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HYPONORMAL TOEPLITZ OPERATORS WITH
NON-HARMONIC SYMBOL ACTING ON THE BERGMAN SPACE

MATTHEW FLEEMAN AND CONSTANZE LIAW

(Communicated by R. Curto)

Abstract. The Toeplitz operator acting on the Bergman space A?(ID), with symbol ¢ is given by
Tof = P(@f), where P is the projection from L*(ID) onto the Bergman space. We present some
history on the study of hyponormal Toeplitz operators acting on A%(ID), as well as give results for
when ¢ is a non-harmonic polynomial. We include a first investigation of Putnam’s inequality
for hyponormal operators with non-analytic symbols. Particular attention is given to unusual
hyponormality behavior that arises due to the extension of the class of allowed symbols. For
instance, in a peculiar example, perturbation of a self-adjoint operator by a subnormal operator
of arbitrarily small (though not arbitrarily large!) norm yields an operator that is not hyponormal.

1. Introduction

Let H be a complex Hilbert space and 7 be a bounded linear operator acting on
H with adjoint T*. Operator T is said to be hyponormal if [T*,T|:=T*T —TT* > 0.
That is, if for all u € H
([T*, T]u,u) = 0.

The study of hyponormal operators is strongly related to the spectral and perturba-
tion theories of Hilbert space operators, singular integral equations, and scattering the-
ory. The interested reader is referred to the monograph [10] by M. Martin and M. Puti-
nar. One particularly interesting result for hyponormal operators, Putnam’s inequality,
states that if 7" is hyponormal, then

. Area(o(T))
i, 7)) < S,
where o(T') denotes the spectrum of T (cf. [2]).
We study the hyponormality of certain operators acting on the Bergman space

AY(D) = {fe Hol(D) : /D|f(z)|2dA(z) < w}.
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Let ¢ € L*(ID). The Toeplitz operator T, is given by

Tof =P(of)  feA*(D),

where P is the orthogonal projection from L?(D) onto A%(ID).
In the Hardy space setting the question of when Ty, is hyponormal for ¢ € L*(T)
was answered by C. Cowen in [4], who proved the following theorem:

THEOREM 1. Let ¢ € L*(T) be given by ¢ = f + g, with f,g € H*. Then Ty, is
hyponormal if and only if
g§=cC + T/;fa
for some constant ¢ and some h € H*(D), with ||h|., < 1.

This result completely characterized hyponormal Toeplitz operators acting on the
Hardy space. Cowen'’s proof relies on a dilation theorem of D. Sarason [14, Theorem

1], and the fact that (H 2)L is just the conjugates of H> functions which vanish at the
origin.

In the Bergman space setting, where we lack an analog to Sarason’s dilation theo-
rem, and where (Az) * isamuch larger space, a similar characterization is lacking. One
of the principle difficulties in exploring questions of hyponormality originates from the
behavior of the self-commutator under operator addition. In particular, if we let u be in
a complex Hilbert space H, and T and S be operators on H, then we find

((T+8)", T+ S|u,u)
= (Tu,Tu) — (T"u, T*uy 4+ 2Re [(Tu,Su) — (T*u,S*u)] + (Su,Su) — (S*u,S*uy. (1)

As we shall see, the “cross-terms” 2Re [(Tu,Su) — (T*u,S*u)| lead to many somewhat
unexpected results which reveals a subtlety in the study of hyponormal operators. The
explicit expressions in (1) lead to involved series computations. Our primary effort
consists of extracting reasonable necessary and/or sufficient conditions from series cor-
responding to several different types of non-harmonic symbols. It is worth noting that
if both 7 and S are Toeplitz operators with harmonic symbols, then these cross terms
vanish, which leads to a smoother study of such operators, e.g. in [1], [8], and [13].
One of the central questions this paper explores is the following:

Given a hyponormal Toeplitz operator Ty acting on A*(D) and a symbol y € L (D),
when is Ty 1y hyponormal?

When v is not harmonic, this question turns out to be particularly elusive. As we
shall see in Section 3, even requiring that 7, be self-adjoint is not enough to guarantee
the hyponormality of Ty .

We are also interested in some spectral properties of hyponormal T, , especially
because the commutator has interesting interactions with the geometry of the image
¢ (D). It is an immediate consequence of Putnam’s inequality and the spectral mapping
theorem (cf. [12, p. 263]) that the norm of the commutator of T(; and Ty is bounded
above by Area(¢(D))/x for analytic ¢, andin [11] it was shown that this bound can be
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improved to Area(¢(ID))/(2x) for analytic and univalent @. In [7], it was conjectured
that the hypothesis “univalent” is superfluous for this stronger bound. We extend this
conjecture to non-analytic symbols.

The paper proceeds as follows: In Section 2, we give an overview of some known
results for the hyponormality results of Toeplitz operators with harmonic symbols. This
overview is by no means exhaustive, but gives a flavor for the types of results in this
area to date. Of particular note is that questions of hyponormality even of operators
with harmonic polynomials as symbols have still not been completely answered, as
well as the elusiveness of both necessary and sufficient conditions for hyponormality. In
Section 3, we focus on operators with symbols which are not harmonic. We give several
sufficient conditions for the hyponormality of certain operators whose symbol is a non-
harmonic polynomial, as well as several examples which indicate that the situation
is rather subtle. Finally, in Section 4, we look at operators whose symbols satisfy
()= 7" + .. 4 @™ 7", with m;y —ny = ... =my —n =6 > 0. In particular
we observe that the arguments of the coefficients of ¢ may play a non-trivial role in
the hyponormality of T .

Acknowledgement. Many thanks to B. Simanek and D. Khavinson for many in-
spiring and insightful discussions, and to C. Cowen for his very helpful correspondance
and encouragement.

2. Toeplitz operators with harmonic symbol

The study of hyponormal operators with harmonic symbols is greatly simplified by
the lack of cross-terms. In particular, if ¢ = f+ g where f and g are holomorphic and

bounded in DD then one may show that the cross-term 2Re {<Tfu, Tzu) — <T};u, Tgu>}

2
2

vanishes. Thus, one can show the hyponormality of 7, by showing that HHI;M

HngHZ for all u in the Bergman space, where Hg is the Hankel operator I —Tg.

In [13], H. Sadraoui examined the hyponormality of Toeplitz operators Ty acting
on the Bergman space when ¢ is harmonic. One of his first results, [13, Prop. 1.4.3],
gave a necessary boundary condition for f and g whenever f’ is in the Hardy space.
This result is particularly interesting because in the Bergman space, boundary value
results are so rare.

THEOREM 2. Let f and g be bounded analytic functions, such that f' € H*. If
Ty g is hyponormal, then g' € H? and |g'| < |f'| almost everywhere on T.

He also showed that this result is sharp, but not in general sufficient. In particular, he
proved the following theorem [13, Prop. 1.4.4] for harmonic polynomials.

THEOREM 3. Consider the operator T, gzm.

m+1
n+1-°

1. If m < n, then Ty oo is hyponormal if and only if |a| <
2.If m=n, Ty, yzm is hyponormal if and only if |ot| < %
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This leads to a host of examples where [¢'| < |f’| on T, but Ty ; is not hyponor-

mal. In [1, Theorem 4], P. Ahern and Z. Cuckovié¢ showed the following result giving
another necessary, but not sufficient, condition for the hyponormality of 7, when ¢ is
harmonic.

THEOREM 4. Suppose f and g are holomorphic in D and ¢ = f+ g € L*(D).
If Ty is hyponormal then Tu > u in D where u = \fI* = |g|* and T is the Berezin

transform
Tu(@) =1 [ u (1_§C)dA(C)

defined for any u € L' (D) .

Using this, they were able to show, as a corollary, a more general version of
Sadraoui’s result.

COROLLARY 1. Suppose f and g are holomorphic in D, that ¢ = f+ g is
bounded in D, and that Ty is hyponormal. Then Ezﬁc (|f’ | —1¢'(z |2 >0 for

all £ € T. In particular, if ' and g" are continuous at § € T, then | f'(§)| = |g'(§)].

N—

Finally, in [8], I. S. Hwang proved the following theorem as part of his study
of hyponormal operators whose symbol is a harmonic polynomial. We note here that
the condition deals only with the modulus of the coefficients of the given harmonic
polynomial.

THEOREM 5. Let f(z) = an?™ +anz" and g(z) = a_n" +a_pz", with 0 <m <
n. If Ty, g is hyponormal and |a,| < |a_,

7 (laal? = lan?) <2 (|l = la-nl?)

Work continues to this day on the study of hyponormal Toeplitz operators whose
symbol is a harmonic polynomial. It is a testament to the subtlety of the topic that
even in this case there is still much to be said about such symbols. Recently, in [5],
Z. Cutkovié and R. Curto proved the following result.

THEOREM 6. Suppose T, is hyponormal on A*(D) with ¢(z) = az" + Bz" +
yz? +6z%, where m <n and p < q, and o,,v,6 € C. Assume also that n—m =
q—p- Then

o n® + |B2m® —|y* p* — 824> > 2 |aBmn — Y8 pq|.

Note that in the above Theorems, only the moduli of the coefficients are taken into
account. As we shall see in Section 4, this is not necessarily the case when ¢ is not
harmonic. We now turn our attention to such operators.
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3. Toeplitz operators with non-harmonic symbol

So far, all of these results deal with Toeplitz operators whose symbol is harmonic.
The study of operators whose symbol is not harmonic turns out to be more complicated
because the cross-terms in equation (1) do not vanish.

3.1. Simple non-harmonic symbols

We begin our own investigations by looking at some simple examples. We did not
have to look far for some results which we found surprising.

It seemed heuristically plausible that adding a symbol corresponding to a hyponor-
mal Toeplitz operator to a symbol corresponding to a self-adjoint Toeplitz operator
should generate a hyponormal Toeplitz operator. But this is not the case.

EXAMPLE 1. The operator T 2 is not hyponormal when |C| > 2+/2.

Z+Clz
Proof. We verify the statement in Example 1. Let y,(z) = ”H Z". The collec-

tion {y,}_, is the standard orthonormal basis of A*(D). Given u(z) =Y oUnWn €
A%(D), where {u,} € £*> we have that

> n+1
Tu— Z MnlI]nJrla and T‘Z‘ZMZ z%)munwn.
n=

Thus, we have that the cross-terms are

2Re KT‘Z‘ﬂgu, u> — <7}Tz‘zu, u>}

=2Re KTZM, T‘Z‘zu> — <T2M,T‘Z‘2M>:|
i n+l/n+2 n+l ; i"‘
= n+t2\n+t3 n+2 nllfnJrlan:O nYn
= n+1/n+2 n+1
=2R - .
er;) n+2(n—|—3 n—|—2) nttn 1

Now, by [7] and [11] we have

=2Re

(Teu, Tou) — (Tzu, Tou) < 5 Hull
and since T¢ 2 is normal we have

<TC\Z\2”’ TC\z\2”> B <TC\Z\2”7TC\Z\2L¢> =0.

We then have the cross-terms

+1/n+2 n+l
2Re |:<EM7TC‘Z‘ZM> — <TZM7TC‘Z‘ZM>:| = 2ReC Z +2 <n+3 — n+2) UpUp+1-
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Thus we may choose u € A*(D) and C € C, such that

1 = 1 2 1
EH””z‘FZReCZ n+ (n—i— n+
n=0

— <0.
n+2\n+3 n—|—2) Unnt1

For such a choice of C then, operator 7, +ClP? would not be hyponormal. In particular
if we choose u(z) = %eieo(po + %eiel @1, where 7+ 6y — 6; = argC, then

. _ 1 C|
<[Tz+6\z\2’TZ+C\Z\2} ”’”> 6 12V2

which will be negative whenever we choose |C| > 2+v/2. Thus, for any such choice of
C, we have that T +Cl22 is not hyponormal. [J

At this point it is not known whether 2+/2 is sharp. This example came as a sur-
prise to us. We had conjectured that the sum of a self-adjoint plus a hyponormal symbol
would always correspond to a hyponormal operator, and the above simple counterex-
ample was striking. Brian Simanek pointed out to us the following, very interesting
observation: Since hyponormality does not change when you multiply the symbol by a
constant, Example 1 also shows that T% +22 is not hyponormal whenever |C| > 2V/2.
This shows that you may perturb a self-adjoint operator by a subnormal operator of
arbitrarily small norm, and yet the result will not be hyponormal.

THEOREM 7. Let ¢(2) = amp2"Z", with m > n and am, € C. Then Ty is hy-
ponormal. Further

. ~ max 2(m—n)? 2m—n)+1)(m—n+1) m—-n+1
e Terzll = {(Zm—n)z’ (2m—n—i—1)2 (m+1)2 }

Proof. Ttis a well known fact (cf. [6, Chapter 2, Lemma 6]) that

m—n+1_m—n
. -T2 m2>=n
P(z’”z")—{om+1 m;n

Thus, if we let u(z) = Yo ukz* € A%(D), then we have

ZI?:O m+k;n41r1 MkZerkfn m>n
m—n m-+k+
P(Z . u) - +k—n+1 k
oo m+k—n m-+k—n
Yion—m prrkrT UkZ m<n.

Taking into account that Tq’,‘ =T, we find that
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<[T(;7T(P]“a“>
= (Tpu, Tou) — (Tyu, Tyu)
B 2 m+k—n+1 = nt+k—m+1
_|am,n| <Z (m+k+1)2|k| k;ln (n—l—k—l—l)Z'kl
m—n
B 2 m+k—n+1 m+k—n+1 n+k—m+1 2
_|am,n| <Z() m+k+12|k| +k;n|:m+k+1) (n+k+1)2 |Mk| :
(@)
Now,
m+k—n+1 n+k—m+1
(m+k+12  (n+k+1)2
(ntk+ 1) (m+k—n+1)—(m+k+1)?(n+k—m+1)
N (m+k+1)2(n+k+1)>2
~(m?* —nk+ (m— n+1)(n+172+(m—n—1)(m+1)> 3)

(m+k+1)2(n+k+1)>2
This is clearly positive when k=m—n> 1.
Further, when we take the derivative of the numerator with respect to k, we find
that it is positive whenever m > n, and so the numerator is increasing and thus always
positive. Therefore we may conclude that

mA 4t k—n+1 m+k—n+1 n+k—m+1 2
)3 ?+ Z ( >| Kl

& (mtk+1)2 ik e\ (mtk+ 1?2 (n+k+1)?

forall u(z) = Yo uxz* € A*(D), and so Ty is hyponormal.

Now, the above calculations show that [77;,-., T.nz] is a diagonal operator on the

basis of monomials, and that the standard orthonormal basis {l[/k( ) =14/ k“zk }
k=0

forms an eigenbasis for the selfcommutator with associated eigenvalues

(el ) (k4 1) O<k<m—n—1

M=

ktm—n+1 _ ktn—m+1
(femmsst — st ) (1) k>m—n,

That being the case, to find ||[75,-», Tunz2]|| , one need only find the maximum 4. Since,
7z g

for k > 0, we have that (I((I:Trrixé) (k4 1) is a monotonically increasing function in

ktm—nt1 _ ktn—mit1
k. and (fotd — s
maximum eigenvalue will either be at
2(m—n)? Cm—n)+1)m—n+1) m—n+1
3 O A= 2 - 2
(2m—n) 2m—n+1) (m+1)

) (k+ 1) is a monotonically decreasing function in k, the

)menfl =
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as claimed. [

REMARK 1. Whether the maximum eigenvalue is A,, , | or A,_, will depend
on the value of m and n. For example when ¢ = z°7!, the maximum eigenvalue will be
at Ay_,_1 = A, but when @ = z!'z%, the maximum eigenvalue will be at A,,_, = A3.
Also since [Y;T,,Zn,szZn] is still a diagonal operator when n > m, the same argument
shows that in that case

2r-—m)+1)(n—m+1) n—m+1
(2n—m+1) (n+1)2

We have the following immediate corollary.

[ Tnzns Tonzn ]| =

COROLLARY 2. Let ¢(z) =2"Z" with m > n. Then

[ Tmzns Tomzn ]Il <

N =

Proof. By Theorem 7, we have that

T, Tone]] :maX{Z(m—n)2 2m—n)+1)(m—n+1) _m—n—i—l}

(2m—n)*’ 2m—n+1) (m+1)2
Suppose first that the norm is at % But then since (2m —n)* = (m+m—n)* =
m? +2m (m n)+ (m—n)* is clearly greater than 4 (m—n)*, we have that the norm
[[T;5zn, Tomzn]|| is bounded above by

2(m—n)? 1
4(m—n)2 2
* (2(m—n)+1)(m— n+1) _ m—n+1 ..
Suppose, on the other hand, that ||[7]},n, Tnz]|| = —t CInER This is

strictly less than
2m—n)(m—n+1)
(2m—n+1)?
Now, 2m—n+1)2 = (m—n+1)*+2m(m—n+1)+m?. Clearly, 2m(m—n+1) >
2(m—n)(m—n+1). If we can then show that

(m—n+1P4+m*>22m—n)(m—n+1),
the claim will follow. But of course by the arithmetic-geometric mean inequality
2m—n)(m—n+1)<(m—n)*+m—n+17><m*+ (m—n+1)>*,
since n > 0. It follows then that

2m—n)(m—n+1) _2(m—n)(m—n+1) 1
(2m—n+1)> <4(m—n)(m—n—|—1)_2' =
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By Putnam’s inequality, and the spectral mapping theorem, we know that when ¢
is analytic we have that
Area(p(D))

175, Tl < 2

However, in [11], it was shown that if ¢ is also univalent in ), that

Area(p(D))

*
175, Tl < 25222,

and it is a standing conjecture that the univalent condition can be dropped. Evidence
for this conjecture was given in [7] where it was showed that

. 1
173, Talll = 5.

In light of Corollary 2, and given the results of [7] and [11], we are led to conjec-
ture:

If 9 € L*(D), and if Ty is hyponormal, then ||[Tg, To]|| < w.

3.2. Non-harmonic polynomials
We now turn to an examination of two term non-harmonic polynomials.

THEOREM 8. Suppose f = amnz"z" and g = a,',jz"z_j, with m > n, i > j and
m—n>i— j. Then Tr, is hyponormal if for each k = O the term

m—n+k+1
(m+k+1)32

ajj|i—j+k+1

(i+k+1)2

Am,n

ai,j Am,n

is sufficiently large (as is defined in the following remark).

REMARK 2. Here sufficiently large means that, under the assumption m —n >
i — j, we have the following four conditions:

Amn|lm+k—n—+1 aij|i+k—j+1
| > ———>C,+ D
aij| (m+k+1)>? amp | (i+k+1)2 k k
for k<i—j—1,and
amn m+k—n+21 aij <H‘—k—j+21_j—.i—k—i+21>>ck+Dk
aij | (m+k+1) amp | \ (i+k+1) (j+k+1)

fori—j<k<m—-—n—1,and

Am,n dij

m—+k—n+1 - n+k—m+1
(m+k+1)2  (n+k+1)2

i+k—j+1 j+k—i+1>
- >C+D
<(i+k+1)2 (G+k+1)72 ke Pk

ai,j Cm,n
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form—n<k<m—n+i—j—1,and

amn <m+k—n+1in+k—m+l> aij <i+k—j+17j+k—i+l>>c+D
aij |\ (m+k+12  (ntk+1) amn |\ (i+k+ 12 (jrk+1)2) 7 KTk
where
m—n+k+1 L.
C, = TR 1) (m—n R+ 1) forO<hk<i—j—1, @
k= m—n+k+1 - j—itk+1 fork>i— i
ket D (m—ntjThkt1) Gkt (j—itmtk+1)’ Zl=J
and
0, forO0<k<m—n+j—i—1,
L i—j+k+1 P
Dk m form—n—l—]—lékém—n—l,
i—j+k+1 n—m+k+1 for k
(i—jrnthktD)(i+k+1) — (n—mtk+1)(ntk+1) "
%)

Proof. Recall that for f,g € L*(ID), and u € A%, we have

<[r);k+gan+g]u7u>
= [Tyl = |77 ull” 4 |[Teal* = | 75 ul|” + 2Re [(Tyu, Tew) = (Tfu, T7w)] . (6)

We begin to calculate the cross-term 2Re {<Tfu,Tgu> — <T}§‘u, Tg*uﬂ . Without
loss of generality, we may assume that m —n > i — j. Under this assumption, we find

2Re [(Tyu Tyw) — (T T, )]

= m+k—n+1 e k=1
= 2Re (amndi;) [<Z — "tk ”72 .7]141&’“‘ J>

= mtk+1 & itk+1

i n+k— m+1 e, Z J+ l+1ukzj+k7i
Pl n+k+1 klj jt+k+1

=2 CiRe (@ nlly jurdlcem—si—j)
k=0

where, for the purposes of slightly less daunting expressions, we used Cy, as defined by
(4) in the above remark. We will also, for reasons that will soon be clear, use D; as
defined by (5).

Unfortunately, as we have seen, we cannot control the sign of these cross terms.
Therefore, we will assume that we must always subtract them. Further, by the inequality

2Re (al;) < |a* +|b*, we have

2Re (@m i jukllimnti—j) < |amnaij| (|Mk|2 + |k m—nie j’z) .
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We combine equation (6) with the calculations performed in the proof of Theorem
7 to evaluate ) ) ) )
Tl | = |77l + | Tl | = [| 7w

applied to our given f and g. Thereby we may conclude that 7, will be hyponormal if

m—n—1
, m+k—n-+1 m+k—n+1 nt+k—m+1 2
|am,n| < sz) m+k+1 Tt bt 1)2 | k| +k ;7;1 m—|—k—|—1) (n+k+1)2 |Mk|

& i k—jrl o (ikoitl jrk—it Dy o
+ Jai, + ' !
| w‘ (kO (itk+1)2 e k;}( (i+k+1)2 (J+k+1)2>| ¢

> |amnaij| Z (|Mk|2+ ‘I/lk+m7n+j7i‘2)

=Y Celu*+ Z Dy lug*.

k=0 k=m—n+i—j

Thus, an appropriate term by term comparison of the coefficients of |uk|2 will
show that operator Ty, is hyponormal, if the bounds given in the above remark hold.
In particular, we obtain the stronger estimate

([TF g Triglu,u) ZAk i

where Ay is non-negative for all k. [

The next theorem examines the case when one of the terms in our binomial is
the symbol of a cohyponormal operator (i.e. an operator whose adjoint is hyponormal).
This is in contrast to Theorem 8 where each term individually yielded a hyponormal
operator.

THEOREM 9. Suppose f = ayn2"Z" and g = aiJZ_izj, with m > n and i > j.
Then Ty, is hyponormal if for each k = 0

di,j

Am,n

di,j

(m+k+1)?

Am,n

is sufficiently large (as is defined in the following remark).

REMARK 3. Here, as in Theorem 8, we can specify what sufficiently large means.
To do so, we abbreviate

~ amn| (Mm+k—n+1 n+k—m+1

Api=|—= — nd 7
¢ ai,j ((m—i—k—i—l)2 (n+k+1)2> M
~ ajj i+k—j+1 j-‘rk—i—l—l)

By = — 8
N amn ((i+k+1)2 (+k+1)2 ®)
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as well as
. m—n+k+1 i—j+k+1
Cp:= — , and 9
T mrkt Dm—ntitk+1) (i+k+0)(i—j+m+k+1) ©)
- k+j—i+1 kt+n—m+1
D= — =i - rnome . (10)

(n+j—itk+1)(j+k+1) (m—n+j+k+1)(n+rk+1)
Now sufficiently large means that the following four conditions are satisfied:

m+k—n+1_
(m+k+1)32

aijli+k—j+1 _ ~

-—— 4 _>cC
(i+k+12 7~ *

Am,;n

aijj Am,n

for k <min{m—n,i—j} —1,and

Amn | m+k—n+1 _ D _ T

N a; | (mke1)? By whenm—n>i—j
Cr <

A | Gij | ik—j+1 _ P

Aj ann | LRI whenm—n<i—j

for min{m —n,i— j} <k <max{m—n,i— j}—1,and
Av—By =Gy

for max{m—n,i— j} <k<m—n+i—j—1,and
Av—Bi>Ci+ Dy

fork>m—n+i—j.
Proof. Recall that for f,g € L*(ID), and u € A%(ID), we have

([TF 1 Trsglu,u)
= \[Tyull” =177l + [ Tl = 117w+ 2Re [(Tyae, Teae) = (T, T3 w)]

Again, the calculations performed in the proof of Theorem 7 applied to the current
f and g show

7l = il | e[ = |17l

m—n—1 I
m+k—n+1 2 ~ )
=lamal> Y, 5l + Y, Aclul (11)
" 1;) (m+k+ 1)2 k:Zmlfn
Vitk j+1
— |ai —_— By |u 12
|/|k§)(1+k+12|k| k;]k|k| (12)

where we used Zk and gk as defined in (7) and (8).
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This proof differs from that of Theorem 8 in the calculation for the cross-terms.
Under the assumption i > j, we have

ORe {7y, i) — (T, T
~ 2Re (a7 Kz AR i w>
k

~ m+k+1 okl
i n+k— m+1 e i itk—j+1 g
Pl Cntk+l klj i+k+1
= 2Re (amndi) Y., Chttkim—nri— ik - (13)

k=0

via direct calculation and with Ek from (9).
The argument now follows mutatis mutandis as in Theorem 8. In particular, with

Dy from (10) and once again taking advantage of the inequality 2Re (al;) < |ct|2 + |b|2,
we have that if the conditions given in Remark 3 hold, then operator Ty, will be
hyponormal. [J

Both of the above theorems are rather cumbersome to apply directly. Further, it
is not immediately clear a priori that the relevant bounds are ever actually attainable.
In the following example we look at a symbol which shows that the bounds in Theo-
rem 9 can be attained. This shows that while a seemingly “nice” symbol like 7, 312
might fail to be hyponormal even though it is the sum of a sub-normal operator and a
self-adjoint operator, the sum of a hyponormal and co-hyponormal operator might still
produce an operator which is hyponormal.

EXAMPLE 2. Consider ¢(z) =z Z+ 17423, We can plug this into the relevant
calculations from Theorem 9 to test for hyponormahty. In particular, we find that

~  3k+8
fmatil = G e 2
and that L
’am,,,a@j‘ (Bk+ck+Dk)
1( Th32 3k +21k* 4 46k + 8 ) (14)
T T \Tk+5)2(k+4)2 T (k+6)(k+5)(k+4)(k+3)(k+2)(k+1)

Thus, we find that 7, will be hyponormal if

|am,nai,j| (gk —By— Ek +5k>
_ 3k+8 _1( T3 3K +21k* 446k + 8 )
T (k+3)2(k+2)2 T(k+5)2(k+4)2 " (k4+6)(k+5)(k+4)(k+3)(k+2)(k+1)
119k7+3475k6+41785k5+267977k4+985764k3+2061168k2+222876Ok+927168
49(k+6)(k+5)2(k+4)2(k+3)2(k+2)2(k+1)
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for all k > 2, since the checks for k = 0,1 show the desired inequalities hold.

However in fact, it is clear from observation that this rational function is positive
for all k> 0, and in particular for k > 2. Thus Ty, is hyponormal. This example will
be explored more in depth in Theorem 10.

Note however that for our choice of ¢, since we have that the expression in (14)
is less than % for all k > 0, only one check was actually necessary to show
that 7} is hyponormal. Indeed the construction of this example was based on ensuring
a sufficiently quick decay of the expression in (14) while also ensuring that for small
values of k the required inequalities would still hold. In the following theorem, we
generalize the idea of this construction to find a general construction for hyponormal
operators whose symbol is of the form in the hypothesis of Theorem 9.

THEOREM 10. Fix 6 € N. For every integer n € N there exists j € N, such that
Ty with symbol @(z) = 7"+® Y Z’+5Z’ is hyponormal.

Proof. The idea of the proof lies in constructing the symbol in such a way that the
bounds found in Theorem 9 are satisfied.
Welet m=n+68 andi= j+ . Since m—n=i— j= 0, the formulas from The-
mtk—n+1 _ ntk—m+1
aj,j ((erkJrl)2 (n+k+1)2 )

) . In particular, for k > 6 and with a,,, = 1

Am,n

orem 9 become somewhat simplified. Recall that Kk =

4ij

ithk—j+1  jrk—it]
man |\ (i+k+1)2  (j+k+1)2

and q; ; = % , we obtain

T )m+m)Sk+ i+ )(E+1)(n+ 1)+ (i+)(E—1)(m+1)?
e (k+m+1)2(k+n+1)? ’

and

5 (i+ )6k + i+ NS+ DG+1D2+(G+ ) —1)(j+1)2
k= (i+j)2k+i+1)2(k+j+1) '

Finally, we have

. S(i—m)(k+8+1)

Cp= , and
Tk mA D) (k+m+ 5+ V) (k+i+ ) (k+i+6+1)
B — O(i—m)(k—8+1)
T ktm+ D) ktn—6+ D)kt j+)(k+j—06+1)
Recall that our aim is now to prove that for k > 20 we have
Ag > By + Cy + Dy (15)

This is a direct application of the bounds given in Theorem 9.

Our goal will be to prove that the numerator of Ak is larger than the sums of the
numerators of Bk, Ck, and Dy, while ensuring that the denominator of Ak is smaller
than each of the denominators of Bk, Cy, and Dk If we can show this we will have
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shown that (15) holds for all £ > 29, and in fact, the other required bounds of Theorem
9 will also necessarily follow immediately, guaranteeing the hyponormality of 7.
Looking first at the numerators then, we first wish to show

(i4 j)(m+n)dk > (2i —2m+ 1)k, (16)

for all k > 28. Yet since clearly (i+ j)(m+n)d > (2i —2m+ 1), we have that (16)
holds for all £ > 0. Looking at the constant terms of the numerators, and multiplying
throughby (i+ j) so we may use the first term of the denominator of By, for cancellation
and an easier comparison, it is clear that

i+ /)2 [(+1)(n+1)>+(8—1)(m+1)7]
> 8+ D)+ 1)+ (8- 1)(j+1)°+28(—m)(i+)), (17
since the inequality
G+ [+ 1)+ (=] =+ 1+ 1)*+ (8~ 1)(j+1)%
and the inequality
i+ )? [(§+1)(n?+2n) + (8 — 1) (m* +2m)] = 28(i—m)(i+ j)

both hold by inspection. So we have that the numerator of Zk is larger than the sums
of the numerators of Ek , Cy, and Bk , as desired.

It remains to show our desired inequalities for the denominators. It is clear by
inspection that if j > m, then we have that

(k+m+1)2(k+n+1)> < (k+i+1)%(k+j+1)*
and
(k+m+1)2(k+n+1?< (k+m+ 1) (k+m+8+1)(k+i+1)(k+i+6+1).
We take a moment to show that it is possible to choose j large enough so that
(k+m+ 12 (k+n+1)? < (k+m+1)(k+n—8+1)(k+j+1)(k+j—8+1) (18)

for all k > 2. Since we have already assumed that j > m, we have that j — 0 > n,
and thus (18) follows so long as

(ktm+1D)(k+n+1)<(k+n—8+1)(k+j+1).
Or equivalently, since k > 26, inequality (18) follows so long as
_ k(m+6)+mn+m+6

(k+m+1)(k+n+1) _
k+n—6+1 k=1= k+n—86+1 Hq(k).

Since the rational function g(k) remains bounded for k € [28,0), it is possible to
choose an appropriate j € N. Thus (15) holds for all k > 26.

The same argument will show that A; > By +Cy holds for 8 <k <28. The
required bounds for k& < § hold trivially.

Thus, by Theorem 9, operator T, is hyponormal. [
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4. Polynomials of fixed relative degree

We now turn to operators whose symbol is a polynomial of the form

my g

@) =a?M 7" 4.+ a T, withm;—ny=...=m—ng =68 > 0.

We shall call these polynomials of fixed relative degree. Though working with non-
harmonic symbols can be difficult, some results are known in these special cases. One
which we will be interested in for this paper is due to Y. Liu and C. Lu in [9, Theorem
3.1]. There they make use of the Mellin transform of ¢.

DEFINITION 1. Suppose ¢ € L' ([0,1],rdr). For Rez > 2, the Mellin transform
of ¢, is given by

6(0) = [ oo ax

For ¢(re’®) = 9 gy(r), with k € Z and ¢y radial, we can compute the action of
Ty on Z". Specifically,

_ 2(n+k+1)@o(2n+k+2)2""%  n+k>0
Z =
¢ 0 n+k<0,

and

o 2(n—k+1)@o(2n—k+2)2"* n—k>0
2 "o n—k<0.

Using this, Y. Liu and C. Lu proved the following theorem in [9, Theorem 3.1].

THEOREM 11. Let ¢(re’®) = ¢9% g(r) € L*(D), where 8 € Z and @y is radial.
Then Ty is hyponormal if and only if one of the following conditions holds:

1) 6=0and ¢y =0;
2) 6=0;
3) 8 >0 and for each a > 8,

|Q0(200+ 8 +2)| > cq 5|00 (200 — 5 +2)],

o a—0-+1
R VPV S

The first situation immediately implies that if @(z) is a polynomial in z and z
where the degree of z is larger than the degree of z in each term, then 7, cannot be
hyponormal. The second situation is a consequence of the fact that whenever ¢ is real
valued in D, then Ty, is actually self-adjoint and thus trivially hyponormal. The final
situation, when & > 0, will be of interest to us.

where we abbreviate
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REMARK 4. One can prove Theorem 7 by applying Theorem 11, however the
proof is non-trivial.

The following is a corollary of Theorem 13. However, a direct proof is simple
enough that we showcase it here for the convenience of the reader.

COROLLARY 3. Let 9(z) =a1Z™ 7" +.. .+ @™ 7™, withmy —ny = ... = my —
ng=206 >0, and a; all lying along the same ray for 1 <i<k (ie. arg(a;)=...=
arg(ay) ), then Ty is hyponormall.

Proof. Write ¢ = @ + ...+ ¢, where @; = a;e'?

a—86+1
o+6+1

@o,i(r). Recall that ¢y 5 =

. By Theorem 11 and Theorem 7, we have that for each o > o

|ai(ﬁo7,~(2(x + ) + 2)| > Ca,s |a,»($o7,~(2(x ) + 2)| .
Since the ags all lie along the same ray, we have that for each n > 0

k
Z ai(ﬁoJ(Za +6+ 2)

k k
= ¥ lail |00+ 842)] > Y cas lail [fos (20— 5+2).
i=1 i=1 =1

1

The claim now follows by Theorem 11. [
One is tempted to conjecture that the argument of these coefficients should not
matter. However the following example shows that this is not the case.

EXAMPLE 3. Let ¢(z) =222 —232%. Then §o(k) = 15 —

1 _ 1 - o 1 _ 1
20+6 200+8 o+2\200+4 20+6)’

whenever o > 2. This violates the conditions of Theorem 11, and so T, cannot be
hyponormal.

ﬁ , and we find that

So, can we find sufficient conditions, beyond all coefficients lying along the same
ray, to guarantee that such functions yield hyponormal operators? The answer is yes,
and depends somewhat on the number of terms, as well as the relative position of the
coefficients, as the following two theorems demonstrate.

THEOREM 12. Let ¢(z) = a12" 7" + a7 7/, withm—n=i—j=38 >0. Then T,
is hyponormal if ay and ay lie in the same quarter-plane (i.e. |arg (a;) —arg(az)| < 5 ).
Further, under the additional condition that

lai| —ao 2 lar|  a]
Soa+m+1l a+i+l O\ a+n+1 a+j+1

) forall o, (19)

the requirement that |arg(a;) —arg(as)| < % is also necessary for the hyponormality
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Proof. We begin with some general observations. Without loss of generality, we
may assume that a; is a positive real number and that a; = r,e’® with - <0<7

We have @(k) = ;g + 777 Recall that ¢q 5 = g;gi} . By Theorem 11, T,
will be hyponormal if and only if

P02 +8+2) > g 519020~ 5 +2)),
which is equivalent to

aq ar

aq ar
+ -
a+m+1 o+i+1

6 a+n+1+a+j+1

as well as to

ay rpcos 6 r5sin” 0
+ - 7
a+m+1 o+i+1 (a+i+1)
a rycos0 \ 2 13 sin” 0
a+n+1 o+j+1 ((X+j+1)2

> cos

(20)

forall ¢ > 6.
Let us focus on proving the first statement. By the hypothesis that i = § + j, we
can verify
r% sin® 0 S 2 r% sin” @

>c
(at+it1P  %°

“(a+j+ 1)2
forall a > §. Similarly,

2 2
ap rpcos O 2 ap rpcos 0
+ " = Cas + -

o+m+1 o+i+1 C\o+n+1 a+j+1
so long as cos @ > 0. That s, when ay is in the closed right half-plane. Thus, it follows
that when |arg(a;) —arg(az)| < 5. then the estimate in equation (20) holds for all

o > §. And so Ty is hyponormal by Theorem 11.

To show the converse, we assume the extra condition (19). We will show that if
% < 0 < 7, then there exists an o for which (20) fails, and consequently 7, must fail

to be hyponormal by Theorem 11.
First, fix @ > 6. We construct two circles.

C|:= {z:

a . .
centered at T with radius

C = {z:

aj rn
— = . 9
a+m+1 a+i+1

n
a1 and

PR S S Bt S b
“Ootn+1| Catjrlf’
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centered at ca 5a +n Gy With radius ca 5a + a1+ Without loss of generality, we may
always assume ‘that both of these circles lie in the right half-plane.
So long as the difference of their centers is bounded by the difference of their radii,
ie.
@ @ a
a+m+1  “Catn+l a+i+l o+ j+1’

we have that C, lies completely in the region bounded by C;. Such a scenario is
illustrated in Figure 1 for one value of @ = 6.

0.05

0.05 0.10 0.15

-0.05 -

Figure 1: The situation when o0 =6, m=5, i=9, and 6 =4.
In this case, it is clear that there exists a % < 0 < 1 such that

2 2
ay rpcos 0 2 ay rpcos 6
— =0. 21
(a+m+1+(x+i+1> C"‘ﬁ(a+n+1+a+j+1> @D

Then if 6 — 7, the left hand side of (21) will converge to a negative real number by
condition (19). At the same time, since

lim r%sinzez_ r%sinze2 0
-7\ (a+i+1) (a+j+1)

there exists some 6 for which (20) fails. Define

0o :=inf{6 : equation (20) fails} .
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We will now show that 8, — % as o — oo. Define

Fo(6) :_< ai ,cos 0 )2 r2sin” 0
o+m+1 o+i+1 (a+i+1)
2 ( a 2 cos 6 >2+ r3sin® 0 .
@3 \a+n+1 a+j+l (a+j+1)

As shown above, there exists a 6 such that Fy(0) = 0. It must be the case that 6 = 6
is a root, since Fy(0) > 0 for 6 < O, and since Fy(0) < 0 for 6 > . Solving for
this 6, we find that

ol ]
.8 | (a+nt+1)? ' (atj+1) (a+m+1)% " (oti+1)?

6y = arccos

2}"2 < 1 o Cé,é >
(oa+m+1)(a+i+1)  (o+n+I)(o+j+1)

o (o)
=arccos [ ——————=—— .
2r) (1 + r%) o’
Since
O (o)
G N
2ry (1+73) o

this means that 6, — % when o — oo, as claimed. In particular, this shows that for

all 7 < 6 < 7, there exists an a for which F(8) < 0. For such 6 then, the Toeplitz
operator with the symbol a;z" 7" +r2¢/%7/ 7/ is not hyponormal. [

as o — oo,

The next example will demonstrate that the extra conditions we used for necessity
in Theorem 12 cannot be completely dropped.

EXAMPLE 4. Let @p(z) =227 + 5¢%2° 72, Here again, thinking in terms of two

circles as in the proof of Theorem 12, we see that in this case the interiors of the two
circles are disjoint for small « as shown in Figure 2.

0.015F
0.010 F
0.005

A 14 A1 A1 2 22
0.005 \ 0 0.16 0.18 0.20 0

-0.010 -
-0.015

Figure 2: The situation for @g(z) =227 + %61023 72 with a0 =2.
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And indeed, as o — oo, and these two circles come together, we find that

( 1 N cos 6 )2+ sin” 0 ) ( 1 n cos 6 )2+ sin” 0
¢

o+3  10(a+4) 100 (o +4)? @8 |\ a+2 ' 10(0+3) 100 (o +3)2

for all 6 € [0,7] and all o > 1. Thus, the Toeplitz operator with symbol ¢g is hy-

ponormal for all choices of 8.

The next theorem improves slightly on the conditions of Corollary 3.

THEOREM 13. Let ¢(z) =a1Z™ 7" + ...+ a 2™ 7%, with my —ny = ... = my, —
ng =06 >0, and a; all lying in the same quarter-plane 1 < i < k (that is, we have
max<; j<k ‘arg(ai) — arg(aj)‘ < %), then Ty is hyponormal.

Proof. The proof follows mutatis mutandis the proof of Theorem 12. Recall again

a—906+1
oa+o+1"

We assume without loss of generality that a; is a positive real number, and we let
aj=r je’ef for 2 < j < k. The only other change is that instead of condition (20), we
have hyponormality if and only if

2 2
k k .
al r,'COSQ,‘ r,~sm6,~
—_— 22
<a+m1+1+l:§a+m,-+1> +<lz§a+m,-+1> (22)

k cos 6; ? k sin 6, ?
ai Ti i i i
> ¢, +Y—-] |,
@.8 <a+n1+1 Z’Oz-ﬁ-n,-i—l) (;a+n,~+1>

forall ¢ > 6.
Thus, in addition to needing all a; in the right-half plane to guarantee

that Ca,5 =

k o\ k 0\’
r;COs ) a ri cos 6;

2 )

<a+m1+1 Za—i—m,-ﬁ-l) Ca’5<a+n1+1+l:§a+ni+l>

forall o > &, we also need all a; in the upper half-plane to guarantee

k 5in O: 2 k 5in 6; 2
Z V:SIH 1 26‘(215 Z r,Sll‘l 1 )
Sa+m+1 C\Gat+n+1

Thus, as long as 0 < 6; < 2 ,forall i, Ty is hyponormal.

By rotation, it is sufficient to have max;<; j< |arg(a;) —arg(a;)| < %. O

It is not known whether or not this condition is necessary. It may be possible a
priori to construct @ in such a way that condition (22) holds, while allowing one of the
a; to be outside the given quarter-plane. We expect that the techniques of Example 4
can be modified to yield the desired outcome.
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5. Final remarks

Our studies have focused on finding sufficient conditions for the hyponormality
of Toeplitz operators having certain non-harmonic polynomials as symbols, with our
methods invariably focusing on what can only be described as “hard” analysis. We
would be interested in finding more function theoretic results akin to P. Ahern and
Z. Cutkovié in [1], which would generate softer proofs and more qualitative results.
For example, something along the lines of the following conjecture:

If Ty is hyponormal and Ty is co-hyponormal, then Ty, is hyponormal implies that
|fz| = |gz| in D.

So far, all the examples we have conform to this prediction, but given the subtlety
of hyponormality, this evidence is certainly not overwhelming.

We would also be interested in looking at necessary conditions, along the lines
of much of the work that has been done by others studying operators with harmonic
symbols such as Z. Cuckovié and R. Curto’s recent work in [5].

Finally, in [3], Ch. Chu and D. Khavinson proved the following theorem for hy-
ponormal Toeplitz operators acting on the Hardy space.

THEOREM 14. If ¢ = f+T,f for f,h € H*, with ||h||, <1 and h(0) =0, that
is, if Ty is a hyponormal Toeplitz operator on the Hardy space H?, then we have that

* 2
ITe: Tolll = 1P+ () — @ ()13
where Py is the orthogonal projection from L?(T) onto the Hardy space.

Combining this result with Putnam’s inequality they arrive immediately at the fol-
lowing corollary:

COROLLARY 4. If Ty is a hyponormal Toeplitz operator acting on the Hardy
space H?, then

Area (o (T,)) = 7 |Py (@) — @ (0)]3.

Although a classification of hyponormal Toeplitz operators remains elusive for the
Bergman space, it would be interesting to see under what conditions a similar lower
bound could be obtained in the Bergman space setting. A cursory examination of the
proof of Corollary 2 combined with Putnam’s inequality shows that

(m—n+1)m

m=ny2
R

< Area (o (Tmszn)).

"z
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