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Abstract. The Toeplitz operator acting on the Bergman space A2(D) , with symbol ϕ is given by

Tϕ f = P(ϕ f ) , where P is the projection from L2(D) onto the Bergman space. We present some

history on the study of hyponormal Toeplitz operators acting on A2(D) , as well as give results for

when ϕ is a non-harmonic polynomial. We include a first investigation of Putnam’s inequality

for hyponormal operators with non-analytic symbols. Particular attention is given to unusual

hyponormality behavior that arises due to the extension of the class of allowed symbols. For

instance, in a peculiar example, perturbation of a self-adjoint operator by a subnormal operator

of arbitrarily small (though not arbitrarily large!) norm yields an operator that is not hyponormal.

1. Introduction

Let H be a complex Hilbert space and T be a bounded linear operator acting on

H with adjoint T ∗ . Operator T is said to be hyponormal if [T ∗,T ] := T ∗T −TT ∗ > 0.

That is, if for all u ∈ H

〈[T ∗,T ]u,u〉> 0.

The study of hyponormal operators is strongly related to the spectral and perturba-

tion theories of Hilbert space operators, singular integral equations, and scattering the-

ory. The interested reader is referred to the monograph [10] by M. Martin and M. Puti-

nar. One particularly interesting result for hyponormal operators, Putnam’s inequality,

states that if T is hyponormal, then

‖[T ∗,T ]‖ 6
Area(σ(T ))

π
,

where σ(T ) denotes the spectrum of T (cf. [2]).

We study the hyponormality of certain operators acting on the Bergman space

A2(D) =

{
f ∈ Hol(D) :

∫

D

| f (z)|2 dA(z) < ∞

}
.
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Let ϕ ∈ L∞(D). The Toeplitz operator Tϕ is given by

Tϕ f = P(ϕ f ) f ∈ A2(D),

where P is the orthogonal projection from L2(D) onto A2(D).
In the Hardy space setting the question of when Tϕ is hyponormal for ϕ ∈ L∞(T)

was answered by C. Cowen in [4], who proved the following theorem:

THEOREM 1. Let ϕ ∈ L∞(T) be given by ϕ = f + g , with f ,g ∈ H2 . Then Tϕ is

hyponormal if and only if

g = c + T
h

f ,

for some constant c and some h ∈ H∞(D) , with ‖h‖∞ 6 1 .

This result completely characterized hyponormal Toeplitz operators acting on the

Hardy space. Cowen’s proof relies on a dilation theorem of D. Sarason [14, Theorem

1], and the fact that
(
H2
)⊥

is just the conjugates of H2 functions which vanish at the

origin.

In the Bergman space setting, where we lack an analog to Sarason’s dilation theo-

rem, and where
(
A2
)⊥

is a much larger space, a similar characterization is lacking. One

of the principle difficulties in exploring questions of hyponormality originates from the

behavior of the self-commutator under operator addition. In particular, if we let u be in

a complex Hilbert space H , and T and S be operators on H , then we find

〈[(T + S)∗,T + S]u,u〉
= 〈Tu,Tu〉− 〈T ∗u,T ∗u〉+ 2Re [〈Tu,Su〉− 〈T ∗u,S∗u〉]+ 〈Su,Su〉− 〈S∗u,S∗u〉 . (1)

As we shall see, the “cross-terms” 2Re [〈Tu,Su〉− 〈T ∗u,S∗u〉] lead to many somewhat

unexpected results which reveals a subtlety in the study of hyponormal operators. The

explicit expressions in (1) lead to involved series computations. Our primary effort

consists of extracting reasonable necessary and/or sufficient conditions from series cor-

responding to several different types of non-harmonic symbols. It is worth noting that

if both T and S are Toeplitz operators with harmonic symbols, then these cross terms

vanish, which leads to a smoother study of such operators, e.g. in [1], [8], and [13].

One of the central questions this paper explores is the following:

Given a hyponormal Toeplitz operator Tϕ acting on A2(D) and a symbol ψ ∈ L∞(D) ,

when is Tϕ+ψ hyponormal?

When ψ is not harmonic, this question turns out to be particularly elusive. As we

shall see in Section 3, even requiring that Tψ be self-adjoint is not enough to guarantee

the hyponormality of Tϕ+ψ .

We are also interested in some spectral properties of hyponormal Tϕ , especially

because the commutator has interesting interactions with the geometry of the image

ϕ(D) . It is an immediate consequence of Putnam’s inequality and the spectral mapping

theorem (cf. [12, p. 263]) that the norm of the commutator of T ∗
ϕ and Tϕ is bounded

above by Area(ϕ(D))/π for analytic ϕ , and in [11] it was shown that this bound can be
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improved to Area(ϕ(D))/(2π) for analytic and univalent ϕ . In [7], it was conjectured

that the hypothesis “univalent” is superfluous for this stronger bound. We extend this

conjecture to non-analytic symbols.

The paper proceeds as follows: In Section 2, we give an overview of some known

results for the hyponormality results of Toeplitz operators with harmonic symbols. This

overview is by no means exhaustive, but gives a flavor for the types of results in this

area to date. Of particular note is that questions of hyponormality even of operators

with harmonic polynomials as symbols have still not been completely answered, as

well as the elusiveness of both necessary and sufficient conditions for hyponormality. In

Section 3, we focus on operators with symbols which are not harmonic. We give several

sufficient conditions for the hyponormality of certain operators whose symbol is a non-

harmonic polynomial, as well as several examples which indicate that the situation

is rather subtle. Finally, in Section 4, we look at operators whose symbols satisfy

ϕ(z) = a1zm1 zn1 + . . .+akzmk znk , with m1 −n1 = . . . = mk −nk = δ > 0. In particular

we observe that the arguments of the coefficients of ϕ may play a non-trivial role in

the hyponormality of Tϕ .

Acknowledgement. Many thanks to B. Simanek and D. Khavinson for many in-

spiring and insightful discussions, and to C. Cowen for his very helpful correspondance

and encouragement.

2. Toeplitz operators with harmonic symbol

The study of hyponormal operators with harmonic symbols is greatly simplified by

the lack of cross-terms. In particular, if ϕ = f + g where f and g are holomorphic and

bounded in D then one may show that the cross-term 2Re
[〈

Tf u,Tgu
〉
−
〈

T
f
u,Tgu

〉]

vanishes. Thus, one can show the hyponormality of Tϕ by showing that

∥∥∥H
f
u

∥∥∥
2

>
∥∥Hgu

∥∥2
for all u in the Bergman space, where Hϕ is the Hankel operator I −Tϕ .

In [13], H. Sadraoui examined the hyponormality of Toeplitz operators Tϕ acting

on the Bergman space when ϕ is harmonic. One of his first results, [13, Prop. 1.4.3],

gave a necessary boundary condition for f and g whenever f ′ is in the Hardy space.

This result is particularly interesting because in the Bergman space, boundary value

results are so rare.

THEOREM 2. Let f and g be bounded analytic functions, such that f ′ ∈ H2 . If

Tf+g is hyponormal, then g′ ∈ H2 and |g′| 6 | f ′| almost everywhere on T .

He also showed that this result is sharp, but not in general sufficient. In particular, he

proved the following theorem [13, Prop. 1.4.4] for harmonic polynomials.

THEOREM 3. Consider the operator Tzn+α zm .

1. If m 6 n, then Tzn+α zm is hyponormal if and only if |α| 6
√

m+1
n+1

.

2. If m > n, Tzn+α zm is hyponormal if and only if |α| 6 n
m

.



64 M. FLEEMAN AND C. LIAW

This leads to a host of examples where |g′| 6 | f ′| on T, but Tf+g is not hyponor-

mal. In [1, Theorem 4], P. Ahern and Z. Čučković showed the following result giving

another necessary, but not sufficient, condition for the hyponormality of Tϕ when ϕ is

harmonic.

THEOREM 4. Suppose f and g are holomorphic in D and ϕ = f + g ∈ L∞(D) .

If Tϕ is hyponormal then Tu > u in D where u = | f |2 − |g|2 and T is the Berezin

transform

Tu(z) =
1

π

∫

D

u

(
z− ζ

1− zζ

)
dA(ζ ),

defined for any u ∈ L1 (D) .

Using this, they were able to show, as a corollary, a more general version of

Sadraoui’s result.

COROLLARY 1. Suppose f and g are holomorphic in D , that ϕ = f + g is

bounded in D , and that Tϕ is hyponormal. Then limz→ζ

(
| f ′(z)|2 −|g′(z)|2

)
> 0 for

all ζ ∈ T . In particular, if f ′ and g′ are continuous at ζ ∈ T , then | f ′(ζ )| > |g′(ζ )| .

Finally, in [8], I. S. Hwang proved the following theorem as part of his study

of hyponormal operators whose symbol is a harmonic polynomial. We note here that

the condition deals only with the modulus of the coefficients of the given harmonic

polynomial.

THEOREM 5. Let f (z) = amzm + anzn and g(z) = a−mzm + a−nzn , with 0 < m <
n. If Tf+g is hyponormal and |an| 6 |a−n| , then we have

n2
(
|a−n|2 −|an|2

)
6 m2

(
|am|2 −|a−m|2

)
.

Work continues to this day on the study of hyponormal Toeplitz operators whose

symbol is a harmonic polynomial. It is a testament to the subtlety of the topic that

even in this case there is still much to be said about such symbols. Recently, in [5],

Z. Čučković and R. Curto proved the following result.

THEOREM 6. Suppose Tϕ is hyponormal on A2(D) with ϕ(z) = αzm + β zn +
γ z p + δ zq , where m < n and p < q, and α,β ,γ,δ ∈ C . Assume also that n−m =
q− p. Then

|α|2 n2 + |β |2 m2 −|γ|2 p2 −|δ |2 q2 > 2 |αβ mn− γ δ pq| .

Note that in the above Theorems, only the moduli of the coefficients are taken into

account. As we shall see in Section 4, this is not necessarily the case when ϕ is not

harmonic. We now turn our attention to such operators.
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3. Toeplitz operators with non-harmonic symbol

So far, all of these results deal with Toeplitz operators whose symbol is harmonic.

The study of operators whose symbol is not harmonic turns out to be more complicated

because the cross-terms in equation (1) do not vanish.

3.1. Simple non-harmonic symbols

We begin our own investigations by looking at some simple examples. We did not

have to look far for some results which we found surprising.

It seemed heuristically plausible that adding a symbol corresponding to a hyponor-

mal Toeplitz operator to a symbol corresponding to a self-adjoint Toeplitz operator

should generate a hyponormal Toeplitz operator. But this is not the case.

EXAMPLE 1. The operator T
z+C|z|2 is not hyponormal when |C| > 2

√
2.

Proof. We verify the statement in Example 1. Let ψn(z) =
√

n+1
π zn . The collec-

tion {ψn}∞
n=0 is the standard orthonormal basis of A2(D). Given u(z) = ∑∞

n=0 unψn ∈
A2(D), where {un} ∈ ℓ2 we have that

Tzu =
∞

∑
n=0

√
n + 1

n + 2
unψn+1, and T|z|2u =

∞

∑
n=0

n + 1

n + 2
unψn.

Thus, we have that the cross-terms are

2Re
[〈

T|z|2Tzu,u
〉
−
〈

TzT|z|2u,u
〉]

= 2Re
[〈

Tzu,T|z|2u
〉
−
〈

Tzu,T|z|2u
〉]

= 2Re

[〈
∞

∑
n=0

√
n + 1

n + 2

(
n + 2

n + 3
− n + 1

n + 2

)
unψn+1,

∞

∑
n=0

unψn

〉]

= 2Re
∞

∑
n=0

√
n + 1

n + 2

(
n + 2

n + 3
− n + 1

n + 2

)
unun+1.

Now, by [7] and [11] we have

〈Tzu,Tzu〉− 〈Tzu,Tzu〉 6
1

2
‖u‖2 ,

and since TC|z|2 is normal we have

〈
TC|z|2u,TC|z|2u

〉
−
〈

TC|z|2 u,TC|z|2u
〉

= 0.

We then have the cross-terms

2Re
[〈

Tzu,TC|z|2u
〉
−
〈

Tzu,TC|z|2u
〉]

= 2ReC
∞

∑
n=0

√
n + 1

n + 2

(
n + 2

n + 3
− n + 1

n + 2

)
unun+1.
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Thus we may choose u ∈ A2(D) and C ∈ C , such that

1

2
‖u‖2 + 2ReC

∞

∑
n=0

√
n + 1

n + 2

(
n + 2

n + 3
− n + 1

n + 2

)
unun+1 < 0.

For such a choice of C then, operator Tz+C|z|2 would not be hyponormal. In particular

if we choose u(z) = 1
2
eiθ0ϕ0 + 1

2
eiθ1ϕ1 , where π + θ0 −θ1 = argC , then

〈[
T ∗

z+C|z|2 ,Tz+C|z|2
]

u,u
〉

=
1

6
− |C|

12
√

2
,

which will be negative whenever we choose |C| > 2
√

2. Thus, for any such choice of

C , we have that Tz+C|z|2 is not hyponormal. �

At this point it is not known whether 2
√

2 is sharp. This example came as a sur-

prise to us. We had conjectured that the sum of a self-adjoint plus a hyponormal symbol

would always correspond to a hyponormal operator, and the above simple counterex-

ample was striking. Brian Simanek pointed out to us the following, very interesting

observation: Since hyponormality does not change when you multiply the symbol by a

constant, Example 1 also shows that T z
C +|z|2 is not hyponormal whenever |C| > 2

√
2.

This shows that you may perturb a self-adjoint operator by a subnormal operator of

arbitrarily small norm, and yet the result will not be hyponormal.

THEOREM 7. Let ϕ(z) = am,nzm zn , with m > n and am,n ∈ C . Then Tϕ is hy-

ponormal. Further

‖[T ∗
zm zn ,Tzm zn ]‖ = max

{
2(m−n)2

(2m−n)2
,
(2(m−n)+ 1)(m−n + 1)

(2m−n + 1)2
− m−n + 1

(m+ 1)2

}
.

Proof. It is a well known fact (cf. [6, Chapter 2, Lemma 6]) that

P(zm zn) =

{
m−n+1

m+1
zm−n m > n

0 m < n.

Thus, if we let u(z) = ∑∞
k=0 ukzk ∈ A2(D), then we have

P(zm z
n
u) =





∑∞

k=0
m+k−n+1

m+k+1
ukzm+k−n m > n

∑∞
k=n−m

m+k−n+1
m+k+1

ukzm+k−n m < n.

Taking into account that T ∗
ϕ = Tϕ , we find that
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〈
[T ∗

ϕ ,Tϕ ]u,u
〉

=
〈
Tϕ u,Tϕu

〉
−
〈
T ∗

ϕ u,T ∗
ϕ u
〉

= |am,n|2
(

∞

∑
k=0

m+ k−n + 1

(m+ k + 1)2
|uk|2 −

∞

∑
k=m−n

n + k−m+ 1

(n + k + 1)2
|uk|2

)

= |am,n|2
(

m−n−1

∑
k=0

m+ k−n + 1

(m+ k + 1)2
|uk|2 +

∞

∑
k=m−n

[
m+ k−n + 1

(m+ k + 1)2
− n + k−m+ 1

(n + k + 1)2

]
|uk|2

)
.

(2)

Now,

m+ k−n + 1

(m+ k + 1)2
− n + k−m+ 1

(n + k + 1)2

=
(n + k + 1)2 (m+ k−n + 1)− (m+ k + 1)2 (n + k−m+ 1)

(m+ k + 1)2(n + k + 1)2

=
(m2 −n2)k +(m−n + 1)(n + 1)2 +(m−n−1)(m+ 1)2

(m+ k + 1)2(n + k + 1)2
. (3)

This is clearly positive when k = m−n > 1.

Further, when we take the derivative of the numerator with respect to k , we find

that it is positive whenever m > n , and so the numerator is increasing and thus always

positive. Therefore we may conclude that

m−n−1

∑
k=0

m+ k−n + 1

(m+ k + 1)2
|uk|2 +

∞

∑
k=m−n

(
m+ k−n + 1

(m+ k + 1)2
− n + k−m+ 1

(n + k + 1)2

)
|uk|2 > 0

for all u(z) = ∑∞
k=0 ukzk ∈ A2(D) , and so Tϕ is hyponormal.

Now, the above calculations show that [T ∗
zm zn ,Tzm zn ] is a diagonal operator on the

basis of monomials, and that the standard orthonormal basis

{
ψk(z) =

√
k+1

π zk

}∞

k=0
forms an eigenbasis for the selfcommutator with associated eigenvalues

λk =





(
k+m−n+1
(k+m+1)2

)
(k + 1) 0 6 k 6 m−n−1

(
k+m−n+1
(k+m+1)2 − k+n−m+1

(k+n+1)2

)
(k + 1) k > m−n.

That being the case, to find ‖[T ∗
zm zn ,Tzm zn ]‖ , one need only find the maximum λk . Since,

for k > 0, we have that
(

k+m−n+1
(k+m+1)2

)
(k + 1) is a monotonically increasing function in

k , and
(

k+m−n+1
(k+m+1)2 − k+n−m+1

(k+n+1)2

)
(k + 1) is a monotonically decreasing function in k , the

maximum eigenvalue will either be at

λm−n−1 =
2(m−n)2

(2m−n)2
or λm−n =

(2(m−n)+ 1)(m−n + 1)

(2m−n + 1)2
− m−n + 1

(m+ 1)2
,
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as claimed. �

REMARK 1. Whether the maximum eigenvalue is λm−n−1 or λm−n will depend

on the value of m and n . For example when ϕ = z3z1 , the maximum eigenvalue will be

at λm−n−1 = λ1 , but when ϕ = z11z8 , the maximum eigenvalue will be at λm−n = λ3 .

Also since [T ∗
zm zn ,Tzm zn ] is still a diagonal operator when n > m , the same argument

shows that in that case

‖[T ∗
zm zn ,Tzm zn ]‖ =

(2(n−m)+ 1)(n−m+ 1)

(2n−m+ 1)2
− n−m+ 1

(n + 1)2
.

We have the following immediate corollary.

COROLLARY 2. Let ϕ(z) = zm z
n

with m > n. Then

‖[T ∗
zm zn ,Tzm zn ]‖ 6

1

2
.

Proof. By Theorem 7, we have that

‖[T ∗
zm zn ,Tzm zn ]‖ = max

{
2(m−n)2

(2m−n)2
,
(2(m−n)+ 1)(m−n + 1)

(2m−n + 1)2
− m−n + 1

(m+ 1)2

}
.

Suppose first that the norm is at
2(m−n)2

(2m−n)2 . But then since (2m−n)2 = (m+ m−n)2 =

m2 + 2m(m−n)+ (m−n)2
is clearly greater than 4(m−n)2

, we have that the norm

‖[T ∗
zm zn ,Tzm zn ]‖ is bounded above by

2(m−n)2

4(m−n)2
=

1

2
.

Suppose, on the other hand, that ‖[T ∗
zm zn ,Tzm zn ]‖ = (2(m−n)+1)(m−n+1)

(2m−n+1)2 − m−n+1
(m+1)2 . This is

strictly less than
2(m−n)(m−n + 1)

(2m−n + 1)2
.

Now, (2m−n + 1)2 = (m−n + 1)2 + 2m(m−n + 1)+ m2 . Clearly, 2m(m−n + 1) >

2(m−n)(m−n + 1). If we can then show that

(m−n + 1)2 + m2
> 2(m−n)(m−n + 1),

the claim will follow. But of course by the arithmetic-geometric mean inequality

2(m−n)(m−n + 1) 6 (m−n)2 +(m−n + 1)2
6 m2 +(m−n + 1)2 ,

since n > 0. It follows then that

2(m−n)(m−n + 1)

(2m−n + 1)2
6

2(m−n)(m−n + 1)

4(m−n)(m−n + 1)
=

1

2
. �
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By Putnam’s inequality, and the spectral mapping theorem, we know that when ϕ
is analytic we have that

‖[T ∗
ϕ ,Tϕ ]‖ 6

Area(ϕ(D))

π
.

However, in [11], it was shown that if ϕ is also univalent in D , that

‖[T ∗
ϕ ,Tϕ ]‖ 6

Area(ϕ(D))

2π
,

and it is a standing conjecture that the univalent condition can be dropped. Evidence

for this conjecture was given in [7] where it was showed that

‖[T ∗
zk ,Tzk ]‖ =

1

2
.

In light of Corollary 2, and given the results of [7] and [11], we are led to conjec-

ture:

If ϕ ∈ L∞(D) , and if Tϕ is hyponormal, then ‖[T ∗
ϕ ,Tϕ ]‖ 6

Area(ϕ(D))
2π .

3.2. Non-harmonic polynomials

We now turn to an examination of two term non-harmonic polynomials.

THEOREM 8. Suppose f = am,nzm zn and g = ai, jz
i z j , with m > n, i > j and

m−n > i− j . Then Tf+g is hyponormal if for each k > 0 the term

∣∣∣∣
am,n

ai, j

∣∣∣∣
m−n + k + 1

(m+ k + 1)2
+

∣∣∣∣
ai, j

am,n

∣∣∣∣
i− j + k + 1

(i+ k + 1)2

is sufficiently large (as is defined in the following remark).

REMARK 2. Here sufficiently large means that, under the assumption m− n >
i− j , we have the following four conditions:

∣∣∣∣
am,n

ai, j

∣∣∣∣
m+ k−n + 1

(m+ k + 1)2
+

∣∣∣∣
ai, j

am,n

∣∣∣∣
i+ k− j + 1

(i+ k + 1)2
> Ck + Dk

for k 6 i− j−1, and

∣∣∣∣
am,n

ai, j

∣∣∣∣
m+ k−n + 1

(m+ k + 1)2
+

∣∣∣∣
ai, j

am,n

∣∣∣∣
(

i+ k− j + 1

(i+ k + 1)2
− j + k− i+ 1

( j + k + 1)2

)
> Ck + Dk

for i− j 6 k 6 m−n−1, and

∣∣∣∣
am,n

ai, j

∣∣∣∣
(

m+k−n+1

(m+k +1)2
− n+k−m+1

(n+k +1)2

)
+

∣∣∣∣
ai, j

am,n

∣∣∣∣
(

i+k− j +1

(i+k +1)2
− j +k− i+1

( j +k +1)2

)
> Ck +Dk
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for m−n 6 k 6 m−n + i− j−1, and

∣∣∣∣
am,n

ai, j

∣∣∣∣
(

m+k−n+1

(m+k +1)2
− n+k−m+1

(n+k +1)2

)
+

∣∣∣∣
ai, j

am,n

∣∣∣∣
(

i+k− j +1

(i+k +1)2
− j +k− i+1

( j +k +1)2

)
> Ck +Dk

where

Ck :=

{
m−n+k+1

(m+k+1)(m−n+ j+k+1)
, for 0 6 k 6 i− j−1,

m−n+k+1
(m+k+1)(m−n+ j+k+1) −

j−i+k+1
( j+k+1)( j−i+m+k+1) , for k > i− j.

(4)

and

Dk :=





0, for 0 6 k 6 m−n + j− i−1,
i− j+k+1

(i− j+n+k+1)(i+k+1) , for m−n + j− i 6 k 6 m−n−1,
i− j+k+1

(i− j+n+k+1)(i+k+1) −
n−m+k+1

(n−m+k+1)(n+k+1) ., for k > m−n.

(5)

Proof. Recall that for f ,g ∈ L∞(D) , and u ∈ A2 , we have

〈
[T ∗

f+g,Tf+g]u,u
〉

=
∥∥Tf u

∥∥2 −
∥∥T ∗

f u
∥∥2

+
∥∥Tgu

∥∥2 −
∥∥T ∗

g u
∥∥2

+ 2Re
[〈

Tf u,Tgu
〉
−
〈
T ∗

f u,T ∗
g u
〉]

. (6)

We begin to calculate the cross-term 2Re
[〈

Tf u,Tgu
〉
−
〈

T ∗
f u,T ∗

g u

〉]
. Without

loss of generality, we may assume that m−n > i− j . Under this assumption, we find

2Re
[〈

Tf u,Tgu
〉
−
〈
T ∗

f u,T ∗
g u
〉]

= 2Re(am,nai, j)

[〈
∞

∑
k=0

m+ k−n + 1

m+ k + 1
ukzm+k−n,

∞

∑
k=0

i+ k− j + 1

i+ k + 1
ukzi+k− j

〉

−
〈

∞

∑
k=m−n

n + k−m+ 1

n + k + 1
ukzn+k−m,

∞

∑
k=i− j

j + k− i+ 1

j + k + 1
ukz j+k−i

〉]

= 2
∞

∑
k=0

CkRe
(
am,nai, jukuk+m−n+i− j

)
,

where, for the purposes of slightly less daunting expressions, we used Ck as defined by

(4) in the above remark. We will also, for reasons that will soon be clear, use Dk as

defined by (5).

Unfortunately, as we have seen, we cannot control the sign of these cross terms.

Therefore, we will assume that we must always subtract them. Further, by the inequality

2Re
(

ab
)

6 |a|2 + |b|2 , we have

2Re
(
am,nai, jukuk+m−n+i− j

)
6
∣∣am,nai, j

∣∣
(
|uk|2 +

∣∣uk+m−n+i− j

∣∣2
)

.
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We combine equation (6) with the calculations performed in the proof of Theorem

7 to evaluate ∥∥Tf u
∥∥2 −

∥∥T ∗
f u
∥∥2

+
∥∥Tgu

∥∥2 −
∥∥T ∗

g u
∥∥2

applied to our given f and g . Thereby we may conclude that Tϕ will be hyponormal if

|am,n|2
(

m−n−1

∑
k=0

m+ k−n + 1

(m+ k + 1)2
|uk|2 +

∞

∑
k=m−n

(
m+ k−n + 1

(m+ k + 1)2
− n + k−m+ 1

(n + k + 1)2

)
|uk|2

)

+
∣∣ai, j

∣∣2
(

i− j−1

∑
k=0

i+ k− j + 1

(i+ k + 1)2
|uk|2 +

∞

∑
k=i− j

(
i+ k− j + 1

(i+ k + 1)2
− j + k− i+ 1

( j + k + 1)2

)
|uk|2

)

>
∣∣am,nai, j

∣∣
∞

∑
k=0

Ck

(
|uk|2 +

∣∣uk+m−n+ j−i

∣∣2
)

=
∞

∑
k=0

Ck |uk|2 +
∞

∑
k=m−n+i− j

Dk |uk|2 .

Thus, an appropriate term by term comparison of the coefficients of |uk|2 will

show that operator Tf+g is hyponormal, if the bounds given in the above remark hold.

In particular, we obtain the stronger estimate

〈
[T ∗

f+g,Tf+g]u,u
〉

>

∞

∑
k=0

Ak |uk|2 ,

where Ak is non-negative for all k . �

The next theorem examines the case when one of the terms in our binomial is

the symbol of a cohyponormal operator (i.e. an operator whose adjoint is hyponormal).

This is in contrast to Theorem 8 where each term individually yielded a hyponormal

operator.

THEOREM 9. Suppose f = am,nzm zn and g = ai, j z iz j , with m > n and i > j .

Then Tf+g is hyponormal if for each k > 0

∣∣∣∣
am,n

ai, j

∣∣∣∣
m−n + k + 1

(m+ k + 1)2
−
∣∣∣∣

ai, j

am,n

∣∣∣∣
i− j + k + 1

(i+ k + 1)2

is sufficiently large (as is defined in the following remark).

REMARK 3. Here, as in Theorem 8, we can specify what sufficiently large means.

To do so, we abbreviate

Ãk :=

∣∣∣∣
am,n

ai, j

∣∣∣∣
(

m+ k−n + 1

(m+ k + 1)2
− n + k−m+ 1

(n + k + 1)2

)
, and (7)

B̃k :=

∣∣∣∣
ai, j

am,n

∣∣∣∣
(

i+ k− j + 1

(i+ k + 1)2
− j + k− i+ 1

( j + k + 1)2

)
, (8)
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as well as

C̃k :=
m−n + k + 1

(m+ k + 1)(m−n + i+ k +1)
− i− j + k + 1

(i+ k + 1)(i− j + m+ k +1)
, and (9)

D̃k :=
k + j− i+ 1

(n + j− i+ k + 1)( j + k +1)
− k + n−m+ 1

(m−n + j + k + 1)(n + k +1)
. (10)

Now sufficiently large means that the following four conditions are satisfied:

∣∣∣∣
am,n

ai, j

∣∣∣∣
m+ k−n + 1

(m+ k + 1)2
−
∣∣∣∣

ai, j

am,n

∣∣∣∣
i+ k− j + 1

(i+ k + 1)2
> C̃k

for k 6 min{m−n, i− j}−1, and

C̃k 6






∣∣∣ am,n

ai, j

∣∣∣ m+k−n+1
(m+k+1)2 − B̃k when m−n > i− j

Ãk −
∣∣∣ ai, j

am,n

∣∣∣ i+k− j+1

(i+k+1)2 when m−n < i− j

for min{m−n, i− j}6 k 6 max{m−n, i− j}−1, and

Ãk − B̃k > C̃k

for max{m−n, i− j}6 k 6 m−n + i− j−1, and

Ãk − B̃k > C̃k + D̃k

for k > m−n + i− j .

Proof. Recall that for f ,g ∈ L∞(D) , and u ∈ A2(D) , we have

〈
[T ∗

f+g,Tf+g]u,u
〉

=
∥∥Tf u

∥∥2 −
∥∥T ∗

f u
∥∥2

+
∥∥Tgu

∥∥2 −
∥∥T ∗

g u
∥∥2

+ 2Re
[〈

Tf u,Tgu
〉
−
〈
T ∗

f u,T ∗
g u
〉]

.

Again, the calculations performed in the proof of Theorem 7 applied to the current

f and g show

∥∥Tf u
∥∥2 −

∥∥T ∗
f u
∥∥2

+
∥∥Tgu

∥∥2 −
∥∥T ∗

g u
∥∥2

= |am,n|2
m−n−1

∑
k=0

m+ k−n + 1

(m+ k + 1)2
|uk|2 +

∞

∑
k=m−n

Ãk |uk|2 (11)

−
∣∣ai, j

∣∣2
i− j−1

∑
k=0

i+ k− j + 1

(i+ k + 1)2
|uk|2 −

∞

∑
k=i− j

B̃k |uk|2 , (12)

where we used Ãk and B̃k as defined in (7) and (8).
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This proof differs from that of Theorem 8 in the calculation for the cross-terms.

Under the assumption i > j , we have

2Re
[〈

Tf u,Tgu
〉
−
〈
T ∗

f u,T ∗
g u
〉]

= 2Re(am,nai, j)

[〈
∞

∑
k=0

m+ k−n + 1

m+ k + 1
ukzm+k−n,

∞

∑
k=i− j

j + k− i+ 1

j + k + 1
ukz j+k−i

〉

−
〈

∞

∑
k=m−n

n + k−m+ 1

n + k + 1
ukzn+k−m,

∞

∑
k=i− j

i+ k− j + 1

i+ k + 1
ukzi+k− j

〉]

= 2Re(am,nai, j)
∞

∑
k=0

C̃kukum−n+i− j+k . (13)

via direct calculation and with C̃k from (9).

The argument now follows mutatis mutandis as in Theorem 8. In particular, with

D̃k from (10) and once again taking advantage of the inequality 2Re
(

ab
)

6 |a|2 + |b|2 ,

we have that if the conditions given in Remark 3 hold, then operator Tf+g will be

hyponormal. �

Both of the above theorems are rather cumbersome to apply directly. Further, it

is not immediately clear a priori that the relevant bounds are ever actually attainable.

In the following example we look at a symbol which shows that the bounds in Theo-

rem 9 can be attained. This shows that while a seemingly “nice” symbol like T
z−3|z|2

might fail to be hyponormal even though it is the sum of a sub-normal operator and a

self-adjoint operator, the sum of a hyponormal and co-hyponormal operator might still

produce an operator which is hyponormal.

EXAMPLE 2. Consider ϕ(z) = z2z + 1
7

z4z3 . We can plug this into the relevant

calculations from Theorem 9 to test for hyponormality. In particular, we find that

∣∣am,nai, j

∣∣ Ãk =
3k + 8

(k + 3)2(k + 2)2
,

and that ∣∣am,nai, j

∣∣
(

B̃k + C̃k + D̃k

)

=
1

7

(
7k + 32

7(k + 5)2(k + 4)2
+

3k3 + 21k2 + 46k + 8

(k + 6)(k + 5)(k + 4)(k + 3)(k + 2)(k +1)

)
. (14)

Thus, we find that Tϕ will be hyponormal if

∣∣am,nai, j

∣∣
(

Ãk − B̃k −C̃k + D̃k

)

=
3k +8

(k +3)2(k +2)2
− 1

7

(
7k +32

7(k +5)2(k +4)2
+

3k3 +21k2 +46k +8

(k +6)(k +5)(k +4)(k +3)(k +2)(k +1)

)

=
119k7 +3475k6 +41785k5 +267977k4 +985764k3 +2061168k2 +2228760k +927168

49(k +6)(k +5)2(k +4)2(k +3)2(k +2)2(k +1)
> 0
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for all k > 2, since the checks for k = 0,1 show the desired inequalities hold.

However in fact, it is clear from observation that this rational function is positive

for all k > 0, and in particular for k > 2. Thus Tϕ is hyponormal. This example will

be explored more in depth in Theorem 10.

Note however that for our choice of ϕ , since we have that the expression in (14)

is less than 3k+8
(k+3)2(k+2)2 for all k > 0, only one check was actually necessary to show

that Tϕ is hyponormal. Indeed the construction of this example was based on ensuring

a sufficiently quick decay of the expression in (14) while also ensuring that for small

values of k the required inequalities would still hold. In the following theorem, we

generalize the idea of this construction to find a general construction for hyponormal

operators whose symbol is of the form in the hypothesis of Theorem 9.

THEOREM 10. Fix δ ∈ N. For every integer n ∈ N there exists j ∈ N , such that

Tϕ with symbol ϕ(z) = zn+δ zn + 1
2 j+δ z j+δ z j is hyponormal.

Proof. The idea of the proof lies in constructing the symbol in such a way that the

bounds found in Theorem 9 are satisfied.

We let m = n+δ and i = j+δ . Since m−n = i− j = δ , the formulas from The-

orem 9 become somewhat simplified. Recall that Ãk =
∣∣∣ am,n

ai, j

∣∣∣
(

m+k−n+1
(m+k+1)2 − n+k−m+1

(n+k+1)2

)
,

as well as B̃k =
∣∣∣ ai, j

am,n

∣∣∣
(

i+k− j+1

(i+k+1)2 − j+k−i+1

( j+k+1)2

)
. In particular, for k > δ and with am,n = 1

and ai, j = 1
i+ j

, we obtain

Ãk =
(i+ j)(m+ n)δk +(i+ j)(δ + 1)(n + 1)2 +(i+ j)(δ −1)(m+ 1)2

(k + m+ 1)2(k + n + 1)2
,

and

B̃k =
(i+ j)2δk +(i+ j)(δ + 1)( j + 1)2 +(i+ j)(δ −1)( j + 1)2

(i+ j)2(k + i+ 1)2(k + j + 1)2
.

Finally, we have

C̃k =
δ (i−m)(k + δ + 1)

(k + m+ 1)(k + m+ δ + 1)(k + i+ 1)(k + i+ δ + 1)
, and

D̃k =
δ (i−m)(k− δ + 1)

(k + m+ 1)(k + n− δ + 1)(k + j + 1)(k + j− δ + 1)
.

Recall that our aim is now to prove that for k > 2δ we have

Ãk > B̃k + C̃k + D̃k. (15)

This is a direct application of the bounds given in Theorem 9.

Our goal will be to prove that the numerator of Ãk is larger than the sums of the

numerators of B̃k , C̃k , and D̃k , while ensuring that the denominator of Ãk is smaller

than each of the denominators of B̃k , C̃k , and D̃k . If we can show this we will have
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shown that (15) holds for all k > 2δ , and in fact, the other required bounds of Theorem

9 will also necessarily follow immediately, guaranteeing the hyponormality of Tϕ .

Looking first at the numerators then, we first wish to show

(i+ j)(m+ n)δk > (2i−2m+ 1)k, (16)

for all k > 2δ . Yet since clearly (i + j)(m + n)δ > (2i− 2m + 1) , we have that (16)

holds for all k > 0. Looking at the constant terms of the numerators, and multiplying

through by (i+ j) so we may use the first term of the denominator of B̃k for cancellation

and an easier comparison, it is clear that

(i+ j)2
[
(δ + 1)(n + 1)2 +(δ −1)(m+ 1)2

]

> (δ + 1)( j + 1)2 +(δ −1)( j + 1)2 + 2δ (i−m)(i+ j), (17)

since the inequality

(i+ j)2 [(δ + 1)+ (δ −1)] > (δ + 1)( j + 1)2 +(δ −1)( j + 1)2,

and the inequality

(i+ j)2
[
(δ + 1)(n2 + 2n)+ (δ −1)(m2 + 2m)

]
> 2δ (i−m)(i+ j)

both hold by inspection. So we have that the numerator of Ãk is larger than the sums

of the numerators of B̃k , C̃k , and D̃k , as desired.

It remains to show our desired inequalities for the denominators. It is clear by

inspection that if j > m , then we have that

(k + m+ 1)2(k + n + 1)2 6 (k + i+ 1)2(k + j + 1)2

and

(k + m+ 1)2(k + n + 1)2 6 (k + m+ 1)(k + m+ δ + 1)(k + i+ 1)(k + i+ δ + 1).

We take a moment to show that it is possible to choose j large enough so that

(k + m+ 1)2(k + n + 1)2 < (k + m+ 1)(k + n− δ + 1)(k + j + 1)(k + j− δ + 1) (18)

for all k > 2δ . Since we have already assumed that j > m , we have that j − δ > n ,

and thus (18) follows so long as

(k + m+ 1)(k + n + 1)< (k + n− δ + 1)(k + j + 1).

Or equivalently, since k > 2δ , inequality (18) follows so long as

j >
(k + m+ 1)(k + n + 1)

k + n− δ + 1
− k−1 =

k(m+ δ )+ mn + m+ δ

k + n− δ + 1
=: q(k).

Since the rational function q(k) remains bounded for k ∈ [2δ ,∞) , it is possible to

choose an appropriate j ∈ N . Thus (15) holds for all k > 2δ .

The same argument will show that Ãk > B̃k + C̃k holds for δ 6 k 6 2δ . The

required bounds for k < δ hold trivially.

Thus, by Theorem 9, operator Tϕ is hyponormal. �
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4. Polynomials of fixed relative degree

We now turn to operators whose symbol is a polynomial of the form

ϕ(z) = a1zm1 zn1 + . . .+ akzmk znk , with m1 −n1 = . . . = mk −nk = δ > 0.

We shall call these polynomials of fixed relative degree. Though working with non-

harmonic symbols can be difficult, some results are known in these special cases. One

which we will be interested in for this paper is due to Y. Liu and C. Lu in [9, Theorem

3.1]. There they make use of the Mellin transform of ϕ .

DEFINITION 1. Suppose ϕ ∈ L1 ([0,1] ,rdr) . For Re z > 2, the Mellin transform

of ϕ , is given by

ϕ̂(z) :=

∫ 1

0
ϕ(x)xz−1dx.

For ϕ(reiθ ) = eikθ ϕ0(r), with k ∈ Z and ϕ0 radial, we can compute the action of

Tϕ on zn . Specifically,

Tϕzn =

{
2(n + k + 1)ϕ̂0(2n + k + 2)zn+k n + k > 0

0 n + k < 0,

and

Tϕzn =

{
2(n− k + 1)ϕ̂0(2n− k + 2)zn−k n− k > 0

0 n− k < 0.

Using this, Y. Liu and C. Lu proved the following theorem in [9, Theorem 3.1].

THEOREM 11. Let ϕ(reiθ ) = eiδθ ϕ0(r) ∈ L∞(D), where δ ∈ Z and ϕ0 is radial.

Then Tϕ is hyponormal if and only if one of the following conditions holds:

1) δ = 0 and ϕ0 ≡ 0 ;

2) δ = 0 ;

3) δ > 0 and for each α > δ ,

|ϕ̂0(2α + δ + 2)|> cα ,δ |ϕ̂0(2α − δ + 2)| ,

where we abbreviate

cα ,δ :=

√
α − δ + 1

α + δ + 1
.

The first situation immediately implies that if ϕ(z) is a polynomial in z and z

where the degree of z is larger than the degree of z in each term, then Tϕ cannot be

hyponormal. The second situation is a consequence of the fact that whenever ϕ is real

valued in D , then Tϕ is actually self-adjoint and thus trivially hyponormal. The final

situation, when δ > 0, will be of interest to us.
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REMARK 4. One can prove Theorem 7 by applying Theorem 11, however the

proof is non-trivial.

The following is a corollary of Theorem 13. However, a direct proof is simple

enough that we showcase it here for the convenience of the reader.

COROLLARY 3. Let ϕ(z) = a1zm1 zn1 + . . .+akzmk znk , with m1−n1 = . . . = mk−
nk = δ > 0 , and ai all lying along the same ray for 1 6 i 6 k (i.e. arg(a1) = . . . =
arg(ak)), then Tϕ is hyponormal.

Proof. Write ϕ = ϕ1 + . . . + ϕk , where ϕi = aie
iδθ ϕ0,i(r) . Recall that cα ,δ =√

α−δ+1
α+δ+1

. By Theorem 11 and Theorem 7, we have that for each α > δ

|aiϕ̂0,i(2α + δ + 2)|> cα ,δ |aiϕ̂0,i(2α − δ + 2)| .

Since the a′is all lie along the same ray, we have that for each n > δ

∣∣∣∣∣
k

∑
i=1

aiϕ̂0,i(2α + δ + 2)

∣∣∣∣∣=
k

∑
i=1

|ai| |ϕ̂0,i(2α + δ + 2)|>
k

∑
i=1

cα ,δ |ai| |ϕ̂0,i(2α − δ + 2)| .

The claim now follows by Theorem 11. �

One is tempted to conjecture that the argument of these coefficients should not

matter. However the following example shows that this is not the case.

EXAMPLE 3. Let ϕ(z) = z2 z − z3 z
2

. Then ϕ̂0(k) = 1
k+3

− 1
k+5

, and we find that

1

2α + 6
− 1

2α + 8
<

√
α

α + 2

(
1

2α + 4
− 1

2α + 6

)
,

whenever α > 2. This violates the conditions of Theorem 11, and so Tϕ cannot be

hyponormal.

So, can we find sufficient conditions, beyond all coefficients lying along the same

ray, to guarantee that such functions yield hyponormal operators? The answer is yes,

and depends somewhat on the number of terms, as well as the relative position of the

coefficients, as the following two theorems demonstrate.

THEOREM 12. Let ϕ(z) = a1zm z
n +a2zi z

j
, with m−n = i− j = δ > 0 . Then Tϕ

is hyponormal if a1 and a2 lie in the same quarter-plane (i.e. |arg(a1)− arg(a2)|6 π
2

).

Further, under the additional condition that

0 6
|a1|

α + m+ 1
− |a2|

α + i+ 1
< c2

α ,δ

( |a1|
α + n + 1

− |a2|
α + j + 1

)
for all α, (19)

the requirement that |arg(a1)− arg(a2)| 6 π
2

is also necessary for the hyponormality

of Tϕ .
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Proof. We begin with some general observations. Without loss of generality, we

may assume that a1 is a positive real number and that a2 = r2eiθ with −π
2

6 θ 6 π
2

.

We have ϕ̂0(k) = a1
m+n+k

+ a2
i+ j+k

. Recall that cα ,δ =
√

α−δ+1
α+δ+1

. By Theorem 11, Tϕ

will be hyponormal if and only if

|ϕ̂0(2α + δ + 2)|2 > c2
α ,δ |ϕ̂0(2α − δ + 2)|2 ,

which is equivalent to

∣∣∣∣
a1

α + m+ 1
+

a2

α + i+ 1

∣∣∣∣
2

> c2
α ,δ

∣∣∣∣
a1

α + n + 1
+

a2

α + j + 1

∣∣∣∣
2

,

as well as to

(
a1

α + m+ 1
+

r2 cosθ

α + i+ 1

)2

+
r2

2 sin2 θ

(α + i+ 1)2

> c2
α ,δ

[(
a1

α + n + 1
+

r2 cosθ

α + j + 1

)2

+
r2

2 sin2 θ

(α + j + 1)2

]
, (20)

for all α > δ .

Let us focus on proving the first statement. By the hypothesis that i = δ + j , we

can verify

r2
2 sin2 θ

(α + i+ 1)2
> c2

α ,δ

r2
2 sin2 θ

(α + j + 1)2

for all α > δ . Similarly,

(
a1

α + m+ 1
+

r2 cosθ

α + i+ 1

)2

> c2
α ,δ

(
a1

α + n + 1
+

r2 cosθ

α + j + 1

)2

so long as cosθ > 0. That is, when a2 is in the closed right half-plane. Thus, it follows

that when |arg(a1)− arg(a2)| 6 π
2

, then the estimate in equation (20) holds for all

α > δ . And so Tϕ is hyponormal by Theorem 11.

To show the converse, we assume the extra condition (19). We will show that if
π
2

< θ 6 π , then there exists an α for which (20) fails, and consequently Tϕ must fail

to be hyponormal by Theorem 11.

First, fix α > δ . We construct two circles.

C1 :=

{
z :

∣∣∣∣z−
a1

α + m+ 1

∣∣∣∣=
r2

α + i+ 1

}
,

centered at
a1

α+m+1
with radius

r2
α+i+1

, and

C2 :=

{
z :

∣∣∣∣z− c2
α ,δ

a1

α + n + 1

∣∣∣∣= c2
α ,δ

r2

α + j + 1

}
,
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centered at c2
α ,δ

a1
α+n+1

with radius c2
α ,δ

r2
α+ j+1

. Without loss of generality, we may

always assume that both of these circles lie in the right half-plane.

So long as the difference of their centers is bounded by the difference of their radii,

i.e.
a1

α + m+ 1
− c2

α ,δ

a1

α + n + 1
<

r2

α + i+ 1
− c2

α ,δ

r2

α + j + 1
,

we have that C2 lies completely in the region bounded by C1 . Such a scenario is

illustrated in Figure 1 for one value of α = 6.

0.05 0.10 0.15

-0.05

0.05

Figure 1: The situation when α = 6 , m = 5 , i = 9 , and δ = 4 .

In this case, it is clear that there exists a π
2

< θ < π such that

(
a1

α + m+ 1
+

r2 cosθ

α + i+ 1

)2

− c2
α ,δ

(
a1

α + n + 1
+

r2 cosθ

α + j + 1

)2

= 0. (21)

Then if θ → π , the left hand side of (21) will converge to a negative real number by

condition (19). At the same time, since

lim
θ→π

(
r2

2 sin2 θ

(α + i+ 1)2
− r2

2 sin2 θ

(α + j + 1)2

)
= 0,

there exists some θ for which (20) fails. Define

θα := inf{θ : equation (20) fails} .
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We will now show that θα → π
2

as α → ∞ . Define

Fα(θ ) :=

(
a1

α + m+ 1
+

r2 cosθ

α + i+ 1

)2

+
r2

2 sin2 θ

(α + i+ 1)2

− c2
α ,δ

[(
a1

α + n + 1
+

r2 cosθ

α + j + 1

)2

+
r2

2 sin2 θ

(α + j + 1)2

]
.

As shown above, there exists a θ such that Fα(θ ) = 0. It must be the case that θ = θα

is a root, since Fα(θ ) > 0 for θ < θα , and since Fα(θ ) < 0 for θ > θα . Solving for

this θα , we find that

θα = arccos




c2
α ,δ

[
1

(α+n+1)2 +
r2
2

(α+ j+1)2

]
−
[

1

(α+m+1)2 +
r2
2

(α+i+1)2

]

2r2

(
1

(α+m+1)(α+i+1) −
c2

α,δ

(α+n+1)(α+ j+1)

)




= arccos

(
O
(
α5
)

2r2

(
1 + r2

2

)
α7

)
.

Since
O
(
α5
)

2r2

(
1 + r2

2

)
α7

→ 0 as α → ∞,

this means that θα → π
2

when α → ∞ , as claimed. In particular, this shows that for

all π
2

< θ 6 π , there exists an α for which Fα(θ ) < 0. For such θ then, the Toeplitz

operator with the symbol a1zm zn + r2eiθ zi z j is not hyponormal. �

The next example will demonstrate that the extra conditions we used for necessity

in Theorem 12 cannot be completely dropped.

EXAMPLE 4. Let ϕθ (z) = z2 z + 1
10

eiθ z3 z2. Here again, thinking in terms of two

circles as in the proof of Theorem 12, we see that in this case the interiors of the two

circles are disjoint for small α as shown in Figure 2.

0.14 0.16 0.18 0.20 0.22

-0.015

-0.010

-0.005

0.005

0.010

0.015

Figure 2: The situation for ϕθ (z) = z2 z + 1
10 eiθ z3 z 2 with α = 2 .
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And indeed, as α → ∞ , and these two circles come together, we find that

(
1

α +3
+

cosθ

10(α +4)

)2

+
sin2 θ

100(α +4)2
−c2

α ,δ

[(
1

α +2
+

cosθ

10(α +3)

)2

+
sin2 θ

100(α +3)2

]
> 0

for all θ ∈ [0,π ] and all α > 1. Thus, the Toeplitz operator with symbol ϕθ is hy-

ponormal for all choices of θ .

The next theorem improves slightly on the conditions of Corollary 3.

THEOREM 13. Let ϕ(z) = a1zm1 zn1 + . . .+akzmk znk , with m1 −n1 = . . . = mk −
nk = δ > 0 , and ai all lying in the same quarter-plane 1 6 i 6 k (that is, we have

max16i, j6k

∣∣arg(ai)− arg(a j)
∣∣6 π

2
), then Tϕ is hyponormal.

Proof. The proof follows mutatis mutandis the proof of Theorem 12. Recall again

that cα ,δ =
√

α−δ+1
α+δ+1

.

We assume without loss of generality that a1 is a positive real number, and we let

a j = r je
iθ j for 2 6 j 6 k . The only other change is that instead of condition (20), we

have hyponormality if and only if

(
a1

α + m1 + 1
+

k

∑
i=2

ri cosθi

α + mi + 1

)2

+

(
k

∑
i=2

ri sinθi

α + mi + 1

)2

(22)

> c2
α ,δ



(

a1

α + n1 + 1
+

k

∑
i=2

ri cosθi

α + ni + 1

)2

+

(
k

∑
i=2

ri sinθi

α + ni + 1

)2

 ,

for all α > δ .

Thus, in addition to needing all ai in the right-half plane to guarantee

(
a1

α + m1 + 1
+

k

∑
i=2

ri cosθi

α + mi + 1

)2

> c2
α ,δ

(
a1

α + n1 + 1
+

k

∑
i=2

ri cosθi

α + ni + 1

)2

,

for all α > δ , we also need all ai in the upper half-plane to guarantee

(
k

∑
i=2

ri sinθi

α + mi + 1

)2

> c2
α ,δ

(
k

∑
i=2

ri sinθi

α + ni + 1

)2

.

Thus, as long as 0 6 θi 6 π
2

, for all i , Tϕ is hyponormal.

By rotation, it is sufficient to have max16i, j6k

∣∣arg(ai)− arg(a j)
∣∣6 π

2
. �

It is not known whether or not this condition is necessary. It may be possible a

priori to construct ϕ in such a way that condition (22) holds, while allowing one of the

ai to be outside the given quarter-plane. We expect that the techniques of Example 4

can be modified to yield the desired outcome.
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5. Final remarks

Our studies have focused on finding sufficient conditions for the hyponormality

of Toeplitz operators having certain non-harmonic polynomials as symbols, with our

methods invariably focusing on what can only be described as “hard” analysis. We

would be interested in finding more function theoretic results akin to P. Ahern and

Z. Čučković in [1], which would generate softer proofs and more qualitative results.

For example, something along the lines of the following conjecture:

If Tf is hyponormal and Tg is co-hyponormal, then Tf+g is hyponormal implies that

| fz| > |gz | in D .

So far, all the examples we have conform to this prediction, but given the subtlety

of hyponormality, this evidence is certainly not overwhelming.

We would also be interested in looking at necessary conditions, along the lines

of much of the work that has been done by others studying operators with harmonic

symbols such as Z. Čučković and R. Curto’s recent work in [5].

Finally, in [3], Ch. Chu and D. Khavinson proved the following theorem for hy-

ponormal Toeplitz operators acting on the Hardy space.

THEOREM 14. If ϕ = f +Th f for f ,h ∈ H∞ , with ‖h‖∞ 6 1 and h(0) = 0 , that

is, if Tϕ is a hyponormal Toeplitz operator on the Hardy space H2 , then we have that

‖[T ∗
ϕ ,Tϕ ]‖ > ‖P+ (ϕ)−ϕ (0)‖2

2 .

where P+ is the orthogonal projection from L2(T) onto the Hardy space.

Combining this result with Putnam’s inequality they arrive immediately at the fol-

lowing corollary:

COROLLARY 4. If Tϕ is a hyponormal Toeplitz operator acting on the Hardy

space H2 , then

Area
(
σ
(
Tϕ

))
> π ‖P+ (ϕ)−ϕ (0)‖2

2 .

Although a classification of hyponormal Toeplitz operators remains elusive for the

Bergman space, it would be interesting to see under what conditions a similar lower

bound could be obtained in the Bergman space setting. A cursory examination of the

proof of Corollary 2 combined with Putnam’s inequality shows that

‖P(zm z
n)‖2

2 =
(m−n + 1)π

(m+ 1)2
6 Area(σ (Tzm zn)) .
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