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Abstract

In the early 2000s, Littlejohn and Wellman developed so-called nth left-definite theory. Namely, they
fully determined the ‘left-definite domains’ and spectral properties of powers of self-adjoint Sturm–
Liouville operators associated with classical orthogonal polynomials. We study how these left-definite
domains relate with explicit classical Glazman–Krein–Naimark (GKN) boundary conditions.

When n is small, we significantly simplify previously challenging analysis by introducing an explicit
method for checking whether a given set of functions yields GKN conditions. This reduces to computing the
rank of a relatively small matrix. We include explicit computations for n = 2, . . . , 5. Further, for arbitrary
powers n of Sturm–Liouville operators with a complete system of orthogonal eigenfunctions, we show
that these left-definite domains are given by GKN boundary conditions involving some of the polynomial
eigenfunctions. We also study and extend a conjecture by Littlejohn–Wicks regarding the equality of four
different formulations for these domains.
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1. Introduction

A wide variety of literature concerns the study of left-definite theory applied to Sturm–
Liouville differential operators. The interest arises primarily from the groundbreaking paper
of Littlejohn and Wellman [17]. The paper describes the creation of a continuum of left-
definite spaces and left-definite operators associated with an arbitrary self-adjoint operator that
is bounded below by a positive constant in a Hilbert space. Prior to [17], research had been
conducted only in the “first” left-definite setting. This theory has been applied to many types of
self-adjoint differential operators, including those stemming from the second-order differential
equations of Hermite, Legendre, Jacobi, Laguerre, and Fourier. Excellent surveys of these results
are [6] and [18].

The paper of Littlejohn and Wellman [17] managed to characterize these left-definite spaces in
terms of other Hilbert spaces defined with integral operators. A key point of left-definite theory is
that each left-definite space will be nested and dense within the original Hilbert space. However,
some critics felt somewhat uneasy with the fact that the left-definite spaces (in their opinions)
lack an explicit mention of boundary conditions.

One of the goals of this paper is to address these concerns. We present classical boundary
conditions that exist for self-adjoint differential operators which possess a complete system of
orthogonal eigenfunctions. These boundary conditions are formulated in terms of Glazman–
Krein–Naimark (from now on abbreviated by GKN) theory, which entirely describes self-adjoint
extensions for a closed, symmetric operator with equal deficiency indices.

This framework allows for the construction of the boundary conditions for the left-definite
spaces of the classical Legendre differential operator explicitly. Previous work using GKN
conditions to describe the left-definite domains is limited to very recent progress by Littlejohn
and Wicks [19,20]. Their results concern the classical Legendre differential operator exclusively
and give GKN conditions describing the fourth left-definite domain, which is associated with the
square of the differential operator, L2. Additionally, Littlejohn and Wicks formulate their results
in terms of “separated” boundary conditions, whereas “coupled” boundary conditions are used
throughout this paper. This is a matter of preference, but using coupled boundary conditions
simplifies calculations considerably, as they are easier to access via the sesquilinear form dealt
with by GKN theory.

In this work we introduce a systematic approach, which reduces the amount of cumbersome
computations in this field. This perspective enables us to harvest the finite dimensional nature
of defect spaces. An alternative approach to this problem is through Sturm–Liouville theory,
e.g. [11,15], but the literature focuses on the first left-definite theory and does not produce GKN
conditions.

The interest in differential operators which possess a complete system of orthogonal
eigenfunctions originates with a result in [17] that says this same system will be present in each of
the different left-definite domains. Hence, there is an indicator for when a self-adjoint extension
is a left-definite domain, and this simplifies the process. A second-order linear differential
equation satisfied by a complete orthogonal system of polynomials with absolutely continuous
measures of orthogonality has a second linearly independent solution [14, Section 3.6]. This
second linearly independent solution is often called a function of the second kind, and their
existence plays an essential role in our examples.

The Legendre differential operator example is particularly important because there are essen-
tially only four Sturm–Liouville operators with a complete set of orthogonal eigenpolynomials.
The Bochner classification [4] tells us that, up to a complex linear change of variable, the only
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such operators with polynomial eigenfunctions are Jacobi, Hermite, Laguerre and Bessel. Of
these, the Jacobi differential expressions require the most boundary conditions. The Legendre
expression is a special case of Jacobi that has an immense amount of literature, so it was ideal
for such an exploration of GKN conditions with respect to left-definite theory. The framework
of Section 4 both extends to other Jacobi differential expressions (other values of the parameters
α and β), and reduces to cover the cases of Hermite, Laguerre and Bessel. The broader concepts
of Section 6 are expressed with this in mind as well.

While our applications to the classical systems use polynomial eigenfunctions, a keen
reader may observe that our general results consider systems of eigenfunctions, which are not
necessarily polynomials. This general approach suggests other open problems: What adjustments
are necessary when the self-adjoint operator has a spectrum that is not discrete? That is, given
some non-standard extension of a differential operator, can we describe the corresponding left-
definite domain? How about the left-definite domain for compositions of such an operator?

The approaches and ideas used in our three distinct types of results in Sections 3 through 6
differ vastly from one another. As a consequence, the setup changes slightly from one section to
another.

1.1. Plan of the paper and summary of main results

Section 2 deals primarily with two different areas: left-definite theory and self-adjoint
extension theory. The left-definite theory mainly follows the classical results contained in [17],
and includes the structure of left-definite spaces as well as key facts about their spectra. The
self-adjoint extension theory follows the classical text of Naimark [21], and culminates in GKN
theory. Section 2.5 describes the graph norm that can be endowed on a Hilbert space and justifies
intuition about the decomposition of the maximal domain.

In Section 3 we construct a systematic framework around the method of finding GKN
conditions that make differential expressions into self-adjoint differential operators. We show
that eigenfunctions of a self-adjoint operator, which are linearly independent modulo the minimal
domain, yield GKN conditions for the operator. This reduces previously tedious analysis to
finding the rank of a square (2m×2m)-matrix, where (m,m) are the defect indices of a symmetric
operator (see Theorem 3.2 and its Corollaries). When working with orthogonal functions that
satisfy eigenvalue equations, this matrix simplifies.

In Section 4, explicit self-adjoint extensions are given by showing that eigenfunctions
themselves lead to suitable GKN conditions for powers Ln of the classical Legendre operator L.
The case n = 2 was the topic of [20]. One key feature is the utilization of functions of the second
kind. In examples, we prove that the first n eigenfunctions work for Ln for n = 2, . . . , 5. The
statement has been verified numerically for n ≤ 16. We discuss a condition for eigenfunctions
and functions of the second kind to be suitable “test” functions for linear independence modulo
the minimal domain.

Motivated by the Legendre example, it is shown in Theorem 5.1 and Corollary 5.2 that for
left-definite operators with pure point spectrum (only eigenvalues) there exist eigenfunctions
(corresponding to some eigenvalues) that generate GKN conditions. We believe this to be the
first general result in this direction. The method of proof for this result differs from the explicit
computations that were used in the Legendre example. It relies on working with the graph
norm. The idea is to reduce the problem to its essence: finite dimensional linear algebra. This is
accomplished by using the fact that the defect spaces and minimal domain are orthogonal with
respect to graph norm, and properties of the eigenfunctions.
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In Section 6, the goal is to determine which boundary conditions describe left-definite
domains for Sturm–Liouville differential operators with a complete system of orthogonal
polynomials. This question is then explored by comparing these left-definite domains and their
GKN boundary conditions (see Theorems 6.2 through 6.5). The work improves and simplifies a
proof of a fact from [19]. The central conjecture stating the equality of the following four sets is
still partially open (see Conjecture 6.1):

• The nth left-definite domain.
• The maximal domain with GKN conditions determined by the first m orthogonal polyno-

mials. (Here, m denotes the deficiency indices.)
• The maximal domain with GKN conditions determined by some m orthogonal polynomi-

als.
• The maximal domain with certain explicit boundary conditions.

Other ramifications and specific discussions of individual systems of orthogonal polynomials
and their differential equations follow.

1.2. Notation

We use ℓ to denote differential expressions (on a separable Hilbert space H). We mostly
work with general Sturm–Liouville expressions in symmetric form. In Section 4 we focus on the
Legendre expression. Sets and spaces are generally denoted with “mathcal”; the Hilbert space
H, the minimal domain Dmin, the defect spaces D+ and D−, etc.

Further, we use the notation {ℓ,X } to refer to an operator associated to ℓwith domain X . Since
we work with unbounded operators, the operators are defined on dense subspaces X ⊊ H. The
maximal domain is denoted by Dmax (the largest subset of H with ℓ(Dmax) ⊂ H). Sometimes,
Dmax(ℓ) is used to emphasize the expression. Boldface letters are used for operators and matrices.
We abbreviate the maximal operator by Lmax, i.e. Lmax = {ℓ,Dmax}. In analogy, Lmin = {ℓ,Dmin}

is the minimal operator, and in this context L = {ℓ,DL} is used to denote self-adjoint operators.
When we consider a general operator A, we refer to its domain by D(A).
Often, we work with powers Ln of operators, e.g. we consider the left-definite operator

induced by the expression ℓn . Abusing notation, we use Ln
max = {ℓn,Dn

max} where Dn
max :=

Dmax(ℓn). Further, we let [ · , · ] denote a general sesquilinear form, and [ · , · ]n stand for the
sesquilinear form associated with ℓn .

We generally have (m,m) be the deficiency indices of Lmin. We note that the deficiency indices
of Ln

min then amount to (nm, nm).

2. Background

Consider the classical Sturm–Liouville differential equation
d

dx

[
p(x)

dy
dx

]
+ q(x)y = −λw(x)y,

where y is a function of the independent variable x , and p(x), w(x) > 0 a.e. on (a, b),
−∞ ≤ a < b ≤ ∞, and q(x) real-valued a.e. on (a, b). Furthermore, 1/p(x), q(x), w(x) ∈

L1
loc[(a, b), dx]. Additional details about Sturm–Liouville theory can be found in [5,24,25]. This

differential expression can be viewed as a linear operator, mapping a function f to the function
ℓ[ f ] via

ℓ[ f ](x) = −
1

w(x)

(
d

dx

[
p(x)

d f
dx

(x)
]

+ q(x) f (x)
)
. (2.1)



M. Fleeman et al. / Journal of Approximation Theory 239 (2019) 1–28 5

This expression can be viewed as an unbounded operator acting on Hilbert space L2[(a, b), w],
endowed with the inner product ⟨ f, g⟩ :=

∫ b
a f (x)g(x)w(x)dx . In this setting, the eigenvalue

problem ℓ[ f ](x) = λ f (x) can be considered. The operators of interest, ℓ on L2[(a, b), w],
are assumed to possess a set of orthogonal eigenfunctions that is complete in the domain. The
expression ℓ[ · ] given in Eq. (2.1) has been well-studied, see [14] for an in-depth discussion of its
relation to orthogonal polynomials. However, the operator ℓ on L2[(a, b), w] is not self-adjoint
a priori. Section 2.2 details the imposition of boundary conditions to ensure self-adjointness.

Furthermore, the operator ℓn[ · ] is defined as the operator ℓ[ · ] composed with itself n times,
creating a differential operator of order 2n. Every formally symmetric differential expression
ℓn[ · ] of order 2n with coefficients ak : (a, b) → R and ak ∈ Ck(a, b) for k = 0, 1, . . . , n and
n ∈ N has the Lagrangian symmetric form

ℓn[ f ](x) =

n∑
j=1

(−1) j (a j (x) f ( j)(x))( j), x ∈ (a, b). (2.2)

Further details can be found in [8, Section XIII.2] or [19].
The classical differential expressions of Jacobi, Hermite, and Laguerre all admit such a

representation, and are semi-bounded. Semi-boundedness is defined as the existence of a constant
k ∈ R such that for all f in the domain of the operator A the following inequality holds:

⟨A f, f ⟩ ≥ k⟨ f, f ⟩.

This additional property, combined with self-adjointness, allows for a continuum of nested
Hilbert spaces to be defined within L2[(a, b), w] via the expressions ℓn[ · ]. Indeed, this
continuum is a Hilbert scale, and many facts about the spectrum and the operators can be deduced
using this point of view (e.g. [7,18]). More details about Hilbert scales can be found in [1,16].
This particular Hilbert scale with self-adjoint operators that are semi-bounded is the topic in
left-definite theory [17], part of which we explain in Section 2.1.

The combination of left-definite theory applied to differential expressions and self-adjoint
extension theory allows for the necessary discussion of boundary conditions for these operators
in later sections. Another necessary technicality is the use of the graph norm, in Section 2.5. This
subsection allows the maximal domain that the examined differential expression is defined on,
to be decomposed into an orthogonal direct sum. This decomposition is essential to the results in
Section 5.

2.1. Left-definite theory

Left-definite theory deals primarily with the spectral theory of Sturm–Liouville differential
operators. The terminology itself can be traced back to Weyl in 1910 [26]. A general framework
for the left-definite theory of bounded-below, self-adjoint operators in a Hilbert space was not
developed until 2002 in the landmark paper by Littlejohn and Wellman [17]. Specifically, the
left-definite theory allows one to generate a scale of operators (by composition), each of which
possess the same spectrum as the original.

Let V be a vector space over C with inner product ⟨ · , · ⟩ and norm ∥ · ∥. The resulting inner
product space is denoted (V, ⟨ · , · ⟩).

Definition 2.1 ([17, Theorem 3.1]). Suppose A is a self-adjoint operator in the Hilbert space
H = (V, ⟨ · , · ⟩) that is bounded below by k I , where k > 0. Let r > 0. Define Hr = (Vr , ⟨ · , · ⟩r )
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with

Vr = D(Ar/2)

and

⟨x, y⟩r = ⟨Ar/2x,Ar/2 y⟩ for (x, y ∈ Vr ).

Then Hr is said to be the r th left-definite space associated with the pair (H,A).

It was proved in [17, Theorem 3.1] that Hr = (Vr , ⟨ · , · ⟩r ) is also described as the left-definite
space associated with the pair (H,Ar ). Specifically, we have:

(1) Hr is a Hilbert space,
(2) D(Ar ) is a subspace of Vr ,
(3) D(Ar ) is dense in Hr ,
(4) ⟨x, x⟩r ≥ kr

⟨x, x⟩ (x ∈ Vr ), and
(5) ⟨x, y⟩r = ⟨Ar x, y⟩ (x ∈ D(Ar ), y ∈ Vr ).

The left-definite domains are defined as the domains of compositions of the self-adjoint
operator A, but the operator acting on this domain is slightly more difficult to define.

Definition 2.2. Let H = (V, ⟨ · , · ⟩) be a Hilbert space. Suppose A : D(A) ⊂ H → H is a
self-adjoint operator that is bounded below by k > 0. Let r ≥ 1. If there exists a self-adjoint
operator Ar : Hr → Hr that is a restriction of A from the domain D(A) to D(Ar ), we call such
an operator an r th left-definite operator associated with (H,A). For 0 < r < 1 we obtain an
r th left-definite operator associated with (H,A) analogously, but by taking the closure of the
domain D(A) with respect to the norm induced by the inner product < · , ·>r .

The connection between the r th left-definite operator and the r th composition of the self-
adjoint operator A is now made explicit.

Corollary 2.3 ([17, Corollary 3.3]). Suppose A is a self-adjoint operator in the Hilbert space
H that is bounded below by k > 0. For each r > 0, let Hr = (Vr , ⟨ · , · ⟩r ) and Ar denote,
respectively, the rth left-definite space and the rth left-definite operator associated with (H,A).
Then

(1) D(Ar ) = V2r , in particular, D(A1/2) = V1 and D(A) = V2;
(2) D(Ar ) = D(A(r+2)/2), in particular, D(A1) = D(A3/2) and D(A2) = D(A2).

The left-definite theory is particularly important for self-adjoint differential operators that are
bounded below, as they are generally unbounded. The theory is trivial for bounded operators, as
shown in [17, Theorem 3.4].

Our applications of left-definite theory will be focused on differential operators which possess
a complete orthogonal set of eigenfunctions in H. In [17, Theorem 3.6] it was proved that the
point spectrum of A coincides with that of Ar , and similarly for the continuous spectrum and
for the resolvent set. It is possible to say more, a complete set of orthogonal eigenfunctions will
persist throughout each space in the Hilbert scale.

Theorem 2.4 ([17, Theorem 3.7]). If {ϕn}
∞

n=0 is a complete orthogonal set of eigenfunctions of
A in H, then for each r > 0, {ϕn}

∞

n=0 is a complete set of orthogonal eigenfunctions of the rth
left-definite operator Ar in the rth left-definite space Hr .
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Another perspective on the last theorem is that it gives us a valuable indicator for when a
space is a left-definite space for a specific operator.

On the side we note that left-definite theory can be extended to bounded below operators by
applying shifts. Uniqueness is then given up to the chosen shift.

A description of these left-definite spaces in terms of standard boundary conditions on a
Hilbert space has been noticeably missing, despite the broad framework and range of results
described above. This is not to say that there are no descriptions of the left-definite spaces, just
that they are not classically expressed by GKN theory.

Example. Let A denote the usual self-adjoint operator with the Laguerre polynomials as a
complete set of orthogonal eigenfunctions {ϕn}

∞

n=0. For α > −1 and j ∈ N0, let L2
α+ j (0,∞)

be the Lebesgue space with norm induced by the inner product
∫

∞

0 f (t)g(t)tα+ j e−t dt . The nth
left-definite Hilbert space associated with the pair (H,A) = (L2

α(0,∞),A), also possessing this
complete set of eigenfunctions, is defined as Hn = (Vn, ⟨ · , · ⟩n), where

Vn :=

{
f : (0,∞) → C

⏐⏐⏐⏐ f ∈ AC(n−1)
loc (0,∞); f (n)

∈ L2
α+n(0,∞)

}
and

⟨p, q⟩n :=

n∑
j=0

b j (n, k)
∫

∞

0
p( j)(t)q ( j)(t)tα+ j e−t dt for (p, q ∈ P),

where P is the space of all (possibly complex-valued) polynomials. The constants b j (n, k) are
defined as

b j (n, k) :=

j∑
i=0

(−1)i+ j

j !

(
j
i

)
(k + i)n.

This description of a specific left-definite space is only included as a reference for the
complexity of the results in this paper, and details can be found in [17]. ♣

2.2. General Glazman–Krein–Naimark (GKN) theory

There is a vast amount of literature concerning the extensions of symmetric operators. Here
we present only that which pertains to self-adjoint extensions and applications to GKN theory.
This will be primarily applied to linear differential operators.

Definition 2.5 (Variation of [21, Section 14.2]). For a symmetric, closed operator A on a Hilbert
space H, define the positive defect space and the negative defect space, respectively, by

D+ :=
{

f ∈ D(A∗) | A∗ f = i f
}

and D− :=
{

f ∈ D(A∗) | A∗ f = −i f
}
.

On the side we note that, in light of [8, Theorem XII.4.8], we can assume without loss of
generality that all considered operators are closed because we are concerned exclusively with
self-adjoint extensions of symmetric operators.

We are most interested in the dimensions dim(D+) = m+ and dim(D−) = m−, which are
called the positive and negative deficiency indices of A, respectively. These dimensions are
usually conveyed as the pair (m+,m−). The deficiency indices of A correspond to how far from
self-adjoint A is. A symmetric operator A has self-adjoint extensions if and only if its deficiency
indices are equal [21, Section 14.8.8].
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Theorem 2.6 ([21, Theorem 14.4.4]). If A is a closed, symmetric operator, then the subspaces
D(A), D+, and D− are linearly independent and their direct sum coincides with D(A∗), i.e.,

D(A∗) = D(A) ∔D+ ∔D−.

(Here, subspaces X1,X2, . . . ,Xp are said to be linearly independent, if
∑p

i=1xi = 0 for
xi ∈ Xi implies that all xi = 0.)

Here ∔ denotes the direct sum.

2.3. GKN theory and Sturm–Liouville operators

Let ℓ[ · ] be a Sturm–Liouville differential expression on some Hilbert space L2[(a, b), w] as
in (2.1). Furthermore, let ℓ[ · ] generate an expression ℓn[ · ] of order 2n via composition, n ∈ N.
The analysis of self-adjoint extensions does not involve changing the differential expression
associated with the operator at all, merely the domain of definition, by applying boundary
conditions.

Definition 2.7 ([21, Section 17.2]). The maximal domain of ℓn[ · ] is given by

Dn
max = Dmax(ℓn) :=

{
f : (a, b) → C

⏐⏐⏐⏐ f (k)(x) ∈ ACloc(a, b), k = 0, 1, . . . , 2n − 1;

f, ℓn[ f ] ∈ L2[(a, b), w]
}
.

The designation of “maximal” is appropriate in this case because Dmax(ℓn) is the largest
possible subspace for which ℓn maps back into L2[(a, b), w]. For f, g ∈ Dmax(ℓn) and a <

α ≤ β < b the sesquilinear form associated with ℓn is defined by

[ f, g]n

⏐⏐⏐⏐β
α

:=

∫ β

α

{
ℓn[ f (x)]g(x) − ℓn[g(x)] f (x)

}
w(x)dx . (2.3)

Eq. (2.3) is Green’s formula for ℓn[ · ], and is an equivalent definition to the classical one from
Sturm–Liouville theory utilizing Wronskians [19, Equation (3.5)].

Theorem 2.8 ([21, Section 17.2]). The limits [ f, g]n(b) := limx→b− [ f, g]n
⏐⏐x
α

and [ f, g]n(a) :=

limx→a+ [ f, g]n
⏐⏐β
x exist and are finite for f, g ∈ Dmax(ℓn).

Definition 2.9 ([21, Section 17.2]). The minimal domain of ℓn[ · ] is given by

Dn
min = Dmin(ℓn) = { f ∈ Dmax(ℓn) | [ f, g]n

⏐⏐b
a = 0 ∀g ∈ Dmax(ℓn)}.

The maximal and minimal operators associated with the expression ℓn[ · ] are defined as
Ln

min = {ℓn,Dn
min} and Ln

max = {ℓn,Dn
max} respectively. By [21, Section 17.2], these operators are

adjoints of one another, i.e. (Ln
min)∗ = Ln

max and (Ln
max)∗ = Ln

min.
In the context of differential operators, we work with a special case of Theorem 2.6:

Theorem 2.10 ([21, Section 14.5]). Let Dn
max and Dn

min be the maximal and minimal domains
associated with the differential expression ℓn[ · ], respectively. Then, for n ∈ N,

Dn
max = Dn

min ∔Dn
+
∔Dn

−
. (2.4)
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Eq. (2.4) is commonly known as von Neumann’s formula. Here, the spaces Dn
+
,Dn

−
are

the defect spaces associated with the expression ℓn[ · ]. The decomposition can be made into an
orthogonal direct sum by using the graph norm, see Section 2.5.

From [21, Section 14.8.8] we know that, if the operator Ln
min has any self-adjoint extensions,

then the deficiency indices of Ln
min have the form (m,m), where 0 ≤ m ≤ 2n and 2n is the order

of ℓn[ · ]. Glazman [12] proved that the number m can take on any value between 0 and 2n. In
regards to differential expressions, the order of the operator is greater than or equal to each of
the two deficiency indices by necessity. Hence, Sturm–Liouville expressions that generate self-
adjoint operators have deficiency indices (0, 0), (1, 1) or (2, 2). This is related to the discussion
of an expression being limit-point or limit-circle at endpoints, see [3,8,13,21] for more details.

In order to formulate the GKN theorems, we recall an extension of linear independence to one
that mods out by a subspace. This subspace will be the minimal domain in applications.

Definition 2.11 ([21, Section 14.6]). Let X1 and X2 be subspaces of a vector space X such
that X1 ≤ X2. Let {x1, x2, . . . , xr } ⊆ X2. We say that {x1, x2, . . . , xr } is linearly independent
modulo X1 if

r∑
i=1

αi xi ∈ X1 implies αi = 0 for all i = 1, 2, . . . , r.

The following two theorems form the core of GKN theory.

Theorem 2.12 (GKN1, [21, Theorem 18.1.4]). Let Ln
= {ℓn,Dn

L} be a self-adjoint extension
of the minimal operator Ln

min = {ℓn,Dn
min} with deficiency indices (m,m). Then the domain Dn

L
consists of the set of all functions f ∈ Dn

max, which satisfy the conditions

[ f, wk]n

⏐⏐⏐⏐b
a

= 0, k = 1, 2, . . . ,m, (2.5)

where w1, . . . , wm ∈ Dn
max are linearly independent modulo Dn

min for which the relations

[w j , wk]n

⏐⏐⏐⏐b
a

= 0, j, k = 1, 2, . . . ,m (2.6)

hold.

The requirements in Eq. (2.6) are commonly referred to as Glazman symmetry conditions.
The converse of the GKN1 Theorem is also true.

Theorem 2.13 (GKN2, [21, Theorem 18.1.4]). Given arbitrary functions w1, w2, . . . , wm ∈

Dn
max which are linearly independent modulo Dn

min and which satisfy the relations (2.6), then ℓn

with the domain { f ∈ Dn
max : (2.5) holds} is a self-adjoint extension of Ln

min.

These two theorems completely answer the question of how boundary conditions can be used
to create self-adjoint extensions. Applications of this theory hinge on determining the proper
wk’s that will define the domain of the desired self-adjoint extension.

2.4. Test for linear independence modulo the minimal domain

Consider a symmetric expression ℓ of some order with deficiency indices (m,m) on
the Hilbert space L2[(a, b), w]. The following simple result will be used to test for linear
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independence modulo Dmin. The main idea is to find a sufficient condition in terms of a certain
matrix of sesquilinear forms (corresponding to ℓ) having full rank.

Proposition 2.14. Given vectors w1, . . . , wr ∈ Dmax, r ≤ 2m. Assume that the r × r matrix
M with entries Mik = [wi , wk]|ba for 1 ≤ i, k ≤ r has full rank. Then w1, . . . , wr are linearly
independent modulo Dmin.

We will prove this proposition in a moment.
In virtue of Linear Algebra (dimension counting, and realizing that removing vectors from a

basis leaves behind a linearly independent set) we obtain an immediate consequence, which both
Sections 3 and 4 rely heavily on.

Corollary 2.15. Given vectors w1, . . . , wr ∈ Dmax, r ≤ 2m. Assume that for some vectors
wr+1, . . . , ws ∈ Dmax, r ≤ s ≤ 2m, the s × s matrix M with entries Mik = [wi , wk]|ba (for
1 ≤ i, k ≤ s) has full rank. Then w1, . . . , ws are linearly independent modulo Dmin, and so are
the vectors w1, . . . , wr .

Remark. In our applications below, we usually have r = m and s = 2m. Moreover,w1, . . . , wm
will be eigenfunctions, and wm+1, . . . , w2m will be functions of the second kind.

Proof of Proposition 2.14. Our goal is to show that the set w1, . . . , wr is linearly independent
modulo the minimal domain Dmin. To that end, suppose

r∑
k=1

αkwk ∈ Dmin. (2.7)

We want to show that αk = 0 for all k = 1, . . . , r .
The definition of the minimal domain says that y ∈ Dmin if and only if [y, w]|ba = 0 for all

w ∈ Dmax. Letting y = wi , w =
∑r

k=1αkwk and using the linearity of the sesquilinear form, we
see that (2.7) implies

r∑
k=1

αk[wi , wk]
⏐⏐⏐⏐b
a

= 0 for i = 1, . . . , r. (2.8)

Now, interpreting (2.8) for a specific i as the i th row of a matrix equation, we see that (2.8) is
equivalent to the matrix equation

Mα = 0 with M =

⎛⎜⎜⎝
[w1, w1]

⏐⏐b
a . . . [w1, wr ]

⏐⏐b
a

...
. . .

...

[wr , w1]
⏐⏐b
a . . . [wr , wr ]

⏐⏐b
a

⎞⎟⎟⎠ , α =

⎛⎜⎝α1
...

αr

⎞⎟⎠ ,
and the zero vector 0 ∈ Rr .

And since we assume that M has full rank, we conclude that αk = 0 for all k = 1, . . . , r . □

2.5. Graph norm

Let A be a densely defined symmetric operator on a separable Hilbert space H. Furthermore,
for x, y ∈ D(A∗), denote the graph inner product by

⟨x, y⟩A := ⟨x, y⟩H + ⟨A∗x,A∗y⟩H .
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This section will use the convention that D(A∗) has the topology defined by the graph norm
∥x∥A := ⟨x, x⟩

1/2
A

induced by the inner product ⟨x, y⟩A , unless the contrary is explicitly stated.
The graph norm allows for some more elegant results in the theory of self-adjoint extensions,
and will be central to our main theorems.

Lemma 2.16 ([8, Lemma XII.4.10]). Using the above conventions, we have that:

(1) D(A), D+, and D− are closed orthogonal subspaces of the Hilbert space D(A∗).
(2) D(A∗) = D(A)⊕AD+⊕AD−. Here ⊕A denotes the orthogonal sum, with respect to the

graph inner product.

The previous lemma can be viewed with regards to differential operators by using that
the maximal and minimal operators are adjoints of one another. Our differential operators are
assumed to be closed, so it is possible to replace D(A) with Dmin and D(A∗) with Dmax,
while still assuming that Dmax is endowed with the graph norm. Hence, the lemma translates
into von Neumann’s formula (2.4), but the decomposition is orthogonal due to the different
norm. The r/2 graph norm of A will be of particular interest, and is denoted by ⟨x, y⟩

Ar/2 =

⟨x, y⟩H + ⟨Ar/2x,Ar/2 y⟩H . The operator A is assumed to be self-adjoint and bounded below by
k > 0, as in Section 2.1.

Lemma 2.17. The rth left-definite norm is equivalent to the r/2 graph norm. Concretely,

∥x∥
2
r ≤ ∥x∥

2
Ar/2

≤ C ∥x∥
2
r for x ∈ D(Ar/2),

where the constant C depends on k and r.

Proof. The r th left-definite inner product can be defined via Definition 2.1 as ∥x∥
2
r =

⟨x, x⟩r = ⟨Ar/2x,Ar/2x⟩H . Also, recall that the definition of the r th left-definite space implied
the stipulation ⟨x, x⟩r ≥ kr

⟨x, x⟩H . Then,

∥x∥
2
Ar/2

= ⟨Ar/2x,Ar/2x⟩H + ⟨x, x⟩H = ∥x∥
2
r + ∥x∥

2
H

≥ ∥x∥
2
r ,

and

∥x∥
2
r =

1
2
⟨x, x⟩r +

1
2
⟨x, x⟩r

≥
kr

2
⟨x, x⟩H +

1
2
⟨x, x⟩r

=
1
2

[
kr

⟨x, x⟩H + ⟨Ar/2x,Ar/2x⟩H

]
≥

1
2

min{kr , 1} ∥x∥
2
Ar/2

.

Furthermore, no problems arise by passing to the r/2 graph norm instead of the usual r graph
norm. This is because the domain of the r/2 graph norm coincides with the r/2th left-definite
space and D(Ar/2) ⊃ D(Ar ). We conclude that the two norms are indeed equivalent. □

3. Glazman–Krein–Naimark (GKN) conditions using eigenfunctions

Consider a symmetric expression ℓ with deficiency indices (m,m) on the Hilbert space
L2[(a, b), w]. Let L = {ℓ,DL} be a self-adjoint extension. Assume that the domain of L includes
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a complete set of orthogonal eigenfunctions, say {Pk}
∞

k=0. The GKN1 Theorem (Theorem 2.12)
states that all self-adjoint extensions are obtained by imposing m GKN conditions on the maximal
domain. GKN conditions are induced by functions w1, . . . , wm , which satisfy three conditions:

(C1) The functions w1, . . . , wm must be linearly independent modulo the minimal domain.
(C2) The complete system of orthogonal eigenfunctions must be included in the domain,

pursuant to Eq. (2.5).
(C3) The functions w1, . . . , wm must satisfy the Glazman symmetry conditions in Eq. (2.6).

Later we will choose w1, . . . , wm to be eigenfunctions. In that case, the first item (C1) implies
both (C2) and (C3).

Remark 3.1. In fact, item (C3) can in general be obtained from (C1), if we allow for an
insignificant modification of the w1, . . . , wm . Indeed, the Glazman symmetry conditions (C3)
are easily attained by taking linear combinations of vectors satisfying (C1) via a procedure that
is similar to the Gram–Schmidt orthogonalization, using the sesquilinear form instead of an inner
product. We notice that such linear combinations will not change (C1). They will span the same
domain modulo Dmin. So they will also not change property (C2).

By assumption we have dim(D+ ∔ D−) = 2m. A basis of this space mod (Dmin) would be
ideal. But, if w1, . . . , wm are linearly independent modulo the minimal domain, then they can be
completed to a basis w1, . . . , w2m ; and vice versa.

Consider the matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[w1, w1] . . . [w1, wm]
...

. . .
...

[wm, w1] . . . [wm, wm]

[w1, wm+1] . . . [w1, w2m]
...

. . .
...

[wm, wm+1] . . . [wm, w2m]

[wm+1, w1] . . . [wm+1, wm]
...

. . .
...

[w2m, w1] . . . [w2m, wm]

[wm+1, wm+1] . . . [wm+1, w2m]
...

. . .
...

[w2m, wm+1] . . . [w2m, w2m]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.1)

where each sesquilinear form is evaluated from a to b.
We formulate sufficient conditions under which eigenfunctions act as GKN conditions.

Though the set up seems less natural, the result will be shown to bear useful consequences.
The theorem shows that, under the assumption that eigenfunctions {Pki }

m
i=1 can be completed to

a basis of D+ ∔D−, these eigenfunctions are then appropriate GKN conditions.

Theorem 3.2. Let L = {ℓ,DL} be a self-adjoint operator on the Hilbert space L2[(a, b), w],
and be an extension of a minimal symmetric operator that has deficiency indices (m,m).
Assume that DL includes a complete set of orthogonal eigenfunctions, {Pk}

∞

k=0. Furthermore,
assume that a basis modulo Dmin of the defect spaces D+ ∔ D− is given by the collection
{Pk1 , . . . , Pkm , f1, . . . , fm}.

Then DL is given by imposing {Pk1 , . . . , Pkm } as GKN conditions on Dmax.

Before we prove this result, we take an excursion via two corollaries.
In combination with Corollary 2.15, a slight modification of the proof of Theorem 3.2

immediately yields a similar result for general w1, . . . , w2m .



M. Fleeman et al. / Journal of Approximation Theory 239 (2019) 1–28 13

Corollary 3.3. Consider a symmetric operator with expression ℓ on L2[(a, b), w] that has
deficiency indices (m,m). If M defined as in Eq. (3.1) has full rank for some choice of
w1, . . . , w2m ∈ Dmax(ℓ), then any subset of m of these induces GKN conditions so long as
we drop the symmetry condition (C3).

In Corollary 3.3, we do not claim that these conditions induce a particular self-adjoint
extension, but rather just one of the infinitely many possible ones, again, not expecting the GKN
symmetry condition (C3).

In the next section, we will apply another immediate consequence of the Theorem to powers
of a self-adjoint extension associated with the Legendre expression. Assuming that L is bounded
below, we can consider the self-adjoint operator (associated with the differential expression
ℓn) that arises from the 2nth left-definite domain for L. Consider the matrix Mnm where the
sesquilinear forms [ · , · ] are the ones corresponding to ℓn , which we generally denote by
[ · , · ]n .

Corollary 3.4. Assume that nm of the w1, . . . , w2nm functions are eigenfunctions (e.g. wk = Pk

for k = 1, . . . , nm). If the corresponding (2 nm) × (2 nm) matrix M from Eq. (3.1) has full
rank, then the domain of the 2nth left-definite operator can be represented by imposing GKN
conditions with those eigenfunctions on the maximal domain.

Examples in Section 4 show that, for small values of n, the first m eigenfunctions can in fact
serve as half of these basis vectors. Therefore, they can be used to form GKN conditions.

In accordance with Eq. (3.2), orthogonal functions which also satisfy the eigenvalue equation,
are automatically symmetric in the sense of Glazman’s condition (C3). So, the entire problem of
imposing appropriate GKN conditions on symmetric operators to yield left-definite self-adjoint
extensions is reduced to showing that the upper-right quadrant of the matrix M has full rank. We
explore this further below in Proposition 3.5.

Proof of Theorem 3.2. The collection {Pk1 , . . . , Pkm , f1, . . . , fm} forms a basis of D+ ∔D−, so
all self-adjoint extensions of the minimal operator come from using m distinct GKN conditions
written as:

G i = ai,1 Pk1 + ai,2 Pk2 + · · · + ai,m Pkm + ai,m+1 f1 + ai,m+2 f2 + · · · + ai,2m fm,

for i = 1, . . . ,m. The GKN1 Theorem 2.12 implies that

DL = { f ∈ Dmax | [ f,G i ]|ba = 0, i = 1, . . . ,m for some choice of ai, j ’s}.

The claim is then that ai, j = 0 for all j > m. In particular, this choice of constants ai, j ’s
needs to include the subset of orthogonal eigenfunctions {Pk1 , . . . , Pkm } in the domain. Notice
that an application of Green’s formula for the sesquilinear form yields

[Pi , Pj ]
⏐⏐⏐⏐b
a

=

∫ b

a
ℓ[Pi ]Pjwdx −

∫ b

a
Piℓ[Pj ]wdx = (λi − λ j )

∫ b

a
Pi Pjwdx = 0. (3.2)

Here, if i = j then λi − λ j = 0, and if i ̸= j then we use the orthogonality of Pi and Pj .
The Glazman symmetry conditions (C3) follow immediately.
Fix the index i and test the chosen G i against these orthogonal eigenfunctions in the

sesquilinear form as follows:

0 = [Pk1 ,G i ]|ba = 0 + · · · + 0 + ai,m+1[Pk1 , f1]|ba + · · · + ai,2m[Pk1 , fm]|ba,
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0 = [Pk2 ,G i ]|ba = 0 + · · · + 0 + ai,m+1[Pk2 , f1]|ba + · · · + ai,2m[Pk2 , fm]|ba,
...

0 = [Pkm ,G i ]|ba = 0 + · · · + 0 + ai,m+1[Pkm , f1]|ba + · · · + ai,2m[Pkm , fm]|ba .

This problem can be recast in terms of the upper half of the finite 2m × 2m matrix M
as above. The upper-left quadrant of M is then 0. Explicitly, this problem represents the
upper-right quadrant of M multiplied by a column vector of ai, j ’s. However, the collection
{Pk1 , . . . , Pkm , f1, . . . , fm} constitutes a basis for D+ ∔ D−, see Proposition 3.5. Hence, the
upper-right quadrant of M has full rank. The only way to yield the necessary column vectors of
0’s, in the above equations, is for all of the ai, j ’s to be 0. Hence, ai, j = 0 for all j > m. The
calculation was for a general fixed i so necessarily

G i = ai,1 Pk1 + ai,2 Pk2 + · · · + ai,m Pkm for all i = 1, . . . ,m.

The G i ’s themselves must also be linearly independent modulo the minimal domain. So, modulo
Dmin, their span is identical to that of {Pk1 , . . . , Pkm }. □

If we work with orthogonal functions that satisfy the eigenvalue equation (e.g. eigenfunctions
of some self-adjoint extension), then the matrix M displays some simplifying structural
properties:

Proposition 3.5. Consider a symmetric operator on the Hilbert space L2[(a, b), w] that has
deficiency indices (m,m). Assume that w1, . . . , wm are non-trivial orthogonal functions from
Dmax(ℓ) that all satisfy the eigenvalue equation ℓ[wi ](x) = λiwi (x).

Then the (2m × 2m)-matrix M is antisymmetric and takes the form

M =

( 0 B
−B⊤ C

)
so that det(M) = [det(B)]2. In particular, if the other wm+1, . . . , w2m are chosen so that B has
full rank, then {w1, . . . , w2m} forms a basis of Dmax modulo Dmin.

Proof. The antisymmetry of M follows immediately from Green’s Formula (2.3).
In the first quadrant of the matrix, we encounter the case when the sesquilinear form is

evaluated for functions that satisfy the eigenvalue equation f j = Pj and gk = Pk . Due to this
and due to their orthogonality of the inner product in

[ f j , gk]
⏐⏐⏐⏐1
−1

= ⟨ℓ[ f j ], gk⟩ − ⟨ f j , ℓ[gk]⟩ = [λ j − λk]⟨ f j , gk⟩ (3.3)

evaluates to zero when j ̸= k. For j = k, the coefficient in front of the inner product vanishes.
By linear algebra, the determinant of M can be calculated using

det(M) = det[(0⊤)(C) − (−B⊤)(B)] = det(B⊤B) = [det(B)]2

and the proposition follows. □

4. GKN conditions for powers of Legendre

When considering a specific differential operator, the problem of finding GKN conditions can
be written rather explicitly in terms of the matrix M from the previous section.
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The explicit tools developed here can be adapted to study spectral theory for powers of other
Bochner–Krall polynomial systems. Here we focus our attention on the powers of the Legendre
operator.

On the one hand, these examples expand the observations in [20]. On the other hand, they
motivate and tie into our main results, see Section 5. The method established here is more explicit
than the abstract approach in Section 5.

The investigation into the boundary conditions associated with left-definite theory begins
by considering the classical Legendre differential operator L = {ℓ,DL} on the Hilbert space
L2(−1, 1), given by

ℓ[y](x) = −((1 − x2)y′(x))′ (4.1)

together with the domain

DL = { f ∈ Dmax; (1 − x2) f ′(x)|1
−1 = 0} (4.2)

with connected boundary conditions. This domain contains the Legendre polynomials {Pk}
∞

k=0
and L is a self-adjoint operator, see e.g. [19]. Recall that Dmax was provided in Definition 2.7.
Both limx→±1(1 − x2) f ′(x) exist by Theorem 2.8, and because −(1 − x2) f ′(x)|1

−1 = [ f, 1]|1
−1.

Remark. In [19], it was proved that DL is equal to the domain induced by left-definite theory.
The equality of such domains for Ln is discussed in Section 6.

This operator possesses the Legendre polynomials Pk(x), k ∈ N0, as a complete set of
eigenfunctions. That is, the polynomial y(x) = Pk(x) is a solution of the eigenvalue equation

ℓ[y](x) = k(k + 1)y(x), (4.3)

for each k we have Pk ∈ DL and span{Pk}
∞

k=0 is dense in L2(−1, 1).
Left-definite theory allows for the construction of a sequence of Hilbert spaces whose domains

are operated on by integer composition powers of L. It is no hindrance that for odd powers
of composition, we encounter fractional left-definite spaces, e.g. when n = 3 the operator L3

corresponds to V3/2. The case n = 2 has been investigated by Littlejohn and Wicks in [20]
and [19]. They showed that the left-definite domain in this case could be defined via the GKN1
Theorem using w1 ≡ 1 and w2(x) = x in Eq. (2.5). The literature does not provide results for
n ≥ 3.

Since the minimal Legendre operator Lmin = {ℓ,Dmin} has deficiency indices (1, 1) (as is
visible from (4.2)), the powers Ln

min = {ℓn,Dn
min} of the Legendre operator have deficiency

indices (n, n). In other words, we have m = n here.
In the remainder of this section we present a few results for general n, while focusing on

some special cases for more explicit results. We are mostly interested in n = 3, but also work
with n = 4 and n = 5, and include some new observations when n = 2.

4.1. The structure of the sesquilinear matrix Mn

These explicit results can be extended by analogy to larger values of n. For general n, the
matrix Mn will be (2n)× (2n) and the entries are sesquilinear forms corresponding to expression
ℓn in Green’s formula. If n is even, choose P0, P1, . . . , Pn−1 and Q0, Q1, . . . , Qn−1 (Legendre
functions of the second kind). If n is odd, choose P0, P1, . . . , Pn−1 and Q1, Q2, . . . , Qn . These
will be the choice for basis candidates unless otherwise stated. In the following example we
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explain why these are good choices. Apart from its pedagogical value, this example also settles
the case n = 3 with little computational effort. The case n = 2 was the main topic of [20].

Example. Let n = 3. The first two Legendre polynomials are P0 ≡ 1 and P1(x) = x , so a
reasonable guess in this case would be to try to use as GKN conditions

P0 ≡ 1, P1(x) = x, P2(x) =
1
2

(3x2
− 1).

It will be shown that these GKN conditions indeed yield the desired domain. The most difficult
condition to prove is the linear independence modulo the minimal domain. For n = 3, the
deficiency indices are (3, 3). So we have m = n = 3 and a basis of D3

+
∔ D3

−
will be 2n = 6

dimensional.
To show that a set w1, w2, . . . , w6 is linearly independent modulo D3

min, follow the setup of
the matrix described in Section 3 to yield

M3 =

⎛⎜⎜⎜⎜⎜⎜⎝

[w1, w1] [w1, w2] [w1, w3]
[w2, w1] [w2, w2] [w2, w3]
[w3, w1] [w3, w2] [w3, w3]

[w1, w4] [w1, w5] [w1, w6]
[w2, w4] [w2, w5] [w2, w6]
[w3, w4] [w3, w5] [w3, w6]

[w4, w1] [w4, w2] [w4, w3]
[w5, w1] [w5, w2] [w5, w3]
[w6, w1] [w6, w2] [w6, w3]

[w4, w4] [w4, w5] [w4, w6]
[w5, w4] [w5, w5] [w5, w6]
[w6, w4] [w6, w5] [w6, w6]

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where [ · , · ] stands for the sesquilinear form in Eq. (6.1) for n = 3 and is evaluated from −1 to
1 by taking limits.

For one moment, let us assume that all those limits exist. Now the idea is that we will be
choosing all of the w j to be either Legendre eigenfunctions or Legendre functions of the second
kind, all of which satisfy eigenvalue equations ℓ[y] = λy. The representation through Green’s
formula

[w j , wk]
⏐⏐⏐⏐1
−1

=

∫ 1

−1
ℓ3[w j ]wkdx −

∫ 1

−1
w jℓ

3[wk]dx

will be of use.
The Legendre functions of the second kind are commonly denoted by Qk , k ∈ N0. The explicit

representations for the first four of them are:

Q0(x) =
1
2

ln
(

1 + x
1 − x

)
, Q1(x) =

x
2

ln
(

1 + x
1 − x

)
− 1,

Q2(x) =
3x2

− 1
4

ln
(

1 + x
1 − x

)
−

3x
2
,

Q3(x) =
5x3

− 3x
4

ln
(

1 + x
1 − x

)
−

5x2

2
+

2
3
.

More information can be found in [9,22].
Explicitly, take

w1 = P0, w2 = P1, w3 = P2, and w4 = Q1, w5 = Q2, w6 = Q3.

Let us ensure that the limits in these sesquilinear forms are well-defined. ♣

We turn back to general n. Since Pk are eigenfunctions, they trivially belong to Dn
max. In

conjunction with Theorem 2.8 the following result shows that the limits of the sesquilinear forms
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limx→−1+ [w j , wk](x) and limx→1−[w j , wk](x) both exist when w j and wk are eigenfunctions or
polynomials of the second kind.

Proposition 4.1. The Legendre functions of the second kind are in the maximal domain Dn
max for

every value of n.

Proof. By Definition 2.7 the maximal domain of ℓn is given by

Dn
max =

{
y : (−1, 1) → C | y(k)

∈ ACloc(−1, 1), k = 0, 1, . . . , 2n − 1;

y, ℓn[y] ∈ L2(−1, 1)
}
.

These functions are in L2(−1, 1) and their integrals are explicitly known [9]:∫ 1

−1
(Qk(x))2dx =

π2
− 2(1 + cos2(kπ ))ψ ′(k + 1)

2(2k + 1)
,

where the function ψ(x) = Γ ′(x)/Γ (x) is the so-called digamma function. Derivatives of the
functions Qk have singularities only at −1 and 1, so Q(r )

k ∈ C∞[α, β] for all r ∈ N and all
[α, β] ⊂ (−1, 1). Hence, each derivative is itself locally continuously differentiable and locally
absolutely continuous. The fact that the functions Qk are solutions to the eigenvalue equation
(4.3) trivially implies that ℓn[Qk] ∈ L2(−1, 1) for all k ∈ N0. □

In the remainder of this section we will always assume that the first n of the w j are Legendre
polynomials and the others are Legendre functions of the second kind (with indices in N0).

Simple conclusions about the structure of Mn follow directly from Proposition 3.5:

Corollary 4.2. The matrix Mn is antisymmetric and takes the form

Mn =

( 0 Bn

−B⊤
n Cn

)
so that det(Mn) = [det(Bn)]2. In particular, if Bn has full rank, then the w j used to produce the
entries of Mn form a basis of Dmax modulo Dmin.

Several immediate consequences of Eq. (3.3) regarding the particular entries of Mn are now
apparent. As before, let f j = Pj or f j = Q j and gk = Pk or gk = Qk . First notice that

[ f j , gk]
⏐⏐⏐⏐1
−1

= 0 for j = k.

Fortunately, formulas are known to calculate the relevant inner products [22, pp. 236], and
also exist in the cases where two different Pj ’s and two different Qk’s are considered: When
both functions are Legendre functions of the second kind it is known that

⟨Q j , Qk⟩ =
[ψ( j + 1) − ψ(k + 1)][1 + cos( jπ ) cos(kπ )] +

1
2π sin((k − j)π )

(k − j)( j + k + 1)
for j ̸= k.

The case where the functions are of mixed type is given by

⟨Pj , Qk⟩ =
2 sin( jπ ) cos(kπ )[ψ( j + 1) − ψ(k + 1)] + π cos((k − j)π ) − π

π (k − j)( j + k + 1)
for j ̸= k.

The function ψ(x) is the digamma function in the above two formulas.
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The formulas are only necessary for j, k ∈ N0, reducing the computations significantly. In
particular, for j, k ∈ N0:

[Q j , Qk]
⏐⏐⏐⏐1
−1

(4.4)

=

⎧⎪⎪⎨⎪⎪⎩
2[ψ( j + 1) − ψ(k + 1)][ j3( j + 1)3

− k3(k + 1)3]
(k − j)( j + k + 1)

=: Φ jk, j + k even and j ̸= k,
0, j + k odd or j = k.

Analogously, for j, k ∈ N0:

[Pj , Qk]
⏐⏐⏐⏐1
−1

=

⎧⎨⎩
−2[ j3( j + 1)3

− k3(k + 1)3]
(k − j)( j + k + 1)

=: ϕ jk, j + k odd,

0, j + k even.
(4.5)

The definition of the matrix entries given in Eqs. (4.4) and (4.5) immediately yield that
Φ jk = −Φk j and ϕ jk = −ϕk j . In particular, the blocks Bn and Cn from Corollary 4.2 can be
explicitly computed for even n as

Bn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ϕ01 0 ϕ03 . . . ϕ0(n−1)
ϕ10 0 ϕ12 0 . . . 0
0 ϕ21 0 ϕ23 . . . ϕ2(n−1)
ϕ30 0 ϕ32 0 . . . 0
0 ϕ41 0 ϕ43 . . . ϕ4(n−1)
...

...
...

...
. . .

...

ϕ(n−1)0 0 ϕ(n−1)2 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Cn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 Φ02 0 . . . 0
0 0 0 Φ13 . . . Φ1(n−1)
Φ20 0 0 0 . . . 0
0 Φ31 0 0 . . . Φ3(n−1)
Φ40 0 Φ42 0 . . . 0
...

...
...

...
. . .

...

0 Φ(n−1)1 0 Φ(n−1)3 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The case where n is odd can similarly be written down in terms of the above formulas.
Mathematica can be used to ease the trouble of populating the matrix with the relevant entries.

Example. We return to the case n = 3. The following matrix is the result of setting w1 = P0,
w2 = P1, w3 = P2, w4 = Q1, w5 = Q2, and w6 = Q3:

M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

8 0 288
0 104 0

104 0 504

−8 0 −104
0 −104 0

−288 0 −504

0 0 860
3

0 0 0
−860

3 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Now, the upper right quadrant B3 of M3 clearly has full rank. And, in accordance with
Corollary 4.2, we obtain that w1, . . . , w6 form a basis of Dmax modulo Dmin.
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Now, Corollary 3.4 asserts that these are in fact the desired GKN conditions for the cube of
the Legendre differential operator. ♣

In virtue of Corollary 4.2 higher values of n are more easily accessible, as they are less
computationally expensive and the digamma function in the lower right quadrant is avoided.

The cases where n = 4 and n = 5 are included below to illustrate how this method can be
generalized.

Example. For n = 4 choose the functions P0, . . . , P3 and Q0, . . . , Q3 as candidates for basis
vectors. The relevant matrix can be computed to be:

B4 =

⎛⎜⎜⎝
0 16 0 3456

16 0 640 0
0 640 0 6480

3456 0 6480 0

⎞⎟⎟⎠ .
This matrix is of particular interest, because it is representative of all cases where n is even and
the basis vectors are chosen to be P0, . . . , Pn−1 and Q0, . . . , Qn−1. In these cases, the matrix Bn

is symmetric.
The invertibility of B4 immediately reduces to showing that both submatrices(

16 3456
640 6480

)
and

(
16 640

3456 6480

)
have non-zero determinant. This is trivially true.

Therefore, the GKN conditions P0, . . . , P3 yield a self-adjoint operator and since all
eigenfunctions Pk satisfy these conditions, we obtain the left-definite operator that is associated
with L4. ♣

Example. For n = 5 choose the functions P0, . . . , P4 and Q1, . . . , Q5 as candidates for basis
vectors. The relevant matrix can be computed to be:

B5 =

⎛⎜⎜⎜⎜⎝
32 0 41472 0 1620000
0 3872 0 355552 0

3872 0 80352 0 2024352
0 80352 0 737792 0

355552 0 737792 0 4220000

⎞⎟⎟⎟⎟⎠ .
Again, it can easily be shown that B5 has full rank. ♣

Example. Matlab has allowed us to verify that the first n Legendre polynomials are suitable for
Ln when n ≤ 16. Vast stratification in magnitude of matrix entries is responsible for this early
failing of the numerical computations. ♣

4.2. Necessary condition and conjecture

It is clear the methods developed above are powerful, albeit limited to calculation, and can be
expressed in more generality. Apart from increasing n, another way to generalize stems from
choosing a more general set of indices for the Legendre polynomials, and for the Legendre
functions of the second kind, as hinted at in Theorem 3.2.
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There is a necessary condition for the truncated matrix Bn having full rank which requires
some additional requirements on the indices of both the Legendre polynomials and the Legendre
functions of the second kind.

Proposition 4.3. Let Mn define a basis of functions for the space Dn
+
∔ Dn

−
when n is general.

Let the choice of functions for this basis be Pj1 , Pj2 , . . . , Pjn and Qk1 , Qk2 , . . . , Qkn . Define
I := { j1, . . . , jn, k1, . . . , kn} be the collection of indices for these functions. Then I contains n
even and n odd elements.

Proof. Assume Mn has full rank, so that Pj1 , Pj2 , . . . , Pjn and Qk1 , Qk2 , . . . , Qkn are indeed
a basis for Dmax modulo Dmin. Without loss of generality, also assume that there are more even
numbers in I than odd numbers. By Corollary 4.2, the Glazman conditions and anti-symmetry
of the matrix then completely reduce our problem to showing that Bn does not have full rank.

Recall that the (i, l)-entry of Bn equals [Pji , Qkl ]|
1
−1 for 1 ≤ i, l ≤ n and is given by Eq. (4.5).

So, these entries are only nonzero when ji + kl is odd. Hence, interchange rows of Bn to group
the even indices first for the set of Pji ’s, and interchange columns to group the even indices first
for the set of Qkl ’s. This creates two blocks of entries on the anti-diagonal in the upper right
quadrant, where the P index is even and the Q index is odd, and one where the P index is odd
and the Q index is even. The rank of Bn is the sum of the rank of these two blocks. However,
because there are more even indices than odd ones, neither of these blocks are square, so the sum
of their ranks cannot be equal to n. The means Mn cannot have rank 2n, which is a contradiction.
Therefore, the number of even and odd numbers in the set I must be equal. □

The matrix Bn raises several important questions concerning the rules that are necessary
and/or sufficient on the indices (other than the requirement of Proposition 4.3) in order to ensure
that the Bn has rank n. Unfortunately, the answer to this question can only be conjectured
currently. Progress in this direction using theoretical aspects of the setup is shown in the next
two sections.

Conjecture 4.4. Let Pj1 , Pj2 , . . . , Pjn be any set of n distinct Legendre polynomials, with n1
odd indices and n2 even indices so that n1 + n2 = n. Then these Legendre polynomials can be
used as GKN conditions to define the n/2 left-definite domain.

In particular, choose any n distinct Legendre functions of the second kind Qk1 , Qk2 , . . . , Qkn

with n2 odd indices and n1 even indices. Then together these 2n functions constitute a basis of
the space Dn

+
∔Dn

−
.

Immediate inspiration for the conjecture stems from the n = 2 case.

Example. Consider the n = 2 case for simplicity. If one odd index and one even index are
chosen for the Pj ’s (say Pj and Pk with even j and odd k) then the claim follows: B2 only has
entries on the anti-diagonal and hence is rank 2. ♣

Example. Now, again for n = 2, assume that both chosen indices are odd, so that both of the
indices for the Qk’s are even. As a further simplification, choose Q0 and Q2. The matrix of
interest is

B2 =

(
ϕ j0 ϕ j2
ϕk0 ϕk2

)
,

where j and k are both odd.
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To reduce to row echelon form, the row operation necessary is αϕ j0 + ϕk0 = 0 so that
α = −ϕk0/ϕ j0. This changes ϕk2 to be ϕ̃k2 = αϕ j2 + ϕk2. This can be written out explicitly
to be

ϕ̃k2 = ((k2(k + 1)2) − 1)( j2( j + 1)2
− 36)( j2

+ j)(−k2
− k + 6)

− (( j2( j + 1)2) − 1)(k2(k + 1)2
− 36)(k2

+ k)(− j2
− j + 6).

Mathematica shows that ϕ̃k2 = 0 has no solutions for distinct j and k, where both are odd and
positive. A similar equation is relevant for the case where both j and k are even and Q1 and Q3
are chosen as the paired basis vectors. Mathematica similarly shows it is not possible to get j
and k to be distinct, even and positive. This shows that any 2 distinct indices for the Legendre
polynomials will be sufficient to define the first left-definite domain via GKN conditions. ♣

There is further evidence that the conjecture is true.

Example. Let n = 4 and choose the functions P17, P42, P49, P125 and Q24, Q82, Q97, Q178 as
candidates for the basis vectors. The relevant matrix can be computed to be:

B4 =

⎛⎜⎜⎝
821988432 660210828928 0 65319097828480

0 0 2118187203328 0
38811250000 968624405632 0 70078111267456

8123415750000 13280257143232 0 120291674577856

⎞⎟⎟⎠ .
It is not hard to see that this matrix possesses full rank. ♣

Unfortunately, the complexity of the matrix operations and higher values for n mean verifying
that solutions are not of the desired form is computationally expensive. However, to add a little
more weight to the conjecture, the above form can be easily adapted to the n = 3,4 cases where
there are two even or two odd choices of indices of the Pj ’s. In conclusion the assertion in the
conjecture about the choice of indices for the Pj ’s is verified using Mathematica for n = 2, and
it is true in special cases when n = 3 and n = 4.

5. General left-definite theory yields GKN conditions

The following theorems apply to general left-definite settings so it is imperative to clarify
some of the subtler points of abstraction. It should be understood that the differential expression
that is being generated from left-definite theory is not changing under the classical extension
theory, only that the minimal domain is being augmented to include more functions and become
self-adjoint. Specifically, Lmin and L possess domains Dmin and DL respectively, but both operate
on functions using ℓ[ · ]. Also, recall that an operator defined by left-definite theory means that it
is generated by composing self-adjoint differential operators with themselves to create a Hilbert
scale of operators. The domains of these operators shrink as the number of compositions increase.
For more details refer to Section 2.1.

The following results play the role of an indicator for identifying left-definite domains in
terms of GKN conditions.

Theorem 5.1. Let L be a self-adjoint operator defined by left-definite theory on L2[(a, b), w]
with domain DL (which is a restriction of the maximal domain Dmax) that includes a complete
orthogonal system of eigenfunctions. Enumerate the eigenfunctions as {Pk}

∞

k=0. Furthermore, let
L be an extension of the minimal (symmetric, closed) operator Lmin with domain Dmin, where L
and Lmin operate on their respective domains by ℓ[ · ], and Lmin has deficiency indices (m,m).

Then, the GKN conditions for the self-adjoint operator L are given by some {Pk1 , . . . , Pkm }.
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Remark. It was pointed out to us by one of the reviewers that this result probably does not
critically hinge on the left-definite setting. We expect the conclusions to be true for any self-
adjoint operator with a complete system of eigenfunctions.

Proof. The case m = 0 is trivial, since then Lmin = L = Lmax. Let m ≥ 1.
The main work lies in showing that some of the eigenfunctions yield appropriate choices for

w1, . . . , wm from the perspective of Theorem 2.12 (the GKN1 Theorem). That is, we need to
show that there are m members {Pk1 , . . . , Pkm } of the collection {Pk}

∞

k=0, which both satisfy the
Glazman symmetry conditions (2.6) and are linearly independent modulo the minimal domain
Dmin, see Definition 2.11.

First, we show that all possible choices of {Pk1 , . . . , Pkm } satisfy the Glazman symmetry
conditions. Recall that an application of the Green’s formula for the sesquilinear form yields
[Pi , Pj ]

⏐⏐b
a = 0 for i, j ∈ N0, see Eq. (3.2).

Next, we show that there exist functions {Pk1 , . . . , Pkm } that are linearly independent modulo
Dmin. Part (2) of Lemma 2.16 states that the maximal domain decomposes orthogonally with
respect to graph norm into Dmax = Dmin⊕AD+⊕AD−. Define the auxiliary functions {P̃k}

∞

k=0 to
be the orthogonal projection (in accordance with the graph norm) of the Pk’s onto D+⊕AD−.

Recall that Lmin has defect indices (m,m) and that the subspaces satisfy

Dmin < DL < Dmax.

Since L is self-adjoint, we have that DL⊖ADmin is m dimensional. The projection is orthogonal,
so {P̃k}

∞

k=0 spans an m dimensional subspace of D+⊕AD−, the closure being taken with respect
to the graph norm. Indeed, assume this dimension was strictly less than m. The orthogonality
of the projection also means that our assumption would imply that the closure in graph norm
of span{Pk}

∞

k=0 is a proper subspace of DL. Lemma 2.17 says the graph norm and the norm
in the corresponding left-definite space are equivalent. However, Theorem 2.4 states that DL is
equal to the closure in the norm induced in the second left-definite space associated with the
pair (H,A) = (L2[(a, b), w],L). This is a contradiction, so the {P̃k}

∞

k=0 span an m dimensional
subspace of D+⊕AD−.

This means that the problem is now finite dimensional! In particular, the closure of
spans is obvious. Also, there are m functions {P̃ki }

m
i=1 which can be completed to a basis

{P̃k1 , . . . , P̃km , h1, . . . , hm} of D+⊕AD−. Therefore, the functions {P̃ki }
m
i=1 are linear indepen-

dent modulo Dmin.
The definition of P̃k implies Pk − P̃k ∈ Dmin. Hence, when viewed in the quotient space

Dmax ⊖ Dmin, the projection P̃k belongs to the same equivalence class as the corresponding
eigenfunction Pk , [P̃k] = [Pk]. Invoking the definition of linear independence modulo Dmin

again, the eigenfunctions {Pki }
m
i=1 are linearly independent modulo the minimal domain.

Therefore, there are m members of {Pki }
m
i=1 which define a self-adjoint extension L̃ of Lmin

in the above fashion, via the GKN1 Theorem (Theorem 2.12). It remains to verify that L̃ = L.
From Eq. (3.2) we immediately conclude that all of the {Pk}

∞

k=0 belong to the domain DL̃. Thus
L ⊆ L̃ ⊆ L̃∗

⊆ L∗, and it is known that L = L∗. □

This theorem relied heavily on the GKN1 Theorem and began with a self-adjoint operator
generated by left-definite theory to define the boundary conditions imposed to create the left-
definite space. However, the GKN theory goes both ways to create a complete framework of
both necessary and sufficient conditions. The similar conditions of the GKN2 Theorem allow
another statement to be made.
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Corollary 5.2. Let L be as in Theorem 5.1. Then the 2nth (for n ∈ N) left-definite space
generated by the operator L will have deficiency indices (nm, nm). Further, the GKN conditions
for the 2nth left-definite space are given by some {Pk1 , . . . , Pknm }.

Proof. The 2nth left-definite space exists and is unique for the operator L. It also possesses the
complete set of orthogonal eigenfunctions that are in the domain of L, and their spectra coincide.
Glazman symmetry conditions and the linear independence of {Pk1 , . . . , Pknm } modulo the
minimal domain follow by the same argument as the previous theorem. Indices matching the 2nth
left-definite space with the nth power composition of the operator follows from Corollary 2.3.
The result follows by the GKN2 Theorem. □

This corollary provides a complete answer to the question of which functions should be
considered as GKN conditions to create left-definite spaces. The only further improvement would
be to explicitly say which eigenfunctions were sufficient for this purpose. The next section seeks
to answer this question when the operator stems from a Sturm–Liouville differential expression.

6. Left-definite domains of Sturm–Liouville operators

Let Ln be a self-adjoint operator defined by left-definite theory on L2[(a, b), w] with domain
Dn

L that includes a complete system of orthogonal eigenfunctions. Let Ln operate on its domain
via ℓn[ · ], a differential operator of order 2n, where n ∈ N, generated by composing a Sturm–
Liouville differential operator with itself n times. Furthermore, let Ln be an extension of the
minimal operator Ln

min, which has deficiency indices (m,m).
As we are working with coupled boundary conditions for the nth power of an operator, it

suffices to consider m = n. Let us explain why. The case where m = n corresponds to both
endpoints of ℓ being limit circle. If only one endpoint is limit point, then one GKN condition is
still necessary for ℓ. This GKN condition then imposes a restriction at the limit circle endpoint,
while it is just satisfied trivially on the limit point side by all functions in the maximal domain.
If both endpoints are limit point, then no boundary conditions are needed. In that case Lmin
is essentially self-adjoint. Therefore, we assume without loss of generality that the deficiency
indices are (n, n) in this section. A more in depth discussion can be found in [3,21,23–25].

Enumerate the orthogonal eigenfunctions as {Pk}
∞

k=0. Define the following domains:

An :=

{
f ∈ Dn

max

⏐⏐⏐ f, f ′, . . . , f (2n−1)
∈ ACloc(a, b); (p(x))n f (2n)

∈ L2[(a, b), w]
}
,

Bn :=

{
f ∈ Dn

max

⏐⏐⏐ [ f, Pj ]n

⏐⏐⏐b
a

= 0 for j = 0, 1, . . . , n − 1
}
,

Cn :=

{
f ∈ Dn

max

⏐⏐⏐ [ f, Pj ]n

⏐⏐⏐b
a

= 0 for some n distinct j ∈ N
}
, and

Fn :=

{
f ∈ Dn

max

⏐⏐⏐ (a j (x) f ( j)(x))( j−1)
⏐⏐⏐b
a

= 0 for j = 1, 2, . . . , n
}
.

The p(x) above is from the standard definition of a Sturm–Liouville differential operator,
given in Eq. (2.1), and the a j (x)’s are from the Lagrangian symmetric form of the operator in
(2.2). These domains seem very different, yet progress has already been made in this paper and
elsewhere on the equality of these domains. The nth left-definite domain, Dn

L is found to be equal
to An for the Legendre differential operator in [19, Section 7.5]. A general form for Dn

L is missing
from the literature, so we will assume it is equal to An for the rest of this section. Indeed, the
main condition of An simply involves the term associated with f (2n) when ℓn[ f ] is decomposed
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into a sum of derivatives of f . There is a proof of An ⊆ Fn in [19] for the special case where
the differential operator ℓn[ · ] denotes the nth composite power of the Legendre differential
expression and the eigenfunctions {Pk}

∞

k=0 are the Legendre polynomials. This scenario for small
n was discussed in Section 4. The conditions in Fn are particularly significant as they represent
easily testable conditions that are not in the GKN format.

In Section 5 it was shown that by a proper re-enumeration of the eigenfunctions {Pk}
∞

k=0, we
have An = Bn . There we also proved An = Bn = Cn for n = 2 in the Legendre setting (see the
first example after Conjecture 4.4). However, a proof of the general n case for An = Bn = Cn is
elusive at this stage. It is obvious that Bn ⊂ Cn .

Conjecture 6.1. Let Ln be a self-adjoint operator defined by left-definite theory on L2[(a, b), w]
with domain Dn

L that includes a complete system of orthogonal polynomial eigenfunctions, that
is, we use Dn

L = An . Let Ln operate on its domain via ℓn[ · ], a differential operator of order
2n, where n ∈ N, generated by composing a Sturm–Liouville differential operator with itself n
times. Furthermore, let Ln be an extension of the minimal operator Ln

min, which has deficiency
indices (n, n). Then An = Bn = Cn = Fn = Dn

L ∀n ∈ N.

This conjecture extends one made in [19, Chapter 9] by the broad conditions in Cn . Here we
prove some subcases.

Theorem 6.2. Under the hypotheses of Conjecture 6.1, and the assumption that An = Bn , we
have Bn ⊆ Fn ∀n ∈ N.

The proof utilizes an explicit form of the sesquilinear form, as opposed to the one given
in Eq. (2.3). This representation allows for more precision in defining which limits are
disappearing and which are remaining as we approach the endpoints of (a, b). For many of the
Sturm–Liouville operators of interest the expression q(x)/w(x) is a constant, and we have

[ f, g]n(x) =

n∑
k=1

k∑
j=1

(−1)k+ j
{

(ak(x)g(k)(x))(k− j) f ( j−1)(x) (6.1)

− (ak(x) f (k)(x)(k− j))g( j−1)(x)
}
,

where the ak(x)’s are again from the Lagrangian symmetric form of the differential operator
(2.2). For a reference in the Legendre setting, see e.g. [20, Section 10]. One of the reviewers
pointed out to us that many other examples such as Exceptional Orthogonal Polynomials will
also satisfy the hypotheses of Conjecture 6.1 and Theorem 6.2.

Proof of Theorem 6.2. We proceed by induction on n. The base case is proven by a simple
application of Green’s Formula for the sesquilinear form. Let f ∈ B1. We compute

0 = [ f, P0]1|
b
a = [ f, 1]1|

b
a = ⟨ℓ[ f ], 1⟩L2[(a,b),w] − ⟨ f, ℓ[1]⟩L2[(a,b),w]

=

∫ b

a

(
1

w(x)
[p(x) f ′(x)]′

)
w(x)dx − 0 = lim

x→b−
(p(x) f ′(x)) − lim

x→a+
(p(x) f ′(x)),

where the term involving q cancels out (as it is added and then subtracted).
Assume that Bn−1 ⊆ Fn−1 as the inductive hypothesis. Corollary 2.3 shows that

Dn
L = V2n = An = Bn ⊂ Bn−1 ⊆ Fn−1.
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The limits in the description of Bn−1 exist, and are finite, by Theorem 2.8. The inclusion
Bn ⊂ Bn−1 can be shown using Green’s formula. Consequently, f ∈ Bn implies that
limx→b− (ai (x) f (i)(x))(i−1)

− limx→a+(ai (x) f (i)(x))(i−1)
= 0, ∀i = 1, . . . , n − 1.

Furthermore, the definition of Bn includes the condition [ f, P0]n|
b
a = [ f, 1]n|

b
a = 0. Hence,

the only nonzero terms in Eq. (6.1) are when j = 1, yielding n terms. The first n − 1 of these
terms are precisely those given in the definition of Fn−1, explicitly:

0 = [ f, 1]n|
b
a = lim

x→b−
[−a1 f ′

+ (a2 f ′′)′ − · · · + (−1)n(an f (n))(n−1)]

− lim
x→a+

[−a1 f ′
+ (a2 f ′′)′ − · · · + (−1)n(an f (n))(n−1)]

= lim
x→b−

(an f (n))(n−1)
− lim

x→a+
(an f (n))(n−1).

Hence also the last condition in Fn is satisfied, and thus f ∈ Fn . The claim that Bn ⊆ Fn follows
by induction on n.

In the induction step, also, any term involving q cancels out. □

For the reverse inclusion, the proof will involve working with the sesquilinear form explicitly.
Hence, the differences between Sturm–Liouville operators arise primarily in the definition of the
ak(x)’s in Eq. (6.1). The following theorem is formulated for the Legendre operator.

Theorem 6.3. Let the hypotheses of Conjecture 6.1 hold, where ℓn is the classical Legen-
dre differential expression given in (4.1) Assume that for all f ∈ Fn , f ′′, . . . , f (2n−2)

∈

L2[(−1, 1), dx]. Then we have Fn ⊆ Cn ⊆ Bn ∀n ∈ N.

Proof. Fix n ∈ N. The differential expression ℓn can be written in Lagrangian symmetric form
as

ℓn[ f ](x) =

n∑
k=1

(−1)k
{n

k

}
2
((1 − x2)k f (k)(x))(k), (6.2)

where
{ n

k

}
2 denote the Legendre–Stirling numbers of the second kind, see [2] for more. Hence,

ak(x) = C(n, k)(1 − x2)k , where C(n, k) is a constant. Deconstruct the explicit expression for
[ f, Ps]n|

1
−1 into the following:

L H S =

n∑
k=1

k∑
j=1

(−1)k+ j [ak(x)P (k)
s (x)](k− j) f ( j−1)(x),

RH S =

n∑
k=1

k∑
j=1

(−1)k+ j+1[ak(x) f (k)(x)](k− j) P ( j−1)
s (x).

Assume that s ≥ n so that all terms are nonzero. The case where s < n will immediately follow.
The assumption that f ∈ Fn means that

lim
x→1−

[ak(x) f (k)(x)](k−1)
− lim

x→−1+
[ak(x) f (k)(x)](k−1)

= 0,

for k = 1, . . . , n, so terms of this form in the RHS will not be of concern. At a single endpoint,
consider limits of the form

lim
x→−1+(or 1−)

[ak(x) f (k)(x)](k−2),
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for k = 2, . . . , n. Assume c2 ̸= 0. Without loss of generality, assume that at the endpoint 1 the
above limit is equal to c2 > 0 and is finite. Define r2 := c2/2. Then

r2 < lim
x→1−

[ak(x) f (k)(x)](k−2)
= lim

x→1−

(
k−2∑
i=0

(
k − 2

i

)
a(k−2−i)

k (x) f (k+i)(x)

)
.

Recall that ak(x) = C(n, k)(1 − x2)k , so each term on the right hand side will possess a factor of
(1 − x2)2 after differentiation. Dividing both sides by this factor yields

lim
x→1−

r2

(1 − x2)2 < lim
x→1−

(
k−2∑
i=0

(
k − 2

i

)
ã(k−2−i)

k (x) f (k+i)(x)

)
=: S2, (6.3)

where we use

ã(k−2−i)
k (x) =

a(k−2−i)
k (x)
(1 − x2)2 .

Note k ≥ 2 necessarily here, so the relevant derivatives of f (x) in S2 are f ′′(x), . . . , f (n−2)(x),
which are all in L2[(−1, 1), dx] by assumption. However, (1 − x2)k

∈ L2[(−1, 1), dx] for all
k ∈ N0, and so are its derivatives because they are all polynomials. Hence, each summand in
S2 is in L1[(−1, 1), dx] by the Cauchy–Schwarz inequality, and the finite sum S2 is then also in
L1[(−1, 1), dx]. It is apparent that

lim
x→1−

r2

(1 − x2)2 = ∞.

The comparison test thus yields a contradiction to the fact that S2 ∈ L1[(−1, 1), dx]. As c2 ̸= 0
was arbitrary, we conclude

lim
x→1−

[ak(x) f (k)(x)](k−2)
= 0.

A similar argument shows that the same result at the endpoint −1. The method outlined above
can be used to show mutatis mutandis that

lim
x→1−

[ak(x) f (k)](k− j)
= 0

for 2 < j ≤ n. The eigenfunctions Ps(x) are assumed to be polynomials so we may write
Ps(x) =

∑s
h=0αh xh . Then the RHS can be broken down into a power of x times the above limit

for each value of k, j < m. Basic limit laws say that, for h ∈ N,

lim
x→1−

[ak(x) f (k)](k− j) Ps(x) =

s∑
h=0

(
lim

x→1−
αh xh[ak(x) f (k)](k− j)

)
= 0,

by splitting up the product and using the fact that −1 and 1 are finite endpoints. This means

RH S =

n∑
k=1

k∑
j=1

(−1)k+ j+1[ak(x) f (k)(x)](k− j) P ( j−1)
s (x) = 0

for any s ∈ N. Likewise,

L H S =

n∑
k=1

k∑
j=1

(−1)k+ j [ak(x)P (k)
s (x)](k− j) f ( j−1)(x) = 0.

The theorem now follows, as this collectively shows [ f, Ps]n|
1
−1 = 0, for s ∈ N. □
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The method of proof developed above applies to more than just the Legendre differential
expression, with minimal alterations.

Theorem 6.4. Let the hypotheses of Conjecture 6.1 hold, where ℓn is a classical Jacobi or
Laguerre differential expression with α, β > −1 or α > −1 respectively. Assume that for all
f ∈ Fn , f ′′, . . . , f (2n−2)

∈ L2[(a, b), dx]. Then we have Fn ⊆ Cn ⊆ Bn ∀n ∈ N.

Proof. Fix n ∈ N. The Jacobi differential expression ℓn
J can be written in Lagrangian symmetric

form as

ℓn
J[ f ](x) =

1
(1 − x)α(1 + x)β

n∑
k=1

(−1)k(C(n, k, α, β)(1 − x)α+k(1 + x)β+k f (k)(x))(k),

where C(n, k, α, β) is a constant, and α, β > −1. The above proof carries through the same as
above, as the term divided through in analogy to Eq. (6.3) will be (1 − x)α+2(1 + x)β+2, and has
adequate blow-up at the endpoints.

The Laguerre differential expression ℓn
L can be written in Lagrangian symmetric form as

ℓn
L[ f ](x) =

1
xαe−x

n∑
k=1

(−1)k(C(n, k, α)xα+ke−x f (k)(x))(k),

where C(n, k, α) is a constant, and α > −1. The term divided through in analogy to Eq. (6.3)
will be xα+2, and has adequate blow-up at 0.

More details concerning the setup and properties of these differential equations can be found
in [9,10]. □

This effectively covers most of the classical differential equations which possess complete
sets of orthogonal polynomial eigenfunctions. The Hermite equation was not discussed because
it does not require boundary conditions of the above forms, as it is limit-point at both −∞ and
∞.

The astute reader may have noticed that the explicit conditions of Fn did not play a large part
in the above proofs. Indeed, the limit conditions in the definition of Fn are necessary to prove
the assumption that f ′′, . . . , f (2n−2)

∈ L2[(a, b), dx], which was essential. This implication can
be accomplished using an appropriate choice of the vectors ψ and ϕ in two applications of the
so-called CHEL Theorem [19, Theorem 8.7], and subtracting them to form coupled boundary
conditions. The limit conditions of Fn arise as boundary terms from integrating ℓn in Lagrangian
symmetric form, and can be used to show certain functions are in L2[(a, b), dx].

It is also important to note that the specific choice of limits in Fn cannot be altered. Together,
they ensure that [ f, P0]n|

b
a = [ f, 1]n|

b
a = 0. The function 1 also happens to be included in every

classical orthogonal polynomial sequence so it is particularly applicable.
Finally, with these few extra assumptions, Conjecture 6.1 has been shown.

Theorem 6.5. Assume the hypotheses of Conjecture 6.1, where ℓn is a classical Jacobi or
Laguerre differential expression, with α, β > −1 or α > −1 respectively. Assume An = Bn and
that f ∈ Fn implies that f ′′, . . . , f (2n−2)

∈ L2[(a, b), dx]. Then An = Bn = Cn = Fn = Dn
L

∀n ∈ N.
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