefore, F5(7) is not in the space

11

M ILok(,)pL + M!;OIGPL + Ml%GPL'
3 Part ll: Borcherds products on U(2, 1)
It is well-known that the vector-valued weakly modular forms construction in Part I can
be used to construct memomophic modular forms on Shimura varieties of orthogonal
type (, 2) and unitary type (n, 1) with Borcherds product formulas and known divisors.
In this part, we focus on one special case to make it very explicitly—the Picard modular
surfaces over k = Q(). In particular, we describe a Weyl chamber explicitly and write
down the Borcherds product expression concretely.

This part is devoted to deriving Borcherds products lifted from a vector-valued modular
form arising from M"(I'o(4), x—a)-

3.1 Picard modular surfaces over k = Q(i)
Let (V; (, )) be a Hermitian vector space over k of signature (2, 1) and let H = U(V'), where
U(V) denotes the unitary group associated to V. Let V¢ = V ®p, C, and

L={weVc|{ww) <0}

Then KL = £/C* is the Hermitian domain for H(R), and £ is the tautological line bundle
over K. For a congruence subgroup I' of H(Q), the associated Picard modular surface
Xt = I'\K is defined over some number field.
Given an isotropic line k¢ (i.e., a cusp), choose another isotropic element ¢ with (¢, £') #
0. Let Vo = (k¢ + ke)*, and let
H="Hey = {(t,a) eH x Voo |Imt > % }
Then the map

H— L (1,0)— z(t,0) =2, )1l +0 + ¢ (3.1)

gives rise to an isomorphism H = /C. It is also a nowhere vanishing section of the line
bundle £. Using this map, we can define action of H(R) on H and automorphy factor
j(y, 7, o) via the equation

vz(t, 0) = j(y, 1, 0)z(y (7, 0)). (3.2)

Indeed, both yz(z, o) and z(y (r, 0)) are in £ and they become the same in IC, so they are
different by a multiplication constant, namely, the automorphy factor j(z, o).

Definition 3.1 Let I' be a unitary modular group. A holomorphic automorphic form of
weight k and with character x for I' isa functiong : H — C, with the following properties:
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(1) gis holomorphic on H,
(2) gly(r,0)) =j(y;t,0) x(y)g(r, o) forally € T.

We remark that a holomorphic modular form g for I is automatically holomorphic at the
cusps.
Now we make everything concrete and explicit. First choose a basis {e1, e, e3} of V with

Gram matrix

0 0 1
J=10 1 0
1 0 O

so V = @3> | ke; = Kk’ with Hermitian form
(%,y) = %173 + %272 + %391 = ‘a9, (3.3)

and

H=H(Q) = {heGLs(k)| W ‘h=]}
We take the lattice

1

L=17Z[i]®Zli]® EZ[Z’]

(instead of the typical Z[i]3). Its Z-dual lattice is
RN NN

L'={veV] Tryo(wL) C Z} = Z[i) ® EZ[l] o) EZ[l]
SoL'/L = %Z[i]/Z[i] with quadratic form Q(x) = xx € %Z/Z, which is the same finite
quadratic module considered in Part I. Let

UL) = (g e HlgL =1}

Z[i Z[i] 27l
=HnN Z[i] Zli]  27Zli]
3ZU 3ZE Z0)
be the stabilizer of L in H, and I';, be the subgroup of U(L) which acts on the discriminant

group L'/L trivially:

Zli] 271 27
ro=vu0)n{|zi 1+226 2z0|}. (3.4)
Zli] 271 Z[i]
Take the cusp ¢ = e; and ¢’ = e3. Then Vjy = k with Hermitian form (x, y) = xj, and
H = {(1,0) € H x C|4Im(r) > |o|?}.

Moreover, one has for y = (a;) € H

V(1,0) = (ﬂnf + (2i)ano + (21)716113) 2iaxn T + axo +a23)‘
2ias1t + azpo + ass 2ias1t + azpo + ass
and
(vz L)

](y) 7’—’ 0) = (6/’ g) = 2i‘L’6{31 + 61320 + 6{33.
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Our Picard modular surface is the quotient space Xr, = I'z \'H of H modulo the action of
.
Let Py be the stabilizer of the cusp k¢ in H. Then Py = NyM, with

M, = {m(a, b) = Diag(a, b,a"")|a € k*,b e k'},
1 —2b —2bb+ 2ic

Ny=3nbc)= 1|0 1 2b bekceQy,
0 0 1

where k! = {a € k|aa = 1} is the norm one group. Notice that Ny is a Heisenberg group
action on Hy, via

n(b,c)(t,0) = (t + ¢+ iblo + b), o + b).
In particular

n(0,¢c)(t,0) = (t + ¢ 0).
Let

Te =TrNNyg ={nbc)beZli,celZ)

Then for a holomorphic modular form f(z, o) for I'z, we have a Fourier—Jacobi expansion
at the cusp k¢:

flr,o) =) fulo)g". (3.5)

n>0

3.2 The hermitian space V as a quadratic space

As mentioned in the previous subsection, the hermitian space V can be viewed as a
quadratic space Vg of signature (4,2) associated with bilinear form induced from the
hermitian form:

(@ y) = Trg o (% y)-

Then the lattice L can be considered as a quadratic Z-lattice in V. Denote by

SO(Vgp) = {g € SL(Vp)| (gx, &) = (%, y) for all x, y € Vp}

the special orthogonal group of Vg and its set of real points as SO(Vg)(R) = SO(4, 2). A
model for the symmetric domain of SO(Vg)(R) is the Grassmannian of two-dimensional
negative definite subspaces of V(, denoted by Gro. It can be realized as a tube domain Ho
as follows. Denote by Vp(C) the complex quadratic space Vg ®g C with (-, -) extended to
a C-valued bilinear form.

Now we view L as a Z-lattice. Lete; € L be a primitive isotropic lattice vector and choose
an isotropic dual vector ey € L’ with (ej, ;) = 1. Denote by K the Lorentzian Z-sublattice
K=Ln ef- N ej‘ with respect to (-, -). The tube domain model Hg is one of the the two
connected components of the following subset of K ®7 C

(Z=X+iY|X,Y e K®zR, Q) <0}

Recall that £ = e; and ¢’ = e3. We define

A A

1, " i,
e1 =14, eZZEZ,egz—lf, e4:—§£
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where we denote by (i the endomorphism of Vg(R) induced from the scalar multiplication
with u. Then we can check that {ey, eo, e3, e4} is a basis for (Z[i]¢ + Z[i]¢') @7 Q and we
can see that K ®z R = ((Qes + Qes) ®z R) @ (Vo ®z R). Thus we can identify ¥ with
yies + yeq + 0 € K ®z R. Now denote by C the set of ¥ = yi1e3 + y2e4 + o with
y192 + Qo) < 0,51 < 0and yo > 0. We can fix Hp as the component for which Y € C.
Therefore, Ho = K ®7 R + iC.

In addition, the tube domain Ho can be mapped biholomorphically to any one of the
two connected components of a negative cone of P!(Vjp)(C) given by

{[Z1] € PX(VQ)(©)| (Z1, Z1) = 0, (Z1, Z1) < O}

We fix this component and denote it by Ko. For each [Z.], we can uniquely represent it
as

Z; = ey — q(Z)el +Z
with Z € Ho.

3.3 Embedding of H into Ho
As in [15, Section 4], we can embed H into Ho via

(t,0) = U(r,0) = —te3 + ies + 3(0) (3.6)
where

i 37

5(0)_504—1 —3 o. (3.7)

Similarly, /C;; can be embedded into o through the identifications between Ky and H,
and between Ko and Hp. Namely,

z=40+2tl+0 — Z; = —ite; + ey — Te3 + ieqg + 3(0). (3.8)

3.4 Weyl chambers of K @7 R
In Theorem 2.1 (1), we have shown that F; ,,, = ¢~ + O(1) for m > 1, form a canonical
basis for M I’_°1°(F0(4), Xx—4). Therefore, to study the Borcherds product lifted from M'_OlO o
it suffices to start with Fj ,,,. Since we only deal with weight —1 in the rest of this paper,
we will simply write F,,, = F,,, and E, = ﬁl,m

For general definitions of the following, we refer the reader to [1, Chapter 3.1]. For
k € K with g(x) > 0, denote by « the orthogonal complement of k in K ® R. Denote

by Dk the Grassmannian of negative 1-lines of K ®7 R, which can be realized as

Dk = {Rw C Kgr|q(w) < 0}
= {w=yies +es+ (y3+iys)lyi € R g(w) <0}
Then by considering the Grassmannian of negative 1-lines of k-, it corresponds to a
codimension 1 sub-manifold of the Grassmannian Dk of K ®z7 R.

In our case, a Heegner divisor of index (m, 0), Hx(m, 0), is a locally finite union of
codimension 1 sub-manifolds of D, namely,

Hy(m, 0) = {z € Di| 3« € K with g(k) = m and (z, k) = 0}
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Let ﬁm(r) be the vector-valued modular form arising from Fj,. It is known by Theorem 2.5
that the principal part of Ij"m(t) is ¢ " ¢o. The Weyl chambers attached to lj"m(r) are the
connected components W, of

Dx — Hg(m, 0).

Fix a Weyl chamber W,,, of Dx, we can also define the corresponding Weyl chambers of
K ®z R and H by

Wik ={we K®zR| Rw e W,},

A

Wnu = {(r,a) e H|Im((r,0)) = —Imtesz + e4 — %a € Wik ¢

respectively. In the following lemma, we give an explicit description of the Weyl chamber
that we use to construct Borcherds product in Theorem 3.5.

Lemma3.2 (1) Let

y1<r2+s2—m-+2ry3+2sys V1, s€Z,
Wi = { y1es + ea + (3 + iya) € Dic 142ty3+2hys >0 Y t, heZ, 2 +h=m,
ty3+hys>0, ¥ t, heZ, t> +h>=m, t >0,
y4>0 if m is a square.
koy1 <—k1+2k3y3+2kaya Y ki€Z, ko >0, k1ky +k32 +k£ =m,
k+2ty3+2hys>0 Y k t, heZ, k>0, t2+h>=m,

C {y1e3 +es+ (y3 + iya) € Dx
tys+hya>0, ¥ t, heZ, > +h*=m, t>0,

y4>0 if m is a square

(3.9)

Then W, is a Weyl chamber containing es.
(2) Let

(Q(\)=m with A3, s€27)
or (Q(1)=0)
where (A, Wy,) > 0 means that (A, w) > 0 for allw € W,,,. Then

A, A2, A3, A EZ,
1 A2>0,
Ky, = {A=2Xxes — Agzes + = (A3 + ilg) or (A2=0 and X1>0),
2 or (Ag=A1=0 and r3>0),
or (Aa=A1=XA3=0 and ’4>0)

1 (A Win)>0,
Ky, = {A = Aies — Areq + 5()»3 +irg) € K’ }

Proof For Assertion (1), it is clear that W}, contains es since the set of (y3, y4, y1) deter-
mined by the inequalities in W}, contains y; = —oo. We only need to show W, is actually
a Weyl chamber.

Write k = kies + koesq + k3 + ika € K with k; € Z. Since (—k)+ = kL, we can assume
ky > 0. By the definition of Weyl chamber W,,, we can see that a Weyl chamber W,, can
be viewed as a connected component of R? cut out by the planes

koy1 + k1 + 2ksys + 2kays = 0

forall ky, ..., ks € Z with ky > 0 and k1ky + k32 + kZ = m.
When k, = 0 and m is representable as a sum of two squares, then we have planes

k1 + 2ksys + 2kays =0
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perpendicularly passing through the (y3, y4)-plane. In this case, the connected components
are determined by the connected components of the y3 — y4 plane cut out by the lines

ki + 2ksys + 2kays = 0,

and it is easy to find that one of the connected components C; can be identified as

142ty3+2hys>0 V t, heZ, t>+hP=m,
(3, 74) € R? |tys+hyy>0, V1, heZ, >+ h2=m, t>0,
y4>0 if m is a square
which is a subset of
k+2ty3+2hys >0 V & t, heZ, k>0, 2 +h>=m,
03, 94) € R% | ty34hya>0, Vi, heZ, 24h2=m, 10,

y4>0 if m is a square

When ky > 0, with the aid of MAPLE, we can check that there is a connected component
C, of R3 covered by

Y1 = 42 —m+ 2ry3 + 25y,
for r, s € Z. Such a connected component contains y; < —m, and all the other planes
koy1 = —k1 + 2kzyz + 2kaya

for ki, ..., ka € Z with ky > 0 and k1ky + k:% + k2 = m. In conclusion, W, = C; NCy is a
connected component of R? cut out by the planes

koy1 + ki + 2k3yz + 2kays =0

forallky, ..., k4 € Zwithky > 0and ki ks —|—k§ —|—kZ = m, and thus W}, is a Weyl chamber.
For the case m = 1, we can visualize it by a 3D-plot. See Fig. 1.
Now let us prove Assertion (2).

(i) Suppose that Q(A) = m and A3, A4 € 2Z which imply that A € K. By (3.9), we note
that y1es + es + (y3 + iya) € W, implies that

koyr < —ki + 2ksys + 2kaya
for all k; € Z with k5 > 0 and k1ky + k32 + kZ = m, which is equivalent to
koy1 + k1 + 2ksys + 2kays > 0

for all k; € Z with ky < 0 and k1ky + k32 + kf = m. Therefore, when Ay # 0 and
Q(A) = m, thatis, A1(—X9) + %(A% + )»ﬁ) =m, (A, Wy,) > 0if and only if —13 < 0,
that is, Ao > 0. Similarly, by the other conditions given in (3.9), we can conclude
that when Q(&) = m, (A, Wy,,) > Oif and only if Ap < 0, or (A2 = 0 and A1 > 0), or
()\2 =M =0andkg > 0),01’()»2 =\ =A.3 =0andk4 > 0).

(i) Now suppose that Q(1) < 0, thatis, A1Ap + %(A% + Ai) < 0. By (3.9), we know that

Y1 <r2+s2—m+2ry3+23y4

forallr, s € Z. By [1, Lemma 3.2], it is known that if (A, wp) > 0 for a wo € W, then
(A Wy) > 0. Thus (A, W;,,) > 0if and only if Ao > 0. When Ay = 0, since Q(1) <0,
then A3 = A4 = 0, and thus (A, w) = A1 for w € W,,. This implies that (A, W,,,)) > 0
ifand only if A1 > 0 when Ay = 0. O
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Fig.1 A 3D-plot for the Weyl chamber W,

3.5 The Weyl vector for I-:m

In this subsection, we aim to compute the Weyl vector p(Wy,, fm). We first recall a nice
summary of the explicit computations of Weyl vector given in [11, Subsection 2.1] (also
see [23, Thm. 10.4] for original definitions).

Let L be a Z-lattice with quadratic form Q(-) of a quadratic space V of type (n, 2) and
L' be its dual lattice. Take £; € L and £; € L’ to be such that Q(¢z) = Q(¢;) = 0 and
(€, ¢;) = 1. Assume that (¢7,L) = N;Z for some unique positive integer and choose
& € Lwith (¢, &) = N. Let K = LN (Q¢, + Q¢))* and let

Ly=1{xel'|(t,,x) =0 (mod Ny)} C L.

Then there is a projection
(% €r)
N, &K
where xx and &g are the orthogonal projections of x, £ € V to Kg = K ®z Q. So it induces
a projection from L /L to K’ /K. Next, for

f = Zfl»b(pu = Zc(m) ¢M)qm¢ﬂ (S M!lfg;pL’
define
fic = 7 fitrk = cxlm g
reK' /K
where ¢, i is the basis element associated to A of C[K’/K], and

fA: qu'

neLly/L
pp)=nr

For a Weyl chamber W, take {x € K N W, where W denotes the closure of the Weyl
chamber W, and £} € K’ with Q(€x) = Q({y) = 0 and (¢, £}) = 1, and let P =

p:Ly— K, px)=xx+
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KN (Qex + Qﬁk)l, which is positive definite of rank n — 2. Similar to the projection p
from Lj/L to K’ /K, one also has a projection, also denoted by p, from Kj/K t(zP’/P defined
in the same way. Similarly, we have a weakly holomorphic modular form fp induced by
fx. Then we can compute and express the Weyl vector p(W, f) associated to W and f as

P(W,f) = pucli + pe Ly + pps

where

1
P > (0 M)Ba(A L))
reKy /K
p(A)=0+P

1
-5 2 2 a=Q)MBAG £)) (3.10)
yeP'  ieK[/K
(v, W)>0 p(r)=y +P

By(x) := {x}% — {x} + % is the second Bernoulli polynomial, {x} is the fractional part of x,

py;, = constant term of (6p, fp)Ez/ 24,

pi=) ) QWD (3.11)

y€eP'/P hey+P

Ey:=1-2437°, o1(n)q" is the holomorphic Eisenstein series of weight 2,

pp=—= > cx(=Qy)y)y. (3.12)
yeP'NK’
(y,W)>0
Now for our case, we set L = Z[i] ® Z[i] ® %Z[i], by =e, b = eg,f = I?m, W =W,
Lx = ez and Z}< = ey, where ey, ey, e3 and ey are defined as in Subsection 3.2. It is easy to
check that K = Zes @ Zes ® P and P = Z[i]e; where e, is defined as in Subsection 3.1.
Direct calculations show that Ljy = L', Ky = K" and L'/L = K’ /K = P’ /P. Write

Fy = Z Fm,[td)/L: Z ZC(”;M)‘]”¢W
neL’ /L nel’ /L neQ

Then under L'/L = K'/K = P'/P, direct calculations show that

- -

Pm,K:Pm,P:Fm-

Note that by Theorem 2.5, for n > 0, cx(—n, A) # 0 if and only if cx (—n, A) = cx(—m, 0),
which equals 1. Also, we can compute and express 6p as

Op = (Z e((,2 +s2) f)) do + (miezze<(i +r+r? +52> r)) h1

1,S€Z
1 2, 2 .
E e 2+r+s+r +s7 )t )| b1+

+ (nszejze ((rz +24s+ 2) r)) i + (MEZ
(3.13)

Now let us first compute p,,. Since Kj/K = K'/K = P’'/P, then 1 € K[/K such that
p(A) = 0+ P if and only if A = 0 4+ K. In addition, as we point out above that for
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n > 0, cx(—m L) # 0if and only if cx(—n 1) = cx(—m, 0) = 1, then we can see that
cx(—Q(y), A) = lifand onlyif y € P with Q(y) = m, ie.,y = (r+si)ey withr,s € Z and
r* + 52 = m. In addition, by Lemma 3.9, to have (y, W;,;) > 0, we must have (r > 0) or
(r =0ands > 0). Now by the definition of p., and the above analysis, we have

1 1 1
= —— 0,0) — — E _
Pes 24CK( ) 9 6

r’4s2=m
r>0
or (r=0 and s>0)

- _é Z (16x—a(m/d) + x—a(d)) d* — 1‘7)@4(”1)’

6
d\m

where o,_,(m) = Zd‘m x—4(d) follows from the well known fact (see, e.g., [24, Thm.
3.2.1]) that the number of integral solutions of 2 + s? = m is given by 40, _, (m).

For the e4-component p,,, we first note that the non-¢o-component functions of 6p
have no constant terms, and the non-¢g-component functions of ﬁp have no negative
power terms. In addition, the ¢p-component function of p is

o0
Z e ((r2 + 82)1’) =1+4 Z oy_,(nq",
rseZ n=1

and the ¢p-component function of I?p is g7 + ¢(0,0) + O(q). Therefore, the constant
term of (ép, fp)E; is the constant term of

(1 +4 Z Oy s (n)q”) (g7 + ¢(0,0) + O(q)) (1 —24 Z al(n)q”) ,

n=1 n=1

which is

40y, (m) — 2401 (m) =96 | >~ oy, (K)o1(l) | + c(0,0).

k+l=m
ki>1
Thus by Theorem 2.5, we have
1
Pes = ¢| O a(m) = 6010m) =24 | 37 0y, (K)on(l)
k+l=m

ki>1

+ 3" (16x-alm/d) + x-a(d)) dﬂ.

d|lm

For p, notice that for n > 0, cx(—n, 1) # 0 if and only if y € P with Q(y) = m, i.e,
y = (r +si)ey with r, s € Z and r* 4 s> = m. Notice also that (y, W,,) > 0 implies ( > 0)
or (r = 0ands > 0). So by similar calculations, we have

1 A
pp=—7 Z (r + si)es.
r24s2=m

r>
or (r=0 and s>0)

Summing up, we conclude with the following proposition.
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Proposition 3.3 Let E,, be defined as in Subsection 3.4, and let W, be the Weyl chamber
given by (3.9). Then the Weyl vector associated to the Weyl chamber W, and the weakly

holomorphic modular form Ey is
P(Wins Eym) = pes€3 + pesa + pps

where

ey = _% > " (16x-a(m/d) + x—a(d)) d* - iam(m))

d\m
1
Py = 2 |:0X4(m) — 601(m) — 24 Z oy, (K)o1(l)
yisi

+ ) (16x-a(m/d) + X-a(d)) aﬂ}

d\lm

1
pp=—3 Yo (r+siey
r2+52=m

r>0
or (r=0 and s>0)

and oy_,(m) = Zd\m x—a(d).

3.6 Heegner divisors for I';

Let A € L’ be a lattice vector with positive norm, i.e., (A, A) > 0. The orthogonal com-
plement of A in Ky is a closed analytic subset of comdimension 1, which we denote as
follows

H) = {[z] € Kyl (z A) = 0}.

By identification between Ky and H, H(A) can also be considered as a closed analytic
subset of H, and we call such set a prime Heegner divisor on H. Given 8 € L’/L and
m € Z~o, a Heegner divisor of index (m, 8) in H is defined as the locally finite sum

Him )= ) H().
rep+L
Q)=m

The associated Heegner divisor in Xt, = I';\'H is Z(m, ) = 't \H(m, B).

3.7 Borcherds products
In this section, we give a family of new Borcherds products explicitly by using the results
of Hofmann [15, Thms . 4, 5 and Cor. 1]. We first summarize Hofmann’s results as follows.

Theorem 3.4 (Hofmann) Let F be an imaginary quadratic field. Let L be an even her-
mitian lattice of signature (m, 1) with m > 1, and £ € L a primitive isotropic vector. Let
0" € L' an isotropic vector with (£, ') # 0. Further assume that L is the direct sum of a
hyperbolic plane H = Of © 9y Yand a definite part D with (D, H) = 0.

!
lfm’pL
satisfying c(n, B) € Z for n < 0, there is a meromorphic function V(z, o;f) on H with the

Given a weakly holomorphic modular form f € M with Fourier coefficients c(n, B)

following properties:
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(1) V(z,0;f) is an automorphic form of weight c(0, ¢o)/2 for T’y with some multiplier
system x of finite order.

(2) The zeros and poles of V(t, 0;f) lie on Heegner divisors. The divisor of ¥(t, 0;f) on
Xr, = I't\'H is given by

div(¥(z,0;f)) = % Z Z c(—n, ¢pg)H(n, B).
BeL'/L neZ—Q(B)

n>0
The multiplicities of H(n, 8) are 2 if 28 = 0 in L' /L, and 1 otherwise.
(3) For a Weyl chamber W whose closure contains the cusp Qes, ¥V (t, o; f) has an infinite
product expansion of the form

FY — (z, (W, f)) (z A) \ TR
\IJ(T,G,f)—CB<W> H |:1_e<(€,€/>)i| ’

A€K’
\W)>0

where z = z(t,0) = € + 8(¢, 'Ytl + o, § is the square root of the discriminant of
F, the constant C has absolute value 1 and p(W, f) is the Weyl vector attached to W
and f.

(4) The lifting is multiplicative: V(t,0;f + g) = V(7,0 )V (7, 0;2).

(5) Let W be a Weyl chamber such that the cusp corresponding to £ is contained in the
closure of W. If this cusp is neither a pole nor a zero of ¥ (t, 0;f), then we have

1 . c(0,1)
rll)n(l)o V(t,0;f) = Ce (p(\/V,f)g) 1_[ (l —e <—§K5>)

reK’
A=1wse
k€Qx0

where p(W, f)¢ denotes the complex conjugate of the £-component of the Weyl vector
p(W, f).

By specializing Theorem 3.4 in our case, we obtain the main result of this note.

Theorem 3.5 Let L = 7Z[i] ® Z[i] ® %Z[i] with respect to the standard basis over Z[i]
with hermitian form defined in (3.3). We set £ = (1,0,0) and ¢’ = (0,0,1). Let fm
be the vector-valued modular form arising from F,, = 020, 1PLyn_l((poo) and denote by
c(n, ¢,,) the Fourier coefficient of index (n, ¢,,) of E,.. Then there is a meromorphic function
V(t,0;F,) = ¥(r,o0; I?m) on 'H with the following properties:

(1) ¥(t,o0; fm) is an automorphic form of weight

32 " x-a(n/d)d* +2) " x-a(d)d’

d|m dim

for T'r, with some multiplier system x of finite order.
(2) The zeros and poles of ¥(z, o; lt"m) lie on Heegner divisors. The divisor of ¥(t, 0; 1_5,,,)
on Xr, = I'[\'H is given by

div(¥ (1, 03 Epn)) = Z(m, 0) = T \H(m, 0),
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where

H(m, 0) = Z {(r, o)eH

(r1,51,72,52,73,53) €Z°
r1r3+s8183+ry +s5=m

ri+2ry Rea+252 Im o+83 Re T—r3 Im <=0,

s1+2r Im o —2s, R60+sg Im T+r3 Rer=0 ’

(3) For the Weyl chamber W, described in (3.9), V(z, U;?m) has an infinite product
expansion near the cusp Qes (precisely, when (t,0) € Wy, 11 with Imt sufficiently
large):

V(7,03 Fn) = A1(1, 0)A2(0)A3(0)A4(0)A5(1, 0), (3.14)

where

(i) A1(t,0) = e(ipe; — pe, T + pO)

where pes; Pe, and p are defined as in Proposition 3.3,
(ii)
[1 —e (—ioﬂ)] if m is a square,

1 otherwise,

@@ Az)= [] [1-elotks+ika)][1—e(o (ks — ika)) ],
(ks,ka)eZ2
K2 +ki=m

Aso)= [T TI [1-elimeo (ns —ina))]

n3,na €l ny€li~g

2 —
n3+ny=m

X l_[ (1 — e(ing))*©?

no€Z~9
with

c(0,0) = c(0, ¢o) = ) _ (64x—a(m/d) + dx—a(d)) d*,
d|lm

v) As(t,0) = l_[

(n1,12,n3,n4)€Z*
n1>0

n n c(nymy— L (nd4n2),¢7)
[l—e(n1f+o<—3—i—4>+in2)] T

2 2

with il = nyes — nyes + 3(n3 + ina).

(4) Ifthe cusp corresponding to £ is neither a pole nor a zero of ¥(z, o; E,), then we have
o0
lim W(r,0;F,) = e(ipe;) [ | (1 — e(ki))“ %)
T—>100 k=1

where

1 1
Pey = —¢ Z (16x—_a(m/d) + x_a(d)) d* — ﬁom(m)
d\m
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is defined as in Proposition 3.3, and

c(0, go) = Y (64x-a(m/d) + 4x-a(d)) d*
d\m

is defined as in Theorem 2.5.

Proof Assertion (1) follows from Theorem 2.5 and Theorem 3.4 (1). Assertion (2) follows
directly from Theorem 3.4 (2).

Then by Theorem 3.4 (3) together with Lemma 3.2 and Proposition 3.3, we have that
Y(t, 0; I?m) has the following infinite product expansion near the cusp Qes

¥(z, 03 )
= e(ipeg — Pey T + IZ)G)

s s c(ria—03+33). 1)
X 1—e| At —_ —i— i
1—[ [ <2+G<2 12)+l1>}
(A1,A2,A3,14)€Z*
Ao>0,
or Ap=0 and A >0,

or Ap=x1=0 and ’3>0,
or Ap=A1=A3=0 and ry>0.

where A = A1e3 — Azeq + %()»3 + iAg), and p,,, pe, and p are given as in Proposition 3.3.
We first set A1(t,0) = e(ipe; — pe,T + po). Then by decomposing the infinite product
according to the four cases in its product index set, we can easily rewrite it as (3.14).
Finally, for Assertion (4), we first note that in our case, K' = Zi & Z[i] ® %Zi and
§ = 2i,then A € K’ and A = %K(% = kil with k € Q.o imply that k € Z-¢ and
c(0,A) = ¢(0, ¢po). Together with the Weyl vector attached to W,, and F,, shown in
Subsection 3.5, Theorem 3.4 (5) proves Assertion (4). O
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