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1. Introduction

A ring A is called catenary if, for all pairs of prime ideals P C @Q of A, all saturated
chains of prime ideals between P and @ have the same length. Otherwise, it is called non-
catenary. For some time it was thought likely that noncatenary Noetherian rings did not
exist. This was proven incorrect by Nagata in 1956, when he constructed a family of non-

catenary local (Noetherian) integral domains in [7]. Roughly speaking, this construction
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is accomplished by “gluing together” maximal ideals of different heights of a semilocal
domain to obtain a noncatenary local domain. Nagata’s result was later extended by
Heitmann in [2], where he shows that there is no finite bound on the “noncatenarity”
of a local domain, in the sense that the difference in length between the longest and
shortest saturated chains of prime ideals from (0) to the maximal ideal can be made
arbitrarily large (in fact, Heitmann’s result is considerably stronger than this). It was
then conjectured that all integrally closed domains are catenary, which Ogoma disproved
in 1980 in [8] by constructing a noncatenary integrally closed domain. Furthermore, it
was not until 1993 that the existence of a noncatenary Noetherian unique factorization
domain was established by Heitmann in [3]. We believe this is the only example of a
noncatenary Noetherian UFD currently in the literature.

This paper contains two main results: we characterize the completions of noncate-
nary local domains and we characterize the completions of noncatenary local UFDs. The
former is done essentially by “gluing together” associated prime ideals of a nonequidi-
mensional complete local ring, an approach that is different than the previous methods
of “gluing together” maximal ideals. We also use this construction to find a large class
of rings that are quasi-excellent but not excellent, as well as a class of rings that are
catenary but not universally catenary. Our second main result is a generalization of
Theorem 10 in 3], and allows us to find many examples of noncatenary local UFDs. Qur
constructions also allow us to prove in a new way that there is no finite bound on the
noncatenarity of a local domain, and we in fact extend this result to UFDs as well.

Throughout the paper, whenever we say a ring is local, we mean that it is Noetherian
and has a unique maximal ideal. We denote a local ring A with unique maximal ideal
M by (A, M). Whenever we refer to the completion of a local ring (A, M), we mean the
completion of A with respect to M, and we denote this by A. Finally, we use ht(/ ) to
denote the height of the ideal I and we say that the length of a chain of prime ideals of
the form Fy € --- € P, is n.

2. Characterizing completions of noncatenary local domains
2.1. Background

We first cite a result which will be important for both of our main theorems:

Theorem 2.1. (6, Theorem 31.6]) Let A be a local ring such that A is equidimensional.
Then A is universally catenary.

In particular, we will use the contrapositive: if A is not universally catenary, then A
is nonequidimensional. This provides a simple necessary condition for a complete local
ring T to be the completion of a noncatenary local ring.

The following theorem from [4] provides necessary and sufficient conditions for a
complete local ring to be the completion of a local domain. These conditions will be
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necessary for Theorem 2.10, where we characterize completions of noncatenary local
domains.

Theorem 2.2. ([, Theorem 1]) Let (T, M) be a complete local ring. Then T is the com-
pletion of a local domain if and only if the following conditions hold:

(i) No integer of T is a zero divisor of T, and
(ii) Unless equal to (0), M ¢ AssT.

Our construction in the proof of Theorem 2.10 uses results from [1]. The following
lemma, adapted from Lemma 2.8 in [1], will be useful for pointing out additional inter-
esting properties of the rings we construct.

Lemma 2.3. ([1, Lemma 2.8]) Let (T, M) be a complete local ring of dimension at least
one, and let G be a set of nonmazimal prime ideals of T where G contains the associated
prime ideals of T and such that the set of maximal elements of G is finite. Moreover,
suppose that if Q@ € SpecT with Q@ C P for seme P € G then @ € G. Also suppose that,
for each prime ideal P € G, P contains no nonzero integers of T. Then there exists o
local domain A such that the following conditions hold:

(i) A>T,
(ii) If P is a nonzero prime zdeat’ of A, then T@ak(P) = k(P), where k(P) = Ap/PAp,
(ili) {P € SpecT | PNA=(0)} =G, and
(iv) If I is a nonzero ideal of A, then A/T is complete.

Remark 2.4. A particularly useful consequence of Lemma 2.3 is that there is a one-to-one
correspondence between the nonzero prime ideals of the ring A and the prime ideals of T
that are not in G. Note that the map from Spec T\ G to Spec A" (0) is surjective since A
is a faithfully flat extension of A. To see that the map is injective, let @ € Spec T\ G and
let P = QNA. We show that @ = PT. It suffices to prove that Q/PT = PT/PT. By (iv),
A/P is complete and therefore A/P = ﬁ >~ T/PT. Now observe that (letting A/P
denote its image in T/PT), we have (Q/PT)N (A/P)=(QNA)/P =P/P = (0). But
since A/P = T/PT, there can only be one ideal I of T'/PT such that I N (A4/P) = (0).
Thus Q/PT = PT/PT = (0) as desired. It follows that the map from SpecT \ G to
Spec A\ (0) given by @ +— QN A is bijective, with the inverse mapping given by P +— PT.
It is clear that this map is also inclusion-preserving. This result will be used heavily in
the proof of Theorem 2.10.

The next theorem is explicitly used in our construction.

Theorem 2.5. ([1, Theorem 3.1]) Let (T, M) be a complete local ring, and G C SpecT
such that G is nonempty and the number of mazimal elements of G is finite. Then there
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exists a local domain A such that A = T and {P € SpecT | PNA=(0)} =G if and
only if T is o field and G = {(0)} or the following conditions hold:

(i) M ¢ G, and G contains all the associated prime ideals of T,
(if) If @ € G and P € SpecT with P C Q, then P € G, and
(iii) For every Q € G, Q contains no nonzero integers of T'.

2.2, The characterization

In this section, we characterize the completions of noncatenary local domains. To
do this, we start with a complete local ring T and use Theorem 2.5 with G = {P €
SpecT' | P C @ for some @ € AssT'} to construct a local domain A such that A satisfies
the conditions described in Theorem 2.5. We then use the one-to-one inclusion-preserving
correspondence described in Remark 2.4 to show that A is noncatenary. For the reverse
direction, we first need a few lemmas which describe the relationship between chains of
prime ideals in a local domain and chains of prime ideals in its completion.

Lemma 2.6. Let A be a local domain such that A= T. Let M denote the mazimal ideal
of T, and let Cr be a chain of prime ideals in T of the form Po © --- C Po_1 © M with
length n > 2 and PyN A = (0). If C4, the chain obtained by intersecting the prime ideals
of Cr with A, is such that (0) =FNA=PNACPRNAC---CP,_1NAC MnNA,
then Ca is not saturated.

Proof. We prove this by induction on n, the length of Cy. If n = 2, then C4 is (0) =
PhNnA=P NACMnNA. Since ht(M N A) = ht M > 2, there must exist a prime ideal
strictly between (0) and M N A. Thus C4 is not saturated, so the base case n = 2 holds.
Now assume that the lemma holds whenever Cy has length i such that 2 <i <n - 1.
We show that the lemma holds for chains of length n. Suppose n > 3. Then Ca is
[:D} = PgﬁA = P1 nA g PgﬁA g (; Pﬂ__]_mA ; M M A. Since PQHA % (D) we
can choose a nonzero element a € P, N A. Note that a cannot be a zero divisor, as it is
contained in the domain A, and it follows that hteT > 0. Then ht(aTp,) > 0 as well,
so Krull’s Principal Ideal Theorem gives that ht(aTp,) = 1. Thus aTp, is contained in
a height-1 prime ideal ' € SpecTp,. Let @) be the preimage of Q' under the natural
surjection SpecT — SpecTp,. Then T C Q@ C P since dim(Tr,) > 2. But clearly
Q@NAF#(0), so we have that (0) CQNAC PRnNA
There are two possible cases, either QNA C PonA or QNA = PoNA (see Fig. 1). In the
first case, C 4 is not saturated since (0) = PiNA € @QNA ¢ PoNA. Otherwise, we consider
' = which is also a local domain and whose completion is TV = L

(@nNAT

(@nA4)’
Then let Cr: be

Q . P . Poi . M
QNAT = (QNAT = "~ @QnAT ~ (QnA)T
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Fig. 1. The Spec diagrams for Case 1 and Case 2 of the proof of Lemma 2.6.

which is a chain of prime ideals such that (QHLA)T nA =(0).
Let C4- be
(0) QNA  PNA CPn_lﬂA MnA

@A) T@QNA) T @A) T (@A)

Note that Cp has length n — 1 > 2 because P, C M. Then, since C .- is of the necessary
form, our inductive hypothesis applies, so C4: is not saturated. Therefore, C 4 cannot be
saturated. Hence, the lemma holds for chains of length n in T', completing our inductive
step and the proof. O

Note that the argument in the proof of Lemma 2.6 can be generalized to the case
where (0) = PpNA =P, NA=..-= P;NA for any integer j where 2 < j < n— 1. Now,
we will use Lemma 2.6 to show that, in general, if C4 has length less than that of Cyp,
then C4 is not saturated.

Lemma 2.7. Let A be a local domain such that A= T. Let M denote the mazimal ideal
of T', and let Cr be a chain of prime ideals of T of the form Po C --- C Py C M of
length n > 2 with PyN A = (0). If the chain C4 given by (0) = PpnAC---C P, 1NAC
M N A has length less than n, then C4 is not saturated.

Proof. First, note that P,_; N A C M N A because ht(P,_1NA) <htP, ;| < htM =
ht(MNA). Now suppose C4 has length strictly less than n. Then there must be equality at
some point in the chain, so let m denote the largest integer such that P,,_1NA = P,,NA.
Note that this choice of m ensures that B, NAC P, 1 NAC--- C MnNA, and since
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A

P, nNA#MNA m<n-—1 Let A = m, which is also a local domain, and
consider its completion T’ = m Then let Cp+ be the following chain of prime

ideals of T":

Pm—l c Pm - Pm—l . C Pn—l C M
(PN AT = (PaNAT =™ (PN AT = = (PunAT = (PN AT

Since m < n — 1, this is a chain of length at least 2. Let Ca: be the corresponding chain
of prime ideals of A" given as follows:

P,_1NA P,NA P,.NA P,_1NA MnA
= - C C

O =Emd) B d) & B A) & S Bann A) = B A)

Observe that Cr+ and Cy4 satisfy the conditions of Lemma 2.6, therefore, C4- is not
saturated. This gives us that C, is not saturated. 0O

We note that Lemma 2.7 is particularly useful when Cr is saturated. In the next
lemma, we show that, in a local ring, it is possible to find saturated chains of prime
ideals that satisfy nice properties. This result will be used to prove our main theorems.

Lemma 2.8. Let (T, M) be a local ring with M ¢ AssT and let P € MinT with
dim(T/P) = n. Then there exists o saturated chain of prime ideals of T, P C @, C
- C Qn_1 © M, such that, for eachi=1,...,n—1, Q; ¢ AssT and P is the only

minimal prime ideal contained in Q;.

Proof. Observe that, since dim(7'/P) = n, there must exist a saturated chain of prime
ideals in T from P to M of length n,say PC P, C --- C P, C M. We first show that
we can choose (J; € SpecT such that P C @)y € P is saturated, P is the only minimal
prime ideal of T' contained in @, and @; ¢ AssT. To do so, consider the following sets:

B ={Q € SpecT | P C Q ¢ P, is saturated},
By ={Qe€ B|3P € MinT\ {P} with P’ ¢ Q},
B,={QeB|Qe€ AssT}.

Then B, By C B and it suffices to find Q, € B\ (B; U Bs). Note that since T is
Noetherian and P C P1 C Pa, we know that B contains infinitely many elements and
B; contains finitely many elements.

Next, we show that B; contains finitely many elements. Suppose @ € B; contains
P' € MinT \ {P}. Then P + P’ C (). We claim that ¢ must be a minimal prime ideal
of P 4+ P'. Suppose instead that it is not. Then there must exist Q" € SpecT with
P+ P C @ ¢ Q. But then we have P C Q" C @ (where P # Q' because P' ¢ P),
contradicting the fact that P C @ is saturated. Thus, if € B, contains P’, then @ is
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a minimal prime ideal of P 4+ P’. Then, as there are only finitely many minimal prime
ideals of P+ P’ for each of the finitely many P’ € MinT\ { P}, we have that B, contains
finitely many elements. Therefore, we can choose @), to be one of the infinitely many
prime ideals in B\ (B, U Bs).

Now, for each i = 2,...,n—1, we sequentially choose @J; € SpecT so that Qi—1 € Q; &
P;., is saturated, P is the only minimal prime ideal contained in @;, and @; ¢ AssT
using the same argument as above. More specifically, to choose @, redefine the set B
as B = {Q € SpecT | Q;—1 € Q C P,+, is saturated} and define B, and B, as before.
Then B is an infinite set, By is a finite set, and we can show that B, is a finite set
as above by showing that if Q € B, contains P’, then @ is a minimal prime ideal of
Q-1+ P'. Hence, B\ (B; U Bs) is infinite and we choose @); to be in this set. Then the
resulting chain P C Q; € --- € @,_1 & M will satisfy the desired properties. O

-

The next lemma will be used to show that the conditions in our main theorems are
necessary.

Lemma 2.9. Let (T, M) be a complete local ring and let A be a local domain such that
AZT. If A contains o saturated chain of prime ideals from (0) toe M N A of length n,
then there exists P € MinT such that dim(T/P) = n.

Proof. Let C4 be a saturated chain of prime ideals in A from (0) to M N A of length n.
Since T is a flat extension of A, we can apply the Going Down Theorem. This implies
that there exists a chain of prime ideals in T of length n from some prime ideal P to M,
which we call Cr, such that the image of C; under the intersection map with 4 is C4.
We show that P € MinT and Cr is saturated. To see this, suppose P ¢ MinT. Then
there must exist some P’ € MinT such that P’ C P. If we extend Cr to contain P’,
then this new chain will have length n+ 1 and its image under the intersection map with
A will also be Ca. Then Lemma 2.7 implies that C4 is not saturated, a contradiction.
So, we must have P € Min7. Additionally, by a similar argument using Lemma 2.7,
Cr is saturated. Therefore, as T is catenary, P is a minimal prime ideal of T such that
dim(T/P)=n. O

With the above lemmas, we are now ready to prove the main theorem of this section.

Theorem 2.10. Let (T, M) be a complete local ring. Then T is the completion of a non-
catenary local domain A if and only if the following conditions hold:

(i) No integer of T is a zero divisor,
(ii) M ¢ AssT, and
(iii) There exists P € Min T such that 1 < dim(T/P) < dimT.

Proof. We first show that if (T, M) is a complete local ring satisfying (i), (ii), and (iii),
then T is the completion of a noncatenary local domain A.
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Using Theorem 2.5 with G = {P € SpecT | P C @ for some Q € AssT}, we
have that there exists a local domain A whose completion is T such that the set
{P € SpecT | PN A = (0)} is exactly the elements of G. Note that this G satis-
fies the assumptions of Theorem 2.5. Furthermore, for this A, we have a one-to-one
inclusion-preserving correspondence between nonzera P € Spec A and @ € Spec T\ (7 as
described in Remark 2.4.

Let Py € MinT with 1 < m = dim(T/F,) < dimT, which exists by assumption.
Using Lemma 2.8 we construct a saturated chain of prime ideals from Py to M given by
PPCQ1CQ2C - C Qm—1 © M, where the only minimal prime ideal contained in
each @; is Py and @Q; ¢ AssT. Then, since M ¢ AssT, we have that @Q,,_, ¢ G.

We now show that A is noncatenary. Since the only minimal prime ideal contained in
(Qm—1 is Py, since our chain is saturated, and since T is catenary, we have that ht Q.,—1 =
m—1 and dim(7T'/@Q,—1) = 1. Then, since Q,—1 ¢ G, we have @, _1NA # (0). We claim
that dim(A/(Q.m—_1NA)) = 1. To see this, suppose P’ € Spec A such that Q,,,_1NAC P'.
Then by the one-to-one inclusion-preserving correspondence described in Remark 2.4,
Qm_1 © P'T. Since @,,_1 € M is saturated and P'T € SpecT, we must have that
P'T = M. Therefore, P’ = P'T N A= MNA and it follows that dim(A4/(Q,—1NA)) = 1.
Since ht(Q,,—1 N A) < htQ,,,—1 we have that ht(Q,,—1 N A) + dim(A/(Q,,—1 N A4)) <
ht Qm-1+dim(T/Qm-1) = m < dim T = dim A. Thus, A is a noncatenary local domain
whose completion is T

Now, suppose that T is the completion of a noncatenary local domain, A. The contra-
positive of Theorem 2.1 implies that T is nonequidimensional, and hence dimT =n > 1.
Therefore, T cannot be a field, so M cannot be (0). Additionally, by Theorem 2.2, no
integer of T is a zero divisor and M ¢ AssT. Since A is noncatenary, there exists a
saturated chain of prime ideals in A4, call it C4, from (0) to M N A with length m < n.
Since dimA = n > 1, we know that (0) € M N A is not a saturated chain. Thus,
m > 1, and consequently, n > 2. By Lemma 2.9, there exists P € MinT such that
1 < dim(T/P) = m < n, completing the proof. 0O

Remark 2.11. Let (T, M) be a complete local ring satisfying conditions of (i), (ii), and
(iii) of Theorem 2.10, and let A be the noncatenary local domain constructed in the
proof of Theorem 2.10 whose completion is T'. Then we claim that A may, under certain
circumstances, be quasi-excellent, even though it cannot be excellent. To show this, we
first present the following definitions, adapted from [9]:

Definition 2.12. A local ring A is quasi-excellent if, for all P € Spec A, the ring A® 4 L is
regular for every purely inseparable finite field extension L of k(P) = Ap/PAp. A local
ring A is execellent if it is quasi-excellent and universally catenary.

To demonstrate our claim, we need to show that, for all P € Spec A and for ev-
ery purely inseparable finite field extension L of k(P), the ring T ®,4 L is regular.
If P € SpecA is nonzero, then, by Lemma 2.3, T ®4 k(P) = E(P). Then we have
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T®RaL=T®4k(P)®yp) L = k(P)@py L = L, a field. So in this case, T ®4 L
is regular.

Now A will be quasi-excellent if and only if T® 4 L is regular for all purely inseparable
finite field extensions L of £((0)). For example, suppose the characteristic of k((0)) is
zero and suppose Ty is a regular local ring for all @ € G where G = {P € SpecT | P C @
for some @ € AssT}. Note that T®4k((0)) = S~!T, where S = A\ (0). The prime ideals
of S~IT are in one-to-one correspondence with the set {Q) € SpecT | QN A = (0)} =G.
So, to show that S~!T is regular, it suffices to show that (S™'T)y = Tp, is a regular
local ring for all @ € G. But we assumed this to be true, so A is quasi-excellent. Of
course, A cannot be excellent as it is noncatenary.

We now use Remark 2.11 to give a specific example of a quasi-excellent noncatenary
local domain.

K[z, y,z,v]

(@) N (y, 2)
z,y, z,and v are indeterminates. Let x,y, 2, and v represent their corresponding images
in T. Then T satisfies conditions (i), (ii), and (iii) of Theorem 2.10 since AssT =
{(z),(y,2)} and dim(T/(y,z)) = 2 < dimT = 3. So, let A be the noncatenary local
domain constructed as in the proof of Theorem 2.10. Then G = {Q € SpecT | QN A =
(0)} = AssT and T,y and T, ) are both regular local rings. Therefore, by Remark 2.11,
A is a quasi-excellent noncatenary local domain such that AT

Example 2.13. Let T = , where K is a field of characteristic zero and

In the next example we construct a class of catenary, but not universally catenary,
local domains.

Example 2.14. Let T' = Klz,y1;- -, un] where K is a field, z,y,...,y, are indetermi-
(@) N Y1y ey Yn)
nates, and n > 1. By Theorem 2.2, we know that there exists a local domain, A, whose

completion is T. Observe that T contains only two minimal prime ideals, P, and P;,
where dim(T/P;) = n and dim(T/P,) = 1. Thus, T does not satisfy condition (iii) of
Theorem 2.10, which implies that any such A must be catenary. Additionally, Theorem
31.7 in [6] states that a local ring is universally catenary if and only if ﬁ?ﬁ is equidimen-
sional for every P € Spec A. But since A is an integral domain, we have (0) € Spec A4, and

m — A= T which is nonequidimensional. Therefore, A is not universally catenary.
3. Characterizing completions of noncatenary local UFDs
3.1. Background

In this section, we find necessary and sufficient conditions for a complete local ring to
be the completion of a noncatenary local unique factorization domain. Conditions (i), (ii),
and (iii) of Theorem 2.10 will, of course, be necessary conditions. We begin by presenting
a few previous results that will be useful in the proof of this section’s main theorem.
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The following theorem, essentially taken from [3], provides necessary and sufficient
conditions for a complete local ring to be the completion of a local UFD.

Theorem 3.1. Let (T, M) be a complete local ring. Then T is the completion of & unigue
factorization domain if and only if it is a field, a discrete valuation ring, or it has depth
at least two and no integer of T is a zero divisor.

Proof. The result follows from Theorem 1 and Theorem 8 in [3]. O

We will also use the following generalizations of the Prime Avoidance Lemma. In
particular, Lemma 3.3 is a generalization of Lemma 3.2 and will be used to find ring
elements that satisfy a certain transcendental property.

Lemma 3.2. ({10, Corollary 2.2]) Let T be a complete local ring, and let C be a countable

set of prime ideals in SpecT. If I is an ideal of T which is contained in no single P
inC, then I L |J{P | P C}.

Lemma 3.3. (/3, Lemma 2]) Let (T, M) be a complete local ring, let C be a countable set of
prime ideals in SpecT such that M & C and let D be a countable set of elements of T. If I
is an ideal of T which is contained in no single P in C, then I ¢ |J{r+P | P € C, r € D}.

The construction in [3] involves adjoining carefully-chosen transcendental elements
to a subring while ensuring certain properties are maintained. A ring satisfying these
properties is called an N-subring, and was first defined in [3]. Since we will be interested
in maintaining those same properties, we present the definition of an N-subring, where a
quasi-local ring denotes a ring with one maximal ideal that is not necessarily Noetherian.

Definition 3.4. Let (T, M) be a complete local ring and let (R, M N R) be a quasi-local
unique factorization domain contained in T satisfying:

(1) |R| < sup(Xo,|T/M]|) with equality only if T/M is countable,
(i) @N R = (0) for all @ € Ass(T), and
(iii) If ¢t € T is regular and P € Ass(T/tT), then ht(P N R) < 1.

Then R is called an N-subring of T

We will also make use of the following lemma in our construction. It allows us to adjoin
elements to an N-subring in such a way that the resulting ring is also an N-subring.

Lemma 3.5. ([5, Lemma 11]) Let (T, M) be a complete local ring, R be an N-subring of T,
and C C SpecT such that M ¢ C, AssT C C, and {P € SpecT | P € Ass(T/rT),0 #
r € R} C C. Suppose x € T is such that, for every P € C, z + P is transcendental over
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R/(PNR) as an element of T/P. Then S = R[] pnrpja) 5 an N-subring with R C S
and |S| = sup(Rg, |R|).

3.2. The characterization

We start by describing the main idea of our proof for characterizing completions of
noncatenary local UFDs. Let (T, M) be a complete local ring such that depthT > 1 and
no integer of T' is a zero divisor. Our goal is to find sufficient conditions to construct
a noncatenary local UFD, A, such that AxT. First, we note that if R is the prime
subring of T localized at M N R, then R is an N-subring. Now, suppose there exists
@ € SpecT such that dim(T/Q) = 1, it Q@ + dim(T/Q) < dimT, and depth Ty, > 1.
Then, in Lemma 3.7, we show that it is possible to adjoin appropriate elements of @
to R to obtain an N-subring, S, such that, if we apply the proof of Theorem 8 in [3]
to S, the resulting A is a local UFD satisfying (Q N A)T = ). We then prove that A is
noncatenary. Additionally, in Theorem 3.8, we prove that our conditions are necessary.

First, we prove the following lemma, which allows us to simplify the statement of the
main theorem of this section.

Lemma 3.6. Let (T, M) be a catenary local ring with depthT > 1. Then the following
are equivalent:

(i) There exists Q € SpecT such that dim(T/Q) = 1, ht Q + dim(T/Q) < dim T, and
depthTp > 1.
(ii) There exists P € MinT such that 2 < dim(T/P) < dimT.

Proof. Suppose condition (i) holds for @ € SpecT, and let P € MinT be such that
PCQand dim(T/P) =htQ+1 < dimT. If Q@ € MinT, then depthTy = 0, so it
must be the case that P C Q. It suffices to show that dim(T/P) > 2. Now dim(T/P) >
dim(T/@) = 1, so suppose dim(T/P) = 2. Then we have dim T; = 1, which implies that
depth Ty < 1, contradicting our assumption. Therefore, dim(T/P) > 2.

Now suppose condition (ii) holds for P € MinT with 2 < dim(T/P) = n < dim7T.
By Lemma 2.8, there exists a saturated chain of prime ideals in T given by P C @1 &
-+ C Q-1 © M such that, fori = 1,...,n — 1, P is the only minimal prime ideal of
T contained in @; and Q; ¢ AssT. This ensures that ht @; + dim(7/@;) = n < dimT
for each i = 1,...,n — 1. Note that, as a consequence of Theorem 17.2 in [6], we have
depthT < min{dim(T/P) | P € AssT}. Since we have depthT > 1, this means that
any @ € SpecT such that dim(T/Q) = 1 satisfies @ ¢ AssT. Therefore, @,_s is
not contained in any associated prime ideal of T, so we can find a T-regular element
T E Qn_s.

We will replace (Jn—1 in our chain with a prime ideal ' that satisfies condition (i).
Let § = {Q € Spec(T) | P is the unique minimal prime ideal contained in Q,Q ¢
AssT, and Q,_2 C @ C M is saturated}. The proof of Lemma 2.8 establishes that S is
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an infinite set. Consequently, we can choose Q" € S\ Ass(T/zT), given that Ass(T/zT)
is a finite set. Observe that, since z € @' is T-regular and Ti,. is a flat extension of T,
z is Tg-regular. We now find a regular element on Ty /Ty to obtain a Ty:-regular
sequence of length 2. Since Q' ¢ Ass(T/zT), by the corollary to Theorem 6.2 in [6],
QT ¢ Ass(Ty /zTg ). Therefore, there exists y € Q'Ty- which is a regular element
on Ty fxTg. Thus, z,y is a Ty-regular sequence of length 2. So, we have shown that
depth Ty > 1, which completes the proof. O

Lemma 3.7. Let (T, M) be a complete local ring such that no integer of T is a zero divisor.
Suppose depth T > 1 and there exists P € Min T such that 2 < dim(T/P) < dimT. Then
T is the completion of a noncatenary local UFD.

Proof. Let Ry be the prime subring of T localized at its intersection with M, and let
Co={P € SpecT | P € Ass(T/rT),0# r € Ry}\UAssT. Note that by Lemma 3.6, there
exists ) € Spec T such that dim(T/Q) = 1, ht Q4+dim(T/Q) < dim T, and depth Ty > 1.
We first claim that Q@ ¢ Ass(T/tT) for every ¢ € T that is not a zero divisor. If @ €
Ass(T'/tT) for some ¢t € T that is not a zero divisor, then the corollary to Theorem 6.2 in
6] gives QT € Ass(Ty/tTy). This implies that Ty /tT,, consists of only units and zero
divisors. Therefore, t is a maximal regular sequence of Ty;. Thus, depth Ty = 1, which
contradicts our assumption and establishes the claim. Furthermore, if M € Ass(T/tT)
for any t € T that is not a zero divisor, then depthT = 1, a contradiction. Therefore,
M ¢ Ass(T/tT) for every ¢t € T that is not a zero divisor and M is the only prime
ideal strictly containing @. By the above argument, we have that Q € P for all P € Cq.
Similarly, M ¢ P for all P € Cy. Since |Ry| < Ry, we have that |Cy| < Ry. Then
Lemma 3.2 gives that there exists y; € @ such that y; ¢ P for all P € Cj. As @ is
finitely generated, let Q = (z1,...,2,).

Next, we create a chain of N-subrings Ry € Ry € --- © R, so that the resulting ring,
R,,, contains a generating set for ). Note that Ry is an N-subring. (Clearly, Ry is a local
UFD satisfying condition (i) of the definition for N-subrings. If Ry is Q or Z,, then (ii)
in the definition of N-subring is satisfied trivially. If Ry = Z,,, then, for Q € AssT, we
have Q N Ry # (p)Zp) since, by hypothesis, p is not a zero divisor in T'. It follows that
QNRy = (0). So, (ii) in the definition of N-subring is satisfied for all possible Ry. Now let
t € T be a regular element and let P € Ass(T/tT). Then PN Ry is either (0) or (p)Z ).
In either case, ht(P N Rp) < 1. So, (iii) in the definition of N-subring is satisfied for all
possible Ry.) To construct our chain, at each step we replace x; with an appropriate #;
so that R; = Ri_l[ii-](‘wﬂ&__l[j‘:] is an N-subring by Lemma 3.5. Beginning with R, we
find ) = z1 + a1y1 with a1 € M so that &1 + P is transcendental over Ro/(P N Ry) as
an element of T/P for every P € Cy. To find an appropriate o, we follow an argument
similar to that in Lemma 4 of [3]. First, fix some P € C; and consider z; + ty, + P for
some t € T. We have |Ro/(P N Ro)| < |Ro| and so the algebraic closure of Ro/(P N Ro)
in T/P is countable. Since T/P is a complete, local domain with P # M, we have
|T'/P| > e. (Here, c stands for the cardinality of R.) Note that each choice of £ + P gives
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a different z; + ty; + P since y; ¢ P. So, for all but at most countably many choices
of ¢t + P, the image of #; 4+ ty; in T/P will be transcendental over Ry/(P N Ry). Let
D(py C T be a full set of coset representatives of T'/ P that make 1 + ty:1 + P algebraic
over Ry/(PNRy). Let Dy = U Dy¢py. Then |Dy| < R since |Cy| < ¥p and |Dipy| < Ry

Pely
for every P € Cy. We can now apply Lemma 3.3 with I = M to find a; € M such that

&1 + P = z1 4+ a1y + P is transcendental over Ry /(P N Ry) for every P € Cy. Then by
Lemma 3.5, Ry = Rg[#1(nnRy(z:)) is & countable N-subring containing R;.

We now claim that @ = (&,%2,...,2,). This can be seen by writing ¢, € @ as
y1 = Bi1121 + -+ + B n&, for some B ; € T. Then clearly &; € () since z,,y; € @ and
we have

f1=z14+oiy=1+aerfra)zr+afrioze+ - -+ a1f102n.
Rearranging gives
z1=(1+01811) (B — e1B1282 — -+ — 1 Brnn) € (B1,Z2y...,Zn)

where (1 4 c181,1) is a unit because @; € M. Thus, we can replace x; with #; in our
generating set for Q.

To create Ry, let C; = {P € SpecT | P € Ass(T/rT),0 # r € Ry} U AssT. Then
@ ¢ P for all P € Cy. Then |C,| < Ng, so again by Lemma 3.2, we can find ¢ € Q
such that y2 ¢ P for all P € Cy. Let D; = U D(py where D(py C T is a full set

PeC

of coset representatives of 7'/ P that make z2 + teyz + P algebraic over R1/(P N Ry) for
every P € C;. Then using Lemma 3.3 with I = M, there exists as € M such that
Ty + aayz + P is transcendental over R; /(P N R,) for every P € C) as an element of
T/P. Let Z3 = x3 + azyz. Then Ry = Ry[Z3](yin g, [z,]) is an N-subring by Lemma 3.5
and we have Q = (£,22,23,...,2,) by a similar argument as above by writing ys =
B21%1 4+ P2,222+ - - -+ B2,nZn to show that 3 € (Z1, 2,23, ...,2n). Repeating the above
process for each ¢ = 3,...,n we obtain a chain of N-subrings Ry € Ry € --- € R,
and have Q = (#,,2,...,%,). By our construction, each #; € R,,, so R, contains a
generating set for Q.

In the proof of Theorem 8 in [3], Heitmann starts with a complete local ring (T, M)
such that no integer of T is a zero divisor and depthT > 1. He then takes the
N-subring Ry, which, recall, is a localization of the prime subring of T, and constructs
a local UFD containing Ry, whose completion is T. Now, to complete our construction
of A, first replace the initial ring Ry in Theorem 8 of [3] with the above N-subring R,
and then follow the proof of Theorem 8 in [3] to obtain a local UFD, A, such that A
contains R, and AT,

Finally, we show that this A is noncatenary. Since R, contains a generating set for @
and R, C A, we have that (QNA)T = Q. We use this and the fact that dim(T/Q) = 1 to
show that dim(A/(Q N A)) = 1. Suppose P’ is a prime ideal of 4 such that QN A C P’
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Then we have (Q N A)T = Q ¢ P'T. This means that the only prime ideal of T that
contains P'T is M. Then dim(T/P'T) = 0, which implies that dim(A/P") = 0 since
AJP' = T/P'T. It follows that P’ = M N A. Thus, dim(4/(QNA)) = 1. As ht(QN A) <
ht @, we have ht{(@ N A) + dim(4/(Q N A4)) < @ + dim(T/Q) < dimT = dim A.
Therefore, A is noncatenary. 0O

We are now prepared to prove the main theorem of this section.

Theorem 3.8. Let (T, M) be a complete local ring. Then T is the completion of a non-
catenary local UFD if and only if the following conditions hold:

(i) No integer of T is a zero divisor,
(ii) depthT > 1, and
(iii) There exists P € MinT such that 2 < dim(T/P) < dimT.

Note that conditions (i), (ii), and (iii) immediately imply that dim7T > 3 and that
conditions (i), (ii), and (iii) of Theorem 2.10 hold.

Proof. Lemma 3.7 gives us that conditions (i), (ii), and (iii) are sufficient. We now prove
that they are necessary.

Suppose T is the completion of a noncatenary local UFD, A. Then dimA =n > 3
since all local UFDs of dimension three or less are catenary. By Theorem 1 in [3], T
satisfies conditions (i) and (ii). Therefore, we need only show that T" contains a minimal
prime ideal P with 2 < dim(T/P) < dimT = n. Since A is noncatenary, there exists
a saturated chain of prime ideals in A from (0) to M N A, call it C4, of length m < n.
We claim that m > 2. (The proof of this claim is the same as the proof that a UFD
of dimension less than 4 is catenary.) Note that m # 1 because (0) C M N A is not a
saturated chain in A. So, suppose m = 2. Then C4 is given by (0) C Q@ & M N A. Since
C4 is saturated, ht @ = 1. Since all height-1 prime ideals of a local UFD are principal,
let a € A such that Q@ = aA. Now let be (MNA)\Q and I = aA+bA. Let Q' € Spec A
be a minimal prime ideal of I. Since I is generated by two elements, Krull's Generalized
Principle Ideal Theorem implies that ht @ < 3. Then we have @ C @' € M N A since
ht(MNA) = n > 3. This contradicts that C4 is saturated. Thus, m > 2 as claimed. Now,
by Lemma 2.9, there exists P € MinT such that 2 < dim(T/P) = m < n, completing
the proof. O

Remark 3.9. To see parallels between the above theorem and the main theorem in Sec-
tion 2, it is interesting to note that condition (ii) in Theorem 2.10 can be replaced with
the condition that depthT > 0 since dim T > 2. Then Theorem 3.8 is very similar to
Theorem 2.10 in that the only changes required are for the depth of T' and dim(T/P) to
each increase by 1. &
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Note that, as a result of this theorem, given any complete local ring T satisfying
conditions (i), (ii), and (iii) of Theorem 3.8, there exists a noncatenary local UFD, A,
such that A 2 T. This allows us to show the existence of a larger class of noncatenary
UFDs than was previously known, as exhibited in the example below.

Kux!ylv"‘!yﬁ‘.'.zl!"':zbﬂ

() N (Y155 Ya)
..., zp are indeterminates, and a and b are integers such that a,b > 1. Let z,y1, ..., ¥a, 21,

...,z denote their corresponding images in T. Note that dim7 =a +b > 3. Then T
satisfies conditions (i), (ii), and (iii) of Theorem 3.8 since AssT = {(z),(y1,.--,%a)},
dim(T/(y1,...,%)) =b+1 <a+b=dimT, and depthT > 1. So, we know there exists
a noncatenary local UFD, A, such that AT

Example 3.10. Let T = , where K is a field, =, 41, ..., ¥a, 21,

3.3. Catenary local domains and local UFDs

Theorems 2.10 and 3.8 concern the completions of noncatenary rings. However when
used in conjunction with Theorem 2.2 and Theorem 3.1, we also obtain some information
regarding completions of catenary local domains and catenary local UFDs.

Corollary 3.11. Suppose T is a complete local ring such that the following conditions
hold:

(i) No integer of T is a zero divisor,
(ii) depthT > 0, and
(iii) For all @ € MinT, either dim(T/Q) <1 or dim(T/Q) = dimT.

Then T is the completion of a catenary local domain. Moreover, every domain whose
completion is T is catenary.

Proof. Since T' is a complete local ring which satisfies (i) and (ii), Theorem 2.2 implies
that there exists a local domain, A, such that AT However, by Theorem 2.10, we
know that T is not the completion of a noncatenary local domain. Therefore, A must be
catenary, and every such A must be catenary. O

Corollary 3.12. Suppose T is a complete local ring such that the following conditions
hold:

(i) No integer of T' is a zero divisor,
(ii) depthT > 1, and
(iii) For all @ € MinT, either dim(T/Q) < 2 or dim(T/Q) = dimT.

Then T is the completion of a catenary local UFD. Moreover, every UFD whose comple-
tion is T is calenary.
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Proof. Since T is a complete local ring which satisfies (i) and (ii), Theorem 3.1 implies
that there exists a local UFD, A, such that AT, However, by Theorem 3.8, we know
that T is not the completion of a noncatenary local UFD. Therefore, A must be catenary,
and every such A must be catenary. O

A consequence of these two corollaries is that there exists a class of complete local rings
which are the completion of both a noncatenary local domain and a catenary local UFD.

Corollary 3.13. Suppose T is a complete local ring with dim T > 3 such that the following
conditions hold:

(i) No integer of T is a zero divisor,

(ii) depthT > 1,
(iii) For all Q@ € MinT, either dim(T/Q) < 2 or dim(T/Q) = dim T, and
(iv) There exists P € MinT such that dim(T/P) = 2.

Then T is the completion of a noncatenary local domain and the completion of a catenary
local UFD.

Proof. Since T satisfies conditions (i), (ii), and (iv), by Theorem 2.10, we know that T
is the completion of a noncatenary local domain. Since T satisfies conditions (i), (ii),
and (iii), Corollary 3.12 implies that T is the completion of a catenary local UFD. Thus,
T is the completion of both a noncatenary local domain and a catenary local UFD. O

4. Noncatenarity of local domains and local UFDs

As a consequence of Heitmann’s main result in [2], Noetherian domains can be made to
be “as noncatenary as desired,” in the sense that, for any natural numbers m and n, both
greater than one, there exists a ring containing two prime ideals with both a saturated
chain of prime ideals of length m and a saturated chain of prime ideals of length n
between them. We reprove this result for noncatenary local domains and show that the
same can be done for noncatenary local UFDs.

Proposition 4.1. Let m and n be positive integers with 1 < m < n. Then there exists a
noncatenary local domain of dimension n with a saturated chain of prime ideals of length
m from (0) to the mazimal ideal.

Proof. Let T' be the complete local ring given in Example 3.10 where ¢ = n — m + 1
and b = m — 1. Observe that a + b = dimT and 1 < a < a + b. Therefore,
T satisfies the conditions of Theorem 2.10, and so it is the completion of a noncate-
nary local domain, A. By the construction of A in the proof of Theorem 2.10, the
set {P € SpecT | PNA = (0)} = {(2),(y1,-..,%)} = G and there is a one-to-
one inclusion-preserving correspondence between the nonzero prime ideals of A and
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T — Kum:qu...,yu‘zl _____ zb]]
(@) M w1y ya)
/M\
(@ 1,y 20, Y1y e o Ya—1) (¥1,-- s Yas #lye - - 2 %)
| (Vis.e s Va, 21)
(z, 21, 22) |
| (1oeees¥a)
(x, 21)

Fig. 2. The Spec diagram for the proof of Proposition 4.1,

the prime ideals of T which are not in G. Note that dim(T/(z)) = ¢ + b = n and
dim(T/(y1,...,Ya)) = b+ 1 = m. Therefore, there exists a saturated chain of prime
ideals of T from (z) to M = (z,¥1,...,Ya, Z1,...,2) of length n and a saturated chain
of prime ideals of T from (y1,...,va) to M of length m (see Fig. 2). By the one-to-one
correspondence, the intersection map will preserve the lengths of these chains. Therefore,
we have found a local domain of dimension n with a saturated chain of length m from
(Mto MNA. O

Proposition 4.2. Let m and n be positive infegers with 2 < m < n. Then there erists a
noncatenary local UFD of dimension n with a saturated chain of prime ideals of length
m from (0) to the maximal ideal.

Proof. Let a, b, and T be as in the proof of Proposition 4.1. Observe that again a4+ b =
dimT and we have 2 < a < a + b. Furthermore, T' is exactly as in Example 3.10, so
it satisfies the conditions of Theorem 3.8 and is the completion of a noncatenary local
UFD, A. Recall that in the proof of Lemma 3.7, we choose a prime ideal @’ of T such that
dim(T/Q") = 1 and ht Q'+dim(T/Q’) < dim T and construct A such that (Q'NA)T = Q'
and dim(A4/(@Q' N 4)) = 1. In particular, we choose @' = (¥1,...,Yas21,...,2p), which
satisfies the above (see Fig. 2), and construct A such that (Q' N A)T = Q'. We know
that dimA = dimT = a + b = n, and we will show that ht(Q' N A) = ht Q" = b.
From Theorem 15.1 in [6], since completions are faithfully flat extensions, we have that
ht@Q = ht(Q' N A) + dim(Ty /(Q' N A)Ty ). Since (Q' N A)T = @', we know that
dim(Ty /(Q' N A)Ty) = 0, so ht(Q' N A) = ht Q'. Therefore, there exists a saturated
chain of prime ideals in A from (0) to M N A, containing @' N A, of length b+1=m. O
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Although we show that there is no finite bound on the noncatenarity of a local domain,
as a result of Lemma 2.9, if A is a local domain (or local UFD) such that A>T,
then A can only be “as noncatenary as T' is nonequidimensional” In general, however,
the converse is not true. In fact, in Example 2.14, we construct a class of examples
of rings which are “as nonequidimensional as desired,” but are not the completions of
noncatenary local domains. In other words, for any positive integer n, there is a complete
local nonequidimensional ring T' with P, @ € Min T such that dim(7T"/P)—dim(T/Q) = n,
but every local domain A such that A = T must be catenary, but not universally catenary.
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